
TWORAM: Efficient Oblivious RAM in Two Rounds
with Applications to Searchable Encryption

Sanjam Garg1, Payman Mohassel2, and Charalampos Papamanthou3

1 University of California, Berkeley
2 Visa Research, Foster City

3 University of Maryland, College Park

Abstract. We present TWORAM, an asymptotically efficient oblivious RAM
(ORAM) protocol providing oblivious access (read and write) of a memory index
y in exactly two rounds: The client prepares an encrypted query encapsulating y
and sends it to the server. The server accesses memory M obliviously and returns
encrypted information containing the desired value M[y]. The cost of TWORAM
is only a multiplicative factor of security parameter higher than the tree-based
ORAM schemes such as the path ORAM scheme of Stefanov et al. (CCS, 2013).
TWORAM gives rise to interesting applications, and in particular to a 4-round
symmetric searchable encryption scheme where search is sublinear in the worst
case and the search pattern is not leaked—the access pattern can also be concealed
assuming the documents are stored in the obliviously accessed memory M.

1 Introduction

Oblivious RAM (ORAM) is a cryptographic primitive for accessing a remote mem-
ory M of n entries in a way that memory accesses do not reveal anything about the
accessed index y ∈ {1, . . . , n}. Goldreich and Ostrovsky [16] were the first to show
that ORAM can be built with poly(log n) bandwidth overhead4, and since then, there
has been a fruitful line of research on substantially reducing this overhead [9,29,34,36],
in part motivated by the tree ORAM framework proposed by Shi et al. [31]. However,
most existing practical ORAM protocols are interactive, requiring the client to per-
form a “download-decrypt-compute-encrypt-upload" operation several times (typically
O(log n) rounds are involved). This can be a bottleneck for applications where low
latency is important.

In this paper, we consider the problem of building an efficient round-optimal ORAM
scheme. In particular, we propose TWORAM, an ORAM scheme enabling a client to
obliviously access a memory location M[y] in two rounds, where the client sends an
encrypted message to the server that encapsulates y, the server performs the oblivious
computation, and sends a message back to the client, from which the client can retrieve
the desired value M[y].

TWORAM’s worst-case bandwidth overhead is O(κ · p) where p is the bandwidth
overhead of a tree-based ORAM scheme and κ is the security parameter. For instance,

4 We define bandwidth overhead as the number of bits transferred between the client and the
server during a single memory access, including the data block.

in Path-ORAM [34], it is p = log3 n for a block of size O(log n) bits. In other words,
in order to obliviously read a data block of O(log n) bits using TWORAM, one needs
to exchange, in the worst case, a O(κ · log3 n) bits with the server, just in two rounds.

1.1 Existing round-optimal ORAM protocols

Williams and Sion [37] devised a round-optimal ORAM scheme based on a customized
garbling scheme and Bloom filters. Lu and Ostrovsky also include an optimized con-
struction for single-round oblivious RAM in their seminal garbled RAM paper [28].
Subsequent to our work, Fletcher et al. [10] also provide single-round ORAM by gen-
eralizing the approach of [37] to use a garbling scheme for branching programs. All
aforementioned approaches are symmetric-key and are built on top of the hierarchi-
cal ORAM framework as introduced by Goldreich and Ostrovsky [16]. Our approach
however is based on the tree-based ORAM framework as introduced by Shi et al. [31],
yielding worst-case logarithmic costs by construction, thus avoiding involved deamorti-
zation procedures. Burst ORAM [21] is also round-optimal, yet it requires linear storage
at the client side.

Other less efficient approaches to construct round-optimal ORAM schemes are
generic constructions based on garbled RAM [11,12,14]. However, such generic ap-
proaches are prohibitively inefficient. For instance, for the non-black-box Garbled RAM
approaches [14,12], the bandwidth overhead grows with poly(log n, κ, |f |), where |f | is
the size of the circuit for computing the one-way function f and κ is the security param-
eter. This leads to inefficient constructions, that are only of theoretical interest. Also,
for the black-box Garbled RAM approach [11] the bandwidth overhead grows with
poly(log n, κ), and is independent of |f |. However, the construction itself is asymptot-
ically very inefficient. Specifically in [11] the authors do not provide details on how
large the involved polynomials are, which will depend on the choice of various param-
eters. According to our back-of-the-envelope calculation, however, the polynomial is at
least κ5 · log7 n. A key reason for this inefficiency is that they require certain expen-
sive ORAM operations, specifically “eviction," to be performed inside a garbled circuit.
We eliminate this source of inefficiency by moving these expensive ORAM operations
outside of the garbled circuits.

1.2 TWORAM’s technical highlights

Our construction is inspired by the ideas from the recent, black-box garbled RAM work
by Garg, Lu and Ostrovsky [11]. We specifically use those ideas on top of the tree
ORAM algorithms [31]. Our new ideas help avoid certain inefficiencies involved in the
original construction of [11], yielding an asymptotically better protocol.

Our first step is to abstract away certain details of eviction-based tree ORAM al-
gorithms, such as Path-ORAM [34], circuit ORAM [36] and Onion ORAM [9]. These
algorithms work as follows: The memory M that must be accessed obliviously is stored
as a sequence of L trees T1, T2, . . . , TL. The actual data of M is stored encrypted in the
tree TL, while the other trees store position map information (also encrypted). Only T1
is stored on the client side. Roughly speaking, to access an index y in M, the client ac-
cesses T1 and sends a path index p2 to the server. The server then, successively accesses

paths p2, p3, . . . , pL in T2, T3, . . . , TL. However the paths are accessed adaptively: in
order to learn pi, one needs to first access pi−1 in Ti−1, and have all the information
(also known as buckets) stored in its nodes decrypted. This is where existing approaches
require O(L) rounds of interaction: decryption can only take place at the client side,
which means all the information on the paths must be communicated back to the client.

TWORAM’s core idea. In order to avoid the roundtrips described above, we do not
use standard encryption. Instead, we hardcode the content of each bucket inside a gar-
bled circuit [38]. In other words, after the trees T2, T3, . . . , TL are produced, the client
generates one garbled circuit per each internal node in each tree. The function of this
garbled circuit is very simple: Informally, it takes as input an index x; loops through the
blocks bucket[i] contained in the current bucket until it finds bucket[x], and returns the
index π = bucket[x] of the next path to be followed. Note that the index π is returned
in form of a garbled input for the next garbled circuit, so that the execution can proceed
by the server until TL is reached, and the final desired value can be returned to the client
(see Figure 3 for a more formal description).

This simplified description ignores some technical hurdles. Firstly, security of the
underlying ORAM scheme requires that the location where bucket[x] is found remains
hidden. In particular, the garbled circuit which has the value bucket[x] inside should not
be identifiable by the server. We resolve this issue as follows. For every bucket that the
underlying ORAM needs to touch, all the corresponding garbled circuits are executed
in a specific order and the value of interest is carried along the way and output only by
the final evaluated circuit in that tree.

Secondly, the above approach only works well for a single memory access, since
the garbled circuits can only be used once. Fortunately, as we show in the paper, only a
logarithmic number of garbled circuits are touched for each access. These circuits can
be downloaded by the client who decodes the hardcoded values, performs the eviction
strategy locally (on plaintext data), and sends fresh garbled circuits back to the server.
This step does not increase the number of rounds (from two to three), since sending the
fresh garbled circuits to the server can be “piggybacked" onto the message the client
prepares for the next memory access.

Finally, in order to ensure the desired efficiency, and to avoid a blowup of poly-
nomial multiplicative factor in security parameter, we develop optimizations that help
ensure that the sizes of the circuits garbled in our construction remain small and pro-
portional to the underlying ORAM.

1.3 Application: 4-round searchable encryption with no search pattern leakage

An SSE scheme allows a client to outsource a database (defined as a set of docu-
ment/keyword set pairs DB = (di,Wi)

N
i=1) to a server in an encrypted format, where a

search query for w returns di where w ∈Wi.
Several recent works [26,20,3,39] demonstrate attacks against property-preserving

encryption schemes (which also enable search on encrypted data), by taking advan-
tage of the leakage associated with these schemes. Thought these attacks do not lead to
concrete attacks against existing SSE schemes, they underline the importance of exam-
ining the feasibility of solutions that avoid leakage. A natural building block for doing

so is ORAM. We use TWORAM to obtain the first constant-round, and asymptotically
efficient SSE that can hide search/access patterns.

Our construction combines TWORAM and a non-recursive Path-ORAM (whose
position map of the first level is not outsourced) such that searching for w requires
(i) a single access on TWORAM; (ii) |DB(w)| parallel accesses to the non-recursive
Path-ORAM (note that an access to a non-recursive ORAM requires only two rounds).

In particular, we use TWORAM to store pairs of the form (w, (countw, accessw)),
wherew is a keyword, countw is the number of documents containingw and accessw is
the number of times w has been accessed so far. The keyword/document pairs (w||i, di)
(where di is the i-th document containing w) are then stored in the non-recursive Path-
ORAM where their position in the Path-ORAM tree (namely the random path they are
mapped to) is determined on the fly by using a PRF F as Fk(w||i, accessw) (there-
fore there is no need to store the position map locally). To search for keyword w, we
first access TWORAM to obtain (countw, accessw) (and increment accessw), and then
generate all positions to look up in the Path-ORAM using the PRF F . These lookups
can be parallelized and updating the paths can be piggybacked to the next search.

The above yields a construction with 4 rounds of interaction. Note that naively using
ORAM for SSE would incur |DB(w)| ORAM accesses which imply at least |DB(w)|
roundtrips (depending on the number of rounds of the underlying ORAM). As we said
before, our construction does not leak the search pattern, by providing randomly gen-
erated tokens every time a search is performed. If we choose to store all documents in
the obliviously-accessed memory, the access pattern can also be concealed.

