
Linicrypt: A Model for Practical Cryptography?

Brent Carmer and Mike Rosulek

Oregon State University, {carmerb,rosulekm}@eecs.oregonstate.edu

Abstract. A wide variety of objectively practical cryptographic schemes
can be constructed using only symmetric-key operations and linear op-
erations. To formally study this restricted class of cryptographic algo-
rithms, we present a new model called Linicrypt. A Linicrypt program
has access to a random oracle whose inputs and outputs are field ele-
ments, and otherwise manipulates data only via fixed linear combina-
tions.

Our main technical result is that it is possible to decide in polyno-
mial time whether two given Linicrypt programs induce computationally
indistinguishable distributions (against arbitrary PPT adversaries, in the
random oracle model).

We show also that indistinguishability of Linicrypt programs can be
expressed as an existential formula, making the model amenable to auto-
mated program synthesis. In other words, it is possible to use a SAT/SMT
solver to automatically generate Linicrypt programs satisfying a given
security constraint. Interestingly, the properties of Linicrypt imply that
this synthesis approach is both sound and complete. We demonstrate this
approach by synthesizing Linicrypt constructions of garbled circuits.

1 Introduction

Throughout cryptography, we find many examples of objectively practical con-
structions that share common features. In particular, they treat blocks of bits
as atomic units, and manipulate these units by calling a symmetric-key primi-
tive or by interpreting them as elements in a field and applying strictly linear
operations to them. Below are just some examples:

– Standard block cipher modes like CBC, OFB, PCBC for privacy, and LRW
modes [34] for tweakable block ciphers consist of calls to the underlying
block cipher and xor, the linear operation in GF (2n). (This ignores matters
of padding/ciphertext stealing, where the input is not an exact multiple of
field elements.)

– Constructions in other settings also consist of calls to an underlying symmet-
ric primitive along with xor operations: the Davies-Meyer construction &
its variants [47,13] for collision-resistance; the Even-Mansour [18] and Feis-
tel [35] constructions for PRPs; NMAC, HMAC [31], and VMAC [32] for
authenticity; Naor’s commitment scheme [41].

? Authors supported by NSF award 1149647

– Some constructions use GF (2n)-linear transformations with (fixed) coeffi-
cients other than 1 (i.e., these constructions use multiplication by fixed field
elements). These include: OCB mode [50] for authenticated encryption, CMC
mode [23] for disk encryption, XE/XEX modes [49] for tweakable block ci-
phers, PMAC [12] for authentication.

– Signing algorithms for lightweight one-time signature schemes like those of
Lamport [33] and Winternitz [52] consist purely of calls to a one-way or [tar-
get] collision-resistant hash function. Variants like W-OTS+ [25] incorporate
xor operations. Few-time signature schemes like HORS and variants [48,45]
also use only a random oracle. These simple signature schemes can be com-
posed to give many-use signature schemes using Merkle trees [39] and deriva-
tives thereof [21,40,11,44,15,14,16]. These extensions do not introduce any
additional operations on the atomic field elements.

– Practical constructions of garbled circuits [42,30,29,53,22] simply use xor
and calls to an underlying hash function/KDF, while the construction of [46]
uses polynomial interpolation (with fixed points of evaluation) over GF (2n),
which is a linear operation.

1.1 Overview of Our Results

Inspired by the constructions above, we introduce a restricted model of com-
putation called Linicrypt. Programs in the Linicrypt model have access to a
random oracle (to model a symmetric-key primitive), whose inputs and outputs
are elements of a field F. The field F is public and its size should be exponential
in the security parameter.

Beyond calling a random oracle, Linicrypt programs can manipulate field
elements only by uniformly sampling them or by applying fixed linear combi-
nations. More formally, a (pure) Linicrypt program is a fixed sequence of
statements of the following form:

vi
$← F: sample a value uniformly from F.

vi :=
∑
j cjvj : apply a linear combination to existing variables, us-

ing fixed coefficients.
vi := H(t‖vj1‖vj2‖ · · · ‖vjk): call the random oracle on a set of existing variables,

and optionally a string t which is fixed with the
program (useful for domain separation).

output (vj1 , . . . , vjk): output an ordered sequence of variables.

Linicrypt is expressive enough to capture cryptographic construction of interest,
but still restrictive enough that it provides several key benefits:

1. It is tractable to reason about cryptographic properties of Linicrypt pro-
grams. Our main technical result is that it is possible to decide, in polyno-
mial time, whether two Linicrypt programs induce indistinguishable output
distributions (in the random oracle model, against arbitrary PPT adver-
saries).

We also point out that unforgeability properties (e.g., given the output of a
program P, it is hard to predict an internal value v∗) can be easily trans-
formed into indistinguishability properties, making many standard styles of
security definition expressible (and efficiently decidable) in Linicrypt.

2. Unlike in other restricted models, Linicrypt programs manipulate data as
atomic units. This makes it possible to prove fine-grained lower bounds to
the level of optimal constant factors (e.g., “this cryptographic task cannot
be done in Linicrypt with keys smaller than 5λ bits”). Such lower bounds
for Linicrypt hold in the random oracle model, and hence they also imply
impossibility of a black-box construction from one-way functions.

3. The question of finding a Linicrypt program whose output is indistinguish-
able from some specification (e.g., its output is pseudorandom) can be ex-
pressed as an existential formula. One can then use an SAT/SMT solver to
find a witness — i.e., automatically synthesize a secure Linicrypt construc-
tion. Additionally, if the formula is found to be unsatisfiable, it implies that
no secure Linicrypt construction exists for the task — i.e., this paradigm for
program synthesis is both sound and complete.

In Section 2 we formally define Linicrypt, develop techniques to reason about
its algorithms, and prove our main technical result. Later in Section 3 we give an
example application of our approach to program synthesis. We show how to use
an SMT solver to synthesize secure Linicrypt constructions of garbled circuits.
Specifically, for a given boolean function f : {0, 1}k → {0, 1}` (e.g., an adder, a
multiplexer), we synthesize Linicrypt procedures to garble f (as an atomic unit)
in a way that is compatible with the Free XOR optimization of [30].

1.2 Related Work & Inspiration

Minicrypt. Linicrypt is inspired in name by Impagliazzo’s [26] Minicrypt, which
refers to a hypothetical world in which one-way functions exist but no “fancier”
cryptography is possible. Minicrypt is formalized (as in [27]) by having a random
oracle and allowing adversaries to be computationally unbounded (but with only
polynomially many queries to the oracle). In this way, the random oracle becomes
the only available source of computational cryptography.

The main distinction therefore between Linicrypt & Minicrypt is the ad-
ditional constraint of linearity. This restriction allows Linicrypt lower bounds
to resolve optimal constant factors, whereas optimal constant factors are not
typically well-defined in Minicrypt. For example, imagine instantiating a secure
Minicrypt scheme with security parameter λ/c; as a function of λ, the resulting
construction would typically have constants reduced by a factor of c but still be
secure.

Generic group model. Linicrypt has many similarities to the generic group model
(GGM) of Shoup [51]. In the GGM, adversaries are restricted to manipulating
elements of a cyclic group in a black-box way using only the prescribed group
operations. While the GGM was originally proposed as a heuristic model for

adversaries, one can also use GGM constructions to prove lower bounds. Dodis
et al. [17] show that full-domain hashing from RSA cannot be proven secure
using techniques that treat the RSA group as a generic multiplicative group.
Papakonstantinou et al. [43] show that identity-based encryption is impossible
via a GGM construction (without a bilinear pairing).

GGM lower bounds can identify optimal constant factors, which is one of
the goals of Linicrypt. A line of work by Abe et al. [1,3,2] considers the case
of structure-preserving digital signatures. They prove (among other things) that
3 group elements are optimal for structure-preserving signatures implemented
by GGM algorithms. More recently, synthesis has been effectively applied [7] to
generate novel and optimal structure-preserving schemes.

Despite these similarities, we point out some important technical differences:
(1) In the GGM, group elements are represented via a random encoding into

bits, and adversaries are allowed to “look at” these encodings. This is slightly
less restricting than our compartmentalized approach in which encodings don’t
play a part (and hence Linicrypt programs cannot perform equality tests). In
that regard, our model is similar to the generic-group variant of Maurer [38].
Since our goal is to place restrictions on constructions rather than adversaries,
the distinction does not seem to be very significant.

(2) Linicrypt includes a random oracle, which has not yet been considered in
GGM lower bound results to the best of our knowledge. The random oracle is
indeed a source of technical complications in Linicrypt.

(3) Both Linicrypt and GGM allow only linear operations (e.g., in the GGM,
a value “in the exponent” can only be manipulated in linear ways). However, a
Linicrypt program must apply linear operations with fixed (i.e., known to the
adversary) coefficients, while the GGM model allows constructions to choose
random (secret) coefficients. This difference is what allows Diffie-Hellman-style
constructions to be modeled in GGM but not in Linicrypt. Namely, a GGM
algorithm can hide a random value “in the exponent” by performing the generic
operation g 7→ gx, but the analogous operation in Linicrypt (v 7→ xv) hides
nothing since x would always be considered fixed.

Algebraic cryptography model. Applebaum et al. [6] define a model for arith-
metic cryptography, building on earlier work by Ishai et al. [28]. Their model
has some similarities to Linicrypt but also fundamental differences. Compared
to Linicrypt, the arithmetic model allows for general field operations on its el-
ements, not just linear combinations. More importantly, the defining feature
of the arithmetic model is that the construction is oblivious to the underlying
field/ring — the construction must work no matter what field/ring is used. In
order to model cryptographic practice, Linicrypt allows the ring to be specified
by the construction. Additionally, their model does not currently include random
oracles, and hence it is only applicable to information-theoretic constructions or
computational assumptions that can be obtained from the algebraic structure
in a black-box way. The model is not equipped to consider standard assump-
tions like the existence of pseudorandom functions or collision-resistant hash
functions.

