
Design in Type-I, Run in Type-III: Fast and
Scalable Bilinear-Type Conversion using Integer

Programming

Masayuki Abe1,3, Fumitaka Hoshino1,4, and Miyako Ohkubo2

1 Information Sharing Platform Laboratories
NTT Corporation, Japan

2 Security Fundamentals Laboratory, CSR
NICT, Japan

3 Graduate School of Informatics
Kyoto University, Japan

4 School of Computing, Department of Mathematical and Computing Science
Tokyo Institute of Technology, Japan

Abstract. Bilinear type conversion is to convert cryptographic schemes
designed over symmetric groups instantiated with imperilled curves into
ones that run over more secure and efficient asymmetric groups. In this
paper we introduce a novel type conversion method called IPConv using
0-1 Integer Programming. Instantiated with a widely available IP solver,
it instantly converts existing intricate schemes, and can process large-scale
schemes that involves more than a thousand variables and hundreds of
pairings.
Such a quick and scalable method allows a new approach in designing
cryptographic schemes over asymmetric bilinear groups. Namely, designers
work without taking much care about asymmetry of computation but the
converted scheme runs well in the asymmetric setting. We demonstrate
the usefulness of conversion-aided design by presenting somewhat counter-
intuitive examples where converted DLIN-based Groth-Sahai proofs are
more compact than manually built SXDH-based proofs.

Keywords. Conversion, Bilinear Groups, Integer Programming, Groth-
Sahai Proofs, Zero-Knowledge

1 Introduction

1.1 Background

Prime-order bilinear groups consist of source groups G0 and G1, target group GT ,
and a pairing e : G0 ×G1 → GT . In so called Type-I bilinear groups, G0 = G1,
i.e., the pairing is symmetric. It has been a popular choice in early research and
development. Recent progress in analyzing symmetric pairing groups instantiated
with small characteristic curves [30, 31, 26, 9] motivates crypto designers to move
to Type-III groups where G0 6= G1, i.e., the pairing is asymmetric, and no efficient
mapping is known between G0 and G1. For Type-III groups, no such weakness

2 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

has been observed until now and efficient instantiations have been developed. Yet
Type-I setting is useful for presenting and understanding cryptographic schemes
for their simplicity. Besides, number of schemes have been designed only for
Type-I groups in the literature, e.g. [37, 36, 2, 8, 41, 40, 16].

Bilinear-type conversion is a method to translate schemes designed for Type-I
groups into ones that work over Type-III groups. Cryptographic schemes designed
in Type-I setting do not necessarily work in Type-III due to the presence of
symmetric pairings, e(X,X). A workaround is to convert the algorithm by
duplicating the variables. That is, the variable is represented by a pair (X,X ′) ∈
G0 × G1. Duplication however clearly slows down the performance since all
relevant computations are ’duplicated’ in G0 and G1 as well. Besides, duplication
is not always possible due to mathematical constraints or external requirements.
For instance, it is not known how to pick random and consistent pair X and X ′

while retaining the hardness of the discrete logarithm problem on X and X ′. An
automated conversion finds the best allocation of variables over G0 and G1 that
makes all group operations doable with minimal overhead.

Besides saving existing schemes over Type-I groups, conversion plays the role
in putting ”Design in Type-I and Run in Type-III” paradigm into practice as
suggested in the pioneering work by Akinyele, Green and Hohenberger [7]. That
is, let crypto designers focus on their high-level idea of construction without
taking much care about asymmetry of computation by designing in Type-I setting,
and then convert the results to obtain executable schemes over Type-III groups.
For conversion tools to be useful, the processing speed and scalability are of
importance on top of the performance of the final executables. Like compilers for
high-level programming languages a conversion tool will be executed over and
over again throughout the development. Quick response is strongly desired for
productivity and stress-free developing environment. Its importance increases
when large-scale systems that consist of several building blocks are targeted.
Nevertheless, only small-scale monolithic schemes has been targeted so far. Hence
the validity of the design paradigm has not been well substantiated yet.

1.2 Our Contribution

We propose a new efficient conversion algorithm, which we call ’IPConv’, based
on 0-1 Integer Programming (IP). A technical highlight that separates this work
from previous ones [7, 6] is how to encode several kinds of constraints into a
system of linear relations over binary variables, and how to implement ones
metric into an objective function the 0-1 IP minimizes subject to the constraints.
The idea of encoding computational constraints into an objective function follows
from previous works. Our novelty is the encoding method that allows one to use
Integer Programming that fits well to our optimization problem with various
constraints. Besides, using such a tool is advantageous in the sense that there
are publicly available (both commercial and non-commercial) software packages
such as [28, 5, 24, 33, 35, 34].

Performance of IPConv is demonstrated by experiments over real crypto-
graphic schemes in the literature. IPConv instantly completes the task even

Design in Type-I, Run in Type-III 3

for complex schemes. To measure the scalability, large systems with thousands
of variables and pairings are generated randomly subject to some reasonably
looking structures. IPConv processed them in a few minutes to hours even with
non-commercial IP solver SCIP [5] as an engine. The concrete figures of course
become magnitude of better with a powerful commercial IP solver e.g. [28].
Scaling up to thousands of pairings may seem an overkill. However, for instance,
schemes that include Groth-Sahai (GS) proof system [27] easily involve dozens
or even hundreds of pairings when their security proofs are taken into account.
Furthermore, tools such as [12, 10, 11] would allow automated synthesis that
reach to or even exceed such a scale. Our method not only contributes to speedup
the process of conversion but also opens the door to automated synthesis and
optimization of large scale cryptographic applications over bilinear groups.

Next we, for the first time, prove the usefulness of the conversion-assisted
design for middle-scale schemes. It is shown that schemes involving GS proofs
based on decision linear assumption (DLIN) can be converted to ones based on
XDLIN assumption [1] in Type-III so that they are more efficient than their
direct instantiation based on the symmetric external Diffie-Hellman assumption
(SXDH). The result may be counter-intuitive since the commitments and proofs
of SXDH-based GS-proofs require less group elements than those based on DLIN.
Key observations that explain our result are:

– Relations such as e(X,A) = e(B, Y) for variables X and Y are considered as
linear pairing product equations (PPEs) in Type-I whose proof consists of
3 elements whereas they are more costly two-sided PPEs in Type-III that
costs 8 elements. Proving linear PPEs can be converted without duplicating
the proofs and commitments in general.

– Commitments and proofs in the converted proof system are allocated mostly
in G0 whereas they appear in both G0 and G1 in direct SXDH-based instan-
tiation. Taking the fact that elements in G1 is typically twice as long as those
in G0 in bits, the former can be shorter than the latter in some cases.

Our first example in Section 5.2 is a scheme for showing ones possession of a
correct structure-preserving signature [3] on a public message in zero-knowledge.
The scheme obtained by conversion yields proofs that are up to 50% shorter
(asymptotic in the message length) than those generated by direct constructions
based on SXDH. It uses a novel fine-tuning for zero-knowledge GS-proofs (GSZK)
presented in Section 5.1 that takes the above mentioned advantages.

Our second example in Section 5.3 is to demonstrate that our framework can
be applied to schemes that is already designed in Type-III setting to seek for
better instantiations. We pick an automorphic blind signature scheme [3] that
involves GS-proofs and is secure under SXDH assumption in Type-III setting.
We show that the proofs can be replaced with the DLIN-based ones and it
can be converted to work in Type-III under XDLIN assumption. Though the
GS-proofs are witness indistinguishable for this time, it still can take the above
mentioned advantages and saves 28% in the length of the signatures compared
to the originally manufactured SXDH-based scheme.

4 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

Although our primary metric for optimization is the size of intended objects,
we also compare their computational workload in the number of pairings in
signature verification. Interestingly, the winner changes depending on the message
size, acceptable duplication, and also the use of batch verification technique [13].
This unveils an open issue on optimization of schemes involving GS-proofs.

1.3 Related Works

There are some conversion systems in the literature. Early works on type conver-
sion, e.g. [39, 18, 17, 19], study and suggest heuristic guidelines for when a scheme
allows or resists conversion. To our best knowledge, AutoGroup introduced by
Akinyele, Green and Hohenberger in [7] is the first automated conversion system
that converts schemes from Type-I to Type-III. Given a target scheme described
in their scheme description language, the system finds set of ’valid’ solutions that
satisfy constraints over pairings by using a satisfiability modulo theory solver [21].
It then search for the ’optimal’ solution that conforms to other mathematical
constraints and ones preferences. When there are number of possible solutions,
the performance gets lower. In this pioneering work, the security of the resulting
converted scheme was not guaranteed. In [4], Abe et. al., established a theoretical
ground for preserving security during conversion. Their framework, reviewed in
Section 2, provides useful theorems for security guarantee. But their conversion
algorithm is basically a brute-force search over all possible conversions and it
requires exponential time in the number of pairings. Recently in [6], Akinyele,
Garman, and Hohenberger introduced an upgraded system called AutoGroup+
that integrates the framework of [4] to AutoGroup. Though the system becomes
more solid in terms of security, their approach for finding an optimal solution
remains the same as before. They cover only small scale cryptographic schemes.