1.4 Other related work

Oblivious RAM. ORAM protocols with a non-constant number of roundtrips can be
categorized into hierarchical [17,18,24,27], motivated by the seminal work of Goldre-
ich and Ostrovsky [16], and tree-based [9,29,34,36], motivated by the seminal work of
Shi et al. [31]. We note however, that, by picking the data block size to be big (e.g.,

√
n

bits), the number of rounds in tree-based ORAMs can be made constant, yet bandwidth
increases beyond polylogarithmic, so such a parameter selection is not interesting.
Searchable encryption. Song et al. [32] were the first to explore feasibility of search-
able encryption. Since then, many follow-up works have designed new schemes for
both static data [8,6,4] and dynamic data [5,15,23,22,35,33]. The security definitions
also evolved over time and were eventually established in the work of [8,6]. Unlike our
construction, all these approaches use deterministic tokens, an therefore leak the search
patterns. The only proposed approaches that are constant-round and have randomized
tokens (apart from constructing SSE through Garbled RAM) are the ones based on func-
tional encryption [30]. However, such approaches incur a linear search overhead. We
also note that one can obtain SSE with no search pattern leakage by using interactive
ORAMs such as Path-ORAM [34], or other variants optimized for binary search [13].
Secure Computation for RAM Programs. A recent line of work studies efficient se-
cure two-party computation of RAM programs based on garbled circuits [19,1]. These
constructions can also be used to design SSE that hide the search pattern—yet these
approaches do not lead to constant-round SSE schemes, requiring the client to perform
computation proportional to the size of the search result.

2 Definitions for Garbled Circuits and Oblivious RAM

In this section, we recall definitions and describe building blocks we use in this paper.
We use the notation 〈C ′, S′〉 ↔ Π〈C, S〉 to indicate that a protocol Π is executed
between a client with input C and a server with input S. After the execution of the
protocol the client receives C ′ and the server receives S′. For non-interactive protocols,
we just use the left arrow notation (←) instead.

2.1 Garbled circuits

Garbled circuits were first constructed by Yao [38] (see Lindell and Pinkas [25] and
Bellare et al. [2] for a detailed proof and further discussion). A circuit garbling scheme
is a tuple of PPT algorithms (GCircuit,Eval), where GCircuit is the circuit garbling
procedure and Eval the corresponding evaluation procedure. More formally:

– (C̃, lab) ← GCircuit (1κ, C): GCircuit takes as input a security parameter κ, and
a Boolean circuit C. This procedure outputs a garbled circuit C̃ and input labels
lab, which is a set of pairs of random strings. Each pair in lab corresponds to every
input wire of C (and in particular each element in the pair represents either 0 or 1).

– y ← Eval(C̃, labx): Given a garbled circuit C̃ and garbled input labx, Eval outputs
y = C(x).

Input labels and garbled inputs. For a specific input x, we denote with labx the garbled
inputs, a “projection” of x on the input labels. E.g., for a Boolean circuit of two input
bits z and w, it is lab = {(z0, z1), (w0, w1)}, lab00 = {z0, w0}, lab01 = {z0, w1}, etc.

Correctness. Let (GCircuit,Eval) be a circuit garbling scheme. For correctness, we re-
quire that for any circuitC and an input x forC, we have that thatC(x) = Eval(C̃, labx),
where (C̃, lab)← GCircuit (1κ, C).

Security. Let (GCircuit,Eval) be a circuit garbling scheme. For security, we require
that for any PPT adversary A, there is a PPT simulator Sim such that the following
distributions are computationally indistinguishable:

– RealA(κ): A chooses a circuit C. Experiment runs (C̃, lab) ← GCircuit (1κ, C)
and sends C̃ to A. A then chooses an input x. The experiment uses lab and x to
derive labx and sends labx to A. Then it outputs the output of the adversary.

– IdealA,Sim(κ): A chooses a circuit C. Experiment runs (C̃, σ)← Sim(1κ, |C|) and
sends C̃ to A. A then chooses an input x. The experiment runs labx ← Sim(1κ, σ)
and sends labx to A. Then it outputs the output of the adversary.

The above definition guarantees adaptive security, since the adversary gets to choose
input x after seeing the garbled circuit C̃. We only know how to instantiate garbling
schemes with adaptive security in the random oracle model. In the standard model,
existing garbling schemes achieve a weaker static variant of the above definition where
the adversary chooses both C and input x at the same time and before receiving C̃.

Concerning complexity, we note that if the cleartext circuit C has |C| gates, the
respective garbled circuit has size O(|C|κ). This is because every gate in the circuit
is typically replaced with a table of four rows, each row storing encryptions of labels
(each encryption has κ bits).

2.2 Oblivious RAM

We recall Oblivious RAM (ORAM), a notion introduced and first studied by Goldreich
and Ostrovsky [16]. ORAM can be thought of as a compiler that encodes the mem-
ory into a special format such that accesses on the compiled memory do not reveal
the underlying access patterns on the original memory. An ORAM scheme consists of
protocols (SETUP,OBLIVIOUSACCESS).

– 〈σ,EM〉 ↔ SETUP〈(1κ,M),⊥〉: SETUP takes as input the security parameter κ and
a memory array M and outputs a secret state σ (for the client), and an encrypted
memory EM (for the server).

– 〈(M[y], σ′),EM′〉 ↔ OBLIVIOUSACCESS〈(σ, y, v),EM〉: OBLIVIOUSACCESS is
a protocol between the client and the server, where the client’s input is the secret
state σ, an index y and a value v which is set to null in case the access is a read
operation (and not a write). Server’s input is the encrypted memory EM. Client’s
output is M[y] and an updated secret state σ′ and the server’s output is an updated
encrypted memory EM′ where M[y] = v, if v 6= null.

Correctness. Consider the following correctness experiment. Adversary A chooses
memory M0. Consider EM0 generated with 〈σ0,EM0〉 ↔ SETUP〈(1κ,M0),⊥〉). The
adversary then adaptively chooses memory locations to read and write. Denote the ad-
versary’s read/write queries by (y1, v1), . . . , (yq, vq) where vi = null for read opera-
tions. A wins in the correctness game if 〈(Mi−1[yi], σi),EMi〉 are not the final outputs
of the protocol OBLIVIOUSACCESS〈(σi−1, yi, vi),EMi−1〉 for any 1 ≤ i ≤ q, where
Mi, EMi, σi are the memory array, the encrypted memory array and the secret state,
respectively, after the i-th access operation, and OBLIVIOUSACCESS is run between an
honest client and server. The ORAM scheme is correct if the probability of A in winning
the game is negligible in κ.

Security. An ORAM scheme is secure in the semi-honest model if for any PPT adver-
sary A, there exists a PPT simulator Sim such that the following two distributions are
computationally indistinguishable.

– RealA(κ): A chooses M0. Experiment then runs 〈σ0,EM0〉 ↔ SETUP〈(1κ,M0),⊥〉.
For i = 1, . . . , q, A makes adaptive read/write queries (yi, vi) where vi = null on
reads, for which the experiment runs the protocol

〈(Mi−1[yi], σi),EMi〉 ↔ OBLIVIOUSACCESS〈(σi−1, yi, vi),EMi−1〉 .

Denote the full transcript of the above protocol by ti. Eventually, the experiment
outputs (EMq, t1, . . . , tq) where q is the total number of read/write queries.

– IdealA,Sim(κ): The experiment outputs (EMq, t
′
1, . . . , t

′
q)↔ Sim(q, |M0|, 1κ).

3 TWORAM Construction

Our TWORAM construction uses an abstraction of tree-based ORAM schemes, e.g.,
Path-ORAM [34]. We start by describing this abstraction informally. Then we show
how to turn the interactive Path-ORAM protocol (e.g., the one by Stefanov et al. [34])
into a two-round ORAM protocol, using the abstraction that we present below. We now
give some necessary notation that we need for understanding our abstraction.

3.1 Notation

Let n = 2L be the size of the initial memory that we wish to access obliviously. This
memory is denoted by AL[1], AL[2], . . . , AL[n] where AL[i] is the i-th block of the
memory. Given location y that we wish to access, let yL, yL−1, . . . , y1 be defined re-
cursively as yL = y and yi = ceil(yi+1/2), for all i = L−1, L−2, . . . , 1. For example,
for L = 4 and y = 13, we have

– y1 = ceil(ceil(ceil(y/2)/2)/2) = 2.
– y2 = ceil(ceil(y/2)/2) = 4.
– y3 = ceil(y/2) = 7.
– y4 = 13.

Also define bi = 1− yi%2 to be a bit (namely bi indicates if yi is even or not). Finally,
on input a value x of 2 ·L bits, select(x, 0) selects the first L bits of x, while select(x, 1)
selects the last L bits of x. We note here that both yi and bi are functions of y, but we
do not indicate this explicitly so that not to clutter notation.

3.2 Path-ORAM abstraction

We start by describing our abstraction of Path-ORAM construction. In Appendix A we
describe formally how this abstraction can be used to implement the interactive Path-
ORAM algorithm [34] (with log n rounds of interaction). We note that the details in
Appendix A are provided only for helping better understanding. Our construction can
be understood based on just the abstraction defined below.

Roughly speaking, Path-ORAM algorithms encode the original memory AL in the
form of L memories

AL, AL−1, . . . , A1 ,

where AL stores the original data and the remaining memories Ai store information
required for accessing data in AL obliviously. Each Ai has 2i entries, each one storing
blocks of 2·L bits (for ease of presentation we assume the block size isΘ(log n) but our
results apply with other block parameterizations as well). MemoriesAL, AL−1, . . . , A2

are stored in trees TL, TL−1, . . . , T2 respectively. The smallest memory A1 is kept lo-
cally by the client. The invariant that is maintained is that any block Ai[x] will reside in
some leaf-to-root path of tree Ti, and specifically on the path that starts from leaf xi in
Ti. The value xi itself can be retrieved by accessingAi−1, as we detail in the following.