Linear Garbling. In this work we study Linicrypt programs in the context of
garbled circuit constructions. This is inspired in part by the lower bound of
Zahur et al. [53]. They too observe that practical garbled circuit constructions
consist of only linear operations and calls to a random oracle. They prove a lower
bound, namely, that such “linear garbling schemes” require 2 field elements to
garble a single and gate.

In concurrent and independent work, Pastro et al. [36] extend the model of
linear garbling and characterize security in terms of linear-algebraic properties
like span. They generalize the garbling scheme of [53] to natively support low-
degree polynomials (not just AND-gates).

Later in Section 3 we go into more detail about the ZRE lower bound in the
context of Linicrypt. For now, we simply point out the main differences between
our work and the two above: (1) in this work we present a full theory of Linicrypt,
not constrained only to garbled circuits; (2) the above models of linear garbling
only consider “Linicrypt programs” that make non-adaptive calls to the random
oracle, whereas our general Linicrypt model has no such restriction (arguably,
the ability to reason about arbitrary oracle queries is the most important feature
of Linicrypt). The difference is important specifically in the context of garbled
circuits since, in most schemes, adaptive oracle queries result when composing
several gates together in a larger circuit.

Synthesis of cryptographic constructions. Synthesis has been effectively used in
the generic group model to discover batching schemes for signature verifica-
tion [5] and optimal structure-preserving signatures [7]. Both of these results
synthesize constructions involving bilinear pairings.

Malozemoff et al. [37] synthesized IND-CPA secure block cipher modes by
expressing the main loop of a mode as a directed graph. They defined typing
rules for the vertices of this graph and showed that if a valid assignment of
types exists, then the resulting scheme is secure. Using a SAT solver, they were
able to check for valid type assignments for candidate modes and subsequently
enumerate secure modes. In a followup work, Hoang et al. [24] extended the
synthesis to authenticated encryption modes built from tweakable block ciphers.

Prior work of Gagné et al. [19,20] developed techniques for automated proofs
of security for (CPA-secure) block cipher modes. Akinyele et al. [4] use an SMT
solver to automate transformations of pairing-based signature schemes.

In all of the works involving block cipher modes [19,20,37,24] the techniques
are developed for modes involving just xor operations and [tweakable] block ci-
pher calls. This corresponds to a natural special case of Linicrypt. We emphasize,
however, that in these works the methods are sound but not complete.1

1 In [37] the authors explicitly say, “we prevent a random value from both being output
as ciphertext and input into a PRF . . . This does not mean there do not exist secure
schemes which have this property; however, our tool does not allow such schemes.”
In [19,20] the techniques involve a logic that uses only local invariants.

2 Linicrypt

2.1 Basic Model

A pure Linicrypt program over field F is a tuple P = (in, out, cmds), where: in
is a nonnegative integer, out is an ordered sequence of indices from {1, . . . , |cmds|},
and cmds is an ordered sequence of Linicrypt commands. The ith command
in cmds must have one of the following forms:

– (inp, j), where 1 ≤ j ≤ in [retrieve a value from input]
– (samp) [sample an element of F]
– (lin, c1, . . . , ci−1), where each cj ∈ F [perform a linear combination of values]
– (hash, t, j1, . . . , jk), where t ∈ {0, 1}∗ and j1, . . . , jk < i [call the random

oracle on a set of variables, and additional (fixed) string t]

Intuitively, the program P takes as input a vector from Fin, then performs the
operations specified by cmds. Each of the internal values of P is assigned to a
variable v[i]. Finally, the program outputs the values whose indices are in the
set out. More formally, we define the behavior of P as a process via:

PH(x ∈ Fin):

for i = 1 to |cmds|:
if cmds[i] = (inp, j): v[i] := x[j]

if cmds[i] = (samp): v[i]
$← F

if cmds[i] = (lin, c1, . . . , ci−1): v[i] :=
∑
cjv[j]

if cmds[i] = (hash, t, j1, . . . , jk): v[i] := H(t; v[j1], . . . , v[jk])
return

(
v[j]
)
j∈out

Note that H is an oracle with type H : {0, 1}∗×F∗ → F. In informal discussions,
we often omit the first argument to H when it is an empty string.

2.2 Mixed Linicrypt Programs & Modelling Real-World Primitives

Most of the cryptographic primitives listed in the introduction cannot actually
be implemented strictly as pure Linicrypt programs. For example, consider the
one-time Winternitz signature of a single “digit” x ∈ [m]. The secret key sk ← F
is chosen uniformly. The public key is then pk := H(m)(sk). To sign x, release

σ := H(x)(sk). Then to verify, check pk
?
= H(m−x)(σ).

The main operations in Winternitz are simply repeated calls to the hash/one-
way function H, which are certainly allowed in Linicrypt. However, the signing
algorithm uses x in a non-linear way — to choose how many Linicrypt commands
to execute!

We therefore extend the scope of Linicrypt beyond pure Linicrypt programs.
A mixed Linicrypt program is one in which we designate some inputs to be
non-linear and the others to be linear. For instance, in the signing algorithm of
Winternitz signatures there is a for-loop whose exit condition is non-linear in x.

sign(sk, x)

σ := sk
for i = 1 to x:
σ := H(σ)

return σ

=⇒

sign(sk, x)

if x = 1: v1 := H(sk)
return v1

else if x = 2: v1 := H(sk)
v2 := H(v1)
return v2

else if · · ·

Fig. 1. The signing algorithm for one-time Winternitz signatures as a mixed Linicrypt
program. Each inner box on the right-hand side is a pure Linicrypt programs, sign(·, x),
for fixed x.

We can associate any mixed Linicrypt program with a collection of pure
Linicrypt programs. Think of any mixed Linicrypt program as a switch/case
statement (based on its non-linear input) selecting which pure Linicrypt program
to run. See Figure 2.2 for the example of Winternitz signatures. Each sign(·, x)
is a pure Linicrypt program. Since x is public in the security definition for
signatures, we can express the security of the (mixed) signing algorithm in terms
of the properties of each (pure) program sign(·, x).

The way one decides to model some inputs as non-linear and other inputs as
linear is highly application-specific. In general, it makes the most sense to let the
length of non-linear inputs to be a constant c: First, the complexity of deciding
security and synthesizing constructions grows exponentially with c. Second, this
implies that all of the security properties are a result of the Linicrypt operations
(the random oracle and linear operations over a field F, whose size is exponential
in the security parameter) and not the non-linear behavior. In other words, in a
security game an adversary could guess with constant probability the non-linear
input, leaving a residual pure Linicrypt program. So security is reduced to the
security properties of the individual pure Linicrypt programs in the collection.

Throughout the rest of this section we develop a general theory of Linicrypt,
and restrict our attention to pure Linicrypt programs. Later when discussing
specific applications of Linicrypt to garbled circuits, we explicitly discuss mixed
Linicrypt programs and non-linear inputs, etc.

2.3 Algebraic Representation

Let P be a (pure) Linicrypt program with notation as above. Say that v[i] is a
derived variable if cmds[i] is of the form (lin, · · ·). Otherwise say that v[i] is
a base variable. That is, a base variable is the result of a command with one
of samp, hash, or inp. Let base denote the number of base variables. The main
idea behind manipulating Linicrypt programs in an algebraic way is to observe
that all values of importance can be expressed as linear functions of the base
variables.

In more detail, fix an ordering of the base variables and denote them by the
vector vbase. Then for the ith command in cmds, define row(i) to be the vector

in Fbase such that v[i] = row(i) ·vbase, where the · denotes dot product of vectors.
More formally:

row(i)
def
=

[

j−1︷ ︸︸ ︷
0 0 · · · 0 1 0 · · · 0] if v[i] is the jth base variable∑
j cjrow(j) if cmds[i] = (lin, c1, . . . , ci−1)

.

We create a matrix to represent the output of a Linicrypt program:

M def
=

 — row(o1) —
...

— row(ok) —

 , where out = (o1, . . . , ok).

M therefore characterizes the direct correlations among the program’s output
variables. Yet, it contains no information about how these variables may be
correlated via the random oracle! So, our characterization of a Linicrypt program
includes a set of oracle constraints. The idea behind an oracle constraint
〈t,Q,a〉 is that if the random oracle is called on input (t;Q × vbase) then the
response will be a · vbase.

C def
=

〈
t,

 — row(j1) —
...

— row(jk) —

 , row(i)

〉 ∣∣∣∣∣∣∣ cmds[i] = (hash, t, j1, . . . , jk)

Without loss of generality, we can assume that no two constraints share (t,Q)
in common. Under that restriction, the set {a | 〈t,Q,a〉 ∈ C} is a linearly
independent set — i.e., the results of distinct random oracle queries are linearly
independent.

Finally, we define the algebraic representation of a Linicrypt program P
to be (M, C). We refer to M as the output matrix and C as the set of oracle
constraints.

To demonstrate the different ways of viewing a Linicrypt program, consider
the following example, with in = 0:

plain-language: Linicrypt cmds: var type: matrix representation:
v1 ← F 1: (samp) base
v2 ← F 2: (samp) base
v3 := v1 − v2 3: (lin, 1,−1) derived

v1
v2
v3
v4
v5

 =

1 0 0
0 1 0
1 −1 0
0 0 1
1 0 1

v1v2
v4

v4 := H(foo, v3, v2) 4: (hash, foo, 3, 2) base
v5 := v4 + v1 5: (lin, 1, 0, 0, 1) derived
return (v4, v5) // out = (4, 5)

algebraic representation:

M =

[
0 0 1
1 0 1

]
; C =

{
〈foo,

[
1 −1 0
0 1 0

]
, [0 0 1]〉

}

There are three base variables. With v4, v5 being output variables, the out-
put matrix M consists of row(4), row(5). There is one hash-command “v4 :=

H(foo, v3, v2),” leading to a single oracle constraint 〈foo,
[
row(3)
row(2)

]
, row(4)〉.

