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Abstract. We construct the first UC commitment scheme for binary
strings with the optimal properties of rate approaching 1 and linear time
complexity (in the amortised sense, using a small number of seed OTs).
On top of this, the scheme is additively homomorphic, which allows for
applications to maliciously secure 2-party computation. As tools for ob-
taining this, we make three contributions of independent interest: we
construct the first (binary) linear time encodable codes with non-trivial
distance and rate approaching 1, we construct the first almost universal
hash function with small seed that can be computed in linear time, and
we introduce a new primitive called interactive proximity testing that
can be used to verify whether a string is close to a given linear code.

1 Introduction

Commitment schemes are one of the fundamental building blocks of crypto-
graphic protocols. In a nutshell, a commitment scheme is a two party protocol
that allows a prover P to commit to a secret without revealing it to the verifier
V . Later on, in an unveil phase P can convince V that the commitment contains
a specific secret. Classically, two security properties are required of commitment
schemes: The hiding property requires that the verifier V does not learn any-
thing about the committed secret before the unveil and the binding property
requires that the prover P cannot change the committed secret after the commit
phase.

A stronger security requirement is (stand-alone) simulation-based security,
where we require that any interaction with a commitment protocol is indistin-
guishable from a perfectly secure ideal commitment. Commitment schemes that
satisfy these security notions can be realized stand-alone (i.e. no trusted setup
required) from basic and highly efficient cryptographic primitives such as pseu-
dorandom generators [Nao91].

However, commitment schemes are rarely used just by themselves; they are
used as components in complex protocols. In such a situation, the stand-alone
simulation-based security guarantee breaks down as several (nested) instances
of a commitment protocol might be executed with correlated secrets.



The most prominent security framework that captures this scenario of proto-
cols running in a larger context is Canetti’s UC framework [Can01]. UC security
offers very strong composability guarantees; in particular UC secure protocols
can be used in arbitrary contexts retaining their security properties. This how-
ever comes at a price, as UC commitments cannot be realized without trusted
setup assumptions such as common reference strings [CF01]. On the positive
side, it is well known that realizing UC secure commitments is sufficient for
general UC secure two-party and multiparty computation [CLOS02].

Any commitment scheme that is UC secure must be both straight-line ex-
tractable and equivocal, meaning a simulator must have means to efficiently ob-
tain the message in a commitment sent by a malicious prover and also change
the contents of a commitment sent to a malicious verifier without having (non-
black-box) access to these machines. To obtain these strong properties, earlier
constructions of UC commitments (e.g. [CF01,Lin11,BCPV13]) relied on expen-
sive public key primitives for every single instance of the protocol, which makes
them considerably less efficient than stand-alone secure commitments (which, as
mentioned above, can be realized from minimal cryptographic primitives). The
most efficient UC commitment protocols based directly on public key assump-
tions [Lin11,BCPV13] require exponentiations in groups of larger order and have
therefore a typical computational complexity of Ω(n3) for commitments to n-bit
messages.

A recent line of research [GIKW14,DDGN14,CDD+15,FJNT16,Bra16] is con-
cerned with the construction of UC secure commitments schemes for which the
use of public key primitives is confined to a once-and-for-all setup phase, the
cost of which can be amortized over many sessions later on.

This gives us the possibility to build extremely efficient commitment schemes.
Let us therefore consider what we can hope to achieve: Clearly, the best running
time we can have is O(n) for committing and opening n bits, since one must look
at the entire committed string. As for communication, let us define the rate of a
commitment scheme to be the size of the committed string divided by the size
of a commitment. Now, a UC commitment must be of size at least the string
committed to, because the simulator we need for the proof of UC security must
be able to extract the committed string from the commitment. Therefore the
rate of a UC commitment scheme must be at most 1.1 If a commitment to n
bits has size n+ o(n) bits, we will say it has rate approaching 1.

Another desirable property for commitment schemes is the additively ho-
momorphic property: we interpret the committed strings as vectors over some
finite field, and V can add any two commitments, to vectors a, b. The result will
be a commitment that can be opened to (only) a + b while revealing nothing
else about a and b. Note that this additive property is crucial in applications
of string commitments to secure computation: In [FJN+13], it was shown how
to do maliciously secure 2-party computation by doing cut-and-choose on gar-

1 However, as we shall see, if one only needs to commit to random bit strings, one
can hope to generate these pseudorandomly from a short seed, and have rate higher
than 1 for commitment (but of course not for opening).
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bled gates rather than on garbled circuits. This performs asymptotically better
than conventional cut-and-choose but requires an additive commitment scheme
to “glue” the garbled gates together to a circuit. In [AHMR15], additive commit-
ments were used in a similar way for secure RAM computation. Any efficiency
improvements for commitments are directly inherited by these applications.

1.1 Previous work

In [GIKW14] and [Bra16] rate 1 was achieved. On the other hand, [DDGN14]
achieved constant rate and additively homomorphic commitments. In follow-up
work, linear time and additive homomorphism were achieved in [CDD+15], and
shortly after, in [FJNT16], rate 1 and additively homomorphic commitments
were achieved.

Now, the obvious question is of course: can this line of research be closed,
by constructing a commitment scheme with the optimal properties of rate 1 and
linear time – and also with the additive property?

To see why the answer is not clear from previous works in this line of research
[GIKW14,DDGN14,CDD+15,FJNT16], let us briefly describe the basic ideas in
those constructions:

P will encode the vector s to commit to using a linear error correcting code
C, to get an encoding C(s). Now he additively secret-shares each entry in C(s)
and a protocol is executed in which V learns one share of each entry while P
does not know which shares are given to V . This phase uses a small number
of seed OT’s that are done in a once-and-for-all set-up phase analogous to the
set-up of “watchlists” in the MPC-in-the-head and IPS compiler constructions
[IPS09,IPS08]. To open, P reveals the codeword and both shares of each entry.
V checks that the shares are consistent with those he already knew, reconstructs
C(s) and checks that it is indeed a codeword. This is clearly hiding because V
has no information on C(s) at commit time. Binding also seems to follow easily:
if P wants to change his mind to another codeword, he has to change many
entries and hence at least one share of each modified entry. We can expect that
V will notice this with high probability since P does not know which share he
can change without being caught. There is a problem, however: a corrupt P does
not have to send shares of a codeword at commitment time, so he does not have
to move all the way from a codeword to the next one, and it may not be clear
(to the simulator) which string is being committed.

Three solutions to this have been proposed in earlier work: in [CDD+15] the
minimum distance of C is chosen so large that P ’s only chance is to move to the
closest codeword. This has a cost in efficiency and also means we cannot have the
additive property: if we add codewords with errors, the errors may accumulate
and binding no longer holds. In [DDGN14], a verifiable secret-sharing scheme was
used on top of the coding, this allows V to do some consistency checks that forces
P to use codewords, except with negligible probability. But it also introduces a
constant factor overhead which means there is no hope to get rate 1. Finally,
in [FJNT16], the idea was to force P to open some random linear combinations
of the codewords. In the case of binary strings, k linear combinations must be
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opened, where k is the security parameter. This indeed forces P to use codewords
and gives us the additive property. Also, a couple of tricks were proposed in
[FJNT16] which gives commitments with rate 1, if the code C has rate 1. On
the other hand, they could not get linear time this way, first because no linear
time encodable codes with rate approaching 1 were known2, and second because
one needs to visit each of prover’s codewords Ω(k) times to compute the linear
combinations.

Scheme Rate 1
Linear
Time

Additively
Homomorphic

[GIKW14] 3 7 7

[DDGN14] 7 7 3

[CDD+15] 7 3 3

[FJNT16] 3 7 3

[Bra16] 3 7 7

This Work 3 3 3

Table 1. Comparison between the UC Commitment schemes presented in
[GIKW14], [DDGN14], [CDD+15], [FJNT16], [Bra16] and the scheme presented
in this paper (ΠHCOM ).

1.2 Our contribution

In this paper, we show that we can indeed have UC commitments that have
simultaneously rate approaching 1, linear time and additive homomorphism. A
comparison between our results and previous works can be seen in Table 1. While
we follow the same blue-print as in previous work, we overcome the obstacles
outlined above via three technical contributions that are of independent interest:

1. We introduce a primitive we call interactive proximity testing that can be
used to verify whether a given string s is in an interleaved linear code C�m,
or at least close to C�m.3 The idea is to choose a random almost universal
and linear hash function h and test whether h(s) ∈ h(C�m). We show that
if s is “too far” away from C�m, then this test will fail with high probability.
Intuitively, this makes sense to use in a 2-party protocol because the party
holding s can allow the other party to do the test while only revealing a
small amount of information on s, namely h(s). Of course, this assumes that
the verifying party has a way to verify that the hash value is correct, more
details on this are given later.