Regarding Groth-Sahai zero-knowledge proofs, the closest work is the one by
Escala and Groth in [22]. They observe that commitment of 1Zp

can be seen as a
commitment of the default generator G and uses the fact that a commitment of
G can be equivocated to G0 to construct more efficient zero-knowledge proofs
for pairing product equations (PPEs) with constant pairings of the form e(G,A)
in Type-III setting. Our fine-tuning in Section 5.1 uses the same property for
the commitment of G but use it in a different manner that is most effective in
Type-I setting. Another close work is [25] that presents a DLIN-based variant of
GS-proof system over asymmetric bilinear groups. Their scheme bases on SDLIN
assumption where independent DLIN in G0 and G1 are assumed as hard, and
uses independently generated CRSes for commitments in G0 and G1. Thus their
proof system is inherently asymmetric, which cannot exploit nice properties of
symmetric setting as done in this work. Besides, SDLIN-based instantiation is
less efficient than SXDH-based one. We therefore use the original SXDH-based
instantiation for comparison in this paper.

In [23, 29], a more efficient instantiation of GS-proofs by using recently intro-
duced Matrix assumptions. Although DLIN-based GS-proofs are used throughout
this paper, matrix-based assumption might be an alternative to further gain
efficiency if the Type-III analogue of the assumption is acceptable.

Design in Type-I, Run in Type-III 5

2 Conversion based on Dependency Graphs

2.1 Overview

In this section we review the framework in [4]. To guarantee the security of the
resulting scheme, it converts not only algorithms that form the target scheme but
also all algorithms that appear in the security proof as well as underlying assump-
tions. Namely, it assumes that the security is proven by the existence of reduction
algorithms from some assumptions in Type-I, and converts the algorithms and
assumptions into Type-III. This way, the security proof is preserved under the
converted assumption. It is proven in [4] that if the original assumptions are valid
in Type-I generic bilinear group model [15], the converted assumptions are valid
in Type-III generic bilinear group model. Most typically, the DLIN assumption
is converted to XDLIN.

In their framework relations among variables in target algorithms are described
by using a graph called a dependency graph, and the central task of conversion
is reduced to find a ’split’ of the graph so that each graph implies variables and
computations in each source group in the Type-III setting.

We follow the framework of [4] that consists of the following four steps.

1. Verify that the target scheme in Type-I and its security proof follows the
abstraction of bilinear groups.

2. Describe the generic bilinear group operations over source group G by using
a dependency graph as we shall explain later.

3. Split the dependency graph into two that satisfy some conditions. The result-
ing graphs imply variables and group operations in G0 and G1 respectively.

4. Describe the resulting scheme in Type-III as suggested by the graphs.

As well as [4], we focus on step 3 and propose an efficient algorithm for the task
of finding a split. Thus, when we conduct an experiment for demonstrating the
performance, we start from a dependency graph as input and complete when a
desirable split of the input graph is obtained.

2.2 Dependency Graph

A dependency graph is a directed graph that represents computational depen-
dencies among variables storing source group elements in the target system.
In Figure 1, we show an example of a dependency graph for a program that
computes some group operations over Type-I bilinear groups. In the right is a
sample program that takes source group elements A,B,D as input and computes
C and E via group operations (multiplication and exponentiation), and outputs
a result of pairing e(C,E). In the left is a dependency graph that corresponds to
the algorithm. Nodes represent the source group elements and edges correspond
to group operations. Each input to the pairing operation is represented by a
connection to node PCE[b] called a pairing node. As the graph only describes
relations between group elements via group operations, it does not show the

6 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

B A D

C E

PCE[0] PCE[1]

Sample(a,A,B,D):

a ∈ Zp, A,B,C,D,E ∈ G

if a = 0 then

C := A ·B, E := D
else

C := Da, E := D3

endif

Output e(C,E)

Fig. 1. An example of a dependency graph for a program in Type-I bilinear groups.

structure of the program like ”if-then-else” directive or involve non source
group elements like a ∈ Zp. Operations in the target group are irrelevant either.

There are several types of nodes in a dependency graph. Node types can be
considered as attributes attached to the nodes or lists of nodes. We use either
way according to the context.

– Pairing nodes (P). They represent inputs to pairing operations. Every pairing
node has only one incoming edge and no outgoing edges. Each pairing node
is paired with another pairing node so that the pair constitutes an input to a
pairing operation.

– Control nodes (CT). These are the ones added to the graph to control the
assignment to their parent nodes. A control node has one or more incoming
edges but no outgoing edges. By specifying which group to assign to a control
node, its parent nodes are also assigned to the same group. For instance,
when two variables associated to nodes n and n′ are to be compared, a control
node is added with incoming edges from n and n′. This results in assigning
n and n′ to the same group the control node is assigned. The control nodes
are used also to implement user specified preferences such as grouping as we
shall explain later.

– Regular nodes (R). All nodes other than pairing nodes and control nodes are
regular nodes. Regular nodes may have other attributes named as follows.
• Bottom nodes (B). A regular node is a bottom node if it does not have

outgoing edges. This includes a ’pseudo’ bottom node that virtually works
as a bottom node in a closure.

• Prohibited nodes (PH). These are nodes that must not be duplicated
for some reasons. They are assigned to either of the source groups but
the assignment is not fixed in advance. Nodes representing variables
as an output of “hash-to-group” function that directly maps to group
elements must be a prohibited node. Currently known technology does
not allow us to hash an input onto two source group elements in a way
that their exponents are unknown but remain in a preliminary fixed
relation. Another example of the prohibiting nodes are inputs given to

Design in Type-I, Run in Type-III 7

the target scheme from outside like messages in a signature scheme. They
are subject to other building blocks and hence demanding duplicated
messages loses generality of the signature scheme. Thus it is generally
desirable that messages are considered as prohibited nodes.

From the above classification, we have V = P ∪ CT ∪ R. The nodes that will be
assigned to either of the source groups exclusively are called constrained nodes.
Precisely, we define constrained nodes C by C := P ∪ CT ∪ B ∪ PH.

2.3 Valid Split

It has been shown in [4] that if a dependency graph is split into two graphs
that satisfy four conditions below then the converted scheme derived from the
graphs works over Type-III bilinear groups and is secure in the same sense as the
original scheme but based on converted assumptions. Such a pair of graphs is
called a valid split. Let Anc(Γ,X) denote a subgraph of Γ that consists of X and
all paths that reach to X. Let NoDup be a list of nodes representing variables as
output of hash-to-group function.

Definition 1 (Valid Split). Let Γ = (V,E) be a dependency graph for Π̃. Let
P = (p1[0], . . . , pnp [1]) ⊂ V be pairing nodes. A pair of graphs Γ0 = (V0, E0) and
Γ1 = (V1, E1) is a valid split of Γ with respect to NoDup ⊆ V if:

1. merging Γ0 and Γ1 recovers Γ ,
2. for each i ∈ {0, 1} and every X ∈ Vi \ P , the subgraph Anc(Γ,X) is in Γi,
3. for each i ∈ {1, . . . , np}, paring nodes pi[0] and pi[1] are separately included

in V0 and V1, and
4. V0 ∩ V1 ∩ NoDup = ∅.

The first condition guarantees that all variables and computations are pre-
served during conversion. The second condition guarantees that all variables
needed to compute a variable belong to the same source group. The third condi-
tion guarantees consistency of pairing operations by forcing that every pairing
operation takes inputs from G0 and G1. The last condition is to conform with
the constraint about the hash-to-group functions. In Figure 2, we illustrate a
valid split for the dependency graph shown in Figure 1 and the resulting program
in Type-III.

Note that a valid split as defined above only meets the mathematical constraint
over the pairings and those given by NoDup. There could be large number of valid
splits for a dependency graph and it is another issue how to pick the optimal one
according the metric and constraints given by the user.

3 Finding Optimal Valid Split with IP

3.1 Users’ Preferences

One may want to avoid duplication regarding specific set of variables as much as
possible. Typical practical demands would be to look for the minimal duplication

8 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

B A D

C

PCE[0]

D

E

PCE[1]

Sample(a,A,B,D, D̃):

a ∈ Zp, A,B,C,D ∈ G0, D̃, Ẽ ∈ G1

if e(G, D̃) 6= e(D, G̃) then err;

if a = 0 then

C := A ·B, Ẽ := D̃
else

C := Da, Ẽ := D̃3

endif

output e(C, Ẽ)

Fig. 2. A valid split for the dependency graph in Fig.1, and a converted program.

in the public key elements, or the smallest possible duplication in the instance of
assumptions. We show in the following several types of preferences that can be
handled in our conversion procedure.