In the rest of this paper, we specialize to input-less (i.e., in = 0) Linicrypt
programs. Restricting our domain to input-less programs simplifies the defini-
tions & proofs. This is justified by our main application to garbled circuits. In
the security definition for garbled circuits, the adversary chooses an input x to
the function, but since we model x as non-linear input, what is left over is a
collection of security experiments, one for each x, each involving an input-less
(pure) Linicrypt program.

We hereafter overload notation and write P = (M, C). We claim that (M, C)
completely characterizes the behavior of P. In more detail, let P be an input-
less Linicrypt program, let A be an oracle machine, and consider the following
canonical simulation of P.

SAP ():

1. vbase
$← Fbase

2. vout :=Mvbase

3. cache := empty associative array
4. return AH(vout), where H implemented as below:

H(t; q ∈ F∗):
// if the adversary found a collision among oracle constraints

5. if ∃〈t,Q,a〉, 〈t,Q′,a′〉 ∈ C with a 6= a′ and Qvbase = Q′vbase = q:
6. abort
// if there is an oracle constraint for the query q

7. if ∃〈t,Q,a〉 ∈ C with Qvbase = q:
8. return a · vbase

// honest simulation of a random oracle beyond this point

9. if cache[t; q] does not exist:

10. cache[t; q]
$← F

11.return cache[t; q]

(1)

The idea is to simply sample all of the base variables upfront, instead of deriving
some of them via calls to the random oracle. But then to make the simulation
of the random oracle consistent, we “patch” the random oracle so that when
queried on (t,Qvbase), the consistent result a · vbase is simulated (lines 7-8). The
simulation aborts when two oracle constraints are in conflict (lines 5-6).

Lemma 1 (Canonical simulation). Let P be an input-less (i.e., in = 0)
Linicrypt program that executes n hash-commands. Then for all oracle machines
A:

Pr
[
SAP () = 1

]
− Pr

H

[
AH(PH()) = 1

]
≤ n(n+ 1)

2|F|
.

We emphasize that A here is an arbitrary program. It need not be linear,
it may be computationally unbounded, and (at least for this lemma) it is even
unrestricted in the number of oracle queries it makes.

Proof (Sketch). Conditioned on the simulation not aborting in line 6, the simula-
tion is perfect. Essentially, each query to H answered in lines 7-8 is answered with
a randomly chosen base variable (since each a is a canonical basis vector), ex-
actly matching how queries are answered by an honest random oracle. Hence, the
error in the simulation is the probability that the condition in line 5 is true. This
happens if Qvbase = Q′vbase for some distinct constraints 〈t,Q,a〉, 〈t,Q′,a′〉 ∈ C.
Since WLOG no two constraints share (t,Q), we have that Q−Q′ is a nonzero
matrix, and therefore that

Qvbase = Q′vbase ⇐⇒ (Q−Q′)vbase = 0⇐⇒ vbase ∈ kernel(Q−Q′).

Note that kernel(Q−Q′) is a proper subspace of Fbase with maximum dimen-
sion (base− 1). Then, when vbase is chosen uniformly from Fbase, the probability
that it is in a particular proper subspace is at most |F|base−1/|F|base = 1/|F|.
Recall that P executes n hash-commands. Then there are

(
n
2

)
= n(n + 1)/2

possible pairs of distinct oracle constraints. By the union bound, the probabil-
ity that there exist some pair of oracle constraints with Q and Q′ for which
vbase ∈ kernel(Q−Q′) is at most n(n+ 1)/2|F|.

2.4 Linear Transformations, Basis Changes & Composition

The algebraic representation for Linicrypt programs turns out to be convenient,
as we can perform linear-algebraic manipulations to Linicrypt programs.

For instance, consider applying a linear transformation to a Linicrypt
program. Let P = (M, C) be a Linicrypt program. Recall that the width of the
vectors in M and C is base. Now let B be a base × base matrix with entries in
F and consider the Linicrypt representation (MB, CB), where

CB def
= {〈t,QB,aB〉 | 〈t,Q,a〉 ∈ C}.

When B is an invertible matrix, we refer to (MB, CB) as a basis change of B
applied to (M, C). Such a basis change has no effect on the output distribution
of the Linicrypt program. More precisely:

Proposition 2. Let P = (M, C) be an input-less Linicrypt program, and let
P ′ = (MB, CB) for some invertible matrix B. Then for all oracle machines A,
we have:

Pr
[
SAP () = 1

]
= Pr

[
SAP′() = 1

]
.

Proof. A basis change by B is equivalent to adding a statement “vbase := Bvbase”
between lines 1 & 2 in Equation 1. Since B is invertible, this additional statement
has no effect on the distribution of vbase.

Composition. We can use the idea of a linear transformation to reason alge-
braically about the composition of two Linicrypt programs. Let P = (M, C) be
a Linicrypt program with no input and out outputs, and let P ′ = (M′, C′) be a
Linicrypt program with out inputs, so that it makes sense to feed the output of
P as input to P ′. Without loss of generality, we make the following assumptions:

– Both programs have the same number of base variables (so thatM,M′ have
the same number of columns and so on).

– The first out base variables of P ′ are identified with its input variables.

The algebraic representation of P ′ implicitly treats all of its input variables as
linearly independent. So the case when M has full rank is easiest. To compose
the programs, one simply applies a basis change to either program to align P’s
output variables (M) and P ′’s input variables (expressed as [I | 0], where I is
the out × out identity matrix), and similarly align the oracle constraints of the
programs. If such a basis change has been applied, then the composed program’s
output is characterized by M′ and its oracle constraints are simply C ∪ C′.

However, in general the output of P may have linear correlations, and this can
have a serious effect on the behavior of P ′. Take for example the case where P ′
takes two input variables (v1, v2) and outputs H(v1)−H(v2). Then the behavior
of P ′ is qualitatively different when v1 and v2 are linearly independent vs. when
they are correlated as v1 = v2, for instance.

In general, we consider applying a linear transformation to P ′ that “collapses”
the appropriate base variables (they become associated with the same vector
in the algebraic representation). Collapsing input base variables may result in
the collapse of oracle queries that use these variables. In the example above,
H(v1) and H(v2) are themselves base variables which are linearly independent
in general; yet they collapse to the same base variable when v1 = v2.

Hence, to compose P with P ′ we consider a linear transformation Γ applied
to P ′, with the following properties:

1. Γ aligns the input variables of P ′ (the first out base variables) with the
output M of P. That is, M = [I | 0] × Γ where I is the out × out identity
matrix.

2. Γ consistently aligns the oracle queries of P ′ to those in P. That is, if
〈t,Q,a〉 ∈ C′Γ , and 〈t,Q,a′〉 ∈ C, then a = a′.

3. Γ collapses appropriate oracle constraints in P ′: that is, if Γ causes (previ-
ously distinct) oracle constraints to now share the same t and Q components,
then they must now also share the same a component. More formally, the
constraints in C′Γ should all have distinct t,Q values. However, note that
C′Γ may have fewer constraints than C′ due to collapses induced by Γ .

4. Γ should only collapse base variables that are absolutely required by the
above conditions. In other words, the rank of Γ should be as large as possible
given the above constraints. Note that ifM has full rank, then Γ will indeed
be a basis change. However, in general Γ may not be a basis change — this
is consistent with the fact that feeding linearly correlated values into P ′ may
indeed fundamentally change its behavior. A basis change exactly preserves
behavior.

Given such a transformation Γ , then (M′Γ, C∪C′Γ) is an algebraic representation
for the composition of programs P ′ ◦ P.

2.5 Indistinguishability vs. Unpredictability

When we consider Linicrypt programs that implement cryptographic primitives,
the most fundamental question is: when do two Linicrypt programs induce in-
distinguishable distributions (in the random oracle model)?

Definition 3. Let P1 and P2 be two input-less Linicrypt programs over F. Let
λ = log |F| be the security parameter. We say that P1 and P2 are indistinguish-
able, and write P1

∼= P2, if for every (possibly computationally unbounded) or-
acle machine A that queries its oracle a polynomial (in λ) number of times, we
have

Pr[AH(PH1 ()) = 1]− Pr[AH(PH2 ()) = 1] is negligible in λ.

The probabilities are over the choice of random oracle H and the coins of P1,
P2, and A.

We point out that indistinguishability can be used to reason about unforge-
ability properties as well. Suppose P is a Linicrypt program that has some special
internal variable v∗, and we wish to formalize the idea that “v∗ is hard to predict
(in the random oracle model) given the output of P.” Now define the following
two related programs:

– P1 runs P and outputs whatever P outputs, along with an additional output
vextra = H(t∗; v∗), where t∗ is a “tweak” that is not used in P.

– P2 runs P and outputs whatever P outputs, along with an additional output

vextra
$← F.

Note that P1 and P2 are a Linicrypt programs if P is. Now observe that the
following statements are equivalent:

1. Given the output of P, the probability that an adversary (with access to the
random oracle) outputs v∗ is negligible.

2. Given the output of P, the probability that an adversary queries the random
oracle on H(t∗; v∗) is negligible.

3. Given the output of P, the value H(t∗; v∗) is indistinguishable from uniform.
This follows simply from the definition of the random oracle model, and the
fact that P itself does not use any values of the form H(t∗; ·).

4. P1
∼= P2.

Hence, standard unforgeability properties of a Linicrypt program can be ex-
pressed as the indistinguishability of two Linicrypt programs. From now on, we
therefore focus on indistinguishability only. And indeed, our main characteri-
zation theorem will include reasoning like that above, regarding which oracle
queries can be made by an adversary with non-negligible probability.