2 Of course, rate 1 and linear time is trivial if there are no demands to the distance:
just use the identity as encoding. What we mean here is that the code has length
n+ o(n) and yet, as n grows, the distance remains larger than some parameter k.

3 A codeword in an interleaved code is a matrix in which all m columns are in some
underlying code C.

4



2. In order to be able to use interactive proximity testing efficiently in our
protocol, we construct the first family of (linear) almost universal hash func-
tions that can be computed in linear time, where for a fixed desired collision
probability, the size of the seed only depends logarithmically on the input
size. We note that the verification method from [FJNT16] is a special case of
our proximity testing, where the hash function is a random linear function
(which cannot be computed in linear time)4.

3. We present the first explicit construction of linear time encodable (binary)
codes with rate approaching 1. The construction is basically a family of it-
erated Sipser-Spielman codes [Spi96] and uses a family of explicit expander
graphs constructed by Capalbo et al. [CRVW02]. Previous linear time en-
codable codes [Spi96,GI02,GI03,GI05,DI14] did not approach rate 1, which
was a clear obstacle to our results.

2 Preliminaries

In the sections we establish notation and introduce notions that will be used
throughout the paper. We borrow much of the notation from [CDD+15].

2.1 Notation

The set of the n first positive integers is denoted [n] = {1, 2, . . . , n}. Given a

finite set D, sampling a uniformly random element from D is denoted r
$←D

and sampling a uniformly random subset of n elements from D is denoted

{r1, . . . , rn}
$←D. Vectors of elements of some field are denoted by bold lower-

case letters, while matrices are denoted by bold upper-case letters. Concatena-
tion of vectors is represented by ‖. For z ∈ Fk, z[i] denotes the i’th entry of
the vector, where z[1] is the first element of z. For a matrix M ∈ Fn×k, we let
M[·, j] denote the j’th column of M and M[i, ·] denote the i’th row. The column
span of M, denoted by 〈M〉col is the vector subspace of Fn spanned over F by
the columns M[·, 1], . . . ,M[·, k] of M. The row support of M is the set of indices
I ⊆ {1, . . . , n} such that M[i, ·] 6= 0.

We say that a function ε is negligible in n if for every positive polynomial p
there exists a constant c such that ε(n) < 1

p(n) when n > c. Two ensembles X =

{Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are
said to be statistically indistinguishable, denoted by X ≈s Y , if for all z it holds
that | Pr[D(Xκ,z) = 1]−Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic
algorithm (distinguisher) D. In case this only holds for computationally bounded
(non-uniform probabilistic polynomial-time (PPT)) distinguishers we say that
X and Y are computationally indistinguishable and denote it by ≈c.

4 On the other hand, we pay a small price for having a non-random function, namely
the output size for the hash function needs to be Θ(s) + log(m) rather than Θ(s),
where s is the security parameter and m is the number of commitments.
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2.2 Coding Theory

We denote finite fields by F and write Fq for the finite field of size q. For a vector
x ∈ Fn, we denote the Hamming-weight of x by ‖x‖0 = |{i ∈ [n] : x[i] 6= 0}|.
Let C ⊂ Fn be a linear subspace of Fn. We say that C is an F-linear [n, k, s]
code, if C has dimension k and it holds for every nonzero x ∈ C that ‖x‖0 ≥ s,
i.e., the minimum distance of C is at least s. The distance dist(C,x) between C
and a vector x ∈ Fn is the minimum of ‖c− x‖0 when c ∈ C. The rate of an
F-linear [n, k, s] code is k

n and its relative minimum distance is s
n .

A matrix G ∈ Fn×k is a generator matrix of C if C = {Gx : x ∈ Fk}. The
code C is systematic if it has a generator matrix G such that the submatrix given
by the top k rows of G is the identity matrix I ∈ Fk×k. A matrix P ∈ F(n−k)×n

of maximal rank n − k is a parity check matrix of C if Pc = 0 for all c ∈ C.
When we have fixed a parity check matrix P of C we say that the syndrome of
an element v ∈ Fn is Pv.

For an F-linear [n, k, s] code C, we denote by C�m the m-interleaved product
of C, which is defined by

C�m = {C ∈ Fn×m : ∀i ∈ [m] : C[·, i] ∈ C} .

In other words, C�m consists of all Fn×m matrices for which all columns are
in C. We can think of C�m as a linear code with symbol alphabet Fm, where we
obtain codewords by taking m arbitrary codewords of C and bundling together
the components of these codewords into symbols from Fm. For a matrix E ∈
Fn×m, ‖E‖0 is the number of nonzero rows of E, and the code C�m has minimum
distance at least s′ if all nonzero C ∈ C�m satisfy ‖C‖0 ≥ s′. Furthermore, P is
a parity-check matrix of C if and only if PC = 0 for all C ∈ C�m.

2.3 Universal Composability

The results presented in this paper are proven secure in the Universal Compos-
ability (UC) framework introduced by Canetti in [Can01]. We refer the reader
to Appendix A and [Can01] for further details.

Adversarial Model: Our protocols will be proved secure against static and
active adversaries. This means that corruption is assumed to take place before
the protocols starts execution and that the adversary may deviate from the
protocol in any arbitrary way.

Setup Assumption: Since UC commitment protocols cannot be obtained in
the plain model [CF01], they need a setup assumption, i.e., some resource avail-
able to all parties before the protocol starts. In the case of our protocol, our goal
is to prove security in the FOT-hybrid model[Can01,CLOS02], where the parties
have access to an ideal 1-out-of-2 OT functionality. In order to attain this, we
first prove our protocol secure in the FROT-hybrid model, where the resource
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Functionality FHCOM

FHCOM interacts with a sender Ps, a receiver Pr and an adversary S and it proceeds
as follows:

– Commit Phase: The length of the committed messages λ is fixed and known
to all parties.
• If Ps is honest, upon receiving a message (commit, sid, ssid, Ps, Pr) from
Ps, sample a random m ← {0, 1}λ, record the tuple (ssid, Ps, Pr,m),
send the message (commit, sid, ssid, Ps, Pr,m) to Ps and send the message
(receipt, sid, ssid, Ps, Pr) to Pr and S. Ignore any future commit messages
with the same ssid from Ps to Pr.

• If Ps is corrupted, upon receiving a message (commit, sid, ssid, Ps, Pr,m)
from Ps, where m ∈ {0, 1}λ, record the tuple (ssid, Ps, Pr,m) and send the
message (receipt, sid, ssid, Ps, Pr) to Pr and S. Ignore any future commit
messages with the same ssid from Ps to Pr.

• If a message (abort, sid, ssid) is received from S, the functionality halts.
– Open Phase: Upon receiving a message (reveal, sid, ssid) from Ps: If

a tuple (ssid, Ps, Pr,m) was previously recorded, then send the message
(reveal, sid, ssid, Ps, Pr,m) to Pr and S. Otherwise, ignore.

– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3, Ps, Pr) from
Ps: If tuples (ssid1, Ps, Pr,m1), (ssid2, Ps, Pr,m2) were previously recorded
and ssid3 is unused, record (ssid3, Ps, Pr,m1 + m2) and send the message
(add, sid, ssid1, ssid2, ssid3, Ps, Pr, success) to Ps, Pr and S.

Fig. 1. Functionality FHCOM

that the parties have access to is an 1-out-of-2 random OT functionality, which
we describe below. Since we can implement FROT in the FOT-hybrid model, as
shown in Appendix B, the composability guarantees of the UC framework im-
ply that we can achieve security for our commitment scheme in the FOT-hybrid
model too.

Ideal Functionalities: In Section 5, we construct an additively homomorphic
string commitment protocol that UC-realizes the functionality FHCOM, which
is described in Figure 1. This functionality basically augments the standard
multiple commitments functionality FMCOM from [CLOS02] by introducing a
command for adding two previously stored commitments and an abort command
in the Commit Phase. FHCOM differs from a similar functionality of [CDD+15]
in that it gives an honest sender commitments to random messages instead of
letting it submit a message as input. In order to model corruptions, functionality
FHCOM lets a corrupted sender choose the messages it wants to commit to. The
abort is necessary to deal with inconsistent commitments that could be sent by
a corrupted party.

