
Fine-grained Cryptography?

Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

MIT, CSAIL

Abstract. Fine-grained cryptographic primitives are ones that are se-
cure against adversaries with an a-priori bounded polynomial amount
of resources (time, space or parallel-time), where the honest algorithms
use less resources than the adversaries they are designed to fool. Such
primitives were previously studied in the context of time-bounded ad-
versaries (Merkle, CACM 1978), space-bounded adversaries (Cachin and
Maurer, CRYPTO 1997) and parallel-time-bounded adversaries (H̊astad,
IPL 1987). Our goal is come up with fine-grained primitives (in the set-
ting of parallel-time-bounded adversaries) and to show unconditional
security of these constructions when possible, or base security on widely
believed separation of worst-case complexity classes. We show:

1. NC1-cryptography: Under the assumption that NC1 6= ⊕L/poly, we
construct one-way functions, pseudo-random generators (with sub-
linear stretch), collision-resistant hash functions and most impor-
tantly, public-key encryption schemes, all computable in NC1 and
secure against all NC1 circuits. Our results rely heavily on the no-
tion of randomized encodings pioneered by Applebaum, Ishai and
Kushilevitz, and crucially, make non-black-box use of randomized
encodings for logspace classes.

2. AC0-cryptography: We construct (unconditionally secure) pseudo-
random generators with arbitrary polynomial stretch, weak pseudo-
random functions, secret-key encryption and perhaps most interest-
ingly, collision-resistant hash functions, computable in AC0 and se-
cure against all AC0 circuits. Previously, one-way permutations and
pseudo-random generators (with linear stretch) computable in AC0

and secure against AC0 circuits were known from the works of H̊astad
and Braverman.

1 Introduction

The last four decades of research in the theory of cryptography has produced
a host of fantastic notions, from public-key encryption [DH76, RSA78, GM82]

? MIT. E-mail: {akshayd,vinodv,prashvas}@mit.edu. Research supported in part
by NSF Grants CNS-1350619 and CNS-1414119, Alfred P. Sloan Research Fellow-
ship, Microsoft Faculty Fellowship, the NEC Corporation, a Steven and Renee Finn
Career Development Chair from MIT. This work was also sponsored in part by the
Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Research
Office under contracts W911NF-15-C-0226.

2 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

and zero-knowledge proofs [GMR85] in the 1980s, to fully homomorphic en-
cryption [RAD78, Gen09, BV11] and program obfuscation [BGI+01, GGH+13,
SW14] in the modern day. Complexity theory is at the heart of these develop-
ments, playing a key role in coming up with precise mathematical definitions as
well as constructions whose security can be reduced to precisely stated compu-
tational hardness assumptions.

However, the uncomfortable fact remains that a vast majority of crypto-
graphic constructions rely on unproven assumptions. At the very least, one re-
quires that NP * BPP [IL89], but that is hardly ever enough — when designing
advanced cryptographic objects, cryptographers assume the existence of one-
way functions as a given, move up a notch to assuming the hardness of specific
problems such as factoring, discrete logarithms and the approximate shortest
vector problem for lattices, and, more recently, even more exotic assumptions.
While there are some generic transformations between primitives, such as from
one-way functions to pseudo-random generators and symmetric encryption (e.g.,
[HILL99]), there are large gaps in our understanding of relationships between
most others. In particular, it is a wide open question whether NP * BPP suf-
fices to construct even the most basic cryptographic objects such as one-way
functions, or whether it is possible to construct public-key encryption assum-
ing only the existence of one-way functions (for some partial negative results,
see [BT03, AGGM06, BB15, IR88]).

In this work, we ask if a weaker version of these cryptographic primitives can
be constructed, with security against a bounded class of adversaries, based on
either mild complexity-theoretic assumptions or no assumptions at all. Indeed,
this question has been asked by several researchers in the past.

1. Merkle [Mer78] constructed a non-interactive key exchange protocol (and
thus, a public-key encryption scheme) where the honest parties run in lin-
ear time O(n) and security is shown against adversaries that run in time
o(n2). His assumption was the existence of a random function that both the
honest parties and the adversary can access (essentially, the random oracle
model [BR93]). Later, the assumption was improved to exponentially strong
one-way functions [BGI08]. This work is timeless, not only because it jump-
started public-key cryptography, but also because it showed how to obtain
a primitive with much structure (trapdoors) from one that apparently has
none (namely, random oracles and exponentially strong one-way functions).

2. Maurer [Mau92] introduced the bounded storage model, which considers ad-
versaries that have an a-priori bounded amount of space but unbounded
computation time. Cachin and Maurer constructed symmetric-key encryp-
tion and key-exchange protocols that are unconditionally secure in this model
[CM97] assuming that the honest parties have storage O(s) and the adver-
sary has storage o(s2) for some parameter s. There has been a rich line of
work on this model [CM97, AR99, DM04] following [Mau92].

3. Implicit in the work of H̊astad [Has87] is a beautiful construction of a one-
way permutation that can be computed in NC0 (constant-depth circuits with
AND and OR gates of unbounded fan-in and NOT gates), but inverting

Fine-grained Cryptography 3

which is hard for any AC0 circuit. Here is the function:

f(x1, x2, . . . , xn) =
(
x1, x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn

)
Clearly, each output bit of this function depends on at most two input bits.
Inverting the function implies in particular the ability to compute xn, which
is the parity of all the output bits. This is hard for AC0 circuits as per
[FSS84, Ajt83, H̊as86].

All these works share two common features. First, security is achieved against
a class of adversaries with bounded resources (time, space and parallel time, re-
spectively, in the three works above). Secondly, the honest algorithms use less
resources than the class of adversaries they are trying to fool. We propose to
call the broad study of such cryptographic constructions fine-grained cryptogra-
phy, and construct several fine-grained cryptographic primitives secure against
parallel-time-bounded adversaries.

We study two classes of low-depth circuits (as adversaries). The first is AC0,
which is the class of functions computable by constant-depth polynomial-sized
circuits consisting of AND, OR, and NOT gates of unbounded fan-in, and the sec-
ond is NC1, the class of functions computable by logarithmic-depth polynomial-
sized circuits consisting of AND, OR, and NOT gates of fan-in 2. In both cases,
we mean the non-uniform versions of these classes. Note that this also covers the
case of adversaries that are randomized circuits with these respective restrictions.
This is because for any such randomized adversary A there is a non-uniform ad-
versary A′ that performs as well as A – A′ is simply A hard-coded with the
randomness that worked best for it.

Early developments in circuit lower bounds [FSS84, Ajt83, H̊as86] showed
progressively better and average-case and exponential lower bounds for the PAR-
ITY function against AC0 circuits. This has recently been sharpened to an
average-case depth hierarchy theorem [RST15]. We already saw how these lower
bounds translate to meaningful cryptography, namely one-way permutations
against AC0 adversaries. Extending this a little further, a reader familiar with
Braverman’s breakthrough result [Bra10] (regarding the pseudorandomness of
nε-wise independent distributions against AC0) will notice that his result can be
used to construct large-stretch pseudo-random generators that are computable
by fixed-depth AC0 circuits and are pseudo-random against arbitrary constant-
depth AC0 circuits. Can we do more? Can we construct secret-key encryption,
collision-resistant hash functions, and even trapdoor functions, starting from
known lower bounds against AC0 circuits? Our first contribution is a positive
answer to some of these questions.

Our second contribution is to study adversaries that live in NC1. In this set-
ting, as we do not know any lower bounds against NC1, we are forced to rely on
an unproven complexity-theoretic assumption; however, we aim to limit this to a
worst-case, widely believed, separation of complexity classes. Here, we construct
several cryptographic primitives from the worst-case hardness assumption that
⊕L/poly 6⊆ NC1, the most notable being an additively-homomorphic public-key

4 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

encryption scheme where the key generation, encryption and decryption algo-
rithms are all computable in AC0[2] (constant-depth circuits with MOD2 gates;
note that AC0[2] (NC1 [Raz87, Smo87]), and the scheme is semantically secure
against NC1 adversaries. (⊕L/poly can be thought of as the class of languages
with polynomial-sized branching programs. Note that by Barrington’s Theorem
[Bar86], all languages in NC1 have polynomial-sized branching programs of con-
stant width.)

Apart from theoretical interest stemming from the fact that these are rather
natural objects, one possible application of such constructions (that was sug-
gested to us independently by Ron Rothblum and Yuval Ishai) is in using them
in conjunction with other constructions that are secure against polynomial-time
adversaries under stronger assumptions. This could be done to get hybrids that
are secure against polynomial-time adversaries under these stronger assumptions
while also being secure against bounded adversaries unconditionally (or under
minimal assumptions). For instance, consider an encryption scheme where the
message is first encrypted using the AC0-encryption scheme from Section 5.3,
and the resultant ciphertext is then encrypted using a scheme that works in AC0

and is secure against polynomial-time adversaries under some standard assump-
tions (see [AIK04] for such schemes). This resultant scheme can be shown to be
secure against polynomial-time adversaries under the same assumptions while
being unconditionally secure against AC0 adversaries.

We now briefly describe the relation between our results and the related work
on randomized encodings [IK00, AIK04], and move on to describing the results
in detail.