2.6 Normalization

We now describe a procedure for “normalizing” a Linicrypt program. Specif-
ically, normalizing corresponds to removing “unnecessary” calls to the oracle.
We illustrate the ideas with a brief example, below:

plain language: Linicrypt cmds: matrix representation:

v1
$← F 1: (samp)

v2 := H(foo, v1) 2: (hash, foo, 1)
v3 := v1 − v2 3: (lin, 1,−1)

v1
v2
v3
v4
v5

 =

1 0 0 0
0 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

v1
v2
v4
v5

v4 := H(bar, v3) 4: (hash, bar, 3)
v5 := H(baz, v3) 5: (hash, baz, 3)
output (v3, v5)

This program has 3 oracle queries, two of which are “unnecessary” in some sense.

– It is instructive to consider what information the adversary can collect about
the base variables vbase. From the output of P, one obtains v3 = [1 −1 0 0] ·
vbase and v5 = [0 0 0 1] · vbase. Then one can call the oracle as H(bar, v3) to
obtain v4 = [0 0 1 0] ·vbase. However, it is hard to predict v1 = [1 0 0 0] ·vbase

given just the output of P. More specifically, [1 0 0 0] is not in the span of
{[1 −1 0 0], [0 0 1 0], [0 0 0 1]}.
In other words, the probability of an adversary querying H on v1 is negligible,
so we call this oracle query unreachable. Conditioned on the adversary
not querying H on v1, its output v2 = H(foo, v1) looks uniformly random.
Removing the corresponding oracle constraint therefore has negligible effect.
Note that removing the oracle constraint corresponds to replacing “v2 :=

H(foo, v1)” with “v2
$← F”; i.e., changing cmds[2] from (hash, foo, 1) to

(samp).
– Oracle query H(bar, v3) is reachable, since the output of P includes v3.

However, its result is v4 which is not used anywhere else in the program.
This can be seen by observing that all other row vectors in the algebraic
representation have a zero in the position corresponding to v4. Hence this

oracle call can be replaced with “v4
$← F” with no effect on the adversary.

We call this query useless.
– Oracle query H(baz, v3) is similarly reachable, but it is useful. The result of

this query is H(baz, v3) = v5 which is included in the output of P and hence
visible to the adversary. It cannot be removed because an adversary could
query H(baz, v3) and check that it matches v5 from the output.

More generally, we normalize a Linicrypt program by computing which oracle
queries / constraints are reachable and which are useless in the above sense.

To compute which oracle queries are reachable, we perform the following
procedure until it reaches a fixed point: Given Linicrypt program P = (M, C),
mark the rows of M as reachable. Then, if any oracle constraint 〈t,Q,a〉 ∈ C
has every row of Q in the span of reachable vectors, then mark a as reachable.

normalize(P = (M, C)):
Reachable := rows(M)
C′ := ∅
until C′ reaches a fixed point:

for each 〈t,Q,a〉 ∈ C \ C′:
if rows(Q) ⊆ span(Reachable):

add a to Reachable
add 〈t,Q,a〉 to C′

Useless := ∅
until Useless reaches a fixed point:
V := (multiset of) all row vectors in M and C′ \ Useless
for each 〈t,Q,a〉 ∈ C′ \ Useless:

if a 6∈ span(V \ {a}):
add 〈t,Q,a〉 to Useless

C′′ := C′ \ Useless

return (M, C′′)

Fig. 2. Procedure to normalize a Linicrypt program. Since V is a multiset, we clarify
that “V \ {a}” means to decrease the multiplicity of a in multiset V by only one. So
V \ {a} may yet include a. One reason for a to have high multiplicity in V is if a
appears both in an oracle constraint and as a row of M.

Instead of computing which queries are useful, it is more straight-forward to
compute which queries are useless, one by one. Intuitively, a constraint 〈t,Q,a〉
is useless if a is linearly independent of all other vectors appearing in M and
C′ (either as rows of M or rows of some Q′ or as an a′). After removing one
useless constraint, other constraints might become useless. For instance, consider
a Linicrypt program that outputs v but also internally computes H(H(H(v))).
Only the outermost call to H is initially useless. After it is removed, the “new”
outermost call is marked useless, and so on, until a fixed point is reached.

The details of the normalize procedure are given in Figure 2. In the full version
we prove the following:

Lemma 4. If P is an input-less Linicrypt program, then normalize(P) ∼= P
(Figure 2).

2.7 Main Characterization

We can now present our main technical theorem about Linicrypt programs:

Theorem 5 (Linicrypt Characterization). Let P1 and P2 be two input-less
Linicrypt programs over F. Then P1

∼= P2 if and only if normalize(P1) and
normalize(P2) differ by a basis change.

Proof (Proof sketch). The nontrivial case is to show the ⇒ direction. Without
loss of generality assume that P1 and P2 are normalized, and suppose they do not
differ by a basis change. The idea is to first construct a “profile” for P1 and for
P2. In the code of normalize, we compute the reachable subspace of a program;
the profile simply refers to the order in which reachable oracle constraints are
activated during this process.

We use the profile to construct a family of canonical distinguishers for P1. It
processes oracle constraints in the order determined by the profile. It maintains
the invariant that at all stages of the computation, if R is the set of currently
reachable vectors, the distinguisher holds r = R × vbase, where vbase refers to
the base variables in the canonical simulation of P1.

A side-effect of normalization is that all oracle constraints are reachable and
useful. Because of this, the set of reachable vectors will eventually contain non-
trivial linear relations — as a matrix, the set of reachable vectors has a nontrivial
kernel. A canonical distinguisher chooses some element z from this kernel and
tests whether z>r = 0. By construction, z>r = z>Rvbase. Since z ∈ ker(R),
the distinguisher always outputs true in the presence of P1.

Now the challenge is to show that, for some choice of z ∈ ker(R), the distin-
guisher outputs false with overwhelming probability in the presence of P2. To
see why, we consider the first point at which the profiles of P1 and P2 disagree
(if the profiles agree fully, then it is easy to obtain a basis change relating P1

to P2). The most nontrivial case is when P1 contains an oracle constraint that
no basis change can bring into alignment with P2. This implies that when the
distinguisher makes the query in the presence of P2, it will not trigger any oracle
constraint and the result will be random and independent of everything else in
the system. But because this oracle constraint was useful in P1, we can eventu-
ally choose a final kernel-test z that is “sensitive” to the result in the following
way: While in P1, the kernel-test always results in zero, in P2 the kernel test
will be independently random.

The actual proof is considerably more involved concerning the different cases
for why the profiles of P1 and P2 disagree.

3 Synthesizing Linicrypt Garbled Circuits

In this section we describe how to express the security of garbled circuits in the
language of Linicrypt, culminating in a method to leverage an SMT solver to
automatically synthesize secure schemes. We assume some familiarity with the
classical (textbook) Yao garbling scheme. Roughly speaking, each wire in the
circuit is associated with two labels (bitstrings) W 0 and W 1, encoding false
and true, respectively. The evaluator will learn exactly one of these two labels
for each wire. Then, for each gate in the circuit, the evaluator uses the labels
for the input wires, along with garbled gate information (classically, the garbled
truth table), to compute the appropriate label on the output wire. We restrict
our synthesis technique to the context of two basic garbled circuit techniques:
Free-XOR and Point-and-Permute.

Free-XOR. In the Free-XOR garbling technique of Kolesnikov and Schneider
[30], the garbler chooses a random ∆ that is global, and arranges for W 0⊕W 1 =
∆ on every wire. Hereafter, we typically write the false label simply as W and
the true wirelabel as W⊕∆; more generally, the wirelabel encoding b is W⊕b∆.

Using Free-XOR, no ciphertexts are necessary to garble an xor gate. For
instance, let A and B be the false input wirelabels. Set the false output
wirelabel to C = A⊕B. Then when the evaluator holds wirelabels A∗ = A⊕a∆
and B∗ = B⊕ b∆ (encoding a and b, respectively), she can compute A∗⊕B∗ =
A⊕a∆⊕B⊕b∆ = C⊕(a⊕b)∆. That is, the result will be the wirelabel correctly
encoding truth value a⊕b. We note that no garbled gate information is required in
the garbled circuit, nor must the evaluator perform any cryptographic operations
to evaluate the gate — just an xor of strings.

Free-XOR is ubiquitous in practical implementations of garbled circuits. For
that reason (and because it conveniently reduces degrees of freedom over choice
of wirelabels), we restrict our attention to garbling schemes that are compatible
with Free-XOR.

Point-and-permute and Non-Linearity The point-and-permute optimization of
[8] is used in all practical garbling schemes. The idea is to append to each
wirelabel a random bit χ (which we call the “color bit”). The two labels on
each wire have opposite (but random) color bits.

Now consider the naive/classical garbling of an and gate, in which the gar-
bler generates 4 ciphertexts. Because color bits are independent of truth values,
the garbler can arrange the ciphertexts in order of the color bits of the input
wirelabels. The evaluator selects and decrypts the correct ciphertext indicated
by the color bits of the input wirelabels she holds. Importantly, this makes the
color bits non-linear inputs with respect to Linicrypt! The color bits determine
which linear combination the evaluator will apply.

Similarly, the garbler’s behavior is non-linear in a complementary way. We
refer to σ as the “select bit” such that the wirelabel encoding truth value v
has color χ = v ⊕ σ. Equivalently, σ is the (random) color bit of the false
wire. We emphasize that σ is known only to the garbler, and χ is known only to
the evaluator, effectively hiding the truth value v. In typical garbling schemes,
the garbler’s behavior depends non-linearly on σ but is otherwise within the
Linicrypt model.

We treat garbling schemes as mixed Linicrypt programs, as in Section 2.2.
Then, a mixed Linicrypt garbling scheme is a collection of pure Linicrypt garbling
programs indexed by color bits and select bits.

Restricting to Linicrypt with xor as the linear operation. Technically speaking,
a Linicrypt program is an infinite family of programs, one for each value of
the security parameter. Unfortunately, we can only synthesize an object of finite
size. Hence we restrict our focus to single Linicrypt programs that are compatible
with an infinite family of fields / security parameters, in the following way.