In fact, our additively homomorphic commitment protocol is constructed in
the FROT-hybrid model. Functionality FROT models a random oblivious transfer
of n×m matrices R0,R1 where the receiver learns a matrix S where each row
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Functionality FROT

FROT interacts with a sender Ps, a receiver Pr and an adversary A, and it proceeds
as follows:

– If both parties are honest, FROT waits for messages (sender, sid, ssid) and
(receiver, sid, ssid) from Ps and Pr, respectively. Then FROT samples random

bits b1, . . . , bn
$←{0, 1}n and two random matrices R0,R1

$←{0, 1}n×m with
n rows and m columns. It computes a matrix S such that for i = 1, . . . , n:
S[i, ·] = Rbi [i, ·]. It sends (sid, ssid,R0,R1) to Ps and (sid, ssid, b1, . . . , bn,S)
to Pr. That is, for each row-position, Pr learns a row of R0 or of R1, but Ps
does not know the selection.

– If Ps is corrupted, FROT waits for messages (receiver, sid, ssid) from Pr and

(adversary, sid, ssid,R0,R1) from A. FROT samples (b1, .., bn)
$←{0, 1}n, sets

S[i, ·] = Rbi [i, ·] for i = 1, . . . , n and sends (sid, ssid, b1, . . . , bn,S) to Pr.
– If Pr is corrupted, FROT waits for messages (sender, sid, ssid) from Ps and

(adversary, sid, ssid, b1, . . . , bn,S) from A. FROT samples random matrices

R0,R1
$←{0, 1}n×m , subject to S[i, ·] = Rbi [i, ·], for i = 1, . . . , n. FROT sends

(sid, ssid,R0,R1) to Ps.

Notice that S can equivalently be specified as S = ∆R1 + (I −∆)R0, where I is
the identity matrix and ∆ is the diagonal matrix with b1, . . . , bn on the diagonal.

Fig. 2. Functionality FROT

is selected from either R0 or R1. Notice that this functionality can be trivially
realized in the standard FOT-hybrid model as shown in Appendix B. We define
FOT in Appendix B and FROT in Figure 2 following the syntax of [CLOS02].
Notice that FOT can be efficiently UC-realized by the protocol in [PVW08],
which can be used to instantiate the setup phase of our commitment protocols.

3 Interactive Proximity Testing

In this section, we will introduce our interactive proximity testing technique.
It consists in the following argument: suppose we sample a function H from
an almost universal family of linear hash functions (from Fm to F`), and we
apply this to each of the rows of a matrix X ∈ Fn×m, obtaining another matrix
X′ ∈ Fn×`; because of linearity, if X belonged to an interleaved code C�m, then
X′ belongs to the interleaved code C�`. This suggests that we can test whether
X is close to C�m by testing instead if X′ is close to C�`. Theorem 1 states that
indeed the test gives such guarantee (with high probability over the choice of
the hash function) and moreover, if these elements are close to the respective
codes, the “error patterns” (the set of rows that have to be modified in each of
the matrices in order to correct them to codewords) are the same.

8



Definition 1 (Almost Universal Linear Hashing). We say that a family H
of linear functions Fn → Fs is ε-almost universal, if it holds for every non-zero
x ∈ Fn that

Pr
H

$←H
[H(x) = 0] ≤ ε,

where H is chosen uniformly at random from the family H. We say that H is
universal, if it is |F−s|-almost universal. We will identify functions H ∈ H with
their transformation matrix and write H(x) = H · x.

We will first establish a property of almost universal hash functions that can
be summarized as follows. Applying a randomly chosen linear hash function H
from a suitable family H to a matrix M will preserve its rank, unless the rank
of M exceeds a certain threshold r. If the rank of M is bigger than r, we still
have the guarantee that the rank of H ·M does not drop below r.

Lemma 1. Let H : Fm → Fr+s+t be a family of |F|−(r+s)-almost universal

linear functions. Fix a matrix M ∈ Fm×n. Then it holds for H
$←H that

Pr[rank(H ·M) < min(rank(M), r)] ≤ |F|−s.

Remark 1. Since rank is preserved by transposition, we can state the conse-
quence of the Lemma equivalently as

Pr[rank(M>H>) < min(rank(M>), r)] ≤ |F|−s.

Proof. If rank(M) = 0 the statement is trivial. Thus assume rank(M) > 0. Let
V = 〈M〉col be the column-span of M. We will first compute E[|ker(H)∩V |−1].
By linearity of expectation we have that

E[|ker(H) ∩ V | − 1] = E[|{v ∈ V \{0} : H(v) = 0}|]

=
∑

v∈V \{0}

Pr
H

[H(v) = 0]

≤ (|V | − 1)|F|−(r+s)

≤ |V | · |F|−(r+s) .

As |ker(H) ∩ V | − 1 is non-negative, it follows by the Markov inequality that

Pr[|ker(H) ∩ V | − 1 ≥ |V | · |F|−r] ≤ E[|ker(H) ∩ V | − 1]

|V | · |F|−r

≤ |V ||F|
−(r+s)

|V | · |F|−r

= |F|−s.

Thus it follows that

Pr[|ker(H) ∩ V | > |V | · |F|−r] ≤ |F|−s. (1)
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– If rank(M) = dim(V ) ≤ r, then it holds that

|V | · |F|−r ≤ 1

and (1) implies

Pr[|ker(H) ∩ V | > 1] ≤ |F|−s.

But since dim(ker(H) ∩ V ) = rank(M)− rank(HM), this means that

Pr[rank(HM) < rank(M)] ≤ |F|−s.

– On the other hand, if rank(M) = dim(V ) ≥ r, then we can restate (1) as

Pr[dim(ker(H) ∩ V ) > rank(M)− r] ≤ |F|−s.

Again using dim(ker(H) ∩ V ) = rank(M)− rank(HM) we obtain

Pr[rank(HM) < r] ≤ |F|−s.

All together, we obtain

Pr[rank(HM) < min(rank(M), r)] ≤ |F|−s,

which concludes the proof.

The next lemma states that we obtain a lower bound the distance of a matrix
X from an interleaved code C�m by the rank of PX.

Lemma 2. Let C be a F-linear [n, k, s] code with a parity check matrix P. It
holds for every X ∈ Fn×m that dist(C�m,X) ≥ rank(PX).

Proof. Let E ∈ Fn×m be a matrix of minimal row support such that X − E ∈
C�m, i.e., ‖E‖0 = dist(C�m,X). Clearly PX = PE. It follows that

rank(PX) = rank(PE) ≤ rank(E) ≤ ‖E‖0 = dist(C�m,X).

Lemma 3. Let C be a F-linear [n, k, s] code with a parity check matrix P. Let
X ∈ Fn×m and X′ ∈ Fn×m′ . If it holds that

〈PX〉col ⊆ 〈PX′〉col,

then for any C′ ∈ C�m
′

there exists a C ∈ C�m such that the row support of
X−C is contained in the row support of X′−C′. As a consequence, it also holds
that

dist(C�m,X) ≤ dist(C�m
′
,X′).

Proof. As 〈PX〉col ⊆ 〈PX′〉col, we can express PX as

PX = PX′T,
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for a matrix T ∈ Fm′×m. This implies that P(X − X′T) = 0, from which it

follows that X−X′T ∈ C�m. Thus there exists a Ĉ ∈ C�m with

X−X′T = Ĉ. (2)

Now fix an arbitrary C′ ∈ C�m
′
. Rearranging equation (2), we obtain

X− (Ĉ + C′T) = (X′ −C′)T.

Setting C = Ĉ + C′T it follows directly that the row support of X − C is
contained in the row support of X′ −C′, as X−C = (X′ −C′)T.

Theorem 1. Let H : Fm → F2s+t be a family of |F|−2s-almost universal F-
linear hash functions. Further let C be an F-linear [n, k, s] code. Then for every
X ∈ Fn×m at least one of the following statements holds, except with probability

|F|−s over the choice of H
$←H:

1. XH> has distance at least s from C�(2s+t)

2. For every C′ ∈ C�(2s+t) there exists a C ∈ C�m such that XH> −C′ and
X−C have the same row support

Remark 2. If the first item in the statement of the Theorem does not hold,
the second one must hold. Then we can efficiently recover a codeword C with
distance at most s− 1 from X using erasure correction, given a codeword C′ ∈
C�(2s+t) with distance at most s− 1 from XH>. More specifically, we compute
the row support of XH> −C′, erase the corresponding rows of X and recover
C from X using erasure correction5. The last step is possible as the distance
between X and C is at most s− 1.