Relation to Randomized Encodings and Cryptography in NC0. Randomized en-
codings of Ishai and Kushilevitz [IK00, AIK04] are a key tool in our results
against NC1 adversaries. Using randomized encodings, Applebaum, Ishai and
Kushilevitz [AIK04] showed how to convert several cryptographic primitives
computable in logspace classes into ones that are computable in NC0. The differ-
ence between their work and ours is two-fold: (1) Their starting points are cryp-
tographic schemes secure against arbitrary polynomial-time adversaries, which
rely on average-case hardness assumptions, whereas in our work, the focus is
on achieving security either with no unproven assumptions or only worst-case
assumptions; of course, our schemes are not secure against polynomial-time ad-
versaries, but rather, limited adversarial classes; (2) In the case of public-key
encryption, they manage to construct key generation and encryption algorithms
that run in NC0, but the decryption algorithm retains its high complexity. In
contrast, in this work, we can construct public key encryption (against NC1 ad-
versaries) where the encryption algorithm can be computed in NC0 and the key
generation and decryption in AC0[2].

A Remark on Cryptographic vs. Non-Cryptographic Constructions An impor-
tant desideratum for us is that the (honest) algorithms in our constructions can
be implemented with fewer resources than the adversary that they are trying to
fool. We call such constructions cryptographic in contrast to non-cryptographic

Fine-grained Cryptography 5

constructions where this is not necessarily the case. Perhaps the clearest and the
most well-known example of this distinction is the case of pseudo-random gen-
erators (PRGs) [BM84, Yao82, NW94]. Cryptographic PRGs, pioneered in the
works of Blum, Micali and Yao [BM84, Yao82] are functions computable in a fixed
polynomial time that produce outputs that are indistinguishable from random
against any polynomial-time machine. The designer of the PRG does not know
the precise power of the adversary: he knows that the adversary is polynomial-
time, but not which polynomial. On the other hand, non-cryptographic (“Nisan-
Wigderson type”) PRGs [NW94] take more time to compute than the adversaries
they are designed to fool.

Our constructions will be exclusively in the cryptographic regime. For ex-
ample, our one-way functions, pseudo-random generators and collision-resistant
hash functions against AC0 are computable by circuits of fixed polynomial size
q(λ) and fixed (constant) depth d, and maintain security (in the appropriate
sense) against adversarial circuits of size p′(λ) and depth d′ for any polynomial
function p′ and any constant d′.

1.1 Our Results and Techniques

Our results are grouped into two classes — primitives secure against NC1 circuits
based on minimal worst-case assumptions, and those that are unconditionally
secure against AC0 circuits. In the description below and throughout the rest of
the paper, all algebra is over F2.

Constructions against NC1 Adversaries We construct one-way functions
(OWFs), pseudo-random generators (PRGs), additively homomorphic public-
key encryption (PKE), and collision-resistant hash functions (CRHFs) that are
computable in NC1 and are secure against NC1 adversaries, based on the worst-
case assumption that ⊕L/poly 6⊆ NC1. An important tool we use for these
constructions is the notion of randomized encodings of functions introduced in
[IK00].

A randomized encoding of a function f is a randomized function f̂ that is
such that for any input x, the distribution of f̂(x) reveals f(x), but nothing more
about x. We know through the work of [IK00, AIK04] that there are randomized
encodings for the class ⊕L/poly that can be computed in (randomized, uniform)
NC0. Randomized encodings naturally offer a flavor of worst-to-average case re-
ductions as they reduce the problem of evaluating a function on a given input to
deciding some property of the distribution of its encoding. Our starting point is
the observation, implicit in [AIK04, AR15], that they can be used to generically
construct infinitely-often one-way functions and pseudo-random generators with
additive stretch, computable in NC0 and secure against NC1 adversaries (assum-
ing, again, that ⊕L/poly 6⊆ NC1). We start with the following general theorem.

Theorem 1.1 (Informal). Let C1 and C2 be two classes such that C2 6⊆ C1 and
C2 has perfect randomized encodings computable in C1. Then, there are OWFs

6 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

and PRGs that are computable in C1 and are secure against arbitrary adversarial
functions in C1.

Informally, the argument for Theorem 1.1 is the following: Let L be the language
in C2 but not C1. The PRG is a function that takes an input r and outputs the
randomized encoding of the indicator function for membership in L on the input
0λ, using r as the randomness (where λ is a security parameter). Any adversary
that can distinguish the output of this function from random can be used to
decide if a given x is in the language L by computing the randomized encoding
of x and feeding it to the adversary. This gives us a PRG with a non-zero additive
stretch (and also a OWF) if the randomized encoding has certain properties (they
need to be perfect) — see Section 3 for details.

While we have one way functions and pseudorandom generators, a black-
box construction of public key cryptosystems from randomized encodings seems
elusive. Our first contribution in this work is to use the algebraic structure
of the randomized encodings for ⊕L/poly to construct an additively homomor-
phic public key encryption scheme secure against NC1 circuits (assuming that
⊕L/poly 6⊆ NC1).

Additively Homomorphic Public-Key Encryption. The key attribute of the ran-
domized encodings of [IK00, AIK04] for ⊕L/poly is that the encoding is not a
structureless string. Rather, the randomized encodings of computations are ma-
trices whose rank corresponds to the result of the computation. Our public-key
encryption construction uses two observations:

– Under the assumption ⊕L/poly 6⊆ NC1, there exist, for an infinite number
of values of n, distributions Dn

0 and Dn
1 over n× n matrices of rank (n− 1)

and n, respectively, that are indistinguishable to NC1 circuits.
– It is possible to sample a matrix M from Dn

0 along with the non-zero vector
k in its kernel. The sampling can be accomplished in NC1 or even AC0[2].

The public key in our scheme is such a matrix M, and the secret key is
the corresponding k. Encryption of a bit b is a vector rTM + btT , where r is a
random vector1 and t is a vector such that 〈t,k〉 = 1. In effect, the encryption of
0 is a random vector in the row-span of M while the encryption of 1 is a random
vector outside. Decryption of a ciphertext c is simply the inner product 〈c,k〉.
Semantic security against NC1 adversaries follows from the fact that Dn

0 and Dn
1

are indistinguishable to NC1 circuits. In particular, (1) We can indistinguishably
replace the public key by a random full rank matrix M′ chosen from D1

n; and
(2) with M′ as the public key, encryptions of 0 are identically distributed to the
encryptions of 1. The following is an informal restatement of Theorem 4.1.

Theorem 1.2 (Informal). If ⊕L/poly 6= NC1, there is a public-key encryption
scheme secure against NC1 adversaries where key generation, encryption and
decryption are all computable in (randomized) AC0[2].

1 We maintain the convention that all vectors are by default column vectors. For a
vector r, the notation rT denotes the row vector that is the transpose of r.

Fine-grained Cryptography 7

The scheme above is additively homomorphic, and thus, collision-resistant
hash functions (CRHF) against NC1 follow immediately from the known generic
transformations [IKO05] which work in NC1.

Theorem 1.3 (Informal). If ⊕L/poly 6= NC1, there is a family of collision-
resistant hash functions that is secure against NC1 adversaries where both sam-
pling hash functions and evaluating them can be performed in (randomized)
AC0[2].

We remark that in a recent work, Applebaum and Raykov [AR15] construct
CRHFs against polynomial-time adversaries under the assumption that there are
average-case hard functions with perfect randomized encodings. Their techniques
also carry over to our setting and imply, for instance, the existence of CRHFs
against NC1 under the assumption that there is a language that is average-case
hard for NC1 that has perfect randomized encodings that can be computed in
NC1. This does not require any additional structure on the encodings apart from
perfectness, but does require average-case hardness in place of our worst-case
assumptions.

Constructions against AC0 Adversaries We construct one-way functions
(OWFs), pseudo-random generators (PRGs), weak pseudo-random functions
(weak PRFs), symmetric-key encryption (SKE) and collision-resistant hash func-
tions (CRHFs) that are computable in AC0 and are unconditionally secure
against arbitrary AC0 circuits. While some constructions for OWFs and PRGs
against AC0 were already known [H̊as86, Bra10], and the existence of weak PRFs
and SKE, being minicrypt primitives, is not that surprising, the possibility of
unconditionally secure CRHFs against AC0 is somewhat surprising, and we con-
sider this to be our primary contribution in this section. We also present a
candidate construction for public-key encryption, but we are unable to prove its
unconditional security against AC0 circuits.

As we saw earlier, H̊astad [Has87] constructed one-way permutations secure
against AC0 circuits based on the hardness of computing PARITY. When allowed
polynomial running time, we have black-box constructions of pseudorandom gen-
erators [HILL99] and pseudorandom functions [GGM86] from one-way functions.
But because these reductions are not implementable in AC0, getting primitives
computable in AC0 requires more effort.

Our constructions against AC0 adversaries are primarily based on the theorem
of Braverman [Bra10] (and its recent sharpening by Tal [Tal14]) regarding the
pseudo-randomness of polylog-wise independent distributions against constant
depth circuits. We use this to show that AC0 circuits cannot distinguish between
the distribution (A,Ak), where A is a random “sparse” matrix of dimension
poly(n) × n and k is a uniformly random secret vector, from the distribution
(A, r), where r is a uniformly random vector. Sparse here means that each row
of A has at most polylog(n) many ones.