Suppose a Linicrypt program uses fieldGF (p) for prime p. Then that Linicrypt
program is also compatible with field GF (pλ) for any λ, since GF (p) ⊆ GF (pλ)

in a natural way. A very natural special case is p = 2, which corresponds to
Linicrypt programs that use GF (2λ) and use only linear combinations with co-
efficients from {0, 1} — in other words, Linicrypt programs that are restricted
to using xor as their only linear operation. Hereafter we restrict our attention
to xor-only Linicrypt programs.

3.1 Gate-garbling

A garbling scheme for an entire circuit is a non-trivially large object — much
too large to synthesize using a SAT/SMT solver. We instead focus on techniques
for garbling individual gates in a way that allows them to be securely composed
with other gates and the Free-XOR technique to yield a garbling scheme for
arbitrary circuits.

Notation. A wirelabel that carries the truth-value false is always signified W , a
wirelabel that carries true is always W ⊕∆, and a wirelabel carrying unknown
truth-value is always W ∗. We collect wirelabels into vectors notated as follows:
W = W1, . . . ,Wn. Operations over vectors are computed componentwise. For
instance, A ⊕ B = A1 ⊕ B1, . . . , An ⊕ Bn. When ∆ ∈ GF (2λ) and x is a
string of n bits, we write x∆ to mean the vector x1∆, . . . , xn∆. For example, if
W = W1, . . . ,Wn are a vector of false wirelabels, then W ⊕ x∆ is a vector of
wirelabels encoding truth values x.

Syntax. Let τ : {0, 1}m → {0, 1}n be the functionality of an m-ary boolean
gate that we wish to garble. Let σ = σ1 || . . . ||σm be a string of select bits and
χ = χ1 || . . . ||χm be a string of color bits. Then, a free-XOR compatible
garbled gate consists of algorithms:

GateGb(σ; A1, . . . , Am, ∆)→ (C1, . . . , Cn; G1, . . . , G`)

GateEv(χ; A∗1, . . . , A
∗
m, G1, . . . , G`)→ (C∗1 , . . . , C

∗
n)

The semantics are as follows. GateGb takes m false input wirelabels A =
A1, . . . , Am, their select bits σ, and global constant ∆. It returns the n false out-
put wirelabels C = C1, . . . , Cm, and garbled gate information G = G1, . . . , G`.
The evaluator takesm input wirelabels with unknown truth values A∗ = A∗1, . . . , A

∗
m,

their color bits χ, and the garbled gate information G. It returns output wire-
labels with unknown truth values C∗ = C∗1 , . . . , C

∗
n.

We emphasize that when GateGb and GateEv are Linicrypt programs, all
inputs and outputs besides σ and χ are field elements in GF (2λ).

Correctness. If a gate garbling scheme is correct, then the evaluator can always
produce the correct output wirelabels according to τ . That is, when the evaluator
holds wirelabels encoding x on the input wires, the result of evaluating the gate
is the wirelabels encoding τ(x) on the output wires.

Definition 6. A Free-XOR-compatible garbled gate (GateGb,GateEv) correctly
computes functionality τ : {0, 1}m → {0, 1}n if for all inputs x ∈ {0, 1}m, select
bit strings σ ∈ {0, 1}m, and color bit string χ ∈ {0, 1}m, with x = σ ⊕ χ, false
input wirelabels A = A1, . . . , Am, global Free-XOR constant ∆:

(C,G)← GateGb(σ; A, ∆) =⇒ GateEv(χ; A⊕ x∆, G) = C ⊕ τ(x)∆

Security. One important consideration is that in the free-XOR setting, the labels
of different wires can have linear correlations. The gate should be secure even
for such correlated input wirelabels.2

We define security in terms of the evaluator’s view in a typical garbling sce-
nario. Then we define ViewHR (χ, x) to encapsulate the information the evaluator
sees for this gate, when the visible color bits are χ, the logical gate inputs are
x, and the input wirelabels have correlations described by an m×m matrix R.

ViewHR (χ, x):

∆, r1, . . . , rm ← {0, 1}λ
A = (A1, . . . , Am) := R× [r1, . . . , rm]

(C,G)← GateGbH(χ⊕ x; A, ∆)
return (A⊕ x∆, G, C ⊕ τ(x)∆)

We call R non-degenerate if no row of R is all-zeroes, as that would lead to a
zero wirelabel (whose complementary wirelabel would immediately leak ∆). In
particular, if R = I then the wirelabels are independent.

Importantly, if GateGbH is a Linicrypt program and parameters χ and x
are fixed, then ViewHR (χ, x) is a input-less Linicrypt program. We can therefore
apply the results of Section 2 to reason about the indistinguishability and un-
forgeability properties required of ViewH . The fact that these properties can be
expressed algebraically is the core of our synthesis technique.

We define the following security property for a Free-XOR compatible garbled
gate scheme:

Definition 7. A Free-XOR compatible garbled gate is secure if:

1. for all χ, x ∈ {0, 1}m, all non-degenerate R ∈ {0, 1}m×m, and all polynomial-
time oracle algorithms A, the probability Pr[AH(ViewHR (χ, x)) = ∆] is negligible in λ,

2. for all χ, x, x′ ∈ {0, 1}m and all non-degenerate R ∈ {0, 1}m×m, we have
ViewHR (χ, x) ∼= ViewHR (χ, x′).

In other words, the garbled gate should not leak ∆ to the evaluator (this is
important for arguing that such garbled gates compose to yield a garbling scheme
for circuits), and the garbled gates should hide the truth value. Furthermore, this
should hold for all ways that the input wire labels could be correlated.

2 In fact, some natural garbled gate constructions are secure for independent input
wirelabels but insecure when they are correlated, as illustrated strikingly in [9].

Composition. We now discuss how (free-XOR-compatible) gate-level garbling
procedures can be combined to yield a circuit garbling scheme. The details are
given in Figure 3. Roughly speaking, we follow the general approach of Free-XOR
garbling, first choosing a global offset ∆. Recall that for each wire i we associate
a wirelabel Wi encoding false; Wi⊕∆ will encode true. These false wirelabels
are chosen uniformly for input wires. Thereafter, we process gates in topological
order. Each gate-garbling operation determines the garbled-gate information G
as well as the false wirelabels of the gate’s output wires.

For each wire we choose a random select bit σi as described above. For each
gate, the garbling scheme must provide a way for the evaluator to learn the
correct color bits for the output wires. In many practical schemes, the random
oracle calls used to evaluate the gate can serve double-duty and also be made to
convey the color bits. However, in our case, we aim for complete generality so
our scheme manually encrypts the color bits (the G′ values in Figure 3). In more
detail, if the evaluator has color bits χ on the input wires, then she should obtain
color bits σ(out) ⊕ τ(σ(in) ⊕ χ) for the output wires, where σ(in) and σ(out) are
the select bits for the input/output wires of this gate, respectively. We use the
wirelabels encoding truth value σ(in)⊕χ(in) as the key to a one-time encryption
that encodes the output color bits.

We point out that these color-ciphertexts are of constant size — 2m of them,
each n bits long (e.g., for a traditional boolean gate with fan-in 2, the cost is 4
bits). As mentioned above, in specific cases it may be possible to eliminate the
extra random oracle calls used for these color-bit encryptions.

One subtlety we point out is that each call to a gate-level garbling scheme
is restriced to a disjoint set of possible random oracle calls — the gth gate is
instructed to use H(g; ·) as its random oracle. This domain separation is crucially
important in arguing that the gate-level security properties are inherited by the
circuit-level garbling scheme.

Lemma 8. Let B be a set of boolean functions. Suppose for each τ ∈ B, (GateGbτ ,GateEvτ)
is a correct and secure free-XOR-compatible gate garbling scheme for gate func-
tionality τ (according to Definitions 6 & 7).

Then the garbling scheme in Figure 3 satisfies the prv, aut, and obv security
definitions of [10] in the random oracle model, for circuits expressed in terms of
B-gates.

Proof (Proof sketch). We sketch here the proof of prv-security; that is, if f(x) =
f(x′) then (F,X, d) collectively hide whether they were generated with X =
En(e, x) or X = En(e, x′). The proofs of the other security properties obv & aut
follow using standard modifications.

We show a sequence of hybrids, beginning with an interaction in which
(F,X, d) are generated with X = En(e, x). In this initial hybrid, Gb is written in
terms of what the garbler sees/knows. The only “persistent” values maintained
throughout the main loop are the false wirelabels Wi and select bits σi. We
rearrange Gb to instead be in terms of what the evaluator sees: the “visible”
wirelabels W ∗ and their color bits χi. We achieve this change by using x to

GbH(1λ, f):

∆← {0, 1}λ
for each wire i of f :
σi ← {0, 1}

for each input wire i of f :
Wi ← F
e[i, 0] := (Wi, σi); e[i, 1] := (Wi ⊕∆,σi)

for each gate g in f , in topological order:
let g have input wires i1, . . . , im, output wires j1, . . . , jn, functionality τ

W (in) := (Wi1 , . . . ,Wim)

σ(in) := σi1‖ · · · ‖σim ; σ(out) := σj1‖ · · · ‖σjn
(W (out);G)← GateGb

H(g,·)
τ (σ(in);W (in),∆)

(Wj1 , . . . ,Wjn) := W (out)

for χ in {0, 1}m:

v := σ(in) ⊕ χ
G′χ := H(color‖g‖χ;W (in) ⊕ v∆)⊕ (σ(out) ⊕ τ(v))

F [g] := (G;G′0m , . . . , G
′
1m)

for each output wire i of f :
d[i, 0] := H(out‖i;Wi); d[i, 1] := H(out‖i;Wi ⊕∆)

return F, e, d

En(e, x):

for i = 1 to |x|:
Xi = e[i, xi]

return X

De(d, Y):

for i = 1 to |Y |:
if Yi = d[i, 0] then yi = 0
elsif Yi = d[i, 1] then yi = 1
else return ⊥

return y

EvH(F,X):

for each input wire i of f :
(W ∗i , χi) := Xi

for each gate g in f , in topological order:
let g have input wires i1, . . . , im, output wires j1, . . . , jn, functionality τ

χ(in) := χi1‖ · · · ‖χim
(G;G′0m , . . . , G

′
1m) := F [g]

(W ∗j1 , . . . ,W
∗
jn)← GateEv

H(g,·)
τ (χ(in);W ∗i1 , . . . ,W

∗
im ,G)

χj1‖ · · · ‖χjn := H(color‖g‖χ(in);W ∗i1 , . . . ,W
∗
im)⊕G′

χ(in)

for each output wire i of f :
Yi := H(out‖i;W ∗i)

return Y

Fig. 3. Gate-level garbling composed into a circuit garbling scheme.

compute the truth value vi on each wire i. Then we replace all references to W vi
i

with W ∗i ; references to W vi
i with W ∗i ⊕ ∆; references to σi with χi ⊕ vi. The

adversary’s view in this modified hybrid is unchanged.