T2

T3

x2x3xL

TL

…

AL[yL]
A3[y3]

A2[y2]

A1[y1]

val

y
y

y y

Fig. 1: Our Path-ORAM abstraction for reading a value val = AL[y]. A1[y1] is read from local
storage and defines x2. x2 defines a path p2 in T2. By traversing p2 the algorithm will retrieve
A2[y2], which will yield x3, which defines a path p3 in T3. Repeating this process yields a path
pL in TL, traversing which yields the final value AL[yL] = AL[y]. Note that y is passed from
tree Ti−1 to tree Ti so that the index yi (and the bit bi) can be computed for searching for the
right block on path pi.

Reading a value AL[y]. To read a value AL[y], one first reads A1[y1] from local stor-
age and computes x2 ← select(A1[y1], b1) (recall definitions of y1 and b1 from Sec-
tion 3.1). Then one traverses the path starting from leaf x2 in T2. This path is de-
noted with T2(x2). Block A2[y2] is guaranteed to be on T2(x2). Then one computes
x3 ← select(A2[y2], b2), and continues in this way. In the end, one will traverse path
TL(xL) and will eventually retrieve block AL[y]. See Figure 1.
Updating the paths. Once the above process finishes, we need to make sure that we do
not access the same leaf-to-root paths in case we access AL[y] again in the future—this
would violate obliviousness. Thus, for i = 2, . . . , L, we perform the following tasks:

1. We remove all blocks from Ti(xi) and copy them into a data structure Ci called
stash. In our abstraction, stash Ci is viewed as an extension of the root of tree Ti;

2. In the stashCi−1, we set select(Ai−1[yi−1], bi−1)← ri, where ri is a fresh random
number in [1, 2i] that replaces xi from above. This effectively means that block
Ai[yi] should be reinserted on path Ti(ri), when eviction from stashCi takes place;

3. We evict blocks from stash Ci back to tree Ti(xi), respecting the new assignments
made above.

Syntax. A Path-ORAM consists of three procedures (INITIALIZE, EXTRACT,UPDATE)
with syntax:

– T ← INITIALIZE(1κ, AL): Given a security parameter κ and memoryAL as input,
SETUP outputs a set of L − 1 trees T = {T2, T3, . . . , TL} and an array of two

entries A1. A1 is stored locally with the client and T2, . . . , TL are stored with the
server.

– xi+1 ← EXTRACT(i, y, Ti(xi)) for i = 2, . . . , L. Given the tree number i, the final
memory location of interest y and a leaf-to-root path Ti(xi) (that starts from leaf
xi) in tree Ti, EXTRACT outputs an index xi+1 to be read in the next tree Ti+1. The
client can obtain x2 from local storage as x2 ← select(A1[y1], b1). The obtained
value x2 is sent to the server in order for the server to continue execution. Finally,
the server outputs xL+1, which is the desired value AL[y].
EXTRACTBUCKET algorithm. In Path-ORAM [34], internal nodes of the trees store
more than one block (z,Ai[z]), in the form of buckets. We note that EXTRACT can
be broken to work on individual buckets along a root-to-leaf path in a tree Ti. In
particular, we can define the algorithm π ← EXTRACTBUCKET(i, y, b) where i is
the tree of interest, y is the memory location that needs to be accessed, and b is a
bucket corresponding to a particular node on the leaf-to-root path. π will be found
at one of the nodes on the leaf-to-root path. Note that the algorithm EXTRACT can
be implemented by repeatedly calling EXTRACTBUCKET for every b on Ti(xi).

– {A1, T2(x2), . . . , TL(xL)} ← UPDATE(y, op, val, A1, T2(x2), . . . , TL(xL). Pro-
cedure UPDATE takes as input the leaf-to-root paths (and local storage A1) that
were traversed during the access and accordingly updates these paths (and local
storage A1). Additionally, UPDATE ensures the new value val is written to AL[y],
if operation op is a “write" operation.

An implementation of the above abstractions, for Path-ORAM [34], is given in Algo-
rithms 1, 2, 3 in Appendix A.1. Note that the description of the UPDATE procedure [34]
abstracts away the details of the eviction strategy. The SETUP and OBLIVIOUSACCESS
protocols of the interactive Path-ORAM using these abstractions are given in Figures 6
and 7 respectively in the Appendix A.2. It is easy to see that the OBLIVIOUSACCESS
protocol has log n rounds of interactions. By the proof of Stefanov et al. [34], we get
the following:

Corollary 1. The protocols SETUP and OBLIVIOUSACCESS from Figures 6 and 7 re-
spectively in Appendix A.2 comprise a secure ORAM scheme (as defined in Section 2.2)
with O(log n) rounds, assuming the encryption scheme used is CPA-secure.

We recall that the bandwidth overhead for Path-ORAM [34] is O(log3 n) bits and
the client storage is O(log2 n) · ω(1) bits, for a block size of 2 · L = 2 · log n bits.

3.3 From logn rounds to two rounds

Existing Path-ORAM protocols implementing our abstraction require log n rounds (see
OBLIVIOUSACCESS protocol in Figure 7). The main reason for that is the following: In
order for the server to determine the index of leaf xi from which the next path traversal
begins, the server needs to access Ai−1[yi−1], which is stored encrypted at some node
on the path starting from leaf xi−1 in tree Ti−1—see Figure 1. Therefore the server has
to return all encrypted nodes on Ti−1(xi−1) to the client, who performs the decryption
locally, searches for Ai−1[yi−1] (via the EXTRACTBUCKET procedure) and returns the
value xi to the server (see Line 10 of the OBLIVIOUSACCESS protocol in Figure 7).

Circuit C[u, bucket, leftLabels, rightLabels, nextRootLabels](p, y, π)
Inputs: (p, y, π).
Outputs: Next node to be executed and garbled inputs for its bucket circuit.
Hardcoded parameters: [u = (i, j, k), bucket, leftLabels, rightLabels, nextRootLabels].

1: if π = ⊥ then
2: Set π ← EXTRACTBUCKET(i, y, bucket); . π will be the desired value xi+1.
3: end if
4: if u is not a leaf then
5: Based on p, return either (left(u), leftLabels(p,y,π)); . Go to left child.

or (right(u), rightLabels(p,y,π)); . Go to right child.
6: else
7: return (nextRoot(u), nextRootLabels(π,y,⊥)); . Go to next root.
8: end if

Fig. 2: Formal description of the naive bucket circuit. Notation: Given lab, the set of input labels
for a garbled circuit, we let laba denote the garbled input labels (i.e., the labels taken from lab)
corresponding to the input value a.

Our approach. To overcome this difficulty, we do not encrypt the blocks in the buckets.
Instead, for each bucket stored at a tree node u, we prepare a garbled circuit that hard-
codes, among other things, the blocks that are contained in the bucket. Subsequently,
this garbled circuit executes the EXTRACTBUCKET algorithm on the hardcoded blocks
and outputs either ⊥ or the next leaf index π, depending on whether the search per-
formed by EXTRACTBUCKET was successful or not. The output, whatever that is, is
fed as a garbled input to either the left child bucket or the right child bucket (depend-
ing on the currently traversed path) or the next root bucket (in case u is a leaf) of u.
In this way, by the time the server has executed all the garbled circuits along the cur-
rently traversed path, he will be able to pass the index π to the next tree as a garbled
input, and continue the execution in the same way without having to interact with the
client. Therefore the client can obliviously retrieve his value AL[y] in only two rounds
of communication.

Unfortunately, once these garbled circuits have been consumed, they cannot be used
again since this would violate security of garbled circuits. To avoid this problem, the
client downloads all the data that was accessed before, decrypts them, runs the UP-
DATE procedure locally, recomputes the garbled circuits that were consumed before,
and stores the new garbled circuits locally. In the next access, these garbled circuits will
be sent along with the query. Therefore the total number of communication rounds is
equal to two (note that this approach requires permanent client storage—for transient
storage, the client will have to send the garbled circuits immediately which would in-
crease the rounds to three). We now continue with describing the bucket circuit that
needs to be garbled for our construction.
Naive bucket circuit. To help the reader, in Figure 2 we describe a naive version of
our bucket circuit that leads to an inefficient construction. Then we give the full-fledged
description of our bucket circuit in Figure 3. The naive bucket circuit has inputs, outputs
and hardcoded parameters, which we detail in the following.

Inputs. The input of the circuit is a triplet consisting of the following information:

1. The index of the leaf p from which the currently explored path begins;
2. The final location to be accessed y;
3. The output from previous bucket π (can be the actual value of the next index to be

explored or ⊥).

Outputs. The outputs of the circuit are the next node to be executed, along with its
garbled inputs. For example, if the current node u is not a leaf (see Lines 4 and 5 in
Figure 2), the circuit outputs the garbled inputs of either the left or the right child,
whereas if the current node is a leaf (see Lines 6-8 in Figure 2), the circuit outputs the
garbled inputs of the next root to be executed. Note that outputting the garbled inputs is
easy, since the bucket circuit hardcodes the input labels of the required circuits. Finally
we note that the EXTRACTBUCKET(i, y,bucket) algorithm used in Figure 2 can be
found in Appendix A.1—see Algorithm 2.
Hardcoded parameters. The circuit for node u hardcodes:

1. The node identifier u that consists of a triplet (i, j, k) where
– i ∈ {2, . . . , L} is the tree number where node u belongs to;
– j ∈ {0, . . . , 2i−1} is the depth of node u;
– k ∈ {0, . . . , 2j − 1} is the oder of node u in the specific level.

For example, the root of tree T3 will be denoted (3, 0, 0), while its right child will
be (3, 1, 1).

2. The bucket information bucket (i.e., blocks (x,Ai[x], r) contained in node u—
recall r is the path index in Ti assigned to Ai[x]);

3. The input labels leftLabels, rightLabels and nextRootLabels that are used to com-
pute the garbled inputs for the next circuit to be executed. Note that leftLabels and
rightLabels are used to prepare the next garbled inputs when node u is an internal
node (to go either to the left or the right child), while nextRootLabels are used
when node u is a leaf (to go to the next root).