Proof. We will distinguish two cases, depending on whether rank(PX) ≥ s or
rank(PX) < s.

– Case 1: rank(PX) ≥ s. It follows by Lemma 1 that rank(PXH>) is at least

s, except with probability |F|−s over the choice of H
$←H. Thus fix a H ∈ H

with rank(PXH>) ≥ s. It follows by Lemma 2 that dist(C�m,XH>) ≥ s,
i.e., the first item holds.

– Case 2: rank(PX) < s. It follows from Lemma 1 that rank(PXH>) =

rank(PX), except with probability |F|−s over the choice of H
$←H. Thus

fix a H ∈ H with rank(PXH>) = rank(PX). Since 〈PXH>〉col ⊆ 〈PX〉col
and rank(PXH>) = rank(PX), it holds that 〈PXH>〉col = 〈PX〉col. It fol-
lows from Lemma 3 that for every C′ ∈ C�(2s+t) there exists a C ∈ C�m

such that XH>−C′ and X−C have the same row support, i.e., the second
item holds.

5 Recall that erasure correction for linear codes can be performed efficiently via gaus-
sian elimination.
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4 Linear Time Primitives

In this section, we will provide constructions of almost universal hash functions
and rate-1 codes with linear time complexity.

4.1 Linear Time Almost Universal Hashing with Short Seeds

Theorem 2 ([IKOS08,DI14]). Fix a finite field F of constant size. For all
integers n,m with m ≤ n there exists a family of linear universal hash functions
G : Fn → Fm such that each function G ∈ G can be described by O(n) bits and
computed in time O(n).

It is well know that evaluating a polynomial of degree at most d over a
field F is a (d − 1)/|F|-almost universal hash function. We will use the family
provided in Theorem 2 to pre-hash the input in a block-wise manner, such that
the computation time of the polynomial hash function becomes linear in the size
of the original input. A similar speed-up trick was used in [IKOS08] to construct
several cryptographic primitives, for instance pseudorandom functions, that can
be computed in linear time.

Lemma 4. Let d = d(s) be a positive integer. Let F be a finite field of constant
size and F′ be an extension field of F of degree ds+ log|F|(d)e. Let n = n(s, d) be
such that a multiplication in F′ can be performed in time O(n). Let G : Fn → F′
be a family of F-linear universal hash functions which can be computed in time
O(n) and has seed length O(n). For a function G ∈ G and an element α ∈ F′,
define the function HG,α : Fd·n → F′ ∼= Fs+log|F|(d) by

HG,α(x) =

d−1∑
i=0

G(xi)α
i,

where x = (x0, . . . ,xd−1) ∈ (Fn)d. Define the family H by H = {HG,α : G ∈
G, α ∈ F′}. Then the family H is 2−s-almost universal, has sub-linear seed-length
O(n) and can be computed in linear time O(d · n).

Remark 3. We can choose the function n(s, d) as small as O((s + log|F|(d)) ·
polylog(s+ log|F|(d))), if a fast multiplication algorithm for F′ is used.

Proof. We will first show thatH is 2−s almost universal. Let x = (x0, . . . ,xd−1) 6=
0. Thus there exists an i ∈ {0, . . . , d−1} such that xi 6= 0. Consequently, it holds

for a randomly chosen G
$←G that G(xi) 6= 0, except with probability 1/|F′|.

Suppose now that 0 6= (G(x0), . . . , G(xd−1)) ∈ F′d.

P (X) =

d−1∑
i=0

G(xi)X
i

12



is a non-zero polynomial of degree at most d− 1, and consequently P (X) has at

most d− 1 zeros. It follows that for a random α
$←F′ that

HG,α(x) =

d−1∑
i=0

G(xi)α
i = P (α) 6= 0,

except with probability (d−1) |F′|. All together, we can conclude that HG,α(x) 6=
0, except with probability

1/|F′|+ (d− 1)/|F′| = d/|F′| = |F|−s

over the choice of G
$←G and α

$←F′, as |F′| = |F|s+log|F|(d).
Notice that the seed size of HG,α is

|G|+ log(|F′|) = O(n) + (s+ log|F|(d)) log(|F|) = O(n).

We will finally show that for any choice of G ∈ G and α ∈ F′ the function
HG,α can be computed in linear time in the size of its input x. Computing
G(x1), . . . , G(xd) takes time O(d ·n), as computing each G(xi) takes time O(n).

Next, evaluating the polynomial P (X) =
∑d−1
i=0 G(xi)X

i at α naively costs d−1
additions and 2(d− 1) multiplications. Since both additions and multiplications
in F′ can be performed in time O(n), the overall cost of evaluating P (X) at α
can be bounded by O(d ·n). All together, we can compute HG,α in time O(d ·n),
which is linear in the size of the input.

Instantiating the family G in Lemma 4 with the family provided in Theorem
2, we obtain the following theorem.

Theorem 3. Fix a finite field F of constant size. There exists an explicit family
H : Fn → Fs+O(log(n)) of |F|−s-universal hash functions that can be represented
by O(s2) bits and computed in time O(n).

4.2 Linear Time Rate-1 Codes

For the construction in this section we will need a certain kind of expander
graph, called unique-neighbor expander.

Definition 2. Let Γ = (L,R,E) be a bipartite graph of left-degree d with |L| = n
and |R| = m. We say that Γ is a (n,m, d, w)-unique neighbor expander, if for
every non-empty subset S ⊆ L of size at most w, there exists at least one vertex
r ∈ R such that |Γ (r) ∩ S| = 1, where Γ (r) = {l ∈ L : (l, r) ∈ E} is the
neighborhood of r.

Lemma 5. Fix a finite field F of constant size. Let C be an F-linear [m, k, s]
code. Further let Γ be a (n,m, d, w)-unique-neighbor expander such that w ·d < s.
Let HΓ be the adjacency matrix of Γ . Then the code C′ = {c ∈ Fn|HΓ · c ∈ C}
is an F-linear [n, n−m+ k,w] code.

13



Proof. Clearly, C′ has length n. If HC is a parity check matrix of C, then HC ·
HΓ ∈ F(m−k)×n is a parity check matrix of C′. Thus, the dimension of C′ is
at least n − m + k. Now, let e ∈ Fn be a non-zero vector of weight less than
w. Then, by the unique neighbor expansion property of Γ , HΓ · e is a non-zero
vector of weight at most d ·w. But now it immediately holds that HΓ · e /∈ C, as
C has distance at least s > d · w. Thus, C′ has minimum distance at least w.

Remark 4. The same arguments show that if Γ is a (n,m, d, w)-unique-neighbor
expander (with no additional conditions on the parameters), the code C′′ = {c ∈
Fn|HΓ · c = 0} is an F-linear [n, n−m,w] code.

We will now use the statement of Lemma 5 on a suitable chain of expander
graphs to obtain codes with rate 1 and a linear time parity check operation. We
will use the following families of explicit expander graphs due to Capalbo et al.
[CRVW02].

Theorem 4 ([CRVW02]). For all integers n, m < n there exists an explicit
(n,m, d, w)-unique-neighbor expander Γ with

d = (log(n)− log(m))O(1)

w = Ω
(m
d

)
.

Moreover, if n = O(m), then Γ can be constructed efficiently.

Lemma 6. Fix a finite field F of constant size. There exists a constant γ >
0 and an explicit family (Cs)s of F-linear codes, where Cs has length O(s2),
minimum distance s and rate 1−s−γ , i.e. the rate of Cs approaches 1. Moreover,
the parity check operation of C can be performed in O(s2), which is linear in the
codeword length.

Proof. By Theorem 4, there exists a constant d and a constant α, such that for
all choices of m there exists a (2m,m, d, w)-unique-neighbor expander Γ with
w ≥ αm/d. Now let t be a constant such that t·α ≥ 1 and let ` > 0 be an integer.
Choosing mi = t · 2i−1d`s, we obtain a chain of (2mi,mi, d, wi)-unique-neighbor
expanders Γi with wi ≥ αmi/d. For 1 ≤ i ≤ ` we can get a lower bound for wi
by

wi ≥ αmi/d ≥ αt · 2i−1d`−1s ≥ d`−is,

as αt ≥ 1 and i ≥ 1. We thus obtain that Γi is also a (t·2id`s, t·2i−1d`s, d, d`−is)-
unique neighbor expander.