After this change, each main loop is a Linicrypt program that takes the
previously-computed visible wirelabels, along with ∆, and computes the next
garbled gate and output wirelabels (we ignore the encryptions of color bits for
now). In fact, such a computation is precisely ViewR(χ, v) defined above, for some
appropriate R that describes the correlations among previous input wirelabels.

The security of the GateGb components (Definition 6) says that View(χ; v)
and View(χ; v′) are indistinguishable. But this statement only applies when ∆
is a local variable to these views, whereas in the garbling scheme ∆ is shared
among all gates. So first we must argue that this shared state is not a problem.
To do this, we prove a general composition lemma which shows that, if several
programs individually satisfy Definition 6, and they use guaranteed disjoint calls
to the random oracle, then their composition also satisfies Definition 6. It is in
this composition lemma that we use the fact that the output of each View also
hides ∆. We ensure disjointness of oracle queries by using random oracle H(g; ·)
when garbling gate g.

We use similar reasoning to handle the color bits, since they are not strictly
within the scope of Linicrypt (they use distinct oracle calls and do not leak ∆).
Collectively the entire output given to the adversary’s view hides the truth values
vi which are used to select which View to run. The only other place where the vi
truth values are used is in the computation of the garbled decoding information
d. And in this case, vi are required only for the output wirelabels, which are
the same when garbling either x or x′. Hence, we can replace x with x′ with
negligible effect on the adversary’s view, and the proof is complete.

3.2 Synthesis Approach

One of our motivating goals for Linicrypt is the ability to synthesize secure
cryptographic constructions. We do precisely that for free-XOR-compatible gate
garbling schemes.

We have written a synthesis tool, Linisynth which takes as input the desired
parameters of a garbled gate construction. These parameters include:

– The gate functionality τ : {0, 1}m → {0, 1}n
– The arity of the random oracle arity ∈ N (e.g., whether the oracle is called

with 1 or 2 field elements, etc.)
– The number of oracle queries made by GateGb and GateEv: callsgb, callsev ∈ N
– The size (in field elements) of the garbled gate information size ∈ N
– Whether adaptive queries to the oracle are allowed adaptive ∈ {0, 1} (see

below).

Given such parameters, Linisynth constructs an appropriate SMT formula encod-
ing the required security properties, invokes an SMT solver, and finally interprets
the witness (if any) as a human-readable garbled gate construction.

High-level outline. Gate garbling schemes as defined in Definitions 6 and 7 are
meant to be nonlinear in their use of inputs σ and χ. Hence, to synthesize

a complete gate-garbling scheme, we must actually synthesize a collection of
GateGb(σ; · · ·) and GateEv(χ; · · ·) — one for each choice of σ and χ — each of
which is a pure Linicrypt program.

We now describe roughly how the gate-garbling search problem is expressed
as an existential SAT/SMT formula. Recall that pure Linicrypt programs can be
represented algebraically as an output matrixM and a set of oracle constraints C.
When restricted to Free-XOR compatible garbling, the entries in these matrices
are single bits. These bits comprise the existentially quantified variables of our
SMT formula.

Not every bit in the oracle constraints C has to be an unconstrained variable.
Specifically, if the Linicrypt program in question has k input variables, then we
identify these with the first k base variables. This means that the first oracle
query made by the program can be a linear combination only of these first k
base variables. For the corresponding oracle constraint 〈t,Q,a〉, this means that
each row of Q must end in a certain number of zeroes — say, i zeroes. Then we
can associate the output of this oracle query with the (k + 1)th base variable,
fixing a to be [0 · · · 0︸ ︷︷ ︸

k

1 0 · · · 0]. Then the next oracle query can be a linear

combination of only the first k + 1 variables, and so on. Overall, many of the
existential variables comprising the oracle constraints can be fixed in this way.
Furthermore, we can seamlessly enforce non-adaptive oracle queries by forcing
all constraints 〈t,Q,a〉 to have Q depending only on the input variables, and not
on further base variables. This is what is referred to by the adaptive parameter.

We then express the requirements of Definitions 6 & 7 as clauses over the
variables that comprise the programs themselves. The formula is satisfiable if
and only if a secure gate-garbling scheme exists with the given parameters.

Correctness. Correctness (Definition 6) can be expressed in terms of composing
ViewR(χ, x) (which generates input wirelabels along with the garbled gate in-
formation) with GateEv(χ, ·) in a particular way. We can apply the concepts of
Section 2.4 to reason about their composition.

We make some simplifiying observations that lead us to synthesize only “min-
imal” gate garbling schemes:

– Correctness needs to hold only for independently distributed input wirelabels
(R = I). In this setting, the wirelabel inputs to GateEv will have full rank.

– We can assume the garbled gate information has full rank. If any linear de-
pendencies existed, then the same dependencies must exist in GateGb(σ, ·)
for all σ, or else security is trivially violated (malicious evaluator can obtain
information about σ by detecting a linear dependency among garbled gate
info). Hence the correlations can be removed from all GateGb(σ, ·) and re-
constructed if needed in all GateGb(χ, ·). The result would be a smaller but
equivalent & secure scheme.

– The entire input to GateEv (garbled gate information and input wirelabels
together) has full rank. If there is a linear dependency between garbled gate
information and input wirelabels, then the same dependency must exist re-
gardless of σ, or else security will be trivially violated. Then again, the

dependency could be removed from all GateGb(σ, ·) and reconstructed by all
GateGb(χ, ·), resulting in a smaller scheme.

We therefore consider a composition of ViewR(χ, x) and GateEv(χ, ·) in which
the input to GateEv is of full rank. This simplifies the task, since it now suffices
to find a basis change to GateEv that aligns it with the corresponding output of
ViewR(χ, x).

Let MR,χ,x denote the output matrix of ViewR(χ, x). We split this matrix
into a top and bottom: Mtop

R,χ,x,Mbot
R,χ,x, where the top matrix corresponds to

the input wirelabels for x along with garbled gate information, while the bottom
matrix corresponds to the output wirelabels for the result τ(x).

Following Section 2.4, we seek a basis change B such that Mtop
R,χ,x = [I |

0] × B, which represents the input base variables of GateEv(χ, ·). The basis
change must also bring all oracle constraints between the two programs into
alignment. We assume that every oracle query made by GateEv is also made by
GateGb. This is without loss of generality if we assume that GateEv is “minimal”,
since such oracle queries can be removed with no effect (if not, it is easy to see
that correctness or security is violated). Hence, we check that for every oracle
constraint in GateEv, the basis change brings one of the constraints of GateGb
into agreement.

Having identified the correct basis change, we simply check that the output
matrix of GateEv equals the output matrix Mbot

R,χ,x (under the basis change).
In other words, the wirelabels that GateEv outputs always coincide with the
“correct” wirelabels specified by ViewR.

We also must ensure that B is invertible. To do so we simply guess its inverse
B−1 and check that B × B−1 is the identity matrix. We point out that multi-
plication of boolean matrices is straight-forward to express in an SMT formula.

Putting it all together, the clause is as follows. Recall that the input x = σ⊕χ,
and that we have restricted R = I. We use (MR,χ,x, CR,χ,x) to refer to the
algebraic representation of ViewR(χ, x), and use (MGateEv,χ, CGateEv,χ) to denote
the algebraic representation of GateEv(χ, ·).

∀σ, χ ∈ {0, 1}m : ∃B,B−1 : B ×B−1 = I

∧
[
∀〈t,Q,a〉 ∈ CGateEv,χ : 〈t,Q×B,a×B〉 ∈ CR,χ,x

]
∧MGateEv,χ ×B =Mbot

R,χ,x ∧ [I | 0]×B =Mtop
R,χ,x

We point out that the universal quantifiers are over a constant number of terms
(22m choices of (σ, χ) and callsev constraints) and are explicitly expanded in the
formula we pass to the SMT solver. Likewise, the test for 〈t,Q×B,a×B〉 ∈ CR,χ,x
is expressed as a logical-OR of callsgb equality checks.

Security, condition 1. The first condition of Definition 7 is that row(∆) is un-
reachable (in the sense of Figure 2). If the SAT solver could discover the linear
subspace R of reachable vectors, it could simply test whether this subspace in-
cludes row(∆). However, to do this iteratively as in Figure 2 is impractical in a
SAT formula, so we employ a trick.

Our idea is to guess a basis change B that maps the reachable space to some
canonical form that is easily testable by the SAT solver. In particular, consider
a basis change B under which the reachable vectors are exactly those that have
zero in their rightmost several positions. The SAT formula can easily check for
such a condition. To check that our guess for B indeed maps the reachable
subspace to the desired canonical form, we observe that the reachable space is
characterized by the following properties:

– Every row of the output matrix M is contained in the reachable space
– For every oracle constraint 〈t,Q,a〉 ∈ C, if every row of Q is in the reachable

space, then so is a.