(This is shown as follows. It turns out that with high probability, a ma-
trix chosen in this manner is such that any set of polylog(n) rows is linearly

8 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

independent (Lemma 2.5). Note that when a set of rows of A is linearly inde-
pendent, the corresponding set of bits in Ak are uniformly distributed. This
implies that if all polylog(n)-sized sets of rows of A are linearly independent,
then Ak is polylog(n)-wise independent. This fact, along with the theorems re-
garding pseudo-randomness mentioned above prove the indistinguishability by
AC0.)

We also crucially use the fact, from [AB84], that the inner product of an
arbitrary vector with a sparse vector can be computed in constant depth.

OWFs and PRGs This enables us to construct PRGs in NC0 with constant
multiplicative stretch and in AC0 with polynomial multiplicative stretch. The
construction is to fix a sparse matrix A with the linear independence properties
mentioned above, and the PRG output on seed k is Ak. Pseudo-randomness
follows from the indistinguishability arguments above. This is stated in the fol-
lowing informal restatement of Theorem 5.1. We need to show that there exist
such matrices A in which any polylog-sized set of rows are linearly independent,
and yet are sparse. As we show in Section 2.3, there are indeed matrices that
have these properties.

Theorem 1.4 (Informal). For any constant c, there is a family of circuits{
Cn : {0, 1}n → {0, 1}n

c
}

such that for any n, each output bit of Cn depends

on at most O(c) input bits. Further, for large enough n, AC0 circuits cannot
distinguish the output distribution Cn(Un) from Unc .

We note that similar techniques have been used in the past to construct PRGs
that fool circuit families of a fixed constant depth - see, for instance, [Vio12].

Weak PRFs against AC0. A Pseudo-Random Function family (PRF) is a collec-
tion of functions such that a function chosen at random from this collection is
indistinguishable from a function chosen at random from the set of all functions
(with the appropriate domain and range), based on just a polynomial number
of evaluations of the respective functions. In a Strong PRF, the distinguisher
is allowed to specify (even adaptively) the input points at which it wants the
function to be evaluated. In a Weak PRF, the distinguisher is given function
evaluations at input points chosen uniformly at random.

We construct Weak PRFs against AC0 that are unconditionally secure. In
our construction, each function in the family is described by a vector k. The
computation of the pseudo-random function proceeds by mapping its input x
to a sparse vector a and computing the inner product 〈a,k〉 over F2. Given
polynomially many samples of the form (a, 〈a,k〉), one can write this as (A,Ak),
where A is a matrix with random sparse rows. Our mapping of x’s to a’s is such
that (A,Ak) is in some sense the only useful information contained in a set of
random function evaluations. This is now indistinguishable from (A, r) where r
is uniformly random, via the arguments mentioned earlier in this section. The
following is an informal restatement of Theorem 5.2.

Fine-grained Cryptography 9

Theorem 1.5 (Informal). There is a Weak Pseudo-Random Function family
secure against AC0 adversaries and is such that both sampling a function at
random and evaluating it can be performed in AC0.

We note that while our construction only gives us quasi-polynomial secu-
rity (that is, an adversary might be able to achieve an inverse quasi-polynomial
advantage in telling our functions from random) as opposed to exponential se-
curity, we show that this is an inherent limitation of weak PRFs computable in
AC0. Roughly speaking, due to the work of [LMN93], we know that a constant
fraction of the Fourier mass of any function on n inputs computable in AC0 is
concentrated on Fourier coefficients upto some polylog(n). So there is at least
one coefficient in the case of such a function that is at least Ω

(
1

2polylog(n)

)
in abso-

lute value, whereas in a random function any coefficient would be exponentially
small. So, by guessing and estimating a Fourier coefficient of degree at most
polylog(n) (which can be done in AC0), one can distinguish functions computed
in AC0 from a random function with some Ω

(
1

2polylog(n)

)
advantage.

Symmetric Key Encryption against AC0. In the case of polynomial-time adver-
saries and constructions, weak PRFs generically yield symmetric key encryption
schemes, and this continues to hold in our setting. However, we present an al-
ternative construction that has certain properties that make it useful in the
construction of collision-resistant hash functions later on. The key in our scheme
is again a random vector k. The encryption of a bit b is a random sparse vector c
such that 〈c,k〉 = b over F2. (Similar schemes, albeit without the sparsity, have
been employed in the past in the leakage-resilience literature — see [GR12] and
references therein.)

Encryption is performed by rejection sampling to find such a c, and decryp-
tion is performed by computing 〈c,k〉, which can be done in constant depth
owing to the sparsity of c. We reduce the semantic security of this construction
to the indistinguishability of the distributions (A,Ak) and (A, r) mentioned
earlier. Note that this scheme is additively homomorphic, a property that will
be useful later. The following is an informal restatement of Theorem 5.3.

Theorem 1.6 (Informal). There is a Symmetric Key Encryption scheme that
is secure against AC0 adversaries and is such that key generation, encryption
and decryption are all computable in (randomized) AC0.

Collision Resistance against AC0. Our most important construction against AC0,
which is what our encryption scheme was designed for, is that of Collision Re-
sistant Hash Functions. Note that while there are generic transformations from
additively homomorphic encryption schemes to CRHFs ([IKO05]), these trans-
formations do not work in AC0 and hence do not yield the construction we desire.

Our hash functions are described by matrices where each column is the en-
cryption of a random bit under the above symmetric encryption scheme. Given
such a matrix M that consists of encryptions of the bits of a string m, the eval-
uation of the function on input x is Mx. Note that we wish to perform this

10 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

computation in constant depth, and this turns out to be possible to do correctly
for most keys because of the sparsity of our ciphertexts.

Finding a collision for a given key M is equivalent to finding a vector u such
that Mu = 0. By the additive homomorphism of the encryption scheme, and the
fact that 0 is a valid encryption of 0, this implies that 〈m,u〉 = 0. But this is non-
trivial information about m, and so should violate semantic security. However
showing that this is indeed the case turns out to be somewhat non-trivial.

In order to do so, given an AC0 adversary A that finds collisions for the hash
function with some non-negligible probability, we will need to construct another
AC0 adversary, B, that breaks semantic security of the encryption scheme. The
most straightforward attempt at this would be as follows. B selects messages m0

and m1 at random and sends them to the challenger who responds with M =
Enc(mb). B then forwards this to A who would then return, with non-negligible
probability, a vector u such that 〈u,mb〉 = 0. If B could compute 〈u,m0〉 and
〈u,m1〉, B would then be able to guess b correctly with non-negligible advantage.
The problem with this approach is that u, m0 and m1 might all be of high
Hamming weight, and this being the case, B would not be able to compute the
above inner products.

The solution to this is to choose m0 to be a sparse vector and m1 to be a
random vector and repeat the same procedure. This way, B can compute 〈u,m0〉,
and while it still cannot check whether 〈u,m1〉 = 0, it can instead check whether
Mu = 0 and use this information. If it turns out that Mu = 0 and 〈u,m0〉 6= 0,
then B knows that b = 1, due to the additive homomorphism of the encryption
scheme. Also, when b = 1, since m0 is independent of m1, the probability that A
outputs u such that 〈u,m0〉 6= 0 is non-negligible. Hence, by guessing b = 1 when
this happens and by guessing b at random otherwise, B can gain non-negligible
advantage against semantic security. This achieves the desired contradiction and
demonstrates the collision resistance of our construction. The following is an
informal restatement of Theorem 5.4.

Theorem 1.7 (Informal). There is a family of Collision Resistant Hash Func-
tions that is secure against AC0 adversaries and is such that both sampling a hash
function at random and evaluating it can be performed in (randomized) AC0.

Candidate Public Key Encryption against AC0 We also propose a candidate
Public Key Encryption scheme whose security we cannot show. It is similar to
the LPN-based cryptosystem in [Ale03]. The public key is a matrix of the form
M = (A,Ak) where A is a random n×n matrix and k, which is also the secret
key, is a random sparse vector of length n. To encrypt 0, we choose a random
sparse vector r and output cT = rTM, and to encrypt 1 we just output a random
vector cT of length (n+ 1). Decryption is simply the inner product of c and the
vector (k 1)T , and can be done in AC0 because k is sparse.

Fine-grained Cryptography 11

1.2 Other Related Work: Cryptography against Bounded
Adversaries

The big bang of public-key cryptography was the result of Merkle [Mer78] who
constructed a key exchange protocol where the honest parties run in linear time
O(n) and security is obtained against adversaries that run in time o(n2). His
assumption was the existence of a random function that both the honest parties
and the adversary can access. Later, the assumption was improved to strong one-
way functions [BGI08]. This is, indeed, a fine-grained cryptographic protocol in
our sense.

The study of ε-biased generators [AGHP93, MST06] is related to this work.
In particular, ε-biased generators with exponentially small ε give us almost k-
wise independent generators for large k, which in turn fool AC0 circuits by a
result of Braverman [Bra10]. This and other techniques have been used in the
past to construct PRGs that fool circuits of a fixed constant depth, with the
focus generally being on optimising the seed length [Vio12, TX13].