We will choose C1 = {c ∈ F : HΓ1c = 0}, which is a code of length t2d`s
and distance at least d`−1s by Remark 4. Applying Lemma 5 on C1 with the
expander Γ2, we obtain a code C2 of length t22d`s and distance d`−2s. Iterating
this procedure for i ≤ `, applying Lemma 5 on Ci with expander Γi+1, we obtain
codes Ci of length t2id`s and distance d`−is. Thus, C` is a code of length t(2d)`s
and minimum distance s. By construction, the matrix

H` = HΓ1
·HΓ2

. . .HΓ`
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is its parity check matrix. Notice that multiplication H` can be performed in
linear time O(t(2d)`s) in the codeword length. This can be seen as multiplication
with HΓi can be performed it time O(d · t2id`s) and thus multiplication with H`

can be performed in time

∑̀
i=1

O(d · t2id`s) = O(d`+1ts
∑̀
i=1

2i) = O(d`+1ts2`+1) = O(t(2d)`s)

We can also see from H` that the dimension of C` is at least t(2d)`s− td`s, i.e.
C` has rate 1 − 2−`. Now, choosing ` = dlog(s)/ log(2d)e we obtain a code C of
length O(s2), minimum distance s and rate 1 − s−γ , where γ ≥ 1/ log(2d) is a
constant. This concludes the proof.

We will now convert the codes constructed in Lemma 6 into codes with
linear time encoding operation. The idea is simple: compute a syndrome of a
message with respect to the parity check matrix promised in Lemma 6, encode
this syndrome using a good code C2 and append the encoded syndrome to the
message. This systematic code has a linear time encoding operation, and the
next Lemma shows that it has also good distance and rate.

Lemma 7. Fix a finite field F of constant size. Let C1 be an F-linear [n, n−m, d]
code with linear time computable parity check operation with respect to a parity
check matrix H1. Further let C2 be an F-linear [l,m, d] code with a linear time
encoding operation with respect to a generator matrix G2. Then the code C3,
defined via the encoding operation x 7→ (x,G2 ·H1 ·x) is an F-linear [n+ l, n, d]
code with linear time encoding operation.

Proof. The fact that C3 is linear time encodable follows immediately, as multipli-
cation with both H1 and G2 are linear time computable. Moreover, it also follows
directly from the definition of C3 that C3 has length n+ l and dimension n. We
will now show that C3 has minimum distance at least d. Let e = (e1, e2) ∈ Fn+l
be a non-zero vector of weight less than d. Clearly it holds that both e1 and
e2 have weight less than d. If e2 is non-zero, then e2 /∈ C2, as C2 has minimum
distance d. On the other hand, if e1 is non-zero, then H1 · e1 is non-zero as C1

has distance d. But then, G2 ·H1e1 has weight at least d, as C2 has minimum
distance d and H1 · e1 is non-zero. Consequently, G · H1 · e1 6= e2, as e2 has
weight less than d. We conclude that (e1, e2) /∈ C3.

To use Lemma 7, we need a family of linear time encodable codes with
constant rate and constant relative minimum distance. Such codes were first
constructed by Spielman [Spi96].

Theorem 5 ([Spi96,GI05]). Fix a finite field F of constant size. Then there
exists a family {Cn} of F-linear codes with constant rate and constant relative
minimum distance which supports linear time encoding.

We can now bootstrap the statement of Lemma 6 into a linear time encodable
code of rate 1 using Lemma 7 and Theorem 5.
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Theorem 6. Fix a finite field F of constant size. There exists a constant γ > 0
and an explicit family of F-linear codes (Cs)s of length O(s2), minimum distance
s and rate 1− s−γ , which approaches 1. Moreover, C has an encoding algorithm
Enc that runs in time O(s2), which is linear in the codeword length.

5 Linear Time and Rate 1 Additive Commitments

In this section we construct a protocol for additively homomorphic commitments
that UC realizes functionality FHCOM. This protocol achieves (amortized) lin-
ear computational complexity for both parties and rate 1, meaning that the
ratio between the size of the committed messages and the size of the data ex-
changed by the parties in the protocol approaches one. We will show how to
make commitments to random strings, which allows the protocol to achieve sub-
linear communication complexity in the commitment phase while keeping rate
1 in the opening phase, a property that finds applications in different scenarios
of multiparty computation [FJN+13]. This protocol can be trivially extended to
standard commitments by having the sender also send the difference between
the random and the desired strings. The resulting protocol maintains rate 1 and
linear computational complexity.

The construction in this section will be based on a systematic binary linear
code C, an [n, k, s] code, where s is the statistical security parameter and n is
k + O(s). It follows from the construction in Section 4.2 that for any desired
value of s, we can make such a code for any k, that is, the rate tends to 1 as
k grows, and furthermore that encoding in C takes linear time. We also need a
family of linear time computable almost universal hash functionsH. Furthermore
the functions in H must be linear. The functions will map m-bit strings to l-
bit strings, where m is a parameter that can be chosen arbitrarily large (but
polynomially related to n, k and l). We use the construction from Theorem 3,
and hence, since we will need collision probability 2−2s, we set l = 2s+ log(m).

We will build commitments to k-bit random strings, and the protocol will
produce m− l such commitments. In Appendix C we show how our protocol can
be used to commit to arbitrary messages achieving still preserving linear compu-
tational complexity and rate-1. In fact, in Section 5.1 we show that we can get
even higher rate when committing to random messages. In the following, all vec-
tors and matrices will be assumed to have binary entries. The construction can
easily be generalized to other finite fields. The Commitment Phase is described
in Figure 3 and the Addition procedure and Opening Phase are described in
Figure 4. Notice that the Opening Phase presented in Figure 4 does not achieve
rate-1 but we show how to do so in Section 5.1. The security of our protocols is
formally stated in Theorem 7.

As shown in Appendix B, we can implement FROT based on n one-out-of-two
OT’s on short strings (of length equal to a computational security parameter)
using a pseudo-random generator and standard techniques. This will give the
result mentioned in the introduction: we can amortize the cost of the OT’s over
many commitments.

16



Protocol ΠHCOM (Commitment Phase)

Let C be a systematic binary linear [n, k, s] code, where s is the statistical security
parameter and n is k + O(s). Let H be a family of linear almost universal hash
functions H : {0, 1}m → {0, 1}l. Protocol ΠHCOM is run by a sender P and a
receiver V and proceeds as follows:

Commitment Phase

1. The parties P and V invoke FROT with inputs (sender, sid, ssid) and
(receiver, sid, ssid), respectively. P receives (sid, ssid,R0,R1) from FROT and
sets R = R0 + R1. V receives (sid, ssid, b1, . . . , bn,S) from FROT and sets
the diagonal matrix ∆ such that it contains b1, . . . , bn in the diagonal. R will
contain in the top k rows the data to commit to. Note that R0,R1 forms an
additive secret sharing of R, and in each row V knows shares from either R0

or R1.
2. P now adjusts the bottom n−k rows of R so that all columns are codewords in

C, and V will adjust his shares accordingly, as follows: P constructs a matrix W
with dimensions as R and 0s in the top k rows, such that A := R + W ∈ C�m

(recall that C is systematic). P sends (sid, ssid,W) to V (of course, only the
bottom n− k = O(s) rows need to be sent).

3. P sets A0 = R0,A1 = R1 + W and V sets B = ∆W + S. Note that now we
have

A = A0 + A1, B = ∆A1 + (I−∆)A0, A ∈ C�m ,

i.e., A is additively shared and for each row index, V knows either a row from
A0 or from A1.

4. V chooses a seed H ′ for a random function H ∈ H and sends (sid, ssid,H ′) to
P , we identify the function with its matrix (recall that all functions in H are
linear).

5. P computes T0 = A0H,T1 = A1H and sends (sid, ssid,T0,T1) to V . Note
that AH = A0H + A1H = T0 + T1, and AH ∈ C�l. So we can think of
T0,T1 as an additive sharing of AH, where again V knows some of the shares,
namely the rows of BH.

6. V checks that ∆T0 + (I−∆)T1 = BH and that T0 + T1 ∈ C�l. If any check
fails, he aborts.

7. We sacrifice some of the columns in A to protect P ’s privacy: Note that each
column j in AH is a linear combination of some of the columns in A, we let
A(j) denote the index set for these columns. Now for each j the parties choose
an index a(j) ∈ A(j) such that all a(j)’s are distinct. P and V now discard
all columns in A,A0,A1 and B indexed by some a(j). For simplicity in the
following, we renumber the remaining columns from 1.