Final bucket circuit. In the naive circuit presented before, we hardcode the input labels
of the root node root of every tree Ti into all the nodes/circuits of tree Ti−1. Unfortu-
nately, in every oblivious access, the garbled circuits of all roots are consumed (and
therefore root’s circuit as well), hence all the garbled circuits of tree Ti−1 will have to
be recomputed from scratch. This cost is O(n), thus very inefficient. We would like to
mimimize the number of circuits in Ti−1 that need to be recomputed and ideally make
this cost proportional to O(log n).

To achieve that, we observe that, instead of hardcoding input labels nextRootLabels
in the garbled circuit of every node of tree Ti−1, we can just pass them as garbled
inputs to the garbled circuit of every node of tree Ti−1. The final circuit is given in
Figure 3. Note that the only difference of the new circuit from the naive circuit is in the
computation of the garbled inputs

leftNewLabels(p,y,π,nextRootLabels)

and
rightNewLabels(p,y,π,nextRootLabels) ,

Circuit C[u, bucket, leftNewLabels, rightNewLabels](p, y, π, nextRootLabels)
Inputs: p, y, π, nextRootLabels.
Outputs: Next node to be executed and garbled inputs for its bucket circuit.
Hardcoded parameters: [u = (i, j, k), bucket, leftNewLabels, rightNewLabels].

1: if π = ⊥ then
2: Set π ← EXTRACTBUCKET(i, y, bucket); . π will be the desired value xi+1.
3: end if
4: if u is not a leaf then
5: Based on p, return either (left(u), leftNewLabels(p,y,π,nextRootLabels)); . Go to left child.

or (right(u), rightNewLabels(p,y,π,nextRootLabels)); . Go to right child.
6: else
7: return (nextRoot(u), nextRootLabels(π,y,⊥)); . Go to next root.
8: end if

Fig. 3: Formal description of the final bucket circuit.

where nextRootLabels is added in the subscript (see Line 5 of both Figure 3 and Fig-
ure 2), to account for the new input of the new circuit. Note also that we indicate the
change in the input format by using “leftNewLabels" instead of just “leftLabels" and
“rightNewLabels" instead of just “rightLabels". nextRootLabels have the same mean-
ing in both circuits.

3.4 Protocols SETUP and OBLIVIOUSACCESS of our construction

We now describe in detail the SETUP and OBLIVIOUSACCESS protocols of TWORAM.
SETUP. The SETUP protocol is described in Figure 4. Just like the setup for the inter-
active ORAM protocol (see Figure 6 in Appendix A.2), in TWORAM, the client does
some computation locally in the beginning (using his secret key) and then outputs some
“garbled information" that is being sent to the server. In particular:

1. After producing the trees T2, T3, . . . , TL using algorithm INITIALIZE, the client
prepares the garbled circuit of Figure 3 for all the nodes u ∈ Ti, for all trees Ti. It
is important this computation takes place from the leaves towards the root (that is
why we write j ∈ {i − 1, . . . , 0} in Line 2 of Figure 4), since a garbled circuit of
a node u hardcodes the input labels of the garbled circuits of its children—so these
need to be readily available by the time u’s garbled circuit is computed.

2. Apart from the garbled circuits, the client needs to prepare garbled inputs for the
nextRootLabels inputs of all the roots of the trees Ti. These are essentially the βi’s
computed in Line 4 of Figure 4.

OBLIVIOUSACCESS. The OBLIVIOUSACCESS protocol of TWORAM is described in
Figure 5. The first step of the protocol is similar to that of the interactive scheme (see
Figure 7 in Appendix), where the client accesses local storage A1 to compute the path
index x2 that must be traversed in T2. However, the main difference is that, instead of
sending x2 directly, the client sends the garbled input that corresponds to x2 for the
root circuit of tree T2, denoted with α in Figure 5.

Protocol 〈σ,EM〉 ↔ SETUP〈(1κ,M),⊥〉:
Client:
1: Pick a κ-bit secret key s. Run {A1, T2, . . . , TL} ← Initialize(1κ,M);
2: For all i ∈ 2, . . . , L, for all j ∈ {i − 1, . . . 0}, for all k ∈ {0, . . . , 2j − 1}, let u = (i, j, k) be the

(j, k)-th node in Ti and let bucket be its bucket. Compute:

(C̃u, labu = (cStateu, nStateu))← GCircuit(1κ,C[u, bucket, lab(i,j+1,2k), lab(i,j+1,2k+1)]) ,

Xu ← Encs(bucket, lab(i,j+1,2k), lab(i,j+1,2k+1)) ,

where
– C is defined in Figure 3 and (Enc,Dec) is a semantically-secure encryption scheme;
– cStateu are the input labels for the triplet (p, y, π) for node u;
– nStateu are the input labels for nextRootLabels for node u.

3: For all u, send to server C̃u,Xu;
4: For all i ∈ {2, . . . , L− 1} send to server βi = nState

(i,0,0)

cState(i+1,0,0) . Namely, βi are garbled inputs for
nextRootLabels for node (i, 0, 0).

5: return (s,A1, cState
(2,0,0)) as σ;

Server:
1: return all data sent by the client from above as EM;

Fig. 4: SETUP protocol for TWORAM.

We note here that α is not enough for the first garbled circuit to start executing, and
therefore the server complements this garbled input with β2 (see Server Line 1), the
other half that was sent by the client before and that represents the garbled inputs for
the input labels of the next root. Subsequently, the server starts executing the garbled
circuits one-by-one, using the outputs of the first circuit, as garbled inputs to the second
one, and so on. Eventually, the clients reads and decrypts all paths Ti(xi), retrieving
the desired value (see Client Line 2). Finally, the client runs the UPDATE, re-garbles the
circuits that got consumed and waits until the next query to send them back. We can
now state the main result of our paper.

Theorem 1. The protocols SETUP and OBLIVIOUSACCESS from Figures 4 and 5 re-
spectively comprise a two-round secure ORAM scheme (as defined in Section 2.2), as-
suming the garbling scheme used is secure (as defined in Section 2.1) and the encryption
scheme used is CPA-secure.

The proof of the above theorem can be found in Appendix A.3. Concerning com-
plexity, it is clear that the only overhead that we are adding on Path-ORAM [34] is a
garbled circuit per bucket—this adds a multiplicative security parameter factor on all
the complexity measures of Path-ORAM. E.g., the bandwidth overhead of our construc-
tion is O(κ · log3 n) bits (for blocks of 2 log n bits).

3.5 Optimizations

Recall that in the garbling procedure of a circuit C, one has the following choices: (i)
either to garble C in a way that during evaluation of the garbled circuit on x the output

Protocol 〈(M[y], σ′),EM′〉 ↔ OBLIVIOUSACCESS〈(σ, y, val),EM〉:
Client:
1: Compute x2 ← select(A1[y1], b1) and send to server α = cState

(2,0,0)

(x2,y,⊥);
Server:
1: Let output = α||β2, where β2 is defined in Line 4 of Protocol SETUP in Figure 4;
2: Set i = 2 and j = 0 and k = 0;
3: while i ≤ L do
4: (nextNode, output)← Eval(C̃(i,j,k), output);
5: if j = i− 1 and i < L then . node (i, j, k) is a leaf of trees T2, T3, . . . , TL−1

6: i = i+ 1; . go to next tree
7: output = output||βi; . prepare the garbled inputs for the root of the next tree
8: end if
9: if nextNode = left(i, j, k) then . node (i, j, k) is a not a leaf; decide whether to go next

10: j = j + 1; k = 2k; . go to left child
11: else
12: j = j + 1; k = 2k + 1; . go to right child
13: end if
14: end while
15: Let x2, . . . , xL be the indices of the paths that have been accessed above;
16: Send to client output and all Xu’s corresponding to nodes u on paths T2(x2), T3(x3), . . . , TL(xL);
Client:
1: Decrypt all information contained in Xu and reconstruct T2(x2), T3(x3), . . . , TL(xL);
2: Retrieve block (y,AL[y], xL) from TL(xL); Set val = AL[y];
3: Run {A1, T2(x2), . . . , TL(xL)} ← UPDATE(y, op, val, A1, T2(x2), . . . , TL(xL));
4: For all i ∈ 2, . . . , L, for all j ∈ {i− 1, . . . 0}, let u = (i, j, k) be the (j, k)-th node in Ti(xi) and let

bucket be its bucket. Compute:

(C̃u, labu = (cStateu, nStateu))← GCircuit(1κ,C[u, bucket, lab(i,j+1,2k), lab(i,j+1,2k+1)]) ,

Xu ← Encs(bucket, lab(i,j+1,2k), lab(i,j+1,2k+1)) ,

where C is defined in Figure 3. Send to server C̃u and Xu;
5: Store locally (s,A1, cState

(2,0,0)) as σ′;
6: For all i ∈ {2, . . . , L− 1} send to server βi = nState

(i,0,0)

cState(i+1,0,0) ;
7: return (val, σ′).

Server:
1: return the data received by the client as EM′.

Fig. 5: OBLIVIOUSACCESS protocol for TWORAM.

is the cleartext value C(x); (ii) or to garble C in a way that during evaluation of the
garbled circuit on x the output is the garbled labels corresponding to the value C(x).
We now describe an optimization for a specific circuit C that we will be using in our
construction that uses the above observation.

General optimization. Consider a circuit that performs the following task: It hardcodes
two k-bit strings s0 and s1, takes an input a bit b and outputs sb. This cleartext circuit
has size O(k), so the garbled circuit for that will have size O(k2). To improve upon

that we consider a circuit C ′ that takes as input bit b and outputs the same bit b! This
cleartext circuit has size O(1). However, to make sure that the output of the garbled
version of C ′ is always sb, we garble C ′ by outputting the garbled label corresponding
to b, namely sb (i.e., using (ii) from above). In particular, during the garbling procedure
we use s0 as the garbled label output for output b = 0 and we use s1 as the garbled label
output for the output b = 1. Note that the size of the new garbled circuit has size O(k),
yet it has exactly the same I/O behavior with the garbling of C, which has size O(k2).