The notion of precise cryptography introduced by Micali and Pass [MP06]
studies reductions between cryptographic primitives that can be computed in
linear time. That is, they show constructions of primitive B from primitive A
such that if there is a TIME(f(n)) algorithm that breaks primitive B, there is a
TIME(O(f(n))) algorithm that breaks A.

Maurer [Mau92] introduced the bounded storage model, which considers ad-
versaries that have a bounded amount of space and unbounded computation
time. There are many results known here [DM04, Vad04, AR99, CM97] and
in particular, it is possible to construct Symmetric Key Encryption and Key
Agreement protocols unconditionally in this model[CM97].

2 Preliminaries

In this section we establish notation that shall be used throughout the rest of the
presentation and recall the notion of randomized encodings of functions. We state
and prove some results about certain kinds of random matrices that turn out to
be useful in Section 5. In Sections 2.4 and 2.5, we present formal definitions of
a general notion of adversaries with restricted computational power and also of
several standard cryptographic primitives against such restricted adversaries (as
opposed to the usual definitions, which are specific to probabilistic polynomial
time adversaries).

2.1 Notation

For a distribution D, by x ← D we denote x being sampled according to D.
Abusing notation, we denote by D(x) the probability mass of D on the element
x. For a set S, by x ← S, we denote x being sampled uniformly from S. We
also denote the uniform distribution over S by US , and the uniform distribution

12 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

over {0, 1}λ by Uλ. We use the notion of total variational distance between
distributions, given by:

∆(D1, D2) =
1

2

∑
x

|D1(x)−D2(x)|

For distributions D1 and D2 over the same domain, by D1 ≡ D2 we mean
that the distributions are the same, and by D1 ≈ D2, we mean that ∆(D1, D2)
is a negligible function of some parameter that will be clear from the context.
Abusing notation, we also sometimes use random variables instead of their dis-
tributions in the above expressions.

For any n ∈ N, we denote by bnc2 the greatest power of 2 that is not more
than n. For any n, k, and d ≤ k, we denote by SpRk,d the uniform distribution

over the set of vectors in {0, 1}k with exactly d non-zero entries, and by SpMn,k,d

the distribution over the set of matrices in {0, 1}n×k where each row is distributed
independently according to SpRk,d.

We identify strings in {0, 1}n with vectors in Fn2 in the natural manner. For
a string (vector) x, ‖x‖ denotes its Hamming weight. Finally, we note that all
arithmetic computations (such as inner products, matrix products, etc.) in this
work will be over F2, unless specified otherwise.

2.2 Constant-Depth Circuits

Here we state a few known results on the computational power of constant depth
circuits that shall be useful in our constructions against AC0 adversaries.

Theorem 2.1 (Hardness of Parity, [H̊as14]). For any circuit C with n in-
puts, size s and depth d,

Pr
x←{0,1}n

[C(x) = PARITY(x)] ≤ 1

2
+ 2−Ω(n/(log s)d−1)

Theorem 2.2 (Partial Independence, [Bra10, Tal14]). Let D be a k-wise
independent distribution over {0, 1}n. For any circuit C with n inputs, size s
and depth d, ∣∣∣∣ Pr

x←D
[C(x) = 1]− Pr

x←{0,1}n
[C(x) = 1]

∣∣∣∣ ≤ s

2Ω(k1/(3d+3))

The following lemma is implied by theorems proven in [AB84, RW91] regard-
ing the computability of polylog thresholds by constant-depth circuits.

Lemma 2.3 (Polylog Inner Products). For any constant c and for any func-
tion t : N → N such that t(λ) = O(logc λ), there is an AC0 family It = {iptλ}
such that for any λ,

– iptλ takes inputs from {0, 1}λ × {0, 1}λ.

– For any x, y ∈ {0, 1}λ such that min(‖x‖ , ‖y‖) ≤ t(λ), iptλ(x, y) = 〈x, y〉.

Fine-grained Cryptography 13

2.3 Sparse Matrices and Linear Codes

In this section we describe and prove some properties of a sampling procedure
for random matrices. In interest of space, we will defer the proofs of the lemmas
stated in this section to the full version.

We describe the following two sampling procedures that we shall use later.
SRSamp and SMSamp abbreviate Sparse Row Sampler and Sparse Matrix Sam-
pler, respectively. SRSamp(k, d, r) samples unformly at random a vector from

{0, 1}k with exactly d non-zero entries, using r for randomness – it chooses a
set of d distinct indices between 0 to k− 1 (via rejection sampling) and outputs
the vector in which the entries at those indices are 1 and the rest are 0. When
we don’t specifically need to argue about the randomness, we drop the explicitly
written r. SMSamp(n, k, d) samples an n × k matrix whose rows are samples
from SRSamp(k, d, r) using randomly and independently chosen r’s.

Construction 2.1 Sparse row and matrix sampling.

SRSamp(k, d, r): Samples a vector with exactly d non-zero entries.

1. If r is not specified or |r| < d2 dlog(k)e, sample r ← {0, 1}d
2dlog(k)e anew.

2. For l ∈ [d] and j ∈ [d], set ulj = r((l−1)d+j−1)dlog(k)e+1 . . . r((l−1)d+j)dlog(k)e.
3. If there is no l such that for all distinct j1, j2 ∈ [d], ulj1 6= ulj2 , output 0k.
4. Else, let l0 be the least such l.
5. For i ∈ [k], set vi = 1 if there is a j ∈ [d] such that ul0j = i (when interpreted in

binary), or vi = 0 otherwise.
6. Output v = (v1, . . . , vk).

SMSamp(n, k, d): Samples a matrix where each row has d non-zero entries.

1. For i ∈ [n], sample ri ← {0, 1}d
2dlog(k)e and ai ← SRSamp(k, d, ri).

2. Output the n× k matrix whose i-th row is ai.

For any fixed k and d < k, note that the function Sk,d : {0, 1}d
2dlog(k)e →

{0, 1}k given by Sk,d(x) = SRSamp(k, d, x) can be easily seen to be computed by
a circuit of size O((d3+kd2) log(k)) and depth 8. And so the family S =

{
Sλ,d(λ)

}
is in AC0. When, in our constructions, we require computing SRSamp(k, d, x),
this is to be understood as being performed by the circuit for Sk,d that is given
as input the prefix of x of length d2 dlog(k)e. So if the rest of the construction is
computed by polynomial-sized constant depth circuits, the calls to SRSamp do
not break this property.

Recall that we denote by SpRk,d the uniform distribution over the set of vec-

tors in {0, 1}k with exactly d non-zero entries, and by SpMn,k,d the distribution

over the set of matrices in {0, 1}n×k where each row is sampled independently
according to SpRk,d. The following lemma states that the above sampling pro-
cedures produce something close to these distributions.

14 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

Lemma 2.4 (Uniform Sparse Sampling). For any n, and d = log2(k), there
is a negligible function ν such that for any k that is a power of two, when r ←
{0, 1}log

5(k)
,

1. ∆(SRSamp(k, d, r), SpRk,d) ≤ ν(k)
2. ∆(SMSamp(n, k, d), SpMn,k,d) ≤ nν(k)

The following property of the sampling procedures above is easiest proven
in terms of expansion properties of bipartite graphs represented by the matrices
sampled. The analysis closely follows that of Gallager ([Gal62]) from his early
work on Low-Density Parity Check codes.

Lemma 2.5 (Sampling codes). For any constant c > 0, set n = kc, and
d = log2(k). For a matrix H, let δ(H) denote the minimum distance of the code
whose parity check matrix is H. Then, there is a negligible function ν such that
for any k that is a power of two,

Pr
H←SMSamp(n,k,d)

[
δ(H) ≥ k

log3(k)

]
≥ 1− ν(k)

Recall that a δ-wise independent distribution over n bits is a distribution
whose marginal distribution on any set of δ bits is the uniform distribution.

Lemma 2.6 (Distance and Independence). Let H (of dimension n× k) be
the parity check matrix of an [n, (n−k)]2 linear code of minimum distance more
than δ. Then, the distribution of Hx is δ-wise independent when x is chosen
uniformly at random from {0, 1}k.

The following is immediately implied by Lemmas 2.5, 2.6 and Theorem 2.2. It
effectively says that AC0 circuits cannot distinguish between (A,As) and (A, r)
when A is sampled using SRSamp and s and r are chosen uniformly at random.

Lemma 2.7. For any polynomial n, there is a negligible function ν such that
for any Boolean family G = {gλ} ∈ AC0, and for any k that is a power of 2,

when A← SMSamp(n(k), k, log2(k)), s← {0, 1}k and r← {0, 1}n(k),

|Pr [gλ(A,As) = 1]− Pr [gλ(A, r) = 1]| ≤ ν(λ)

2.4 Adversaries

Definition 2.8 (Function Family). A function family is a family of (possibly

randomized) functions F = {fλ}λ∈N, where for each λ, fλ has domain Df
λ and

co-domain Rfλ.

In most of our considerations, Df
λ and Rfλ will be {0, 1}d

f
λ and {0, 1}r

f
λ for

some sequences {dfλ}λ∈N and {rfλ}λ∈N. Wherever function families are seen to act
as adversaries to cryptographic objects, we shall use the terms adversary and
function family interchangeably. The following are some examples of natural
classes of function families.