8. P saves A,A0 and A1, and V saves B and ∆ (all of which now have m − l
columns).

Fig. 3. Protocol ΠHCOM (Commitment Phase)

17



Protocol ΠHCOM (Addition and Opening Phase)

Assuming that the Commitment phase has been completed as specified in Figure 3,
Protocol ΠHCOM is run by a sender P and a receiver V and proceeds as follows:

Addition of Commitments

1. To add commitments with index i and j, P appends the column A[·, j]+A[·, i]
to A, likewise he appends to A0 and A1 the sum of their i’th and j’th columns.
P sends (add, sid, ssid, i, j) to V .

2. Upon receiving (add, sid, ssid, i, j), V appends B[·, j] + B[·, i] to B. Note that
this maintains the properties A = A0 + A1, B = ∆A1 + (I − ∆)A0, and

A ∈ C�m
′
, where m′ is the current number of columns.

Opening Phase

1. To open commitment number j, P sends (sid, ssid,A0[·, j],A1[·, j]) to V and
halts.

2. V checks that A0[·, j] + A1[·, j] ∈ C and that for i = 1, . . . , n, it holds that
B[i, j] = Abi [i, j] (recall that bi is the i’th entry on the diagonal of ∆). If this
is the case, he outputs the first k entries in A0[·, j] + A1[·, j] as the opened
string and halts, otherwise, he aborts outputting (sid, ssid,⊥).

Fig. 4. Protocol ΠHCOM (Addition and Opening Phase)

Theorem 7. ΠHCOM UC-realizes FHCOM in the FROT-hybrid model with sta-
tistical security against a static adversary. Formally, there exists a simulator S
such that for every static adversary A, and any environment Z, the environment
cannot distinguish ΠHCOM composed with FROT and A from S composed with
FHCOM. That is, we have

IDEALFHCOM,S,Z ≈s HYBRID
FROT

ΠHCOM,A,Z .

Proof. Simulation when both players are honest is trivial, so the theorem fol-
lows from the Lemma 8 and Lemma 9 below, which establish security against a
corrupt P and a corrupt V , respectively.

Lemma 8. There exists a simulator SP such that for every static adversary A
who corrupts P , and any environment Z, the environment cannot distinguish
ΠHCOM composed with FROT and A from SP composed with FHCOM. That is,
we have

IDEALFHCOM,SP ,Z ≈s HYBRID
FROT

ΠHCOM,A,Z

Proof. Assume that the sender P is corrupted. We use P̂ to denote the corrupted
sender. In the UC framework, this is actually the adversary, which might in turn
be controlled by the environment. We describe the simulator SP in Figure 5. The
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Simulator SP

Simulator SP interacts with environment Z , functionality FHCOM and an internal
copy of adversary P̂ . Upon being activated by Z, SV proceeds as follows:

1. Emulating FROT: Upon receiving (adversary, sid, ssid,R0,R1) from P̂ , SP ,

stores (sid, ssid,R0,R1) samples (b1, .., bn)
$←{0, 1}n, sets S[i, ·] = Rbi [i, ·] for

i = 1, . . . , n and stores (sid, ssid, b1, . . . , bn,S).
2. Commitment Phase: Upon receiving (sid, ssid,W) from P̂ , SP runs the

rest of the steps of the commitment phase of ΠHCOM exactly like an honest
V would do. If an honest V would abort at any point then SP also aborts.
Otherwise, SP uses its knowledge of (sid, ssid,R0,R1) to reconstruct A. For
j = 1, . . . ,m − l, SP decodes column A[·, j] obtaining message mj and sends
(commit, sid, ssidj , Ps, Pr,mj) to FHCOM. We will show that if SP does not
abort after executing V ’s steps in ΠHCOM, then the remaining m − l columns
of A can indeed be decoded to their corresponding committed messages except
with negligible probability.

3. Addition: Upon receiving (add, sid, ssid, i, j) from P̂ , SP execute the
steps of ΠHCOM for addition, chooses an unused ssid ssida and sends
(add, sid, ssidi, ssidj , ssida, Ps, Pr) to FHCOM.

4. Opening Phase: Upon receiving (sid, ssid,A0[·, j],A1[·, j]) from P̂ , SP runs
the checks performed by V exactly as in ΠHCOM. If A0[·, j],A1[·, j] is not a
consistent opening, SP outputs whatever P̂ outputs and aborts. Otherwise SP
sends (reveal, sid, ssidj) to FHCOM, outputs whatever P̂ outputs and halts.

Fig. 5. Simulator SP

simulator SP will run protocol ΠHCOM with an internal copy of P̂ exactly as the
honest V would have done. First, SP runs the instance of FROT used by P̂ and
V exactly as in the real execution. In the commitment phase, if V aborts, then
the simulator aborts. If V does not abort, then the simulator inspects FROT

and reads off the matrices R0 and R1 that P̂ gave as input. Now let W be
the correction matrix sent by P̂ and define A0 = R0 and A1 = R1 + W. Let
A = A0 + A1. Notice that because P̂ is malicious, it might be the case that
A 6∈ C�m.

We now describe how the simulator decodes the columns of A. The simulator
will identify < s rows such that A is in C�m except for the identified rows. As
the code has distance s, this allows to erasure decode each column j of A to C
and the corresponding decoded message will be the extracted message mj that
the simulator will input to FHCOM. We now give the details.

Let R ⊂ [n] be a set of indices specifying rows of A. For a column vector
c ∈ Fn we let πR(c) = (c[i])i∈[n]\R be the vector punctured at the indices i ∈ R.
For a matrix M we let MR = πR(M) be the matrix with each column punctured
using πR and for a set S we let SR = {πR(s)|s ∈ S}. The simulator will need to
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find R ⊂ [n] with |R| < s such that

AR ∈ C�mR . (3)

It should furthermore hold that

H∞((bi)i∈R|P̂ ) = 0 (4)

H∞((bi)i∈[n]\R|P̂ ) = n− |R| , (5)

where P̂ here denotes the view of P̂ in the simulator so far, i.e., the adversary
can guess R and each choice bit bi for i ∈ R with certainty at this point in the
simulation and has no extra information on bi for i 6∈ R.

Define T := AH. Let T̂0 and T̂1 be the values sent by P and let T̂ = T̂0+T̂1.
Let T0 = R0H and T1 = (R1 + W)H be the values that P̂ should have sent.

Let T = T0 + T1. Let R be the smallest set such that T̂R = TR. We claim that
this set fulfills (3), (4) and (5).

We know that the receiver did not abort, which implies that ∆T̂0 + (I −
∆)T̂1 = BH. The i’th row of ∆T̂0 + (I−∆)T̂1 can be seen to be T̂bi [i, ·]. The
i’th row of B can be seen to be biW[i, ·] + Rbi , so the i’th row of BH is Tbi [i, ·].
We thus have for all i that

T̂bi [i, ·] = Tbi [i, ·] .

For each i ∈ R we have that T̂[i, ·] 6= T[i, ·], so we must therefore have for all
i ∈ R that

T̂1−bi [i, ·] 6= T1−bi [i, ·] .

It follows that if V for position i had chosen the choice bit 1− bi instead of bi,
then the protocol would have aborted. Since P̂ can compute the correct values
Tbi [i, ·] and T1−bi [i, ·] it also knows which value of bi will make the test pass.
By assumption the protocol did not abort. This proves (4). It also proves that
the probability of the protocol not aborting and R having size |R| is at most

2−|R| as P̂ has no information on b1, . . . , bn prior to sending T̂0 and T̂1 so P̂
can guess (bi)i∈R with probability at most 2−|R|. It is easy to see that the value
of the bits bi for i 6∈ R do not affect whether or not the test succeeds. Therefore
these bits are still uniform in the view of P̂ at this point.

In particular, we can therefore continue under the assumption that |R| < s.
We can then apply Theorem 1 where we set X = A. From |R| < s it follows
that XH has distance less than s to C�m, so we must be in case 2 in Theorem 1.
Now, since the receiver checks that T̂ ∈ C�l and the protocol did not abort, we
in particular have that T̂R ∈ C�lR from which it follows that TR ∈ C�lR , which

in turn implies that ARH ∈ C�lR and thus XRH ∈ C�lR . We can therefore pick a
codeword C′ ∈ C�l such that the row support of XH−C′ is R. From Theorem
1 we then get that there exists C ∈ C�m such that the row support of A−C is
R. From this it follows that AR = CR, which implies (3).