1. Priority. We allow users to give a priority to some nodes so that they avoid
duplication as much as possible than other nodes. Concretely, a priority is
given by a list of sets of nodes. Let (I1, I2, · · ·) be a sequence of non-empty
sets of nodes where every set consists of arbitrary number of nodes and the
sets are pairwise disjoint. It is considered that nodes in Ii are given more
priority for non-duplication than those in Ii+1. For instance, suppose that I1
includes nodes representing a public key and I2 includes nodes representing
a signature. By specifying (I1, I2) as a priority, a solution that includes less
duplication in a public key is preferred. If only one node in a public key
is duplicated in solution A, and all nodes in a signature are duplicated in
solution B, then solution B will be taken. Unspecified nodes are given the
least priority.

2. Prohibiting duplication. By specifying a node as ’prohibited’, the node
will never be duplicated.

3. Grouping. By specifying a set of nodes, they are assigned to the same group.
(But it does not solely mean no duplication for individual node.)

4. Exclusive assignment. By specifying two nodes, different groups are as-
signed to each node. The specified nodes are implicitly specified as prohibited
so that the exclusive assignment holds. This option, together with the prohibi-
tion, allows one to describe schemes designed in Type-III without concretely
specifying groups to every variable.

5. Specific assignment. By specifying a particular group to a particular node,
the group is assigned to the node. (But the node may still be duplicated
unless it is specified as ’prohibited’ as well.)

6. Magnification factor. Often a node represents multiple of variables treated
in the same manner in the converting program. For instance, a message m
consisting of several group elements m = (m[0], . . . ,m[k]) with constant k

Design in Type-I, Run in Type-III 9

can be represented by a node referred to by m[i]. Such a node should have a
magnification factor of k. It must be equal or larger than one.

In the next section, we explain how these preferences are incorporated to the
objective function and constraints given to Integer Programming.

3.2 IPConv Procedure

We present a new method, which we call ’IPConv’ for finding an optimal valid split.
IPConv takes the task in the third step of the conversion procedure mentioned
in Section 2.1. It takes as input a dependency graph Γ for source group G of
Type-I scheme, and outputs two dependency graphs Γ0 and Γ1 for G0 and G1,
respectively, of the converted Type-III scheme.

IPConv consists of the following stages. Details are given after the overview.

1. Preprocessing on the graph. The input dependency graph is modified to
implement some user-specified preferences. The output of this stage is the
modified dependency graph and a list of constrained nodes.

2. Establishing the objective function. Binary variables that represent
(non-)membership in each source group are placed on constraint nodes.
They must satisfy relations for consistency and for user’s preferences. Sanity
checking is done to assure the existence of a solution that conforms to the
constraints. Then the objective function over the variables is established.

3. Running Integer Programming. Run 0-1 Integer Programming for find-
ing an assignment to the variables that minimizes the objective function
subject to the constraints.

4. Composing the final split. The assignment decides which constraint nodes
belong to which source group, and further decides on other nodes. Thus a
valid split is composed from the assignment.

Preprocessing on the graph. First of all, user preference in prohibiting duplication
is dealt simply by including the specified nodes to the list of prohibited nodes
PH. A specific assignment to a specific node, say n, is handled by adding a new
control node, c, and edge (n, c) to the graph. As the specific group is assigned
to c, the same group must be assigned to n as well since n is an ancestor of c.
Grouping of nodes n1, . . . , nk is handled in the same manner by adding a new
control node c, and edges (n1, c), . . . , (nk, c) to the graph. This step outputs the
updated graph with attributes that identifies the constraint nodes.

Establishing the objective function By |Gb| we denote number of bits necessary
to represent arbitrary element in Gb. Let Γ = (V,E) be a dependency graph. By
dec(n) for node n ∈ V , we denote all descendant nodes of n in Γ , i.e., all nodes
that can be reached from n. For every node n ∈ C we associate a binary variable

10 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

xnb for b = 0, 1 that 5:

xnb =

{
1 (n ∈ Gb)
0 (n 6∈ Gb)

(1)

Let x denote the set of all those variables; x := {xnb |n ∈ V, b ∈ {0, 1}}. Let Φ(x)
be a collection of relations on variables in x needed for consistency of assignments.
Since every constrained node should be exclusively assigned to either of the
source groups, relation xn0 + xn1 = 1 for all n ∈ C are included in Φ(x). For
every pair of pairing nodes, say n and n′, they must get exclusive assignment
to either of the source groups. Thus it must hold that xn0 + xn′1 = 1 and
xn1 +xn′0 = 1. The same relation should hold for every pair of nodes specified to
have exclusive assignment. For every pair of nodes n and n′ in C, if n′ ∈ dec(n),
then xn0 − xn′0 = 0 and xn1 − xn′1 = 0 must be included in Φ(x) as they have
to receive the same assignment. For a control node n for specifying assignment
Gb to a regular node, relation xnb = 1 is included in Φ(x). Control nodes for
prohibiting duplication and grouping need no further treatment since they are
already treated as a constrained nodes.

We apply a sanity checking that the constraints in Φ(x) are satisfiable. Observe
that relations in Φ(x) can be seen as a system of equations over GF (2). Then
Φ(x) is satisfiable if and only if the system of equations is not overdetermined.
Such a checking can be done in O(|C|3) binary operations. Despite the asymptotic
growth rate, the sanity check indeed finishes instantly even for large inputs and
in fact negligible compared to the main workload shown in the next. By Φ(x) = 1,
we denote that constraints in Φ(x) are satisfiable. We denote Φ(x) = 0, otherwise.

We then establish the objective function, E , and constraints Ψ . Define a

function n
?
∈ Gb for n ∈ V and b = 0, 1 by

n
?
∈ Gb =

{
1 (n ∈ Gb)
0 (n 6∈ Gb)

. (2)

For every node n ∈ C, it is clear, by definition, that

(n
?
∈ Gb) = xnb. (3)

For regular nodes (as defined in Section 2.2) other than those included in C, i.e.,
n ∈ V \ C = R \ (B ∪ PH), observe that n ∈ Gb holds if there is a constrained
node in the descendant of n that is assigned to Gb. Let Cn denote C ∩ dec(n) that
are the constrained nodes reached from node n. Then we have

(n
?
∈ Gb) =

∨
d∈Cn

xdb = ¬
∧
d∈Cn

¬xdb = 1−
∏
d∈Cn

(1− xdb). (4)

5 Instead, we can associate a single variable xn set to b if the node is in Gb as done in
our proof of concept implementation. It slightly reduces the number of relations, but
here we choose xnb for comprehensible explanation.

Design in Type-I, Run in Type-III 11

We now use a well known lemma [20] to remove the higher-order term in the
above formula.

Lemma 2. For binary variables x1, . . . , xk and y, relation

k∏
i=1

xi = y (5)

holds if and only if the following relations hold:

k − 1−
k∑
i=1

xi + y ≥ 0 and xi − y ≥ 0 for all i = 1, . . . , k. (6)

With this trick, we write (4) using a new variable, ynb, as

(n
?
∈ Gb) = 1−

∏
d∈Cn

(1− xdb) = ynb (7)

and put constraints∑
d∈Cn

xdb − ynb ≥ 0, and ynb − xdb ≥ 0 for all d ∈ Cn. (8)

Define function eval(n) for every regular node n ∈ R by

eval(n) :=
∑

b∈{0,1}

wnb · (n
?
∈ Gb) (9)

where wnb is a positive real number associated to node n. Also define

eval max (n) := wn0 + wn1,

eval 2nd(n) :=

{
wn0 + wn1 (if wn0 = wn1),
max(wn0, wn1) (if wn0 6= wn1),

eval min(n) := min(wn0, wn1),

(10)

which means the maximum, second-minimum, and minimum value eval(n) can
take respectively.

Parameter wnb represents the cost of having node n in Gb and the concrete
value for the parameter is defined according to one’s metrics. In this work, we
set wn0 := 1 and wn1 := 2 according to the typical ratio of bit length of elements
in G0 and G1. When a magnification factor kn is defined, they are multiplied by
kn. The idea for the setting is that we seek for a conversion requiring minimum
space for storing objects specified in the priority.