Fine-grained Cryptography 15

Definition 2.9 (AC0). The class of (non-uniform) AC0 function families is the
set of all function families F = {fλ} for which there is a polynomial p and
constant d such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth d and unbounded fan-in using AND, OR and NOT gates.

Definition 2.10 (NC1). The class of (non-uniform) NC1 function families is
the set of all function families F = {fλ} for which there is a polynomial p and
constant c such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth c log(λ) and fan-in 2 using AND, OR and NOT gates

2.5 Primitives Against Bounded Adversaries

In this section, we generalize the standard definitions of several standard crypto-
graphic primitives to talk about security against different classes of adversaries.
In the following definitions, C1 and C2 are two function classes, and l, s : N→ N
are some functions. Due to space constraints, we do not define all the primitives
we talk about in the paper here, but the samples below illustrate how our def-
initions relate to the standard ones, and the rest are analogous. All definitions
are present in the full version of the paper.

Implicit (and hence left unmentioned) in each definition are the following
conditions:

– Computability, which says that the function families that are part of the
primitive are in the class C1. Additional restrictions are specified when they
apply.

– Non-triviality, which says that the security condition in each definition is not
vacuously satisfied – that there is at least one function family in C2 whose
input space corresponds to the output space of the appropriate function
family in the primitive.

Definition 2.11 (One-Way Function). Let F =
{
fλ : {0, 1}λ → {0, 1}l(λ)

}
be a function family. F is a C1-One-Way Function (OWF) against C2 if:

– Computability: For each λ, fλ is deterministic.

– One-wayness: For any G =
{
gλ : {0, 1}l(λ) → {0, 1}λ

}
∈ C2, there is a

negligible function ν such that for any λ ∈ N:

Pr
x←Uλ

[fλ(gλ(y)) = y | y ← fλ(x)] ≤ ν(λ)

For a function class C, we sometimes refer to a C-OWF or an OWF against
C. In both these cases, both C1 and C2 from the above definition are to be taken
to be C. To be clear, this implies that there is a family F ∈ C that realizes the
primitive and is secure against all G ∈ C. We shall adopt this abbreviation also
for other primitives defined in the above manner.

16 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

Definition 2.12 (Symmetric Key Encryption). Consider function fami-
lies KeyGen = {KeyGenλ : ∅→ Kλ}, Enc = {Encλ : Kλ × {0, 1} → Cλ}, and
Dec = {Decλ : Kλ × Cλ → {0, 1}}. (KeyGen, Enc,Dec) is a C1-Symmetric Key
Encryption Scheme against C2 if:

– Correctness: There is a negligible function ν such that for any λ ∈ N and
any b ∈ {0, 1}:

Pr

[
Decλ (k, c) = b

∣∣∣∣ k ← KeyGenλ
c← Encλ(k, b)

]
≥ 1− ν(λ)

– Semantic Security: For any polynomials n0, n1 : N → N, and any family

G =
{
gλ : C

n0(λ)+n1(λ)+1
λ → {0, 1}

}
∈ C2, there is a negligible function ν′

such that for any λ ∈ N:

Pr

gλ ({c0i} ,{c1i} , c) = b

∣∣∣∣∣∣∣∣
k ← KeyGenλ, b← U1

c01, . . . , c
0
n0(λ)

← Encλ(k, 0)

c11, . . . , c
1
n1(λ)

← Encλ(k, 1)

c← Encλ(k, b)

 ≤ 1

2
+ ν′(λ)

2.6 Randomized Encodings

The notion of randomized encodings of functions was introduced by Ishai and
Kushilevitz [IK00] in the context of secure multi-party computation. Roughly,
a randomized encoding of a deterministic function f is another deterministic
function f̂ that is easier to compute by some measure, and is such that for
any input x, the distribution of f̂(x, r) (when r is chosen uniformly at random)
reveals the value of f(x) and nothing more. This reduces the computation of f(x)

to determining some property of the distribution of f̂(x, r). Hence, randomized
encodings offer a flavor of worst-to-average case reduction — from computing
f(x) from x to that of computing f(x) from random samples of f̂(x, r).

We work with the following definition of Perfect Randomized Encodings from
[App14]. We note that constructions of such encodings for ⊕L/poly which are
computable in NC0 were presented in [IK00].

Definition 2.13 (Perfect Randomized Encodings). Consider a determin-
istic function f : {0, 1}n → {0, 1}t. We say that the deterministic function

f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a Perfect Randomized Encoding (PRE) of f
if the following conditions are satisfied.

– Input independence: For every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the

random variables f̂(x, Um) and f̂(x′, Um) are identically distributed.
– Output disjointness: For every x, x′ ∈ {0, 1}n such that f(x) 6= f(x′),

Supp(f̂(x, Um)) ∩ Supp(f̂(x′, Um)) = φ.

– Uniformity: For every x, f̂(x, Um) is uniform on its support.

– Balance: For every x, x′ ∈ {0, 1}n,
∣∣∣Supp(f̂(x, Um))

∣∣∣ =
∣∣∣Supp(f̂(x′, Um))

∣∣∣

Fine-grained Cryptography 17

– Stretch preservation: s− (n+m) = t− n
Additionally, the PRE is said to be surjective if it also has the following property.
– Surjectivity: For every y ∈ {0, 1}s, there exist x and r such that f̂(x, r) = y.

We naturally extend the definition of PREs to function families – a family

F̂ =
{
f̂λ

}
is a PRE of another family F = {fλ} if for all large enough λ, f̂λ is a

PRE of fλ. Note that this notion only makes sense for deterministic functions,
and the functions and families we assume or claim to have PREs are to be taken
to be deterministic.

3 OWFs from worst-case assumptions

In this section and in Section 4, we describe some constructions of cryptographic
primitives against bounded adversaries starting from worst-case hardness as-
sumptions. The existence of Perfect Randomized Encodings (PREs) can be
leveraged to construct one-way functions and pseudo-random generators against
bounded adversaries starting from a function that is hard in the worst-case for
these adversaries. We describe this construction below.

Remark 3.1 (Infinitely often primitives). For a class C, the statement F =
{fλ} 6∈ C implies that for any family G = {gλ} in C, there are an infinite number
of values of λ such that fλ 6≡ gλ. Using such a worst case assumption, we only
know how to obtain primitives whose security holds for an infinite number of
values of λ, as opposed to holding for all large enough λ. Such primitives are
called infinitely-often, and all primitives constructed in this section and Section 4
are infinitely-often primitives.

On the other hand, if we assume that for every G ∈ C, there exists λ0 such
that for all λ > λ0, fλ 6≡ gλ we can achieve the regular stronger notion of security
(that holds for all large enough security parameters) in each case by the same
techniques.

Theorem 3.2 (OWFs, PRGs from PREs). Let C1 and C2 be two function
classes satisfying the following conditions:
1. Any function family in C2 has a surjective PRE computable in C1.
2. C2 6⊆ C1.
3. C1 is closed under a constant number of compositions.
4. C1 is non-uniform or randomized.
5. C1 can compute arbitrary thresholds.

Then:
1. There is a C1-OWF against C1.
2. There is a C1-PRG against C1 with non-zero additive stretch.

Theorem 3.2 in effect shows that the existence of a language with PREs out-
side C1 implies the existence of one way functions and pseudorandom generators
computable in C1 secure against C1. Instances of classes that satisfy its hypoth-
esis (apart from C2 6⊆ C1) include NC1 and BPP. Note that this theorem does
not provide constructions against AC0 because AC0 cannot compute arbitrary
thresholds.

18 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

Proof Sketch. We start with a language in C2 \C1 described by a function family

F = {fλ}. Let F̂ =
{
f̂λ

}
be its randomized encoding. Say fλ takes inputs from

{0, 1}λ. Then the PRG/OWF for parameter λ is the function gλ(r) = f̂λ(0λ, r).

Without loss of generality, say fλ(0λ) = 0 and fλ(z1) = 1 for some z1.
To show pseudorandomness, we first observe that, by the perfectness of the
randomized encoding, the uniform distribution can be generated as an equal
convex combination of f̂λ(0λ, r) and f̂λ(z1, r). The advantage in distinguishing

gλ(r) = f̂λ(0λ, r) from uniform can hence be used to decide if a given input x is

in the language because an equal convex combination of f̂λ(0λ, r) and f̂λ(x, r)

will be identical to f̂λ(0λ, r) if fλ(x) = fλ(0) = 0, and otherwise will be identical
to uniform.

We require the class to be closed under composition and to be able to compute
thresholds in order to be able to amplify the success probability. The non-zero
additive stretch comes from the fact that the PRE is stretch-preserving.

4 PKE against NC1 from worst-case assumptions

In Theorem 3.2 we saw that we can construct one way functions and PRGs with
a small stretch generically from Perfect Randomized Encodings (PREs) starting
from worst-case hardness assumptions. We do not know how to construct Public
Key Encryption (PKE) in a similar black-box fashion. In this section, we use
certain algebraic properties of a specific construction of PREs for functions in
⊕L/poly due to Ishai-Kushilevitz [IK00] to construct Public Key Encryption and
Collision Resistant Hash Functions against NC1 that are computable in AC0[2]
under the assumption that ⊕L/poly 6⊆ NC1. We state the necessary implications
of their work here. We start by describing sampling procedures for some relevant
distributions in Construction 4.1.