For the reachable space after the basis change, the membership condition is
simply that the vector ends in the correct number of zeroes.

We note that from the input parameters, we can compute the dimension of
the reachable space (and from that derive the required number of trailing zeroes
in the vectors) as d = m+ callsev + size, where m is the number of inputs, callsev
is the number of oracle queries allowed the evaluator, and size is the size of
the garbled gate information. This assumes that each oracle query of GateEv
increases the dimension of the reachable space — an assumption that is without
loss of generality for “minimal” schemes since oracle queries not of this kind are
superfluous.

Putting everything together, the formula is as follows. We write (MR,χ,x, CR,χ,x)
to denote the algebraic representation of ViewR(χ, x), which can be obtained in
a systematic way from the algebraic representation of GateGb(χ; ·) (which com-
prise the existentially quantified variables of the SAT formula). We use row(∆)
to refer to the appropriate vector in this representation.

∀σ, χ ∈ {0, 1}m, non-degenerate R : ∃B,B−1 :
B ×B−1 = I ∧¬RightZeroes(row(∆)×B) ∧ RightZeroes(MR,χ,x ×B)

∧
[
∀〈t,Q,a〉 ∈ CR,χ,x : RightZeroes(Q×B)⇒ RightZeroes(a×B)

]
Here RightZeroes simply means that the argument vector/matrix has the appro-
priate number of zeroes in its rightmost columns. The universal quantifiers are
over a constant number of terms (22m choices of (σ, χ), 2m

2

choices of R, and
callsgb constraints) and are explicitly expanded in the formula we pass to the
SMT solver.

Security, condition 2. The second condition of Definition 7 is that ViewR(χ, x)
and ViewR(χ, x0) are indistinguishable. Here we fix x0 and show indistinguisha-
bility with respect to this fixed ViewR(χ, x0). Since the programs involved are
inputless Linicrypt programs, from Theorem 5 it suffices to show that they dif-
fer by a basis change after normalization (unreachable and useless oracle queries
removed).

We make an assumption that all reachable oracle constraints in ViewR(χ, x)
are in fact useful, and hence we can only synthesize gate-garbling schemes with
this property. However, if a secure scheme has reachable and useless constraints

in some ViewR(χ, x = χ ⊕ σ), then the same constraint must be also reachable
and useless in all ViewR(χ, x′ = χ ⊕ σ′) by security. Hence it can be removed
from every GateGb(σ; ·) resulting in an even less expensive yet equivalent and
secure gate-garbling scheme.

To show that ViewR(χ, x) and ViewR(χ, x0) are indistinguishable, we there-
fore only need to find a basis change aligning their output matrices and their
reachable oracle constraints. Note that from the previous clause, the SAT solver
has already obtained a basis B that maps the reachable subspace of ViewR(χ, x)
to a canonical form (vectors ending in some number of zeroes). Hence we can
easily check whether a given oracle constraint is reachable. Also note that B
is not constrained in how it operates within the reachable subspace. Hence we
can let this B basis serve double-duty and ask for it to also align the reachable
subspace of ViewR(χ, x) to that of ViewR(χ, x0).

In more detail, let BR,χ,x be the basis matrix that is already quantified cor-
responding to ViewR(χ, x) from security condition 1. We want MR,χ,x ×BR,χ,x
andMR,χ,x0×BR,χ,x0 to coincide, and we want CR,χ,xBR,χ,x and CR,χ,x0BR,χ,x0

to coincide, but only for reachable constraints. Hence:

MR,χ,x ×BR,χ,x =MR,χ,x0
×BR,χ,x0

∧[
∀〈t,Q,a〉 ∈ CR,χ,x : RightZeroes(Q×BR,χ,x)

⇒ 〈t,Q×BR,χ,x ×B−1R,χ,x0
,a×BR,χ,x ×B−1R,χ,x0

〉 ∈ CR,χ,x0

]
Note that 〈t,Q×BR,χ,x ×B−1R,χ,x0

,a×BR,χ,x ×B−1R,χ,x0
〉 ∈ CR,χ,x0

is equivalent
to saying 〈t,QBR,χ,x,aBR,χ,x〉 ∈ CR,χ,x0

BR,χ,x0
. Hence the bracketed expres-

sion captures the requirement that CR,χ,xBR,χ,x and CR,χ,x0BR,χ,x0 coincide for
reachable constraints.

As usual, the quantifications over constraints are expanded within the for-
mula.

3.3 Implementation Results

We implemented Linisynth using Python and the SMT solver Z33. Linisynth ex-
tracts the resulting witness and prints it as a human-readable garbling scheme.
We used Linisynth to successfully synthesize variants of known gate garbling
schemes as well as some of our own creations (i.e., garbled LT gates and garbled
EQ gates). Linicrypt can also enumerate constructions that satisfy given param-
eters. Our code is available at https://github.com/osu-crypto/linisynth.

Linisynth works as follows. For each value in the algebraic representation of
GateGb and GateEv, it creates a boolean variable. After it has created all the
variables, it makes a formula that constrains them in the following way. For each
combination of σ and χ, the invertiblity, correctness, and security conditions
from Section 3.2 hold (expressed as boolean formulas over the variables). This
often results in rather large formulas (see Figure 4). Linisynth then hands the

3 https://github.com/Z3Prover/z3

https://github.com/osu-crypto/linisynth

formula over to Z3. If Z3 finds a solution, it maps the satisfying assignment back
to the garbling scheme and prints it.

Synthesis results. We rediscovered known constructions. For example, our tool
was able to discover that xor gates can be garbled for free. It also rediscov-
ered many garbled and-gate constructions that are equivalent to the half-gates
construction of Zahur et al. [53] (costing 2 ciphertexts). An example of such a
garbled and-gate is given in Figure 5. We synthesized garbling schemes for a
number of different gates (garbled <, garbled =, garbled mux, etc), but they all
had comparable performance to and, explained below. A summary is presented
in Figure 4.

We were not able to synthesize a garbling scheme better than 2 ciphertexts
per and gate. We suspect that this may be a hard limit (if compatibility with
free-XOR is required), in support of the half-gates lower-bound presented in
[53]. We formalize that hypothesis here. First, note that B = {and,not,xor }
is a universal basis for boolean circuits. Then take any boolean gate τ and
decompose it into some combination of and, not, and xor. Let circ-minand(τ)
be the minimum number of and gates necessary to construct τ with basis B.
Our hypothesis is this: for all gates τ , the minimum number of ciphertexts to
garble τ with full security and compatibility with free-XOR is 2×circ-minand(τ).
Verification of this hypothesis is left as future work.

Enumeration of solutions. Linisynth can also enumerate schemes. Let p be a
formula generated according to Section 3.2 and let w be a satisfying assignment
with p(w) = 1. When Linisynth gets w from the solver, it prints the correspond-
ing scheme, sets p := ¬w ∧ p, and asks the solver to find a new solution. Since
pysmt provides access to an active instance of Z3, we can use Z3’s push/pop
functionality to add an assertion without causing the solver to restart. Each
new scheme is found in a fraction of the time it takes to find the first one. Us-
ing enumeration, we found thousands of schemes equivalent to half-gates (with
parameters size = 4, arity = 1, callsgb = 4, callsev = 2, and adaptive = 0).

Acknowledgement

We thank Viet Tung Hoang for pointing out to us some subtleties that arise
when wires have correlated labels.

References

1. M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Optimal structure-preserving
signatures in asymmetric bilinear groups. In P. Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 649–666. Springer, Heidelberg, Aug. 2011.

2. M. Abe, J. Groth, M. Ohkubo, and M. Tibouchi. Structure-preserving signatures
from type II pairings. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 390–407. Springer, Heidelberg, Aug. 2014.

name τ size arity callsgb callsev adaptive vars p-size time sat

free-xor ⊕ : 2→ 1 0 1 0 0 0 224 5,102 1s 1
half-gate ∧ : 2→ 1 2 1 4 2 0 1,972 117,586 5s 1
half-gate-cheaper ∧ : 2→ 1 2 1 4 1 1 1,960 92,690 6.2h 0
half-gate-h2 ∧ : 2→ 1 2 2 4 2 0 2,000 114,397 2h 0
one-third-gate ∧ : 2→ 1 1 1 4 2 1 4,104 716,454 74s 0
1-out-of-2-mux mux : 3→ 1 2 1 4 2 1 9,416 654,433 29s 1
2-bit-eq = : 4→ 1 2 1 4 2 1 44,144 3,497,286 6m 1
2-bit-eq-small = : 4→ 1 1 1 4 2 1 39,248 3,535,942 6m 0
2-bit-leq ≤ : 4→ 1 1 1 2 1 1 23,296 1,155,686 77s 0
2-bit-lt < : 4→ 1 2 1 4 2 1 44,144 3,502,425 3.5h 0

Fig. 4. Selection of our synthesis results on an Intel Xeon 3.4GHz processor with 16GB
memory. Satisfiable schemes are listed in the full version. Notation: “f : m → n” is
shorthand for a function with m bits of input and n bits of output that performs the
operation f on the input, “vars” and “p-size” refer to the number of variables and
nodes in the security & correctness formula. “sat” refers to whether the formula was
satisfiable.

half-gate

∧ : {0, 1}2 → {0, 1}
size = 2

arity = 1

callsgb = 4

callsev = 2

adaptive = 0

time = 5s

GateGbH(σ,A,B,∆) : GateEvH(χ,A∗, B∗, G0, G1) :

h1 = H(A) return [1, 3]A∗ + [0, 2]B∗ +
h2 = H(A+∆) [0, 1]G0 + [1, 3]G1 +
h3 = H(A+B) H(A∗) +H(A∗ +B∗)
h4 = H(A+B +∆)
G0 = [0, 2]∆+ h3 + h4

G1 = A+B + [0, 2]∆+ h1 + h2 + h3 + h4

C0 = B + [0]∆+ [0, 2]h1 + [1, 3]h2 + [1, 2]h3 + [0, 3]h4

return G0, G1, C0

Fig. 5. An example of one of our synthesized schemes. This scheme is an alternative to
the half-gates and gate of [53], with identical parameters (number of ciphertexts, and
number of calls to H). The notation is as follows: GateGb: When S is a set of indices,
“[S]W” refers to nonlinear behavior “if σ ∈ S then W else 0λ” GateEv: When S is a
set of indices, “[S]W” refers to nonlinear behavior “if χ ∈ S then W else 0λ”

3. M. Abe, J. Groth, M. Ohkubo, and M. Tibouchi. Unified, minimal and selectively
randomizable structure-preserving signatures. In Y. Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 688–712. Springer, Heidelberg, Feb. 2014.