We then compose an objective function according to the given priority (I1, . . . ,
Ik). Let Ik+1 be regular nodes that do not appear in the priority, i.e., Ik+1 :=

R \ (
⋃k
i=1 Ii). For each node n, let

∆n := eval max (n)− eval min(n) (11)

12 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

which means the relative impact of duplicating n in the priority of n. And for
each Ii, let

Ξi := min
n∈Ii
{eval 2nd(n)− eval min(n)}, (12)

that is the relative minimum impact in the Ii of the assigning one single node to
the larger group. For every Ii, we define priority factor ρi as

ρi ·Ξi >
k+1∑
j=i+1

ρj
∑
n∈Ij

∆n. (13)

This means that assigning one single node to the larger group in any level of
priority has more significant impact than duplicating all nodes in all lower levels
of priority. For example, it is enough to let ρk+1 := 1 and

ρi := 1 +
1

Ξi

k+1∑
j=i+1

ρj
∑
n∈Ij

∆n (14)

for i = k down to 1. Let v denote all variables xnb and ynb. We define the target
function E(v) by

E(v) :=

k+1∑
i=1

ρi
∑
n∈Ii

eval(n)− eval min(n), (15)

which is linear over variables in v. By Ψ(v) we denote associated constraints
that include all relations in Φ(x) and relations in (8). By Ψ(v) = 1 we denote
that all constrains in Ψ(v) are fulfilled. Otherwise Ψ(v) = 0.

Running 0-1 Integer Programming. Now we run 0-1 IP solver by giving E(v) and
Ψ(v) as input. The output is an assignment to v that minimizes E(v) subject to
Ψ(v) = 1. Note that the IP solver, SCIP, used in our implementation recognizes
unsolvable inputs by nature as a part of its functionality. It makes the sanity
check in the previous stage redundant. Nevertheless, the sanity check in the
earlier stage is useful for debugging.

Composing the final split. Given the assignment to v one can compute (n
?
∈ Gb)

for all n ∈ V , and construct two dependency graphs for G0 and G1 in such a
way that every edge (n, n′) in the input dependency graph is included in at least
one of the resulting graphs that include the destination n′. Since the assignment
conforms to all given constraints, this yields a valid split. The split is optimal in
the sense that it minimizes the target value E(v) that measures one’s preferences.
This completes the description of our IPConv method.

3.3 Optimality of the Output

According to our implementation of the objective function, IPConv outputs a
solution whose variables given the top priority have minimal space to store. That

Design in Type-I, Run in Type-III 13

Target Graph Size Processing Notes

Scheme #vertices #pairings Time

Waters’ DSE [41] 95 13 146 ms (4639 ms)

BBS HIBE [14] 283 56 262 ms (15667 ms)

BlindAutoSIG [3] 339 116 142 ms -

AHO[3]+GSZK [27] 597 222 463 ms -

Trace. Group Enc.[38] 1604 588 6306 ms -

Table 1. Processing time of IPConv with SCIP. Figures in parenthesis are those of
AutoGroup+ in the same environment. The upper half is small-scale monolithic schemes
and the lower half is middle-scale schemes consisting of several building blocks. (#
vertices) counts all nodes including the pairing nodes in the input graph. (# pairings)
counts pairs of pairing nodes.

is, those variables avoid duplication and are allocated in G0 as much as possible.
Then, subject to the allocation in the top priority, variables in the second priority
are allocated to have minimal space to store, and so forth. Concrete meaning
of optimality is defined by the variables specified in the order of priority. If
one’s target is a public-key encryption scheme, for instance, and elements in a
public-key are set as the top priority, the outcome is a scheme whose public-key
has the shortest representation possible. (But it never reduces the number of
group elements in the public-key, which is left for the designers’ work.) To see
the balance between several options in the order of priority, one may repeat
the conversion to the same scheme with different preferences. Each result of
conversion is optimal with respect to the given preference.

In the context of bilinear-type conversion, optimizing the size of objects is a
reasonable choice for better efficiency as avoiding duplication not only saves the
space but also saves relevant computation. Yet extending the objective function
to implement more elaborate metrics is a potential direction for further research.
For instance, it is desirable to incorporate the cost of computation each variable
is involved in. It requires the dependency graph to carry more information than
the relations by group operations. We leave it for future development.

4 Performance

Throughout the paper, experiments are done on a standard PC: CPU: Intel
Core i5-3570 3.40GHz, OS: Linux 3.16.0-34-generic #47-Ubuntu. For Integer
Programming, we use SCIP [5] (non-commercial) and GUROBI [28] (commercial).

4.1 Processing Time for Real Schemes

Small-scale schemes. In the first two rows of Table 1, we show the processing
time of IPConv for converting Boneh-Boyen HIBE [14] with ` = 9 hierarchy, and

14 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

Waters’ Dual-system encryption [41]. Their dependency graphs are relatively
small but have number of possible splits. A comparison to AutoGroup+ is done
in the same environment. For fair comparison, we need to offset the overhead for
processing high-level I/O format in AutoGroup+. According to [6], it takes about
500ms to handle the smallest case in their experiments. Even after offsetting
similar amount as an overhead, the speedup with IPConv is obvious.

Middle-scale schemes. We also conduct experiments on middle scale schemes
that involve GS-proofs and other building blocks. The results are summarized in
Table 1.

AHO Signature + GSZK: Our first experiment is for a structure-preserving
signature scheme in [3], a.k.a. AHO signature scheme, combined with zero-
knowledge proof of a correct signature on a public message. We set the message
length for AHO signatures to n = 4 and instantiate the zero-knowledge proof
with the DLIN-based GS-proofs and convert the entire scheme to Type-III.
More details appear in Section 5.

Blind Automorphic Signature Scheme: The second experiment is for the
automorphic blind signature scheme from [3]. This experiment is to demon-
strate that our framework can handle schemes that is already in Type-III.
Overall structure of the target scheme is the same as the first one; a combina-
tion of a signature scheme and a NIWI GS-proof of a correct signature. Unlike
the first one, however, the scheme is constructed under SXDH assumption
that holds only in the Type-III setting. We describe a dependency graph for
the scheme using exclusive assignment directive so that SXDH assumption
is consistently incorporated to the framework. It may be interesting to see
that assumptions are the only part that need to set constraints originated
from the asymmetry of groups. Constraints in all upper layer algorithms are
automatically taken from the assumptions. More details appear in Section 5.3.

Traceable Group Encryption: Our last experiment is for a traceable group
encryption scheme from [38] that is more intricate involving several building
blocks such as a tag-based encryption [32], AHO signatures, and one-time
signatures, and GS-proofs. Taking reduction algorithms in the security proofs
of each building block, the corresponding dependency graph becomes as large
as consisting of 1604 nodes including 588× 2 pairing nodes, which is beyond
the scale that existing automated conversion can process within a practical
time.

4.2 Scalability

Though the experiment in the previous section already demonstrates the scala-
bility of IPConv to some extent, we would like to see overall behavior of IPConv
against the size of inputs. Generally it is exponential due to the nature of IP. Yet
it is worth to know the threshold for the practical use.

Design in Type-I, Run in Type-III 15

On Random Graphs. To measure the performance and the tolerance in the
scale, it is necessary to sample dependency graphs from reasonable and scalable
distribution. However, it is indeed impossible to consider the distribution over
all constructable cryptographic schemes. It does not make sense to consider
it over all possible graphs, either, since most of them do not correspond to
meaningful cryptographic schemes. We therefore use some heuristics to define the
distribution. Through the experiments in the previous section, we have observed
that dependency graphs for real cryptographic schemes follow some structure.
We simulate it in a scalable manner in the following way: Let N be the number
of regular nodes, P be the number of pairings, and k be the maximum fan-in to
a regular node. Every regular node is indexed by i ∈ {1, . . . , N}. Pairing nodes
pij [0] and pij [1] represent a pairing with nodes i and j as input.

[Random Dependency Graph Generation]

1. Generate regular nodes 1, . . . , N .
2. For every regular node i ∈ {1, . . . , N}, select k′ ← {1, . . . , k} and

repeat the following k′ times:
– Select j ← {1, . . . , i− 1}.
– Generate an edge (j, i).

3. Repeat the following P times:
– Randomly select two regular nodes i and j(≥ i) (discard and

redo if the pair has been chosen before).
– Generate pairing nodes pij [0] and pij [1] and edges (i, pij [0])

and (j, pij [1]).

Our preliminary experiment shows that large k results in so dense graphs
that do not well simulate the graphs for real schemes in the previous section.
Throughout our experiments, we set k = 6 and N = P as they are close to the
average for those in the real examples. With such a heuristic parameter setting
we are not able to claim theoretical rigorousness to the result of our experiments.
But they do show some tendency in the scalability.

We first examine the permissible scale of IPConv by measuring its processing
time for random dependency graphs having up to 600 pairings and equal number
of regular nodes. Figure 3 illustrates the results for 1200 inputs. IPConv finds an
optimal solution in well affordable time up to around N = P = 600. But after
that point, the processing time gets more dispersed depending on the input.