In the randomized encodings of [IK00], the output of the encoding of a
function f on input x is a matrix M sampled identically to R1M

λ
0R2 when

f(x) = 0 and identically to R1M
λ
1R2 when f(x) = 1, where R1 ← LSamp(λ)

and R2 ← RSamp(λ). Notice that R1M
λ
1R2 is full rank, while R1M

λ
0R2 has

rank (λ − 1). The public key in our encryption scheme is a sample M from
R1M

λ
0R2, and the secret key is a vector k in the kernel of M. An encryption of

0 is a random vector in the row-span of M (whose inner product with k is hence
0), and an encryption of 1 is a random vector that is not in the row-span of M
(whose inner product with k is non-zero). Decryption is simply inner product
with k. (This is very similar to the cryptosystem in [ABW10] albeit without the
noise that is added there.)

Security follows from the fact that under our hardness assumption M is indis-
tinguishable from R1M

λ
1R2 (see Theorem 4.2), which has an empty kernel, and

so when used as the public key results in identical distributions of encryptions
of 0 and 1.

Fine-grained Cryptography 19

Construction 4.1 Sampling distributions from [IK00]

Let Mn
0 and Mn

1 be the following n× n matrices:

M0 =

0 · · · 0 0
1 0 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1 0

 ,M1 =

0 · · · 0 1
1 0 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1 0

LSamp(n):

1. Output an n × n upper triangular matrix where all entries in the diagonal are 1
and all other entries in the upper triangular part are chosen at random.

RSamp(n):

1. Sample at random r← {0, 1}n−1.
2. Output the following n× n matrix:

1 0 · · · 0

0 1
. . .

... r
...

. . .
. . . 0

0 · · · 0 1
0 · · · 0 0 1

Theorem 4.1 (Public Key Encryption Against NC1). Assume ⊕L/poly 6⊆
NC1. Then, the tuple of families (KeyGen, Enc,Dec) defined in Construction 4.2
is an AC0[2]-Public Key Encryption Scheme against NC1.

Before beginning with the proof, we describe some properties of the construction.
We first begin with two sampling procedures that correspond to sampling from
f̂(x, ·) when f(x) = 0 or f(x) = 1 as described earlier. We describe these again
in Construction 4.3.

Theorem 4.2 ([IK00, AIK04]). For any boolean function family F = {fλ}
in ⊕L/poly, there is a polynomial n such that for any λ, fλ has a PRE f̂λ such

that the distribution of f̂λ(x) is identical to ZeroSamp(n(λ)) when fλ(x) = 0 and
is identical to OneSamp(n(λ)) when fλ(x) = 1.

This implies that if some function in⊕L/poly is hard to compute on the worst-
case then it is hard to distinguish between samples from ZeroSamp and OneSamp.
In particular, the following lemma follows immediately from the observation that
ZeroSamp and OneSamp can be computed in NC1.

Lemma 4.3. If ⊕L/poly 6⊆ NC1, then there is a polynomial n and a negligible
function ν such that for any family F = {fλ} in NC1, for an infinite number of

20 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

Construction 4.2 Public Key Encryption

Let λ be the security parameter. Let Mλ
0 be the λ×λ matrix described in Construction

4.1. Define the families KeyGen = {KeyGenλ}, Enc = {Encλ}, and Dec = {Decλ} as
follows.
KeyGenλ:

1. Sample R1 ← LSamp(λ) and R2 ← RSamp(λ).
2. Let k = (r 1)T be the last column of R2.
3. Compute M = R1M

λ
0R2.

4. Output (pk = M, sk = k).

Encλ(pk = M, b):

1. Sample r ∈ {0, 1}λ.
2. Let tT = (0 . . . 0 1), of length λ.
3. Output cT = rTM + btT .

Decλ(sk = k, c):

1. Output 〈c,k〉.

Construction 4.3 Sampling procedures

ZeroSamp(n): f̂(x, r) where f(x) = 0

1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).
2. Output R1M0R2.

OneSamp(n): f̂(x, r) where f(x) = 1

1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).
2. Output R1M1R2.

values of λ,∣∣∣∣ Pr
M←ZeroSamp(n(λ))

[fλ(M) = 1]− Pr
M←OneSamp(n(λ))

[fλ(M) = 1]

∣∣∣∣ ≤ ν(λ)

Lemma 4.3 can now be used to prove Theorem 4.1 as described in Section 1.1.
We defer the details to the full version.

Remark 4.4. The computation of the PRE from [IK00] can be moved to NC0 by
techniques noted in [IK00] itself. Using similar techniques with Construction 4.2
gives us a Public Key Encryption scheme with encryption in NC0 and decryption
and key generation in AC0[2]. The impossibility of decryption in NC0, as noted
in [AIK04], continues to hold in our setting.

Remark 4.5. (This was pointed out to us by Abhishek Jain.) The above PKE
scheme has what are called, in the terminology of [PVW08], “message-lossy”
public keys – in this case, this is simply M when sampled from OneSamp, as
in the proof above. Such schemes may be used, again by results from [PVW08],

Fine-grained Cryptography 21

to construct protocols for Oblivious Transfer where the honest parties are com-
putable in NC1 and which are secure against semi-honest NC1 adversaries under
the same assumptions (that ⊕L/poly 6⊆ NC1).

4.1 Collision Resistant Hashing

Note that again, due to the linearity of decryption, Construction 4.2 is additively
homomorphic – if c1 and c2 are valid encryptions of m1 and m2, (c1⊕c2) is a valid
encryption of (m1 ⊕m2). Furthermore, the size of ciphertexts does not increase
when this operation is performed. Given these properties, we can use the generic
transformation from additively homomorphic encryption to collision resistance
due to [IKO05], along with the observation that all operations involved in the
transformation can still be performed in AC0[2], to get the following.

Theorem 4.6. Assume ⊕L/poly 6⊆ NC1. Then, for any constant c < 1 and
function s such that s(n) = O(nc), there exists an AC0[2]-CRHF against NC1

with compression s.

5 Cryptography Without Assumptions

In this section, we present some constructions of primitives unconditionally se-
cure against AC0 adversaries that are computable in AC0. This is almost the
largest complexity class (after AC0 with MOD gates) for which we can hope to
get such unconditional results owing to a lack of better lower bounds. In this sec-
tion, we present constructions of PRGs with arbitrary polynomial stretch, Weak
PRFs, Symmetric Key Encryption, and Collision Resistant Hash Functions. We
end with a candidate for Public Key Encryption against AC0 that we are unable
to prove secure, but also do not have an attack against.

5.1 High-Stretch Pseudo-Random Generators

We present here a construction of Pseudo-Random Generators against AC0 with
arbitrary polynomial stretch that can be computed in AC0. In fact, the same
techniques can be used to obtain constant stretch generators computable in
NC0.

The key idea behind the construction is the following: [Bra10] implies that
for any constant ε, an nε-wise independent distribution will fool AC0 circuits
of arbitrary constant depth. So, being able to sample such distributions in AC0

suffices to construct good PRGs. As shown in Section 2.3, if H is the parity-
check matrix of a code with large distance d, then the distribution Hx is d-wise
independent for x being a uniformly random vector (by Lemma 2.6). Further,
as was also shown in Section 2.3, even for rather large d there are such matrices
H that are sparse, allowing us to compute the product Hx in AC0.

Theorem 5.1 (PRGs against AC0). For any polynomial l, the family F l from

Construction 5.1 is an AC0-PRG with multiplicative stretch
(
l(λ)
λ

)
.

22 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

Construction 5.1 AC0-PRG against AC0

For any polynomial l, we define the family F l =
{
f lλ : {0, 1}λ → {0, 1}l(λ)

}
as follows.

Lemma 2.5 implies for large λ, there is an [l(λ), (l(λ)− λ)]2 linear code with minimum
distance at least λ

log3(λ)
whose parity check matrix has log2(λ) non-zero entries in each

row. Denote this parity check matrix by Hl,λ. The dimensions of Hl,λ are l(λ)× λ.

f lλ(x) = Hl,λx

Proof. For any l, the most that needs to be done to compute f lλ(x) is computing
the product Hl,λx. We know that each row of Hl,λ contains at most log2(λ)
non-zero entries. Hence, by Lemma 2.3, F l is in AC0. The multiplicative stretch

being
(
l(λ)
λ

)
is also easily verified.

For pseudo-randomness, we observe that the product Hl,λx is Ω
(

λ
log3(λ)

)
-

wise independent, by Lemma 2.6. And hence, Theorem 2.2 implies that this
distribution is pseudo-random to adversaries in AC0.

5.2 Weak Pseudo-Random Functions

In this section, we describe our construction of Weak Pseudo-Random Functions
against AC0 computable in AC0 (Construction 5.2). Roughly, we know that for
a random sparse matrix H, (H,Hk) is indistinguishable from (H, r) where r
and k are chosen uniformly at random. We choose the key of the PRF to be a
random vector k. On an input x, the strategy is to use the input x to generate
a sparse vector y and then take the inner product 〈y,k〉.