– Improving cState—not hard-coding input labels inside the bucket circuit. In
the construction we described, we include the input labels leftLabels, rightLabels
in the circuit C[u,bucket, leftLabels, rightLabels]. Consequently, the size of the
ungarbled version of this circuit grows with the size of leftLabels and rightLabels
which is κ · |cState|. We can easily use the general optimization described above,
for each bit of |cState|, to make the size of the ungarbled version of our circuit only
grow with |cState|.

– Improving nState—input labels passing. In the construction described previ-
ously, for each tree, an input value nState is passed from the root to a leaf node
in the tree. However this value is used only at the leaf node. Recall that the nState
value passed from the root to a leaf garbled circuits in the tree Ti is exactly the value
cStatei+1,0,0, the input labels of the root garbled circuit of the tree Ti+1. Since each
ungarbled circuit gets this value as input, therefore each of one of them needs to
grow with κ · |cState|.5 We will now describe an optimization such that the size of
the garbled version, rather than the clear version, grows linearly in κ · |cState|.
Note that in our construction the value cStatei+1,0,0 is not used at all in the inter-
mediate circuits as it gets passed along the garbled circuits for tree Ti. In order to
avoid this wastefulness, for all nodes i ∈ {1, . . . , L}, j ∈ [i], k ∈ [2j] we sample
a value r(i,j,k) of length κ · |cState| and hardcode the values r(i,j,k) ⊕ r(i,j+1,2k)

and r(i,j,k) ⊕ r(i,j+1,2k+1) inside the garbed circuit C̃i,j,k which output the first
of two values if the execution goes left and the second if the execution goes right.
Note that a garbled circuits grows only additively in κ · |cState| because of this
change. This follows by using the first optimization. Additionally, we include the
value cStatei+1,0,0 ⊕ r(i,0,0) with the root node of the tree Ti. The leaf garbled
circuit (i, i − 1, k) in tree Ti is constructed assuming r(i,i−1,k) is the sequence
of input labels for the root garbled circuit of the tree Ti+1.6 Let α0, . . . αi−1 be
the strings output during the root to a leaf traversal in tree Ti. Now observe that
cStatei+1,0,0 ⊕ r(i,0,0) ⊕j∈[i] αj is precisely cStatei+1,0,0 ⊕ r(i,i−1,k) where k is
the leaf node in the traversed path. At this point it is easy to see that given the output
of the leaf grabled circuit for tree Ti one can compute the required input labels for
the root of tree Ti+1.
The update mechanism in our construction can be easily adapted to work with this
change. Here note that we would now include the values r(i,j,k), r(i,j+1,2k) and
r(i,j+1,2k+1) in the ciphertextX(i,j,k). Also note that we will use fresh r(·,·,·) values

5 This efficiency is achieved when the first optimization is used.
6 Note that here the first optimization allows us to ensure that the size of the garbled leaf circuit,

rather than the clear leaf circuit, grows with the length of r(i,i−1,k) as these hard-codings are
performed.

whenever a fresh garbled circuit for a node is generated. The security argument
now additionally uses the fact that the outputs generated by garbled circuits in two
separate root to leaf traversals depend on completely independent r(·,·,·) values.
Note that the above modification leaks what value is passed by the executed leaf
garbled circuit in tree Ti to the root garbled circuit in tree Ti+1. This can be deduced
based on what bit values of cStatei+1,0,0⊕r(i,0,0) are revealed. This can be tackled
by randomly permuting the labels in cStatei+1,0,0 and passing the information on
this permutations along with in the tree to leaf garbled circuits. Note that the size
of this information is small.

Taken together these two optimizations reduce the size of each garbled circuit to
O(κ · (|bucket| + |cState|)). Since |bucket| > |cState| this expression reduces to
O(κ · |bucket|). This implies that the overhead of our construction is just κ times the
overhead of the underlying Path ORAM scheme.

4 Searchable encryption construction using TWORAM

The natural way of designing an SSE scheme that does not leak the search and access
patterns using an ORAM scheme is to first use a data structure for storing keyword-
document pairs, setup the data structure in memory using an ORAM setup and then
read/write from it using ORAM operations. Since ORAM hides the read/write access
patterns, but it does not hide the number of memory accesses, one needs to ensure that
the number of memory accesses for each operation is also data-independent. Fortu-
nately, this can be achieved by not letting the key used for the hash table be the output
of a pseudorandom function applied to the keyword w, and not the keyword w itself.

We start by giving some definitions and then describe constructions that can be in-
stantiated using any ORAM scheme. We then show how to obtain a significantly more
efficient instantiation using a combination of TWORAM and a non-recursive Path-
ORAM scheme.

4.1 Hash table definition

A hash table is a data structure commonly used for mapping keys to values [7]. It often
uses a hash function h that maps a key to an index (or a set of indices) in a memory
array M where the value associated with the key may be found. In particular, h takes as
input a keyword key and outputs a set of indices i1, . . . , ic where c is a parameter. The
value associated with key is in one of the locations M[i1], . . .M[ic]. The keyword is not
in the table if it is not in one of those locations. Similarly, to write a new (key, value)
pair into the table, (key, value) is written into the first empty location among i1, . . . , ic.
More formally, we define a hash table H = (hsetup, hlookup, hwrite) using a tuple of
algorithms and a parameter c denoting an upper bound on the number of locations to
search.

– (h,M)← hsetup(S, size): hsetup takes as input an initial set S of keyword-value
pairs and a maximum table size size and outputs a hash function h and a memory
array M.

– value ← hlookup(key): hlookup computes {i1, . . . , ic} ← h(key), looks for a
key-value pair (key, ·) in M[i1], . . . ,M[ic]. If such a pair is found it returns the
second component of the pair (i.e., the value), else it returns ⊥.

– M ← hwrite(key, value): hwrite computes i1, . . . , ic ↔ h(key), if (key, value)
already exists in one of those indices in M it does nothing, else it stores (key, value)
in the first empty index.

4.2 Searchable encryption definition

A database D is a set of document/keyword-set pair

DB = (di,Wi)
N
i=1 .

Let W = ∪Ni=1Wi be the universe of keywords. A keyword search query for w should
return all di where w ∈ Wi. We denote this subset of DB by DB(w). A search-
able symmetric encryption scheme consists of protocols SSESETUP, SSESEARCH and
SSEADD. The following formalization first appeared in [8,6].

– 〈σ,EDB〉 ↔ SSESETUP〈(1κ,DB),⊥〉: SSESETUP takes as client’s input database
DB and outputs a secret state σ (for the client), and an encrypted database EDB
which is outsourced to the server.

– 〈(DB(w), σ′),EDB′〉 ↔ SSESEARCH〈(σ,w),EDB〉: SSESEARCH is a protocol
between the client and the server, where client’s input is the secret state σ and
the keyword w he is searching for. Server’s input is the encrypted database EDB.
Client’s output is the set of documents containing w, i.e. DB(w) as well an updated
secret state σ′ and the server obtains an updated encrypted database EDB′.

– 〈σ′,EDB′〉 ↔ SSEADD〈(σ, d),EDB〉: SSEADD is a protocol between the client
and the server, where client’s input is the secret state σ and a document d to be
inserted into the database. Server’s input is the encrypted database EDB. Client’s
output is an updated secret state σ′ and the server’s output is an updated encrypted
database EDB′ which now contains the new document d.

Correctness. Consider the following correctness experiment. An adversary A chooses a
database DB0. Consider the encrypted database EDB0 generated using SSESETUP (i.e.,
〈σ0,EDB0〉 ↔ SSESETUP〈(1κ,DB0),⊥〉). The adversary then adaptively chooses
keywords to search and documents to add to the database, and the respective proto-
cols SSESEARCH and SSEADD are run between an honest client and server, out-
putting the updated EDB, DB and σ. Denote the operations chosen by the adversary
with w1, . . . , wq . A wins in the correctness game if for some search query wi it is

〈(DBi(wi), σi),EDBi〉 6= SSESEARCH〈(σi−1, wi),EDBi−1〉 ,

where DBi,EDBi are the database and encrypted database, respectively, after the i-th
search. The SSE scheme is correct if the probability of A winning the game is negligible
in κ.

Security. We discuss security in the semi-honest model. It is parametrized by a leakage
function L, which explains what the adversary (the server) learns about the database
and the search and update queries, while interacting with a secure SSE scheme. A SSE
scheme is L-secure if for any PPT adversary A, there exist a simulator Sim such that
the following two distributions are computationally indistinguishable.

– RealA(κ): A chooses DB0. The experiment then runs

〈σ0,EDB0〉 ↔ SSESETUP〈(1κ,DB0),⊥〉 .

A then adaptively makes search queries wi, which the experiment answers by run-
ning the protocol 〈DBi−1(wi), σi〉 ↔ SSESEARCH〈(σi−1, wi),EDBi−1〉. Denote
the full transcripts of the protocol by ti and with EDB′ the final encrypted database.
Add queries are handled in a similar way. Eventually, the experiment outputs

(EDB, t1, . . . , tq) ,

where q is the total number of search/add queries made by A.
– IdealA,Sim,L(κ): A chooses DB0. The experiment runs

(st0,EDB0)↔ Sim(L(DB0)) ,

where st0 is the initial state of the simulator. On input any search query wi from A,
the experiment adds (wi, search) to the history H , and on an add query di it adds
(di, add) to H . It then runs (ti, sti) ↔ Sim(sti−1,L(DBi−1, H)). Eventually, the
experiment outputs (EDB′, t1, . . . , tq) where q is the total number of search/add
queries made by A.

Leakage. The level of security one obtains from a SSE scheme depends on the leakage
function L. Ideally L should only output the total number

∑
w∈W |DB(w)| of (w, d)

pairs, the total number of unique keywords |W | and |DB(w)| for any searched keyword
w. Achieving this level of security is only possible if the SSESEARCH operation out-
puts the documents themselves to the client. If instead (as is common for applications
with large document sizes), it returns document identifiers which the client then uses to
retrieve the actual documents, any SSE protocol would also leak the access pattern.