We next compare the performance with AutoGroup+. The result is illustrated
in Figure 4 that includes 250 samples for each AutoGroup+ and IPConv. Around
150 nodes, the SMT solver used in AutoGroup+ rarely fails for some unidentified
reason. With graphs containing 150 nodes, the processing time between two
conversion methods differ 100 to 106 times. This result shows that middle to large
scale conversion is out of the scope of AutoGroup+. Comparing the absolute
processing time based on Figure 4 is not perfectly fair as IPConv only takes
the task of finding an optimal split whereas AutoGroup+ deals with higher-
level inputs and outputs. But from the figure, one can see less dispersion in the
processing time with IPConv, and its scalability is well observed.

16 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

250 500 750 1,000 1,250 1,500 1,750

1 · 10−2

0.1

1

10

100

1,000

of nodes

P
ro
ce
ss
in
g
ti
m
e
(s
ec
)

SCIP

GUROBI

Fig. 3. Processing time in the semi-log scale for random dependency graphs.

On Cluster Graphs. We next evaluate the performance for more structured
dependency graphs based on a prospect that large scale systems over bilinear
groups are built in a modular fashion by combining several building blocks and
GS-proofs. How would dependency graphs for such systems look like? Observe
that, 1) only a small number of objects will be passed from one building block
to others, 2) every building block would be used only through the legitimate
interface during security proofs, and 3) the default generator is connected to a
number of nodes in each building blocks. We thus foresee that a dependency graph
for a modularly-built large-scale system would form sparsely connected clusters
of dependency graphs with a single node that has relatively dense connection to
nodes in every cluster.

We generate random cluster dependency graphs in a way that each cluster has
similar volume and structure as that of AHO signature plus GS zero-knowledge
proof in the previous experiment. Namely, a cluster consists of a randomly
connected thirty six regular nodes and some of the nodes are involved in two
random PPEs for GS zero-knowledge proofs whose dependency is automatically
encoded to the graph. Then every two clusters are randomly connected each
other with a fixed number of edges. The performance of IPConv for the random
cluster graphs are measured up to n = 19 clusters. The experiment is repeated
10 times for each n. At n = 19, a graph consists of 13046 nodes and 5182 pairings
in average. Comparing Figure 5 with Figure 3, there is a clear stretch in the
handleable number of vertices. If there are no connections between the clusters
(except for those from the node representing the default generator), the processing

Design in Type-I, Run in Type-III 17

25 50 75 100 125 150

1 · 10−2

0.1

1

10

100

1,000

10,000

1 · 105

of nodes

P
ro
ce
ss
in
g
ti
m
e
(s
ec
)

findsplit (SCIP)

findsplit (GUROBI)

autogroup+

Fig. 4. Comparison between IPConv and AutoGroup+ regarding stability of processing
time.

time will be linear in the number of the clusters assuming that the processing
time for each cluster is the same. We can thus see that the sparse connection
among the clusters did not add much complexity.

5 Using Conversion in Cryptographic Design

In this section we show how conversion plays the role in designing cryptographic
schemes. We begin by introducing a new fine-tuned construction of GS Zero-
knowledge proofs in Type-I setting in Section 5.1. It is followed by an example
that combines the GS ZK with the AHO signature scheme in Section 5.2. We
then show another example in Section 5.3 that demonstrates conversion of an
automorphic blind signature scheme designed originally in Type-III.

5.1 Fine-Tuned GS Proof of Correct Commitment via Conversion

In the Groth-Sahai NIZK for PPE relations, it is often needed to prove that [X]
is a correct commitment of a public constant A in such a way that the proof can
be simulated with X = 1G. In the original paper [27], it is done by proving a
relation represented by a general multi-scalar multiplication equation (MSE). We

18 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

2,500 5,000 7,500 10,000 12,500

1

10

100

1,000

10,000

of nodes

P
ro
ce
ss
in
g
ti
m
e
(s
ec
)

SCIP

GUROBI

Fig. 5. Processing time in the semi-log scale for cluster dependency graphs.

present a technique that does the job with a less costly linear pairing product
equation (PPE).

The Original Construction. Recall that, in the symmetric setting under
the DLIN assumption, committing to a scalar value a ∈ Zp requires two random
values, say r1 and r2, in Zp, and committing to a group element A ∈ G uses
three random values, s1, s2, s3 ∈ Zp. We denote the commitment by [a; r1, r2],
and [A; s1, s2, s3], respectively. The genuine prover algorithm computes a default
commitment of 1Zp

as [1Zp
; 0, 0], and a proof for multi-scalar multiplication

equation

[X]1 ·A−[1Zp] = 1G. (16)

Zero-knowledge simulation with a hiding CRS is done as follows. The simulator
opens the default commitment [1Zp

; 0, 0] as [0Zp
; r′1, r

′
2] by using the trapdoor. It

then sets X = 1G and computes [X] which is perfectly indistinguishable from [A].
With respect to those commitments relation (16) is read as [1G]1 ·A−[0Zp] = 1G,
which is true. Thus the simulator can generate a proof following the legitimate
procedure.

Fine-Tuning in Type-I. Instead of using default [1Zp
], the prover algorithm

uses default commitment [G1; 0, 0, 0]. Then prove a PPE

e([X], G) e(A−1, [G1]) = 1GT
. (17)

Design in Type-I, Run in Type-III 19

instead of (16). Since we are considering the DLIN-based instantiation for now,
(17) is a linear PPE that costs only 3 group elements whereas proof of (16)
requires 9 elements.

Zero-knowledge simulation with a hiding CRS is done by first equivocating
[G1; 0, 0, 0] into [G0; s1, s2, s3] using the trapdoor. Then, by setting X = 1G,
relation (17) is e([1G], G) e(A−1, [G0]) = 1GT

, which is true. Thus the zero-
knowledge simulator can prove it using the witness.

Converting to Type-III. By converting the above proof system, we have an
analogue proof system in the asymmetric setting based on the XDLIN assump-
tion [1]. While the security is guaranteed by the conversion framework of [4], the
quality of the resulting proof system must be examined.

Speaking from the conclusion, we have a clean split of its dependency graph
without duplication except for the nodes representing the CRS. Thus, with
duplicated CRS in G0 and G1, every group operation is done in either G0 or
G1 and asymmetric pairing computation can be performed consistently. More
importantly, the proof remains consisting of 3 group elements (and they are all
in G0). Below,we present the resulting proof system in detail. It is particularly
important to see that A and [X] in (17) are in the same group without duplicating
A. Full details are presented in the following.

To cope with the original description of the Groth-Sahai proof system, we
switch to additive notation in the rest of this section. Let us define some notations
used in the following. Let (p,G0,G1,GT , e,G, G̃) be an asymmetric bilinear group
with e : G0 ×G1 → GT . For X,Y ∈ Gnb , operation X + Y denotes the result of
element-wise group operations in Gb. By Matn×m, we denote all matrices of size
n×m over Zp. Let F̃ be a function that

F̃

X1

X2

X3

 ,

Y1
Y2
Y3

 :=

 ê(X1, Y1) ê(X1, Y2) ê(X1, Y3)
ê(X2, Y1) ê(X2, Y2) ê(X2, Y3)
ê(X3, Y1) ê(X3, Y2) ê(X3, Y3)

 (18)

where

ê(X,Y) =

e(X,Y) (X ∈ G0 ∧ Y ∈ G1)

e(Y,X) (Y ∈ G0 ∧X ∈ G1)

⊥ (otherwise)

. (19)

By X •̃Y , we denote F̃ (X,Y). For vectors X = (X(1), . . . , X(n)) and Y =
(Y (1), . . . , Y (n)), we denote X •̃Y for shorthand of

∑n
i=1

(
X(i) •̃Y (i)

)
.

It is important to see that computation in F̃ and •̃ can be carried out as long
as X and Y are taken exclusively from G0 and G1. We use convention that large
case letters like A represent elements in G0, and those with tilde like Ã represent
elements in G1.

Now we are ready to describe how to prove that [X] is a correct commitment
of A ∈ G0 with the GS proof system instantiated in Type-III setting based on
XDLIN.

20 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

[CRS Generation]

Choose α, β, ξ1, ξ2 ← Zp and compute G1 := Gα, G2 := Gβ , u1 := (G1,O, G),
u2 := (O, G2, G), and

u3 = (G31, G32, G33) := ξ1 · u1 + ξ2 · u2 + (O,O,−γ ·G) (20)

= (ξ1 ·G1, ξ2 ·G2, (ξ1 + ξ2 − γ) ·G) (21)

where γ = 0 for binding and γ = 1 for hiding mode. Compute ũ1, ũ2, and
ũ3 exactly in the same way using the same randomness (α, β, ξ1, ξ2) but with
generator G̃ instead of G. Then CRS is (u, ũ) where

u :=

u1

u2

u3

 , and ũ :=

 ũ1

ũ2

ũ3

 . (22)

[Prover Algorithm]

Given A ∈ G0 as a witness, first commit to X := A using randomness SX :=
(s1,X , s2,X , s3,X)← Mat1×3 as

[X] := (O,O, X) + SX u = (C1,X , C2,X , C3,X). (23)

Set (s1,G̃, s2,G̃, s3,G̃) = (0, 0, 0) ∈ Z3
p. Compute proof θ(17) as

θ(17) :=

s1,X s1,G̃
s2,X s2,G̃
s3,X s3,G̃

(O O G
O O A−1

)
=

O O θ1,(17)
O O θ2,(17)
O O θ3,(17)

 . (24)

Output [X] and θ(17) as a proof. Dropping trivial elements, they consist of 6
group elements in G0.