Construction 5.2 AC0-PRF against AC0

Let It =
{
iptλ
}

be the inner product family with threshold promise t described in
Lemma 2.3. Define families KeyGen = {KeyGenλ} and Eval = {Evalλ} as follows.
KeyGenλ:

1. Output a random vector k← {0, 1}bλc2 .

Evalλ(k, r):

1. Compute y← SRSamp(bλc2 , log2(bλc2), r).

2. Output ip
log2(λ)

bλc2
(k,y).

Theorem 5.2 (PRFs against AC0). The pair of families (KeyGen, Eval) de-
fined in Construction 5.2 is a Weak AC0-PRF against AC0.

Fine-grained Cryptography 23

The intuitive reason one would think Construction 5.2 might be pseudo-random
is that a collection of random function values from a randomly sampled key seems
to contain the same information as (H,Hk) where k is sampled uniformly at
random and H is sampled using SMSamp: a matrix with sparse rows. We know
from Lemma 2.5 that except with negligible probability, H is going to be the
parity check matrix of a code with large distance, and when it is, the arguments
from Section 5.1 show that (H,Hk) is indistinguishable from (H, r), where r is
sampled uniformly at random.

The only fact that prevents this from functioning as a proof is that what
the adversary gets is not (y, 〈y,k〉) where y is an output of SRSamp, but rather
(r, 〈y,k〉), where r is randomness that when used in SRSamp gives y. One way
to show that this is still pseudo-random is to reduce the case where the input
is (y, 〈y,x〉) to the case where the input is (r, 〈y,x〉) using an AC0-reduction.
To do this, one would need an AC0 circuit that would, given y, sample from
a distribution close to the uniform distribution over r’s that cause SRSamp to
output y when used as randomness. We implement this proof strategy in the
full version.

Construction 5.2 of Weak PRFs achieves only quasi-polynomial security —
that is, there is no guarantee that some AC0 adversary may not have an inverse
quasi-polynomial advantage in distinguishing between the PRF and a random
function. Due to the seminal work of Linial-Mansour-Nisan [LMN93] and sub-
sequent improvements in [Tal14], we know that this barrier is inherent and we
cannot hope for exponential security – see the full version for details.

5.3 Symmetric Key Encryption

In this section, we present a Symmetric Key Encryption scheme against AC0

computable in AC0, which is also additively homomorphic – a property that
shall be useful in constructing Collision Resistant Hash Functions later on.

In Section 5.2, we saw a construction of Weak PRFs. And Weak PRFs give us
Symmetric Key Encryption generically (where Enc(k, b) = (r,PRF(k, r)⊕b)). For
the Weak PRF construction from Section 5.2, this implied scheme also happens
to be additively homomorphic. But it has the issue that the last bit of the
ciphertext is an almost unbiased bit and hence it is not feasible to do more
than polylog(λ) homomorphic evaluations on collections of ciphertexts in AC0.
So, we construct a different Symmetric Key Encryption scheme that does not
suffer from this drawback and is still additively homomorphic. Then we will
use this scheme to construct Collision Resistant Hash Functions. This scheme
is described in Construction 5.3. In this scheme we choose the ciphertext by
performing rejection sampling in parallel. For encrypting a bit b, we sample a
ciphertext c such that c is sparse and 〈c,k〉 = b. This ensures that the we have
an additively homomorphic scheme where all the bits are sparse.

Theorem 5.3 (Symmetric Encryption Against AC0). The tuple of fami-
lies (KeyGen, Enc,Dec) defined in Construction 5.3 is an AC0-Symmetric-Key
Encryption Scheme against AC0.

24 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

Construction 5.3 AC0-Symmetric Key Encryption against AC0

Let It =
{
iptλ
}

be the inner product family with threshold promise t described in
Lemma 2.3. Define families KeyGen = {KeyGenλ}, Enc = {Encλ}, and Dec = {Decλ}
as below.
KeyGenλ:

1. Output k← {0, 1}bλc2 .

Encλ(k, b):

1. For i ∈ [λ], sample ci ← SRSamp(bλc2 , log2(bλc2)).
2. Choose the first i such that 〈ci,k〉 = b.
3. If such an i exists, output ci, else output 0bλc2 .

Decλ(k, c):

1. Output ip
log2(λ)

bλc2
(k, c).

The key idea behind the proof is showing that for most keys k, the distribu-
tion of a uniformly random bit along with its encryption, that is,

D1 = {(b,Encλ(k, b)) | b← {0, 1}}

is statistically close to the distribution of a random sparse vector along with its
inner product with k, that is,

D2 =
{

(〈r,k〉, r) | r← SRSamp(λ, log2 λ)
}

The second distribution is similar to the one that came up in the security proof
of the weak PRF construction earlier, where we effectively showed that we can
replace 〈r,k〉 with an independent random bit without being caught by AC0

adversaries. We defer the complete proof to the full version.

5.4 Collision Resistant Hash Functions

To construct Collision Resistant Hash Functions (CRHFs), we use the additive
homomorphism of the Symmetric Key Encryption scheme constructed in Section
5.3. Each function in the family of hash functions is given by a matrix whose
columns are ciphertexts from the encryption scheme, and evaluation is done by
treating the input as a column vector and computing its product with this matrix
(effectively computing a linear combination of ciphertexts). To find collisions,
the adversary needs to come up with a vector in the kernel of this matrix. We
show that constant depth circuits of polynomial size cannot do this for most
such matrices. This is because the all-zero vector is a valid encryption of 0 in
our encryption scheme, and as this scheme is additively homomorphic, finding
a subset of ciphertexts that sum to zero is roughly the same as finding a subset
of the corresponding messages that sum to 0, and this is a violation of semantic
security.

Fine-grained Cryptography 25

Construction 5.4 AC0-CRHFs against AC0

Let It =
{
iptλ
}

be the inner product family with threshold promise t described in

Lemma 2.3. Let (KeyGenEnc, EncEnc) be the SKE scheme from Construction 5.3. Let

l(λ) =
⌊

λ
s(λ)

⌋
2
.

For any s : N → N such that s(λ) = O(logc(λ)) for some constant c, we define the
families KeyGens = {KeyGensλ} and Evals = {Evalsλ} as follows.

KeyGensλ:

1. Sample k← KeyGenEncl(λ) , and b1, . . . , bλ ← {0, 1}.
2. Output M = (m1, . . . ,mλ), where mi ← EncEncl(λ) (k, bi).

Evalsλ(M,x):

1. Note that M = (m1, . . . ,mλ), where each mi is of length l(λ).
2. For j ∈ [l(λ)], let rj = (m1j , . . . ,mλj) (the jth bit of each mi).

3. Output (h1, . . . , hl(λ)) , where hj = ip
4s(λ) log2(λ)
λ (rj ,x).

Theorem 5.4 (CRHFs Against AC0). For any polylogarithmic function s,
the pair of families (KeyGens, Evals), from Construction 5.4 is an AC0-CRHF
with compression s.

We refer the reader to the sketch of the proof of Theorem 1.7 (an informal
version of Theorem 5.4) towards the end of Section 1.1 and leave the proof of
Theorem 5.4 to the full version.

5.5 Candidate Public Key Encryption Scheme

In Lemma 2.7 we showed that the distribution (A,Ak) where A was sampled
as a sparse matrix and k was a random vector is indistinguishable from (A, r)
where r is also a random vector, for a wide range of parameters. We need at least
one of the two A or k to be sparse to enable the computation of Ak in AC0. If we
make the analogous indistinguishability assumption with the key being sparse
– that is, that (A,Ak) is indistinguishable from (A, r) where A ← {0, 1}λ×λ,

k ← SRSamp(λ, log2 λ) and r ← {0, 1}λ – this allows us to construct a Public
Key Encryption scheme against AC0 computable in AC0.

This is presented in Construction 5.5, and is easily seen to be secure under
Assumption 5.5. This candidate is very similar to the LPN based cryptosystem
due to Alekhnovich [Ale03]. Note that while the correctness of decryption in
Construction 5.5 is not very good, this may be easily amplified by repetition
without losing security, as the error is one-sided.

Assumption 5.5 Distributions D1 = (A,Ak) where A ← {0, 1}λ×λ, k ←
SRSamp(λ, log2 λ) and D2 = (A, r) where r ← {0, 1}λ are indistinguishable by
AC0 adversaries with non-negligible advantage.

26 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

Construction 5.5 Public key encryption

Let It =
{
iptλ
}

be the inner product family with threshold promise t described in
Lemma 2.3. Define families KeyGen = {KeyGenλ}, Enc = {Encλ}, and Dec = {Decλ}
as below.
KeyGenλ:

1. Sample A← {0, 1}λ×λ−1, k← SRSamp(λ− 1, log2 λ)
2. Output (pk, sk) = ((A,Ak) ,k ◦ 1).

Encλ(pk, b):

1. If b = 0, sample t← SRSamp(λ, log2 λ) and output tT pk
2. Else if b = 1, output t← {0, 1}λ

Decλ(sk, c):

1. Output ip
log2(λ)

bλc2
(sk, c).

The most commonly used proof technique in this paper – showing k-wise
independence for a large k – cannot be used to prove the security of this scheme
because due to the sparsity of the key, the distribution (A,Ak) is not k-wise
independent.