4. J. A. Akinyele, M. Green, and S. Hohenberger. Using SMT solvers to automate
design tasks for encryption and signature schemes. In A.-R. Sadeghi, V. D. Gligor,
and M. Yung, editors, ACM CCS 13, pages 399–410. ACM Press, Nov. 2013.

5. J. A. Akinyele, M. Green, S. Hohenberger, and M. W. Pagano. Machine-generated
algorithms, proofs and software for the batch verification of digital signature
schemes. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 12, pages
474–487. ACM Press, Oct. 2012.

6. B. Applebaum, J. Avron, and C. Brzuska. Arithmetic cryptography: Extended
abstract. In T. Roughgarden, editor, Proceedings of the 2015 Conference on In-
novations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January
11-13, 2015, pages 143–151. ACM, 2015.

7. G. Barthe, E. Fagerholm, D. Fiore, A. Scedrov, B. Schmidt, and M. Tibouchi.
Strongly-optimal structure preserving signatures from type II pairings: Synthesis
and lower bounds. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages
355–376. Springer, Heidelberg, Mar. / Apr. 2015.

8. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

9. M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from
a fixed-key blockcipher. In 2013 IEEE Symposium on Security and Privacy, pages
478–492. IEEE Computer Society Press, May 2013.

10. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 12, pages 784–796. ACM
Press, Oct. 2012.

11. D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS:
Practical stateless hash-based signatures. In E. Oswald and M. Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 368–397. Springer, Hei-
delberg, Apr. 2015.

12. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. In L. R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of LNCS, pages 384–397. Springer, Heidelberg, Apr. / May 2002.

13. J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 320–335. Springer, Heidelberg, Aug. 2002.

14. J. Buchmann, E. Dahmen, and A. Hülsing. XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. Cryptology ePrint Archive,
Report 2011/484, 2011. http://eprint.iacr.org/2011/484.

15. J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume. Merkle
signatures with virtually unlimited signature capacity. In J. Katz and M. Yung,
editors, ACNS 07, volume 4521 of LNCS, pages 31–45. Springer, Heidelberg, June
2007.

16. J. Buchmann, L. C. C. Garćıa, E. Dahmen, M. Döring, and E. Klintsevich. CMSS
- an improved Merkle signature scheme. In R. Barua and T. Lange, editors, IN-
DOCRYPT 2006, volume 4329 of LNCS, pages 349–363. Springer, Heidelberg, Dec.
2006.

17. Y. Dodis, I. Haitner, and A. Tentes. On the instantiability of hash-and-sign RSA
signatures. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 112–132.
Springer, Heidelberg, Mar. 2012.

18. S. Even and Y. Mansour. A construction of a cipher from a single pseudoran-
dom permutation. In H. Imai, R. L. Rivest, and T. Matsumoto, editors, ASI-
ACRYPT’91, volume 739 of LNCS, pages 210–224. Springer, Heidelberg, Nov.
1993.

19. M. Gagné, P. Lafourcade, Y. Lakhnech, and R. Safavi-Naini. Automated security
proof for symmetric encryption modes. In A. Datta, editor, Advances in Computer
Science - ASIAN 2009, volume 5913 of LNCS, pages 39–53. Springer, 2009.

20. M. Gagné, P. Lafourcade, Y. Lakhnech, and R. Safavi-Naini. Automated verifica-
tion of block cipher modes of operation, an improved method. In J. Garćıa-Alfaro

http://eprint.iacr.org/2011/484

and P. Lafourcade, editors, Foundations and Practice of Security, volume 6888 of
LNCS, pages 23–31. Springer, 2011.

21. O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 104–
110. Springer, Heidelberg, Aug. 1987.

22. S. Gueron, Y. Lindell, A. Nof, and B. Pinkas. Fast garbling of circuits under
standard assumptions. In I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS 15,
pages 567–578. ACM Press, Oct. 2015.

23. S. Halevi and P. Rogaway. A tweakable enciphering mode. In D. Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 482–499. Springer, Heidelberg, Aug.
2003.

24. V. T. Hoang, J. Katz, and A. J. Malozemoff. Automated analysis and synthesis
of authenticated encryption schemes. In I. Ray, N. Li, and C. Kruegel:, editors,
ACM CCS 15, pages 84–95. ACM Press, Oct. 2015.

25. A. Hülsing. W-OTS+ - shorter signatures for hash-based signature schemes.
In A. Youssef, A. Nitaj, and A. E. Hassanien, editors, Progress in Cryptology -
AFRICACRYPT, volume 7918 of LNCS, pages 173–188. Springer, 2013.

26. R. Impagliazzo. A personal view of average-case complexity. In Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Min-
nesota, USA, June 19-22, 1995, pages 134–147. IEEE Computer Society, 1995.

27. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In S. Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages
8–26. Springer, Heidelberg, Aug. 1990.

28. Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no
honest majority. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
294–314. Springer, Heidelberg, Mar. 2009.

29. V. Kolesnikov, P. Mohassel, and M. Rosulek. FleXOR: Flexible garbling for XOR
gates that beats free-XOR. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 440–457. Springer, Heidelberg, Aug. 2014.

30. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008, Part II, volume 5126
of LNCS, pages 486–498. Springer, Heidelberg, July 2008.

31. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: keyed-hashing for message
authentication, 1997.

32. T. Krovetz and W. Dai. VMAC: message authentication code using univer-
sal hashing. CFRG Working Group, 2007. http://www.fastcrypto.org/vmac/

draft-krovetz-vmac-01.txt.

33. L. Lamport. Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

34. M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In M. Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 31–46. Springer, Heidelberg,
Aug. 2002.

35. M. Luby and C. Rackoff. How to construct pseudo-random permutations from
pseudo-random functions (abstract). In H. C. Williams, editor, CRYPTO’85, vol-
ume 218 of LNCS, page 447. Springer, Heidelberg, Aug. 1986.

36. T. Malkin, V. Pastro, and a. shelat. An algebraic approach to garbling. Unpub-
lished manuscript. Presented at Simons Institute workshop on securing computa-
tion: https://simons.berkeley.edu/talks/tal-malkin-2015-06-10, 2016.

http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt
http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt
https://simons.berkeley.edu/talks/tal-malkin-2015-06-10

37. A. J. Malozemoff, J. Katz, and M. D. Green. Automated analysis and synthesis
of block-cipher modes of operation. In IEEE 27th Computer Security Foundations
Symposium, CSF, pages 140–152. IEEE, 2014.

38. U. M. Maurer. Abstract models of computation in cryptography. In N. P. Smart,
editor, Cryptography and Coding, 10th IMA International Conference, volume 3796
of LNCS, pages 1–12. Springer, 2005.

39. R. C. Merkle. A certified digital signature. In G. Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 218–238. Springer, Heidelberg, Aug. 1990.

40. D. Naor, A. Shenhav, and A. Wool. One-time signatures revisited: Have they
become practical? Cryptology ePrint Archive, Report 2005/442, 2005. http:

//eprint.iacr.org/2005/442.
41. M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,

4(2):151–158, 1991.
42. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism

design. In Proceedings of the 1st ACM Conference on Electronic Commerce, pages
129–139, New York, NY, USA, 1999. ACM.

43. P. A. Papakonstantinou, C. W. Rackoff, and Y. Vahlis. How powerful are the
DDH hard groups? Cryptology ePrint Archive, Report 2012/653, 2012. http:

//eprint.iacr.org/2012/653.
44. G. C. Pereira, C. Puodzius, and P. S. Barreto. Shorter hash-based signatures.

Journal of Systems and Software, 2015.
45. J. Pieprzyk, H. Wang, and C. Xing. Multiple-time signature schemes against

adaptive chosen message attacks. In M. Matsui and R. J. Zuccherato, editors,
SAC 2003, volume 3006 of LNCS, pages 88–100. Springer, Heidelberg, Aug. 2004.

46. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party com-
putation is practical. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of
LNCS, pages 250–267. Springer, Heidelberg, Dec. 2009.

47. B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In D. R. Stinson, editor, CRYPTO’93, volume 773 of LNCS,
pages 368–378. Springer, Heidelberg, Aug. 1994.

48. L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast
signing and verifying. In L. M. Batten and J. Seberry, editors, ACISP 02, volume
2384 of LNCS, pages 144–153. Springer, Heidelberg, July 2002.

49. P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In P. J. Lee, editor, ASIACRYPT 2004, volume 3329 of
LNCS, pages 16–31. Springer, Heidelberg, Dec. 2004.

50. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of
operation for efficient authenticated encryption. In ACM CCS 01, pages 196–205.
ACM Press, Nov. 2001.

51. V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidel-
berg, May 1997.

52. R. S. Winternitz. Producing a one-way hash function from DES. In D. Chaum,
editor, CRYPTO’83, pages 203–207. Plenum Press, New York, USA, 1983.

53. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In E. Oswald and M. Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer,
Heidelberg, Apr. 2015.

http://eprint.iacr.org/2005/442
http://eprint.iacr.org/2005/442
http://eprint.iacr.org/2012/653
http://eprint.iacr.org/2012/653

	Linicrypt: A Model for Practical Cryptography