Now notice that since C has distance s and |R| < s the punctured code
CR will have distance at least 1. Therefore the simulator can from each column
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A[i, ·]R ∈ CR decode the corresponding message mj ∈ {0, 1}k. This the message

that the simulator will input to FHCOM on behalf of P̂ .
In order to fool SP and open a commitment to a different message than the

one that has been extracted from A[·, j], P̂ would have to provide A′0[·, j],A′1[·, j]
such that A′[·, j] = A′0[·, j] + A′1[·, j] is a valid codeword of C corresponding to
a different message m′. However, notice that since CR has distance s− |R|, that
would require P̂ to modify an additional s − |R| positions of A that are not
contained in B so that it does not get caught in the checks performed by a
honest V in the opening phase. That means that P̂ would have to guess s− |R|
of the choice bits bi for i 6∈ R. It follows from (5) that this will succeed with
probability at most 2s−|R|.

Simulator SV

Simulator SV interacts with environment Z , functionality FHCOM and an internal
copy of adversary V̂ . Upon being activated by Z, SV proceeds as follows:

1. Emulating FROT: Upon receiving (adversary, sid, ssid, b1, . . . , bn,S) from V̂ ,

SV perfectly simulates FROT by sampling random matrices R0,R1
$←{0, 1}n×m

, subject to S[i, ·] = Rbi [i, ·], for i = 1, . . . , n. Finally, it stores
(sid, ssid,R0,R1).

2. Commitment Phase: Upon receiving (receipt, sid, ssid, Ps, Pr) from FHCOM,
SV runs the steps of P in the commitment phase exactly as in ΠHCOM.

3. Addition: Upon receiving (add, sid, ssid1, ssid2, ssid3, Ps, Pr, success) from
FHCOM, SV runs the steps of P exactly as in ΠHCOM (setting i and j corre-
sponding to ssid1, ssid2).

4. Opening Phase: Upon receiving (reveal, sid, ssid, Ps, Pr,m) from FHCOM,
SV uses its knowledge of b1, . . . , bn to compute alternative columns
A0
′[·, j],A1

′[·, j] such that A′[·, j] = A0
′[·, j] + A1

′[·, j] is a valid commitment
to m that can opened without being caught by V̂ even though m is different
from the messages committed to in the commitment phase. Namely, let G be
the generating matrix of C, SV computes cm = Gm, initially sets A0

′[·, j] =
A0[·, j],A1

′[·, j] = A1[·, j] and then sets A′1−bi [·, j] = cm[j] − Abi [·, j]. Note
that matrices A0

′[·, j],A1
′[·, j] only differ from matrices A0[·, j],A1[·, j] ob-

tained in the commitment phase in positions that are not known by V̂ . Finally,
SV sends (sid, ssid,A0

′[·, j],A1
′[·, j]) to V̂ , outputs whatever V̂ outputs and

halts.

Fig. 6. Simulator SV

Lemma 9. There exists a simulator SV such that for every static adversary A
who corrupts V , and any environment Z, the environment cannot distinguish
ΠHCOM composed with FROT and A from SV composed with FHCOM. That is,
we have

IDEALFHCOM,SV ,Z ≈s HYBRID
FROT

ΠHCOM,A,Z
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Proof. In case V is corrupted, the simulator SV has to run ΠHCOM with an
internal copy of V̂ , commit to a dummy string and then be able to equivocate
this commitment (i.e. open it to an arbitrary message) when it gets the actual
message from FHCOM. In order to achieve this, we can construct a SV that exe-
cutes the commitment phase exactly as in ΠHCOM only deviating in the opening
phase. Note that after the commit phase V̂ has no information at all about the
committed strings. This holds because the additive shares in S trivially contain
no information and furthermore because the columns in sacrificed positions a(j)
contain uniformly random data and are never opened. This completely random-
izes the data seen by V̂ in the verification stage (T0,T1).

Therefore, SV can use its knowledge of b1, . . . , bn to open a commitment to an
arbitrary message without being caught, by modifying position of the matrices
that are unknown to V̂ (i.e. unknown to V in the real world). We describe
SV in Figure 6. Note that SV exactly follows all the steps of ΠHCOM (and
FROT) except for when it opens commitments. Instead, in the opening phase,
SV sends A0

′[·, j],A1
′[·, j], which differ from A0[·, j],A1[·, j] that was set in

the commitment phase and that would be sent in a real execution of ΠHCOM.
However, A0

′[·, j],A1
′[·, j], only differ from A0[·, j],A1[·, j] in positions that are

unknown by V̂ . Hence, the joint distribution of the ideal execution with simulator
SV is statistically indistinguishable from the real execution of ΠHCOM with a
corrupted receiver.

5.1 Computational Complexity and Rate

It is straightforward to verify that the Commitment, Addition and Opening
protocols run in linear time, or more precisely, that the computational cost per
bit committed to is constant. Indeed, it follows easily from the fact that C is
linear time encodable and that H can be computed in linear time. This holds,
even if we consider the cost of implementing FROT and FOT: the first cost is
linear if we use a PRG that costs only a constant number of operations per
output bit. The cost of the OT operations is amortized away if we consider a
sufficiently large number of commitments.

Furthermore, the commitment protocol achieves rate 1, i.e., the amortized
communication overhead per committed bit is o(1) as we increase the number
of bits committed in one commitment. This follows from the fact that C is rate-
1 and that the communication cost of the verification in the final steps of the
protocol only depends on the security parameter, and hence is “amortized away”.
Note that in the case where the sender only wants to be committed to random
messages, it is possible to achieve rate higher than 1 in the commitment phase.
This happens if we plug in the implementation of FROT based on FOT, since
then the random strings output from FROT are generated locally from a short
seed using a PRG, and later the sender is only required to send the bottom n−k
rows of W and the matrices T0,T1, which are both of the order of O(s).

The opening protocol does not achieve rate 1 as it stands because the com-
munication is about twice the size of the committed string (both A0[·, j] and
A1[·, j] are sent). However, for sufficiently long messages, we can get rate-1 by
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using the same verification method as used in the commitment protocol, namely
we open many commitments at once. We can think of this as opening an entire
matrix A instead of its columns one by one. The idea is then that V selects a
hash function H and P sends A as well as T0 = A0H and T1 = A1H. The
receiver checks that AH = T0 + T1, that all columns in A are in C and that
∆T0+(I−∆)T1 = BH. This can be shown secure by essentially the same proof
as we used to show the commitment protocol secure against a corrupt sender.
Now the communication overhead for verification is insignificant for large enough
matrices A.
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A Universal Composability

We adopt description of the Universal Composability (UC) framework given
in [CDD+15]. In this framework, protocol security is analyzed under the real-
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world/ideal-world paradigm, i.e. by comparing the real world execution of a pro-
tocol with an ideal world interaction with the primitive that it implements. The
model has a composition theorem, that basically states that UC secure protocols
can be arbitrarily composed with each other without any security compromises.
This desirable property not only allows UC secure protocols to effectively serve
as building blocks for complex applications but also guarantees security in prac-
tical environments where several protocols (or individual instances of protocols)
are executed in parallel, such as the Internet.

In the UC framework, the entities involved in both the real and ideal world
executions are modeled as probabilistic polynomial-time Interactive Turing Ma-
chines (ITM) that receive and deliver messages through their input and output
tapes, respectively. In the ideal world execution, dummy parties (possibly con-
trolled by an ideal adversary S referred to as the simulator) interact directly
with the ideal functionality F , which works as a trusted third party that com-
putes the desired primitive. In the real world execution, several parties (possibly
corrupted by a real world adversary A) interact with each other by means of a
protocol π that realizes the ideal functionality. The real and ideal executions are
controlled by the environment Z, an entity that delivers inputs and reads the
outputs of the individual parties, the adversary A and the simulator S. After
a real or ideal execution, Z outputs a bit, which is considered as the output
of the execution. The rationale behind this framework lies in showing that the
environment Z (that represents all the things that happen outside of the pro-
tocol execution) is not able to efficiently distinguish between the real and ideal
executions, thus implying that the real world protocol is as secure as the ideal
functionality.