4.3 SSE from any ORAM

First approach. The common way of storing a database of documents in a hash table
is to insert a key-value pair (w, d) into the table for any keyword w in a document d.
Searching for a document with keyword w then reduces to looking up w in the table.
If there is more than one document containing a keyword w, a natural solution is to
create a bucket Bw storing all the documents containing w and storing the bucket in
position ptw of an array A. One then inserts (w, ptw) in a hash table. Now, to search for
a keyword w, we first look up (w, ptw), and then access A[ptw] to obtain the bucketBw
of all the desired documents. A subtle issue is that the distribution of bucket sizes would
leak information about the database even before any keyword is searched. As a result,

for this approach to be fully-secure, one needs to pad each bucket to an upperbound on
the number of searchable documents per keyword.

Next we describe the SSE scheme more formally. Given a hash table H = (hsetup,
hlookup, hwrite), and an ORAM scheme ORAM = (SETUP,OBLIVIOUSACCESS),
we construct an SSE scheme (SSESETUP, SSESEARCH, SSEADD) as follows.

1. 〈σ,EDB〉 ↔ SSESETUP〈(1κ,max,DB),⊥〉: Given an initial set of documents
DB, client lets S be the set of key-value pairs (w, ptw) where ptw is an index
to an array of buckets A such that A[ptw] stores the bucket of all documents in
DB containing w. Each bucket is padded to the maximum size max with dummy
documents.
Client first runs hsetup(S, size) to obtain (h,M). size is the maximum size of hash
table H . Then client and server run 〈σ1,EM〉 ↔ SETUP〈(1κ,M),⊥〉. Cleint and
server also run 〈σ2,EA〉 ↔ SETUP〈(1κ,A),⊥〉
Note that server’s output is EDB = (EM,EA) and client’s output is σ = (σ1, h, σ2).

2. SSESEARCH〈(σ,w),EDB〉: Client computes i1, . . . , ic ← h(w). Then, client and
server run OBLIVIOUSACCESS〈((σ1, ij , null),EM〉 for j ∈ {1, . . . , c} for client to
obtain M[ij]. If client does not find (w, ptw) in one of the retrieved locations it lets
ptw = 0, corresponding to a dummy access to the index 0 in A.
Client and server then run OBLIVIOUSACCESS〈(σ2, ptw, null),EA〉) for client to
obtain the bucket Bw stored in A[ptw]. Client outputs all the non-dummy docu-
ments in Bw.

3. SSEADD〈(σ, d),EDB〉: For every w in d, client computes i1, . . . , ic ← h(w) and
client and server run OBLIVIOUSACCESS〈(σ1, ij , null),EM〉 for j ∈ {1, . . . , c}
for client to obtain M[ij]. If (w, ptw) is in the retrieved locations let i∗j be the
location it was found at. If not, let ptw be the first empty location in A, and let
i∗j be the first empty location from the retrieved ones in M. Client and server run
OBLIVIOUSACCESS〈(σ1, i∗j , (w, ptw)),EM〉.
Client and server run OBLIVIOUSACCESS〈(σ2, ptw, null),EA〉 to retrieve A[ptw].
Let Bw be the retrieved bucket. Client inserts d in the first dummy entry of Bw,
denoting the new bucket by B′w. Client and server run

OBLIVIOUSACCESS〈(σ2, ptw, B′w),EA〉 .

The main disadvantage of the above construction is that we need to anticipate an upper
bound on the bucket sizes, and pad all buckets to that size. Given that in practice there
are often keywords that appear in a large number of documents, and keywords that only
appear in a few, the padding will lead to inefficiency. Our next solution addresses this
issue but instead has a higher round complexity.

Second approach. Instead of storing all documents matching a keyword w in one
bucket, we store each of them separately in the hash table, using a different keyword.
In particular, we can store the key-value pair (w||i, d) in the hash table for the ith doc-
ument d containing w. This works fine except that it requires looking up w||count for
an incremental counter count until the keyword is no longer found in the table.

To make this approach cleaner and the write operations more efficient, we main-
tain two hash tables, one for storing the counter representing the number of documents

containing the keyword, and one storing the incremental key-value pairs as described
above. To lookup a keyword w, one first looks up the counter count in the first table
and then makes count lookup queries to the second table.

We now describe the above SSE scheme in more detail. Given a hash table H =
(hsetup, hlookup, hwrite) and a schemeORAM = (SETUP,OBLIVIOUSACCESS), we
construct an SSE scheme (SSESETUP, SSESEARCH, SSEADD) as follows:

1. 〈σ,EDB〉 ↔ SSESETUP〈(1κ,DB),⊥〉: Given an initial set of documents DB. Let
S1 be the set of (w, countw) pairs and S2 be the set of key-value pairs (w||i, di)
for 1 ≤ i ≤ countw where countw is the number of documents containing w, and
di denotes the ith document in DB containing w.
Cleint runs hsetup(Si, sizei) to obtain (hi,Mi). sizei is the maximum size of the
hash table Hi. Then client and server run 〈σi,EMi〉 ↔ SETUP〈(1κ,Mi),⊥〉. Note
that server’s output is EDB = (EM1,EM2) and client’s output is σ = (σ1, σ2,
h1, h2).

2. SSESEARCH〈(σ,w),EDB〉: Client computes i1, . . . , ic ← h1(w) and client and
server run OBLIVIOUSACCESS〈(σ1, ij , null),EM1〉) for j ∈ {1, . . . , c} for client
to obtain (w, countw) among the retrieved locations. If such a pair is not found,
client lets countw = 0.
For 1 ≤ k ≤ countw, client computes ik1 , . . . , i

k
c ← h2(w||k) and client and server

run OBLIVIOUSACCESS〈(σ2, ikj , null),EM2〉) for j ∈ {1, . . . , c} for client to ob-
tain M2[i

k
j]. Client outputs d for all d where (w||k, d) is in the retrieved locations

from M2.
3. SSEADD〈(σ, d),EDB〉: For every w in d, client computes i1, . . . , ic ← h1(w) and

client and server run OBLIVIOUSACCESS〈(σ1, ij , null),EM1〉 for j ∈ {1, . . . , c}
for client to obtain M1[ij]. If (w, countw) is in the retrieved locations let i∗j be
the location it was found at. If not, let countw = 0 and let i∗j be the first empty
location from the retrieved ones. Client and server run OBLIVIOUSACCESS〈(σ1, i∗j ,
(w, countw + 1)),EM1〉 to increase the counter by one.
Client then computes i′1, . . . , i

′
c ← h2(w||countw + 1) and client and server run

OBLIVIOUSACCESS〈(σ2, i′j , null),EM2〉 to retrieve M2[i
′
j] for j ∈ {1, . . . , c}. Let

i′k be the first empty location among them. Client and server run

OBLIVIOUSACCESS〈(σ2, i′k, (w||count+ 1)),EM2〉 .
The main disadvantage of our second approach is that for each search, it requires

countw ORAM accesses to retrieve all matching documents. This means that the band-
width/computation overhead of ORAM scheme is multiplied by countw which can
be large for some keywords. More importantly, it would require O(countw) rounds
since the ORAM accesses cannot be parallelized in our constant-round ORAM con-
struction. In particular, note that each memory garbled circuit in the construction can
only be used once and needs to be replaced before the next memory access. Finally,
the constant-round ORAM needs to store a memory array that is proportional to the
number of (w, d) tuples associated with the database, which is significantly larger than
the number of unique keywords, increasing the storage overhead of the resulting SSE
scheme.

Next, we address all these efficiency concerns, showing a construction that only
requires a single ORAM access using our constant-round construction.

4.4 SSE from Path-ORAM

The idea is to not only store a per-keyword counter countw as before, but also to store a
accessw that represents the number of search/add queries performed on w so far. Simi-
lar to the previous approach, the tuple (w, (countw, accessw)) is stored in a hash table
that is implemented using our constant-round ORAM scheme TWORAM. The countw
is incremented whenever a new document containing w is added and the accessw is
incremented after each search/add query for w.

The tuples (w||i, di) for all di containing w are then stored in a one-level (non-
recursive) Path-ORAM. In order to avoid storing a large client-side position map for
this non-recursive Path-ORAM, we generate/update the positions pseudorandomly us-
ing a PRF FK(w||i||accessw). Since each document di has a different index and each
search/add query for w will increment accessw, the pseudorandomness property of F
ensures that this way of generating the position maps is indistinguishable from generat-
ing them at random. Now the client only needs to keep the secret keyK. Note that since
we are using a one-level Path-ORAM to store the documents, we can handle multiple
parallel accesses without any problems, hence obtaining a constant-round search/add
complexity. Furthermore, we only access TWORAM(which uses garbled circuits) once
per keyword search to retrieve the tuple (w, (countw, accessw)), so TWORAM’s over-
head is not multiplied by countw for each search/add query. Similarly, the storage over-
head of TWORAMis only for a memory array of size |W | (number of unique keywords
in documents) which is significantly smaller than the number of keyword-document
pairs needed in the general approach.

We need to make a few small modifications to the syntax of the abstraction for
Path-ORAM here. First, since we generate the position map on the fly using a PRF, it
is convenient to modify the syntax of the UPDATE procedure to take the new random
position as input, instead of internally generating it in our original syntax. Also, since
we are not extracting an index y from the Path-ORAM and instead are extracting a
tuple of the form (w||i, di), we will pass w||i as input in place of y in the EXTRACT
and UPDATE operations.