Conclusions and Open Questions. We construct various cryptographic primitives
secure against parallel-time-bounded adversaries. Our constructions against AC0

are unconditional whereas our constructions against NC1 require the assumption
that NC1 6= ⊕L/poly. Our constructions make use of circuit lower bounds [Bra10]
and non-black-box use of randomized encodings for logspace classes [IK00].

There are several open questions that arise out of this work. Perhaps the
most immediate are:

1. Unconditional lower-bounds are known for slightly larger classes like AC0[p]
when p is a prime power. Can we get cryptographic primitives from those
lower-bounds?

2. Construct a public key encryption scheme secure against AC0, either by prov-
ing the security of our candidate proposal (see Section 5.5) or by completely
different means.
Natural ways of doing this lead us to a fascinating question about the com-
plexity of AC0 circuits. Braverman [Bra10] shows that any nε-wise inde-
pendent distribution fools all AC0 circuits. Our candidate encryption, how-
ever, produces ciphertexts that come from a logc(n)-wise distribution for
some constant c. This raises the following question: Can we show some fixed
polylog-wise independent distribution (that is not nε-wise independent) that
fools AC0 circuits of arbitrary depth? (This question came up during discus-
sions with Li-Yang Tan.)

3. We relied on the assumption that ⊕L/poly 6⊂ NC1 to construct primitives
secure against NC1. It would be desirable to relax the assumption to P 6⊂
NC1.

Fine-grained Cryptography 27

A related extension of Merkle’s work is to construct a public-key encryption
scheme resistant against O(nc) time adversaries (for some c > 2) under worst-
case hardness assumptions.

Acknowledgements

We thank Prabhanjan Ananth for several useful discussions towards the begin-
ning of the project. We would also like to thank the anonymous reviewers for
their careful comments.

References

AB84. Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant
depth computations. In Proceedings of the 16th Annual ACM Symposium
on Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA,
pages 471–474, 1984.

ABW10. Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptog-
raphy from different assumptions. In Proceedings of the forty-second ACM
symposium on Theory of computing, pages 171–180. ACM, 2010.

AGGM06. Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On
basing one-way functions on np-hardness. In Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23,
2006, pages 701–710, 2006.

AGHP93. Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Addendum
to ”simple construction of almost k-wise independent random variables”.
Random Struct. Algorithms, 4(1):119–120, 1993.

AIK04. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
nco. In FOCS 2004: 45th Annual IEEE Symposium on Foundations of
Computer Science: proceedings: 17-19 October, 2004, Rome, Italy, page 166.
IEEE Computer Society Press, 2004.

Ajt83. M. Ajtai. 11-formulae on finite structures. Annals of Pure and Applied
Logic, 24(1):1 – 48, 1983.

Ale03. Michael Alekhnovich. More on average case vs approximation complexity.
In Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE
Symposium on, pages 298–307. IEEE, 2003.

App14. Benny Applebaum. Cryptography in nc 0. In Cryptography in Constant
Parallel Time, pages 33–78. Springer, 2014.

AR99. Yonatan Aumann and Michael O Rabin. Information theoretically secure
communication in the limited storage space model. In Advances in Cryp-
tologyCRYPTO99, pages 65–79. Springer, 1999.

AR15. Benny Applebaum and Pavel Raykov. On the relationship between sta-
tistical zero-knowledge and statistical randomized encodings. Electronic
Colloquium on Computational Complexity (ECCC), 22:186, 2015.

Bar86. David A. Mix Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in nc1. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986,
Berkeley, California, USA, pages 1–5, 1986.

28 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

BB15. Andrej Bogdanov and Christina Brzuska. On basing size-verifiable one-way
functions on np-hardness. In Yevgeniy Dodis and Jesper Buus Nielsen, ed-
itors, Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, vol-
ume 9014 of Lecture Notes in Computer Science, pages 1–6. Springer, 2015.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Advances in Cryptology - CRYPTO 2001, pages 1–18, 2001.

BGI08. Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key cryp-
tography on strong one-way functions. In Ran Canetti, editor, Theory of
Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New
York, USA, March 19-21, 2008., volume 4948 of Lecture Notes in Computer
Science, pages 55–72. Springer, 2008.

BM84. Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
CCS ’93, Proceedings of the 1st ACM Conference on Computer and Com-
munications Security, Fairfax, Virginia, USA, November 3-5, 1993., pages
62–73. ACM, 1993.

Bra10. Mark Braverman. Polylogarithmic independence fools AC0 circuits. J.
ACM, 57(5), 2010.

BT03. Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reduc-
tions for NP problems. In 44th Symposium on Foundations of Computer
Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Pro-
ceedings, pages 308–317. IEEE Computer Society, 2003.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, FOCS, pages
97–106. IEEE, 2011. Invited to SIAM Journal on Computing.

CM97. Christian Cachin and Ueli Maurer. Unconditional security against memory-
bounded adversaries. In Advances in CryptologyCRYPTO’97, pages 292–
306. Springer, 1997.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

DM04. Stefan Dziembowski and Ueli Maurer. On generating the initial key in the
bounded-storage model. In Advances in Cryptology-EUROCRYPT 2004,
pages 126–137. Springer, 2004.

FSS84. Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and
the polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27,
1984.

Gal62. Robert G. Gallager. Low-density parity-check codes. IRE Trans. Informa-
tion Theory, 8(1):21–28, 1962.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, 2009.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In FOCS 2013, pages 40–49, 2013.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

Fine-grained Cryptography 29

GM82. Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In STOC 1982,
pages 365–377, 1982.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In Proceedings of
the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985,
Providence, Rhode Island, USA, pages 291–304, 1985.

GR12. Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence
of leakage. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages
31–40, 2012.

H̊as86. Johan H̊astad. Almost optimal lower bounds for small depth circuits. In
Proceedings of the 18th Annual ACM Symposium on Theory of Computing,
May 28-30, 1986, Berkeley, California, USA, pages 6–20, 1986.

Has87. Johan Hastad. One-way permutations in nc 0. Information Processing
Letters, 26(3):153–155, 1987.

H̊as14. Johan H̊astad. On the correlation of parity and small-depth circuits. SIAM
J. Comput., 43(5):1699–1708, 2014.

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

IK00. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In Foun-
dations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, pages 294–304. IEEE, 2000.

IKO05. Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions
for collision-resistant hashing. In Theory of Cryptography, Second Theory
of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings, pages 445–456, 2005.

IL89. Russell Impagliazzo and Michael Luby. One-way functions are essential
for complexity based cryptography (extended abstract). In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October - 1 November 1989, pages 230–235. IEEE
Computer Society, 1989.

IR88. Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In Advances in Cryptology - CRYPTO
’88, 8th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 21-25, 1988, Proceedings, pages 8–26, 1988.

LMN93. Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth cir-
cuits, fourier transform, and learnability. Journal of the ACM (JACM),
40(3):607–620, 1993.

Mau92. Ueli M Maurer. Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. Journal of Cryptology, 5(1):53–66, 1992.

Mer78. Ralph C. Merkle. Secure communications over insecure channels. Commun.
ACM, 21(4):294–299, 1978.

MP06. Silvio Micali and Rafael Pass. Local zero knowledge. In Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA,
USA, May 21-23, 2006, pages 306–315, 2006.

MST06. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased

generators in nc0. Random Struct. Algorithms, 29(1):56–81, 2006.

30 Akshay Degwekar, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

NW94. Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput.
Syst. Sci., 49(2):149–167, 1994.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for
efficient and composable oblivious transfer. In Advances in Cryptology -
CRYPTO 2008, 28th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 554–571, 2008.

RAD78. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, pages 169–177.
Academic Press, 1978.

Raz87. A. A. Razborov. Lower bounds on the size of bounded depth circuits over
a complete basis with logical addition. Mathematical notes of the Academy
of Sciences of the USSR, 41(4):333–338, 1987.

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

RST15. Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case
depth hierarchy theorem for boolean circuits. Electronic Colloquium on
Computational Complexity (ECCC), 22:65, 2015.

RW91. Prabhakar Ragde and Avi Wigderson. Linear-size constant-depth polylog-
treshold circuits. Inf. Process. Lett., 39(3):143–146, 1991.

Smo87. Roman Smolensky. Algebraic methods in the theory of lower bounds for
boolean circuit complexity. In Proceedings of the 19th Annual ACM Sym-
posium on Theory of Computing, 1987, New York, New York, USA, pages
77–82, 1987.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 475–484. ACM, 2014.

Tal14. Avishay Tal. Tight bounds on the fourier spectrum of ac0. Electronic
Colloquium on Computational Complexity (ECCC), 21:174, 2014.

TX13. Luca Trevisan and Tongke Xue. A derandomized switching lemma and an
improved derandomization of AC0. In Proceedings of the 28th Conference
on Computational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7
June, 2013, pages 242–247, 2013.

Vad04. Salil P Vadhan. Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. Journal of Cryptology, 17(1):43–77,
2004.

Vio12. Emanuele Viola. The complexity of distributions. SIAM Journal on Com-
puting, 41(1):191–218, 2012.

Yao82. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In 23rd Annual Symposium on Foundations of Computer
Science, Chicago, Illinois, USA, 3-5 November 1982, pages 80–91. IEEE
Computer Society, 1982.

	Fine-grained Cryptography