[Verifier Algorithm]

Compute the default commitment of G̃ as

[G̃] := (O,O, G̃) + (0, 0, 0)u = (O,O, G̃) = (C̃1,G̃, C̃2,G̃, C̃3,G̃). (25)

Then output 1 if the following holds. Output 0, otherwise.C1,X

C2,X

C3,X

 •̃
OO
G̃

+

 C̃1,G̃

C̃2,G̃

C̃3,G̃

 •̃
OO
A−1

 = (ũ)>•̃(θ(17))> (26)

[Zero-Knowledge Simulation]

Generate CRS with γ = 1 (hiding mode). GivenA ∈ G0 and trapdoor (α, β, ξ1, ξ2),
set (s1,G̃, s2,G̃, s3,G̃) := (ξ1, ξ2,−1), which equivocate the default commitment

Design in Type-I, Run in Type-III 21

[G̃1; 0, 0, 0] to [G̃0; ξ1, ξ2,−1]. Also set X := G0. Then follow the prover algorithm
using these witnesses.

Direct Fine-Tuning in Type-III. The above idea can be applied to SXDH-
based GS-proofs in Type-III as well. However, it is limited to the case where A
is duplicated. The reason is that, relation (17) must be proved as one-side PPE
in Type-III where involved commitments appear only in one side of the pairing
operations. Namely, (17) has to be rewritten as

e([X], G̃) e([G1], Ã−1) = 1GT
. (27)

Thus we need A ∈ G0 to compute [X] and additionally need Ã ∈ G1 to verify
the proof.

If duplicating A is not acceptable, we have to get back to the original con-
struction that proves MSE (16) instead. It costs 6 group elements. Note that it
is also possible to prove (17) as a two-side PPE but it costs 8 group elements.

5.2 AHO Signature + GSZK

AHO signature scheme in Type-I setting is summarized as follows. Let gk :=
(p,G,GT , e,G) be a symmetric bilinear groups. A public-key is (gk , A0, A1, A2,
A3, B0, B1, B2, B3, Gz, Gr, Hz, Hu, G1, . . . , Gn, H1, . . . ,Hn) for the message space
of Gn. A signature for message (M1, . . . ,Mn) is σ = (Z,R, S, T, U, V,W) ∈ G7.
To prove possession of a correct signature for a message in the clear, a prover
randomizes (S, T, V,W) into (S′, T ′, V ′,W ′) in a way that e(S, T) = e(S′, T ′)
and e(V,W) = e(V ′,W ′) hold and then proves that pairing product equations

e(A0, [A1]) e(A2, [A3]) = e(Gz, [Z]) e(Gr, [R]) e(S′, [T ′])

n∏
i=1

e(Gi, [Mi]) (28)

e(B0, [B1]) e(B2, [B3]) = e(Hz, [Z]) e(Hu, [U]) e(V ′, [W ′])

n∏
i=1

e(Hi, [Mi]) (29)

hold with respect to committed variables in the brackets. Additionally, relation
(17) for every public value X ∈ {A1, A3, B1, B3,M1, . . . ,Mn} is proved by using
the technique in Section 5.1 to show the correctness of the commitments.

We then consider four approaches to obtain Type-III counterpart of the above
scheme. Table 2 summarizes the performance of the resulting schemes in Type-III
in terms of the proof size and number of pairings in verification.

Conversion: By converting the above scheme we obtain a scheme in Type-III.
Details for the proof part are presented in Appendix A. In the resulting
scheme, CRS is entirely duplicated but elements in the proofs, public-keys,
and messages are assigned to either G0 or G1 without duplication. It is
particularly important to point out that X and [X] in (17) are assigned
to the same group without duplicating X while proving (17) as a linear
PPE. This approach is the most efficient in the proof size since most of
commitments and proofs can be allocated in G0.

22 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

Construction Duplicated Proof Size # of Pairings

Object G0 G1 in bits naive batched

Conversion crs 6n+ 39 6 (6n+ 51)λ 18n+ 90 2n+ 20

Direct (1) msg 2n+ 18 3n+ 12 (8n+ 42)λ 12n+ 60 2n+ 17

Direct (2) pk 4n+ 26 4n+ 16 (12n+ 58)λ 20n+ 84 n+ 23

Direct (3) - 4n+ 26 4n+ 20 (12n+ 66)λ 22n+ 100 2n+ 22

Table 2. Comparison of proof size and number of pairings between conversion-aided
and three direct constructions. The message is in G0. Proof size is for GS commitments
and proofs. Column ”naive” counts the number of pairings literally in the verification
equations, and ”batched” counts the number of pairings in batch verification.

Direct instantiation 1 (with duplicated messages): Next we consider in-
stantiating the GS-proofs directly over Type-III groups based on the SXDH
assumption. As observed in Section 5.1, the fine-tuned construction is only
possible when public constants paired with committed variables are duplicated.
Therefore, elements {A1, A3, B1, B3,M1, . . . ,Mn} have to be duplicated. Du-
plicated key elements, A1, A3, B1, and B3 will be a part of the public-key. On
the other hand, duplicated message M1, . . . ,Mn must be sent to the verifier
as a part of the proof.

Direct instantiation 2 (with duplicated keys): When duplicating Mi is
prohibiting, a workaround would be to commit to public-key elements Gi and
Hi instead. Duplicated Gi and Hi can be included in the public-key (thus
we do not count it in the proof size). Unfortunately, this approach is not
efficient in terms of proof size since the proofs of correct commitment for both
Gi and Hi doubles the proof length. On the other hand, it allows efficient
batch verification. The reason is that pairings corresponding to e([Gi],Mi)
and e([Hi],Mi) in the verification can be merged into one pairing associated
to Mi while at least two pairings are needed to deal with e(Gi, [Mi]) and
e(Hi, [Mi]) in the above approaches.

Direct instantiation 3 (without duplication): Finally, we consider avoiding
duplication at all in the direct instantiation of GS proofs in Type-III by
following the original approach using MSE (16) as shown in the beginning of
Section 5.1. As expected, both proof size and number of pairings increase
due to the MSEs. Use of batch verification is not quite effective, either.

As we see from Table 2, there is no clear winner. The scheme obtained by
conversion yields the most compact proofs for messages of n > 5. But for short
and duplicable messages, direct construction produces more compact proofs.
Regarding the computational workload, when batch verification is taken into
account, there is not much difference for small n no matter what approach is
taken. But for large n, direct instantiation in Type-III with duplicated public-key
is more advantageous.

Design in Type-I, Run in Type-III 23

5.3 Automorphic Blind Signature Scheme

Examples so far deals with schemes designed purely in Type-I. Now we show that
schemes designed originally in Type-III are also incorporated into our framework
for finding optimal deployment of source groups and perhaps finding more efficient
GS-proofs used there.

In the automorphic blind signature scheme in [3], a blind signature is a
GS-proof for one’s possession of a correct (plain) automorphic signature on a
clear message. A plain automorphic signature consists of five group elements
σ := (A,B, D̃,R, S̃) verified by PPEs:

e(A, Ỹ · D̃) = e(K ·M, G̃) e(T, S̃), (30)

e(B, G̃) = e(F, D̃), e(R, G̃) = e(G, S̃). (31)

An automorphic blind signature is a GS-proof of (30) and (31) with (A,B, D̃,R, S̃)
as a witness. The security of the original construction bases on SXDH assumption
and Asymmetric Double Hidden Strong DH Assumption (ADHDH) [3].

To incorporate the scheme into the conversion framework, we need to build
a dependency graph in such a manner that the original scheme is included in a
possible solution of conversion. First, a special treatment is needed to the nodes
representing X and Ỹ that are already in the duplicated form since they should
not be individually duplicated by conversion. We set dependency Y → X, and
prohibit duplication of X. In this way, Y will be duplicated so that X is assigned
to Gb and Ỹ is assigned to G1−b. Such a treatment is applied to (M,N) and
(R,S) as well. Second, we need to build a dependency graph for the assumptions.
Since ADHDH is known to hold even in the Type-I generic bilinear group model,
we simply ignore the distinction of G0 and G1. For SXDH, we prohibit duplication
of any variable in its instance and use grouping of variables so that they are
allocated to the same group. In this way, the assumption remains valid when
converted back to Type-III. Finally, the GS-proof part is described by using the
DLIN-based instantiation of GS-proofs. They are witness indistinguishable proofs
and we do not rely on the fine-tuning as in the previous case.