We now describe the SSE scheme. Given a hash tableH = (hsetup, hlookup, hwrite),
our constant-round ORAM scheme TWORAM= (SETUP,OBLIVIOUSACCESS), a sin-
gle level Path-ORAM scheme with procedures (INITIALIZE, EXTRACT,UPDATE), and
a PRF function F , we build an SSE scheme (SSESETUP, SSESEARCH, SSEADD) as
follows:

1. 〈σ,EDB〉 ↔ SSESETUP〈(1κ,DB),⊥〉: Given an initial set of documents DB, let
S be the set of (w, (countw, accessw = 0)) where countw is the number of docu-
ments containing w, and accessw denotes the number of times the keyword w has
been searched/added.
Client runs hsetup(S, size) to obtain (h,M). size is the anticipated maximum size
of the hash table H . Then client and server run 〈σs,EM〉 ↔ SETUP〈(1κ,M),⊥〉.
Let AL be an initially empty memory array with a size that estimates an upper
bound on total number of (w, d) pairs ind DB. Client runs T ← INITIALIZE(1κ, AL),
and only sends the tree TL for the last level to server, and discards the rest.
Client generates a PRF key K ← {0, 1}κ.
For every item (w, (countw, accessw)) in S, and for 1 ≤ i ≤ countw (in parallel):

(a) Client lets valw,i = (w||i, di) where di denotes the ith document in DB con-
taining w.

(b) Client lets xw,i = FK(w||i||accessw) and sends xw,i to server who returns the
encrypted buckets on path TL(xw,i) which client decrypts itself.

(c) Client runs {TL(xw,i)} ← UPDATE(w||i, write, valw,i, TL(xw,i), x′w,i), where
x′w,i = FK(w||i||accessw+1), to insert valw,i into the path along its new path
TL(x

′
w,i). Client then encrypts the updated path TL(xw,i) and sends it to server

who updates TL.
Note that server’s output is EDB = (EM, TL) and client’s output is σ = (σs, h,K).

2. SSESEARCH〈(σ,w),EDB〉: Client computes i1, . . . , ic ← h(w) and client and
server run OBLIVIOUSACCESS〈(σs, ij , null),EM〉) for j ∈ {1, . . . , c}. If client
finds (w, (countw, accessw)) in one of the retrieved locations, let i∗j be the location
it was found at. If such a pair is not found the search ends here. Client and server
run OBLIVIOUSACCESS〈(σs, i∗j , (w, countw, accessw + 1)),EM〉 to increase the
accessw by one.
For 1 ≤ i ≤ countw (in parallel):
(a) Client lets xw,i = FK(w||i||accessw) and sends xw,i to server who returns

TL(xw,i) which client decrypts.
(b) Client runs (w||i, di) ← EXTRACT(L,w||i, TL(xw,i)), and outputs di. Client

runs {TL(xw,i)} ← UPDATE(w||i, read, (w||i, di), TL(xw,i), x′w,i = FK(w||i||
accessw + 1)) to update the location of (w||i, di) to x′w,i. Client then encrypts
the updated path and sends it to server to update TL.

3. SSEADD〈(σ, d),EDB〉:
For every w in d:
(a) Client computes i1, . . . , ic ← h(w) and client and server run

OBLIVIOUSACCESS〈(σs, ij , null),EM〉) ,

for j ∈ {1, . . . , c}. If client finds (w, (countw, accessw)) in one of the re-
trieved locations, let i∗j be the location it was found at. Else, it lets i∗j be the
first empty location among the retrieved ones.

(b) Client and server run OBLIVIOUSACCESS〈(σs, i∗j , (w, (countw+1, accessw+
1))),EM〉 to increase countw and accessw by one.

(c) Client lets xw,countw = FK(w||countw||acessw) and sends xw,countw to server
who returns encrypted TL(xw,countw) back. Client decrypts the path.

(d) Client lets x′ = FK(w||countw+1||accessw+1) and runs {TL(xw,countw)} ←
UPDATE(w||i, write, (w||countw+1, d), TL(xw,countw), x

′) to update the path.
Client then encrypts the updated path and sends it to server to update TL.

Before stating the security theorem for the above SSE scheme, we first need to
make the leakage function associated with the scheme more precise. The leakage func-
tion L(DB, H) for our scheme outputs the following (DB is the database and H is the
search/add history): |W |, number unique keywords in all documents; |DB(w)| for ev-
ery w searched;

∑
w∈W |DB(w)| i.e. the number of (w, d) pairs where w is in d. See

Appendix A.4 for the proof.

Theorem 2. The above SSE scheme isL-secure (cf. definition of section 4), if TWORAM
is secure (cf. definition in Section 2.2), F is a PRF, and the encryption used in the one-
level Path-ORAM is CPA-secure.

Efficiency. The setup cost for our SSE scheme is the sum of the setup cost for TWORAM
for a memory of size |W |, and the setup for a one-level Path-ORAM of size n =∑
w∈W |DB(w)| which is O(n log n loglog n).
The bandwidth cost for each search/add query w is the cost of one ORAM read in

TWORAMplus O(|DB(w)| ∗ (log n loglog n)) for n =
∑
w∈W |DB(w)|.

Acknowledgments

This work was done in part while the authors were visiting the Simons Institute for the
Theory of Computing, supported by the Simons Foundation and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant #CNS-1523467. Sanjam Garg was
supported in part from a DARPA/ARL SAFEWARE award, AFOSR Award FA9550-
15-1-0274, and NSF CRII Award 1464397. Charalampos Papamanthou was supported
in part by NSF grants #1514261 and #1526950, by a NIST award, by a Google Faculty
Research Award and by Yahoo! Labs through the Faculty Research Engagement Pro-
gram (FREP). The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense, the National Science Foundation, or
the U.S. Government.

References

1. Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How to efficiently
evaluate RAM programs with malicious security. In EUROCRYPT, pages 702–729, 2015.

2. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
CCS, pages 784–796, 2012.

3. David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks
against searchable encryption. In CCS, pages 668–679, 2015.

4. David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and Michael
Steiner. Highly-scalable searchable symmetric encryption with support for boolean queries.
In CRYPTO, pages 353–373, 2013.

5. Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted
data. In ACNS, pages 442–455, 2005.

6. M. Chase and S. Kamara. Structured encryption and controlled disclosure. In ASIACRYPT,
pages 577–594, 2010.

7. Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

8. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In CCS, pages 79–88, 2006.

9. Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi, and
Daniel Wichs. Onion ORAM: A constant bandwidth blowup oblivious RAM. In TCC,
pages 145–174, 2016.

10. Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Stefanov. Bucket
ORAM: Single online roundtrip, constant bandwidth oblivious RAM. Cryptology ePrint
Archive, Report 2015/1065, 2015. http://eprint.iacr.org/.

11. Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In FOCS, pages
210—229, 2015.

http://eprint.iacr.org/

12. Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM from
one-way functions. In STOC, pages 449–458, 2015.

13. Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova, and Daniel
Wichs. Optimizing ORAM and using it efficiently for secure computation. In PETS, pages
1–18, 2013.

14. Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs.
Garbled RAM revisited. In EUROCRYPT, pages 405–422, 2014.

15. Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http:
//eprint.iacr.org/2003/216/.

16. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
J. ACM, 43(3):431–473, 1996.

17. Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of outsourced
data via oblivious RAM simulation. In ICALP, pages 576–587, 2011.

18. Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Privacy-preserving group data access via stateless oblivious RAM simulation. In SODA,
pages 157–167, 2012.

19. S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana
Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time.
In CCS, pages 513–524, 2012.

20. Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In NDSS, 2012.

21. Jonathan L. Dautrich Jr., Emil Stefanov, and Elaine Shi. Burst ORAM: Minimizing ORAM
response times for bursty access patterns. In USENIX SECURITY, pages 749–764, 2014.

22. Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable symmetric
encryption. In FC, pages 258—274, 2013.

23. Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable symmetric
encryption. In CCS, pages 965–976, 2012.

24. Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious
ram and a new balancing scheme. In SODA, pages 143—156, 2012.

25. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

26. Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-An Tan. Search pattern leakage in
searchable encryption: Attacks and new construction. Inf. Sci., 265:176–188, May 2014.

27. Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party computa-
tion. In TCC, pages 377—396, 2013.

28. Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In EUROCRYPT, pages
719–734, 2013.

29. Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. Constant communication ORAM
with small blocksize. In CCS, pages 862–873, 2015.

30. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In TCC,
pages 457–473, 2009.

31. Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
o((logn)3) worst-case cost. In ASIACRYPT, pages 197–214, 2011.

32. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches
on encrypted data. In IEEE Symposium on Security and Privacy, pages 44–55, 2000.

33. Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic searchable
encryption with small leakage. In NDSS, 2014.

34. Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In
CCS, pages 299–310, 2013.

http://eprint.iacr.org/2003/216/
http://eprint.iacr.org/2003/216/

35. Peter van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter H. Hartel, and Willem Jonker.
Computationally efficient searchable symmetric encryption. In SDM, pages 87–100, 2010.

36. Xiao Shaun Wang, T.-H. Hubert Chan, , and Elaine Shi. Circuit ORAM: On tightness of the
Goldreich-Ostrovsky lower bound. In CCS, pages 191–202, 2015.

37. Peter Williams and Radu Sion. Single round access privacy on outsourced storage. In CCS,
pages 293–304, 2012.

38. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS,
1982.

39. Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong
to us: The power of file-injection attacks on searchable encryption. In USENIX SECURITY,
2016.

A More Details on Path ORAM

A.1 Path ORAM abstraction algorithms

Algorithm 1 Setting up path ORAM data structures.
1: procedure T ← INITIALIZE(1κ, AL)
2: Let πL be a random permutation from [n] to [n];
3: Store (x,AL[x], πL(x)) at leaf πL(x) of tree TL;
4: for i = L down to 3 do
5: Set Ai−1[x] = πi(2x− 1)||πi(2x) for x = 1, . . . , 2i−1;
6: Let πi−1 be a random permutation from [2i−1] to [2i−1];
7: Store (x,Ai−1[x], πi−1(x)) at leaf πi−1(x) of tree Ti−1;
8: end for
9: Let A1 be an array of 2 entries such that A1[x] = π2(2x− 1)||π2(2x) for x = 1, 2;

10: return {A1, T2, . . . , TL};
11: end procedure

Algorithm 2 Extraction algorithm for buckets.
1: procedure π ←EXTRACTBUCKET(i, y, b)
2: Search bucket b to retrieve block (yi, Ai[yi], p);
3: if found then
4: return π ← select(Ai[yi], bi); . π is the index of the path to be explored in Ti+1.
5: else
6: return ⊥;
7: end if
8: end procedure

Algorithm 3 Update algorithm. It takes as input L− 1 paths and local storage A1 and
outputs new paths, based on the new assignments of positions.
1: procedure {A1, T2(x2), . . . , TL(xL)} ←UPDATE(y, val, A1, T2(x2), . . . , TL(xL))
2: select(A1[y1], b1)← r2; . ri is random in [1, 2i+1].
3: for i = 2 to L do
4: Ti.root← Ti.root ∪ readPath(Ti(xi)); . Ti.root serves as the stash Ci.
5: Update block (yi, Ai[yi], xi) to (yi, Ai[yi], ri) in Ti.root;
6: select(Ai[yi], bi)← ri+1; . if i = L do if val 6= null, AL[y]← val, else NOOP.
7: [Ti.root, Ti(xi)]← evictPath(Ti.root);
8: end for
9: return A1, T2(x2), T3(x3), . . . , TL(xL);

10: end procedure

Protocol 〈σ,EM〉 ↔ SETUP〈(1κ,M),⊥〉:
Client:
1: Pick a κ-bit s; Run {A1, T2, . . . , TL} ← INITIALIZE(1κ,M);
2: For all i > 1, for all u ∈ Ti, set Bu ← Encs(bucketu), where Encs(.) is a CPA-secure

encryption;
3: For all i > 1, for all u ∈ Ti, send to server data Bu;
4: return s and A1 as σ;

Server:
1: return all data Bu sent by the client from above as EM;

Fig. 6: Formal description of the SETUP protocol for the interactive ORAM [34].

A.2 Path ORAM protocols with logn rounds of interaction using the
abstraction

A.3 Proof of security for TWORAM

Now we prove TWORAM is a secure realization of an oblivious RAM scheme as
described in Section 2.2. We start by arguing correctness. Note that the garbled cir-
cuits implement the exact same procedures as are required in our abstraction. Therefore
the correctness of our scheme follows directly from the correctness of the underlying
Path ORAM scheme and garbled circuits construction. Next we argue security. In other
words we need to argue that for any adversary A, there exists a simulator Sim for which
the following two distributions are computationally indistinguishable.

– RealΠA (κ): A chooses M. The experiment then runs 〈σ,EM〉 ↔ SETUP〈(1κ,M),⊥〉.
A then provides read/write queries (yi, v) where v = null on reads, for which the
experiment runs the protocol

〈(M[yi], σi),EMi〉 ↔ OBLIVIOUSACCESS〈(σi−1, yi, v),EMi−1〉 .

Denote the full transcript of the protocol by ti. Eventually, the experiment outputs
(EM, t1, . . . , tq) where q is the total number of read/write queries.

– IdealΠSim(κ): The experiment outputs (EM, t′1, . . . , t
′
q)← Sim(q, |M|, 1κ).

Protocol 〈(M[y], σ′),EM′〉 ↔ OBLIVIOUSACCESS〈(σ, y, val),EM〉:
Client(1):
1: Compute x2 ← select(A1[y1], b1). Send to server index x2; . run Server(2)

Server(i):
1: For all u ∈ Ti(xi) send to client Bu; . run Client(i)

Client(i):
1: π = ⊥;
2: for u ∈ Ti(xi) do
3: bucketu ← Decs(Bu);
4: if π = ⊥ then
5: π ← EXTRACTBUCKET(i, y, bucketu);
6: xi+1 = π;
7: end if
8: end for
9: if i < L then

10: Send to server new index xi+1; . run Server(i+ 1)
11: else
12: {A1, T2(x2), . . . , TL(xL)} ← UPDATE(y, val, A1, T2(x2), . . . , TL(xL));
13: For all i > 1, for all u ∈ Ti(xi), send to server Bu ← Encs(bucketu); . run Server(L)
14: return xL+1 as M[y] and A1 as σ′;
15: end if
Server(L):
1: return the data received by the client as EM′;

Fig. 7: Formal description of the OBLVIOUSACCESS protocol for the interactive ORAM [34].

Our simulator. Note that the simulator needs to provide to the server, for all u C̃u,Xu

and for all i ∈ {2, . . . , L} βi := nState
(i,0,0)

cState(i+1,0,0) . Furthermore replacement circuits
need to be provided as read/write queries are implemented. Our simulator Sim generates
these as follows:

– For each u = (i, j, k), let (C̃u, labu ← GCircuit(1κ,P[u, bu, lab
(i,j+1,2k+b)
0]),

where bu is random bit and P is a circuit that, if j = i outputs (nextRoot, lab(i+1,0,0
0),

else if b = 0 then it outputs (left, lab(i,j+1,2k+b)
0) and (right, lab

(i,j+1,2k+b)
0) other-

wise.
– Each Xu is generated as as encryption of a zero-string, namely Encs(0). Similarly

for all i ∈ {2, . . . , L} βi := nState
(i,0,0)
0 .

Note that as the provided garbled circuits are executed, replacements circuits need to be
given and they are generated in the same manner as above.

Proof of indistinguishability. The proof follows by a hybrid argument.

- H0: This hybrid corresponds to the honest execution RealΠA (κ) as done honestly.
- H1: This hybrid is same as H0 except that we now generate all the Xu values as

encryptions of zero-strings of appropriate length. Specifically, for each u we set
Xu ← Encs(0).

The indistinguishability between H0 and H1 follows from the security of the en-
cryption scheme (Enc,Dec).

- H2: In this hybrid the simulator maintains the entire Path ORAM tree internally but
does not include it in the provided garbled circuits. In other words garbled circuits
are generated as follows:

• For each u = (i, j, k), let (C̃u, labu ← GCircuit(1κ,P[u, bu, lab
(i,j+1,2k+b)
0]),

where bu is 0 or 1 depending on whether the execution as per ORAM would
go left or right and P is a circuit that, if j = i outputs (nextRoot, lab(i+1,0,0

0),
else if b = 0 then it outputs (left, lab

(i,j+1,2k+b)
0) and (right, lab

(i,j+1,2k+b)
0)

otherwise.
• Each Xu is generated as as encryption of a zero-string, namely Encs(0). Sim-

ilarly for all i ∈ {2, . . . , L} βi := nState
(i,0,0)
0 .

The indistinguishability between H1 and H2 follows by a sequence of hybrids
where each garbled circuit is replaced by a simulated garbled circuit. Here these
hybrids must be performed in sequence in which garbled circuits are consumed.
Note that for the unconsumed garbled circuits the input labels aren’t provided (or
hardcoded inside any other circuit) and hence they can also be simulated.

– H3: Same asH2, except that each bu is now chosen uniformly random, independent
of the Path ORAM execution. Note that this is same as the simulator.
The indistinguishability between H2 and H3 from the security of the Path ORAM
scheme.

This concludes the proof. ut

A.4 Proof of security for the SSE scheme

We prove Theorem 2 on security of the SSE scheme next, Following the definition of
section 4, we first describe a simulator Sim who generates the transcripts for the ideal
distribution IdealΠA,Sim,L(κ). Sim takes as input L(DB, H), and does the following:
To generate full transcripts of the constant round ORAM scheme for the adversary A,
Sim runs Sim′, the simulator that exists for that scheme due its security (see definition
of section 2.2). That is, he runs (EM, t1, . . . , tq) ← Sim′(q, |M|, 1κ), where he drives
|M| from |W |. To simulate the transcripts of the path-ORAM component, it generates
a one-level path ORAM tree TL for a memory array of size

∑
w∈W |DB(w)| filled

with all 0 values. For each read/add query, it replaces the PRF-genenerated paths by
uniformly random paths, and generates freshly generated ciphertexts of 0 for updated
paths. Sim knows the number of paths to retrieve/update for each query from the leakage
function which outputs |DB(w)| for every query w. This completes the description of
the simulator. We now need to show that IdealΠA,Sim,L(κ) is indinstinguishable from
RealΠA (κ), which constitutes the first in the sequence of our Hybrids:

Proof of indistinguishability. The proof follows by a hybrid argument.

- H0: This hybrid corresponds to the honest execution RealΠA (κ) for the SSE scheme
which we repeat here for completeness. A chooses DB. The experiment then runs

〈EDB, σ〉 ↔ SSESETUP〈(1κ,DB),⊥〉. A then adaptively makes search queries
wi, which the experiment answers by running the protocol 〈DBi−1(wi), σi〉 ↔
SSESEARCH〈(σi−1, wi),EDBi−1〉. Denote the full transcripts of the protocol by
ti. Add queries are handled in a similar way. Eventually, the experiment outputs
(EDB, t1, . . . , tq) where q is the total number of search/add queries made by A.

- H1:Similar to H0, except that the portions of ti’s corresponding to the constant-
round ORAM are instead generated by Sim′(q, |M|, 1κ) where Sim′ is the simulator
in the proof of the ORAM scheme.
The indistinguishability ofH0 andH1 follows from security of the ORAM scheme.

- H2: Similar to H1 except that all ciphertexts in the path ORAM tree are replaced
by encryptions of 0, and all updated ciphertexts will be fresh encryption of 0.
The indistinguishability of H2 and H1 follows from the semantic security of the
encryption scheme used in the path ORAM.

- H3: Similar to H2 except that all PRF-generated positions are replaced by uni-
formly random positions. Note that H3 is essentially IdealΠA,Sim,L(κ).
The indistinguishability of H3 and H2 follows from the pseudorandomness of the
the PRF.

This concludes the proof. ut

	TWORAM: Efficient Oblivious RAM in Two Rounds with Applications to Searchable Encryption