After conversion, the resulting scheme in Type-III is secure based on SXDH,
ADHDH with duplicated D̃, and XDLIN assumptions. We present details of
the converted scheme for the part of generating and verifying a blind signature
in Appendix B. Table 3 summarizes the performance in comparison with the
original construction. The converted scheme saves 28% of blind signature in bits
and equal or slightly better in verification workload.

6 Conclusion

We have proposed an efficient type conversion method based on 0-1 Integer
Programming. It is shown how to represent several constraints into a system of
linear binary equations so that a 0-1 IP solver can find an optimal solution that

24 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

Construction Duplicated Size of Blind Sig. # of Pairings

Objects G0 G1 in bits naive batched

Conversion crs, D̃ 24 6 36λ 64 13

Original[3] - 18 16 50λ 68 13

Table 3. Comparison of the signature size and number of pairings in verification between
conversion-aided and direct instantiations of verifier’s algorithm for the automorphic
blind signature scheme [3]. The message is (M,N) ∈ G0 × G1. Duplication of D̃ is
needed for computing proofs but not for verification.

meets the constraints. The performance and scalability are demonstrated over
real schemes and randomly generated samples.

Usefulness of the conversion-aided design approach is demonstrated by ex-
amples that outputs more compact GS-proofs than those manufactured directly
in Type-III setting. A fine-tuning technique that improves the performance of
converted GS-proofs is introduced.

Nevertheless, results in this paper can be seen as a step toward realizing
automated modular design of cryptographic protocols. Depending on the target
schemes, direct instantiation in Type-III based on SXDH can yield better results.
It is in fact another optimization issue that machines can help to find a globally
optimal solution. We include it as an interesting research and engineering target
in our future plan.

Finally, a proof-of-concept implementation with source codes and data files
for experiments in Section 5 are available from the authors for review. Open
source development is certainly in our future plan.

7 Acknowledgements

The authors thank Susan Hohenberger Waters and co-authors of [7, 6] for their
help to understand AutoGroup. We also thank to Takeya Tango for an alternative
sanity checking method. Special thanks to the developers of SCIP [5] for their
quality software.

References

1. M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Constant-
size structure-preserving signatures: Generic constructions and simple assumptions.
In ASIACRYPT 2012, vol.7658 of LNCS, pp.4–24, 2012.

2. M. Abe, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Tagged one-time
signatures: Tight security and optimal tag size. In PKC 2013, vol.7778 of LNCS,
pp.312–331, 2013.

Design in Type-I, Run in Type-III 25

3. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-
preserving signatures and commitments to group elements. J. Cryptology, 29(2):363–
421, 2016.

4. M. Abe, J. Groth, M. Ohkubo, and T. Tango. Converting cryptographic schemes
from symmetric to asymmetric bilinear groups. In CRYPTO 2014, vol.8616 of
LNCS, pp.241–260, 2014.

5. T. Achterberg. CIP: Solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1–41, 2009.
http://mpc.zib.de/index.php/MPC/article/view/4.

6. J. A. Akinyele, C. Garman, and S. Hohenberger. Automating fast and secure
translations from type-i to type-iii pairing schemes. In ACM CCS 2015, pp.1370–
1381, ACM, 2015.

7. J. A. Akinyele, M. Green, and S. Hohenberger. Using SMT solvers to automate
design tasks for encryption and signature schemes. In ACM CCS 2013, pp.399–410,
ACM, 2013.

8. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on
outsourced data. In ACM CCS 2013, pp.863–874, ACM, 2013.

9. R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic. IACR ePrint Archive,
Report 2013/400, 2013. http://eprint.iacr.org.

10. G. Barthe, E. Fagerholm, D. Fiore, J. C. Mitchell, A. Scedrov, and B. Schmidt.
Automated analysis of cryptographic assumptions in generic group models. In
CRYPTO 2014, vol 8616. of LNCS, pp.95–112, 2014.

11. G. Barthe, E. Fagerholm, D. Fiore, A. Scedrov, B. Schmidt, and M. Tibouchi.
Strongly-optimal structure preserving signatures from type II pairings: Synthesis
and lower bounds. In PKC 2015, vol 9020. of LNCS, pp.355–376, 2015.

12. B. Blanchet. Cryptoverif: A computationally sound mechanized prover for crypto-
graphic protocols. In Dagstuhl seminar Formal Protocol Verification Applied, 10
2007.

13. O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, H. Sibert, and D. Vergnaud.
Batch Groth-Sahai. In ACNS 2010, vol.6123 of LNCS, pp.218–235, 2010.

14. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption. In
EUROCRYPT 2004, vol.3027 of LNCS, pp.223–238, 2004.

15. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004,
vol.3152 of LNCS, pp.41–55, 2004.

16. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In
ACM CCS 2004, pp.168–177. ACM, 2004.

17. S. Chatterjee, D. Hankerson, E. Knapp, and A. Menezes. Comparing two pairing-
based aggregate signature schemes. Des. Codes Cryptography, 55(2-3):141–167,
2010.

18. S. Chatterjee and A. Menezes. On cryptographic protocols employing asymmetric
pairings - the role of psi revisited. IACR ePrint Archive, Report 2009/480, 2009.
http://eprint.iacr.org.

19. S. Chatterjee and A. Menezes. On cryptographic protocols employing asymmetric
pairings - the role of revisited. Discrete Applied Mathematics, 159(13):1311–1322,
2011.

20. D.-S. Chen, R. G. Batson, and Y. Dang. Applied Integer Programming: Modeling
and Solution. WILEY, 2009.

21. L. De Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS 2008, ETAPS
2008, vol.4963 of LNCS, pp.337–340, 2008.

26 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

22. A. Escala and J. Groth. Fine-tuning Groth-Sahai proofs. In PKC 2014, vol.8383 of
LNCS, pp.630–649, 2014.

23. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. L. Villar. An algebraic framework
for Diffie-Hellman assumptions. In CRYPTO 2013, vol.8043 of LNCS, pp.129–147,
2013.

24. G. Gamrath and M. E. Lübbecke. Experiments with a generic Dantzig-Wolfe
decomposition for integer programs. In SEA 2010, vol.6049 of LNCS, pp.239–252,
2010.

25. E. Ghadafi, N. P. Smart, and B. Warinschi. Groth-Sahai proofs revisited. In PKC
2010, vol.6056 of LNCS, pp.177–192, 2010.

26. F. Göloglu, R. Granger, G. McGuire, and J. Zumbrägel. On the function field sieve
and the impact of higher splitting probabilities: Application to discrete logarithms in
f
21971. IACR ePrint Archive, Report 2013/074, 2013. http://eprint.iacr.org.

27. J. Groth and A. Sahai. Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput., 41(5):1193–1232, 2012.

28. Gurobi Optimization, Inc. Gurobi optimizer reference manual. https://www.

gurobi.com/documentation/6.5/refman.pdf. http://www.gurobi.com/.
29. G. Herold, J. Hesse, D. Hofheinz, C. Ràfols, and A. Rupp. Polynomial spaces: A

new framework for composite-to-prime-order transformations. In CRYPTO 2014,
vol.8616 of LNCS, pp.261–279, 2014.

30. A. Joux. Faster index calculus for the medium prime case application to 1175-bit
and 1425-bit finite fields. In EUROCRYPT 2013, vol.7881 of LNCS, pp.177–193,
2013.

31. A. Joux. A new index calculus algorithm with complexity l(1/4+o(1)) in
very small characteristic. IACR ePrint Archive, Report 2013/095, 2013.
http://eprint.iacr.org.

32. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC 2006,
vol.3876 of LNCS, pp.581–600, 2006.

33. T. Koch. Rapid Mathematical Prototyping. PhD thesis, Technische Universität
Berlin, 2004.

34. LINDO Systems. LINDO. http://www.lindo.com/.
35. M. Melnick. LiPS. http://lipside.sourceforge.net/.
36. B. Libert and M. Joye. Group signatures with message-dependent opening in the

standard model. In CT-RSA 2014, vol.8366 of LNCS, pp.286–306, 2014.
37. B. Libert, M. Joye, M. Yung, and T. Peters. Secure efficient history-hiding append-

only signatures in the standard model. In PKC 2015, vol.9020 of LNCS, pp.450–473,
2015.

38. B. Libert, M. Yung, M. Joye, and T. Peters. Traceable group encryption. In PKC
2014, vol.8383 of LNCS, pp.592–610, 2014.

39. N. P. Smart and F. Vercauteren. On computable isomorphisms in efficient asym-
metric pairing-based systems. Discrete Applied Mathematics, 155(4):538–547, 2007.

40. B. Waters. Efficient identity-based encryption without random oracles. In EURO-
CRYPT 2005, vol.3494 of LNCS, pp.114–127, 2005.

41. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In CRYPTO 2009, vol.5677 of LNCS, pp.619–636, 2009.

A Converted GSZK for AHO signature

Let parameters for AHO signature scheme be asymmetric bilinear groups gk :=
(p,G0,G1,GT , e, G, G̃), verification-key pk := (gk , G̃z, G̃r, H̃z, H̃u, {G̃i, H̃i}ni=1, Ã0,

Design in Type-I, Run in Type-III 27

A1, Ã1, A2, B̃0, B1, B̃1, B2), message msg := (M1, . . . ,Mn), and signature σ :=
(Z,R,U, S̃, T, Ṽ ,W). CRS u ∈ G3

0 and ũ ∈ G̃3
1 are generated in exactly the same

manner as described in Section 5.1. The relations to prove are PPEs (28), (29),
and (17) re-numbered as follows.

ê(Ã0, [A1]) ê(Ã2, [A3]) = ê(G̃z, [Z]) ê(G̃r, [R]) ê(S̃′, [T ′])

n∏
i=1

ê(G̃i, [Mi]) (32)

ê(B̃0, [B1]) ê(B̃2, [B3]) = ê(H̃z, [Z]) ê(H̃u, [U]) ê(Ṽ ′, [W ′])

n∏
i=1

ê(H̃i, [Mi]) (33)

ê(G̃, [X]) ê([G̃], X−1) = 1GT
for each X ∈ {A1, A3, B1, B3,Mi}. (34)

With pairing ê defined as (19), the relations can be regarded as linear PPEs.
In the rest of this section, we switch to additive notation for convenience of
presenting GS-proofs.

[Prover Algorithm]

Commit to Y ∈ (Z,R,U, T ′,W ′, A1, A3, B1, B3,Mi) by computing

[Y] := (O,O, Y) + SY u = (C1,Y , C2,Y , C3,Y) ∈ G3
0. (35)

with independently uniform SY ← Mat1×3. Let SG̃ := (0, 0, 0) ∈ Z3
p, and let

S(32) :=

SA1

SA3

SZ
SR
ST ′

SMi

 , S(33) :=

SB1

SB3

SZ
SU
SW ′

SMi

 , and S(34),X :=

(
SG̃
SX

)
. (36)

28 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

Compute θ̃(32), θ̃(33) and θ(34),X for X ∈ {A1, A3, B1, B3,M1, . . . ,Mi} where:

θ̃(32) := S>(32)

O O Ã0

O O Ã2

O O G̃−1z
O O G̃−1r
O O G̃−1t
O O G̃−1i

 =

O O θ̃1,(32)
O O θ̃2,(32)
O O θ̃3,(32)

 ∈ G̃3×3
1 , (37)

θ̃(33) := S>(33)

O O B̃0

O O B̃2

O O H̃−1z
O O H̃−1u
O O H̃−1w
O O H̃−1i

 =

O O θ̃1,(33)
O O θ̃2,(33)
O O θ̃3,(33)

 ∈ G̃3×3
1 , (38)

θ(34),X := S>(34),X
(
O O G
O O X−1

)
=

O O θ1,(34),X
O O θ2,(34),X
O O θ3,(34),X

 ∈ G3×3
0 . (39)

Output all [Y], θ̃(32), θ̃(33), and θ(34),X dropping redundant O.

[Verifier Algorithm]

Given the above proof and CRS as input, output 1 (as accept) if all the following
equations hold. Output 0, otherwise.

 OO
Ã0

 •̃
C1,A1

C2,A1

C3,A1

+

 OO
Ã2

 •̃
C1,A3

C2,A3

C3,A3

+

OO
G̃−1z

 •̃
C1,Z

C2,Z

C3,Z

+

OO
G̃−1r

 •̃
C1,R

C2,R

C3,R

+

OO
S̃′
−1

 •̃
C1,T ′

C2,T ′

C3,T ′

+

n∑
i=1

OO
G̃−1i

 •̃
C1,Mi

C2,Mi

C3,Mi

=
(
θ̃(32)

)>
•̃ (u)

>
(40)

 OO
B̃0

 •̃
C1,B1

C2,B1

C3,B1

+

 OO
B̃2

 •̃
C1,B3

C2,B3

C3,B3

+

OO
H̃−1z

 •̃
C1,Z

C2,Z

C3,Z

+

OO
H̃−1u

 •̃
C1,U

C2,U

C3,U

+

OO
Ṽ ′
−1

 •̃
C1,W ′

C2,W ′

C3,W ′

+

n∑
i=1

OO
H̃−1i

 •̃
C1,Mi

C2,Mi

C3,Mi

=
(
θ̃(33)

)>
•̃ (u)

>
(41)

Design in Type-I, Run in Type-III 29

C1,X

C2,X

C3,X

 •̃
OO
G̃

+

 C̃1,G̃

C̃2,G̃

C̃3,G̃

 •̃
OO
X−1

 = (ũ)
> •̃
(
θ(34),X

)>
(42)

for X ∈ {A1, A3, B1, B3,Mi} where (C̃1,G̃, C̃2,G̃, C̃3,G̃) := (O,O, G̃).

B Converted Automorphic Blind Signature Scheme

This section presents details of automorphic blind signature scheme obtained
by conversion. A full description includes key generation, blinding, signing,
unblinding, verification algorithms, and also security proofs. Here, we focus on
presenting user’s and verifier’s algorithms in transferring a blind signature. They
actually consist of prover and verifier algorithms like the previous case. CRS
u ∈ G3

0 and ũ ∈ G̃3
1 are generated as described in Section 5.1. Let parameters

be asymmetric bilinear groups gk := (p,G0,G1,GT , e, G, G̃), verification-key
pk := (gk , F,K, T,X(= Gx), Ỹ (= G̃x)), message (M(= Gm), Ñ(= G̃m)). An
automorphic blind signature is a witness indistinguishable GS-proof for relations
(30) and (31) as re-numbered as follows.

ê([A], Ỹ) ê([A], [D̃]) = ê(K, G̃) ê(M, G̃) ê(T, [S]) (43)

ê([B], G̃) = ê(F, [D̃]) (44)

ê([R], G̃) = ê(G, [S]) (45)

With pairing ê defined as (19), the second and third relations are regarded as
linear PPEs. Again, we switch to additive notation while describing GS-proofs in
the following.

[Blind Signature Issuing Algorithm]

Commit to δ ∈ (A,B,R) and ρ̃ ∈ (D̃, S̃) by

[δ] := (O,O, δ) + Sδ u = (C1,δ, C2,δ, C3,δ) ∈ G3
0, and (46)

[ρ̃] := (O,O, ρ̃) + Sρ̃ ũ = (C1,ρ̃, C2,ρ̃, C3,ρ̃) ∈ G3
1 (47)

where Sδ ← Mat1×3 and Sρ̃ ← Mat1×3. Let Tp be a random 3× 3 matrix over
Zp. Compute θ(43), θ(44), and θ(45) as:

θ(43) = S>A (O,O, X) + S>A (O,O, D) + S>
D̃

(O,O, A) + S>A SD̃ u

− S>
S̃

(O,O, T) + (Tp − T>p)u (48)

θ(44) = S>B (O,O, G)− S>
D̃

(O,O, F) (49)

θ(45) = S>R (O,O, G)− S>
S̃

(O,O, G) (50)

Output all [δ], [ρ̃], θ(43), θ(44), and θ(45) without redundant O as a blind signature.

30 Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

[Verifier Algorithm]

Given the above blind signature and message msg := (M, Ñ), output 1 if all the
following equations hold. Output 0, otherwise.

C1,A

C2,A

C3,A

 •̃
OO
Ỹ

+

C1,A

C2,A

C3,A

 •̃
C1,D̃

C2,D̃

C3,D̃

 (51)

=

OO
K

 •̃
OO
G̃

+

OO
M

 •̃
OO
G̃

+

OO
T

 •̃
C1,S̃

C2,S̃

C3,S̃

+
(
θ(43)

)> •̃ (ũ)
>

OO
G̃

 •̃
C1,B

C2,B

C3,B

 =

OO
F

 •̃
C1,D̃

C2,D̃

C3,D̃

+
(
θ(44)

)> •̃ (ũ)
>

(52)

OO
G̃

 •̃
C1,R

C2,R

C3,R

 =

OO
G

 •̃
C1,S̃

C2,S̃

C3,S̃

+
(
θ(45)

)> •̃ (ũ)
>

(53)