We denote by REALπ,A,Z(κ, z, r̄) the output of the environment Z in the
real-world execution of protocol π between n parties with an adversary A under
security parameter κ, input z and randomness r̄ = (rZ , rA, rP1 , . . . , rPn), where
(z, rZ), rA and rPi

are respectively related to Z, A and party i. Analogously,
we denote by IDEALF,S,Z(κ, z, r̄) the output of the environment in the ideal
interaction between the simulator S and the ideal functionality F under security
parameter κ, input z and randomness r̄ = (rZ , rS , rF ), where (z, rZ), rS and
rF are respectively related to Z, S and F . The real world execution and the
ideal executions are respectively represented by the ensembles REALπ,A,Z =
{REALπ,A,Z(κ, z, r̄)}κ∈N and IDEALF,S,Z = {IDEALF,S,Z(κ, z, r̄)}κ∈N with z ∈
{0, 1}∗ and a uniformly chosen r̄.

In addition to these two models of computation, the UC framework also
considers the G-hybrid world, where the computation proceeds as in the real-
world with the additional assumption that the parties have access to an auxiliary
ideal functionality G. In this model, honest parties do not communicate with the
ideal functionality directly, but instead the adversary delivers all the messages
to and from the ideal functionality. We consider the communication channels to
be ideally authenticated, so that the adversary may read but not modify these
messages. Unlike messages exchanged between parties, which can be read by the
adversary, the messages exchanged between parties and the ideal functionality
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are divided into a public header and a private header. The public header can be
read by the adversary and contains non-sensitive information (such as session
identifiers, type of message, sender and receiver). On the other hand, the private
header cannot be read by the adversary and contains information such as the
parties’ private inputs. We denote the ensemble of environment outputs that
represents the execution of a protocol π in a G-hybrid model as HYBRIDGπ,A,Z
(defined analogously to REALπ,A,Z). UC security is then formally defined as:

Definition 3. A n-party (n ∈ N) protocol π is said to UC-realize an ideal func-
tionality F in the G-hybrid model if, for every adversary A, there exists a sim-
ulator S such that, for every environment Z, the following relation holds:

IDEALF,S,Z ≈ HYBRIDGπ,A,Z

We say that the protocol is statistically secure if the same holds for all Z with
unbounded computing power.

Functionality FOT

FOT interacts with a sender Ps, a receiver Pr and an adversary S, and it proceeds
as follows:

– Upon receiving a message (sender, sid, ssid,x0,x1) from Ps, where each xi ∈
{0, 1}λ , store the tuple (ssid,x0,x1) (The lengths of the strings λ is fixed and
known to all parties). Ignore further messages from Ps to Pr with the same
ssid.

– Upon receiving a message (receiver, sid, ssid, c) from Pr, where c ∈ {0, 1}, check
if a tuple (ssid,x0,x1) was recorded. If yes, send (received, sid, ssid,xc) to Pr
and (received, sid, ssid) to Ps and halt. If not, send nothing to Pr (but continue
running).

Fig. 7. Functionality FOT

B Implementing FROT

For the sake of simplicity we construct our commitment protocol in the FROT-
hybrid model. Here we show that FROT can be realized in the FOT-hybrid model
in a straightforward manner. Intuitively, we have Ps sample two random matrices
R0,R1 and do an OT for each row, where it inputs a row from each matrix
(i.e. R0[i, ·],R1[i, ·]) and Pr inputs a random choice bit. However, this näıve
construction has communication complexity that depends on the size of the
matrices, since it needs n OTs of m-bit strings.

Using both a pseudorandom number generator prg and access to FOT, it
is possible to realize FROT in a way that its communication complexity only
depends on the number of rows of the matrices and a computational security
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parameter. This is a key fact in achieving rate 1 for our commitment scheme,
since the number of rows required in our protocol is independent from the number
of commitments to be executed, allowing the communication cost to be amortized
over many commitments. On the other hand, (amortized) linear time can be
obtained by employing a pseudorandom number generator that only requires a
constant number of operations per output bit (e.g. [VZ12]). As shown in the
protocol description, expensive OT operations are only used n (the number of
rows) times while the number of calls to the prg is a fraction of the number of
commitments (the number of columns). This allows us to obtain an arbitrary
number of commitments from a fixed number of OTs and a small number of
calls to prg.

Let prg : {0, 1}κ → {0, 1}` be a pseudorandom number generator that

stretches a seed s
$←{0, 1}κ into a pseudorandom string r ∈ {0, 1}`. Intuitively,

for i = 1, . . . , n, we call FOT with Ps’s input equal to r0,i, r1,i
$←{0, 1}κ and Pr’s

input equal to bi
$←{0, 1}. After all the OTs are done, Ps sets R0[i, ·] = prg(r0,i)

and R1[i, ·] = prg(r1,i), while Pr sets S[i, ·] = prg(rbi,i). The output matrices
have n rows and ` columns. However, an arbitrary number of columns m can be
obtained by saving the last κ bits of every output of prg, repeatedly running prg
using these bits as seeds and concatenating the outputs (minus the last κ bits)
until m bits are obtained.

Protocol ΠROT

1. OT Phase: For i = 1, . . . , n, Ps samples random r0,i, r1,i
$←{0, 1}κ and sends

(sender, sid, ssidi, r0,i, r1,i) to FOT, while Pr samples bi
$←{0, 1} and sends

(receiver, sid, ssidi, bi) to FOT.
2. Seed Expansion Phase: For i = 1, . . . , n, Ps sets R0[i, ·] = prg(r0,i) and

R1[i, ·] = prg(r1,i), while Pr sets S[i, ·] = prg(rbi,i). Ps outputs R0,R1 and
Pr outputs b1, . . . , bn,S.

Fig. 8. Protocol ΠROT

Lemma 10. ΠROT UC-realizes FROT in the FOT-hybrid model with computa-
tional security against a static adversary. Formally, there exists a simulator S
such that for every static adversary A and any environment Z:

IDEALFROT,S,Z ≈c HYBRID
FOT

ΠROT,A,Z

Proof. (Sketch) The simulator S acts as FOT when running ΠROT with an inter-
nal copy ofA. In case Ps is corrupted, S extracts the inputs (r0,1, r1,1), . . . , (r0,n, r1,n)
given by A to FOT, constructs R0,R1 according to the protocol and sends them
to FROT. In case Pr is corrupted, S extracts the inputs b1, . . . , bn, samples ran-

dom matrices R0,R1
$←{0, 1}n×`, constructs S according to the protocol and
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sends (b1, . . . , bn),S to FROT. Basically, the ideal and the real distributions are
computationally indistinguishable due to prg’s pseudorandomness, i.e. an en-
vironment Z that distinguishes between the ideal and real distributions could
be used to distinguish a pseudorandom string output by prg from a uniformly
random string of same size.

C Committing to Arbitrary Messages

Protocol ΠHCOM described in Section 5 realizes FHCOM and thus only allows
the sender to commit to random messages. However, this can be trivially used
to commit to arbitrary messages while preserving all properties of our scheme,
namely, additive homomorphism, linear computational complexity and rate 1.
This is achieved by having the sender also give the receiver the difference between
the random string that it is committed to through ΠHCOM and the arbitrary
string that he wishes to commit to. First, P runs the commitment phase of
ΠHCOM and becomes committed to a string m, then it computes c = m′ −m
and sends c to V (where m′ is the message that P wishes to commit to). The
addition of two commitments can proceed the same way as in ΠHCOM with an
extra step of setting c3 = c1 + c2 = m′1 + m′2 −m1 −m2. In the opening
phase, P proceeds exactly like in ΠHCOM and V obtains the intended message
by computing m′ = c + m. We call this protocol ΠAHCOM and described it in
the FHCOM-hybrid model in Figure 9.

Protocol ΠAHCOM

Protocol ΠAHCOM is run by a sender P with input m′ ∈ {0, 1}k and a receiver V
interacting with FHCOM, and proceeds as follows:

1. Commitment Phase:
(a) P sends (commit, sid, ssid, Ps, Pr) to FHCOM. Upon receiving

(commit, sid, ssid, Ps, Pr,m) as answer, P sets c = m′ − m, and
sends (c, sid, ssid,) to V .

2. Addition:
(a) P sends (add, sid, ssid1, ssid2, ssid3, Ps, Pr) to FHCOM and sets c3 = c1 +

c2 = m′1 + m′2 −m1 −m2.
(b) Upon receiving (add, sid, ssid1, ssid2, ssid3, Ps, Pr, success) from FHCOM,

V also sets c3 = c1 + c2 = m′1 + m′2 −m1 −m2.
3. Opening Phase:

(a) P sends (reveal, sid, ssid) to FHCOM and halts.
(b) Upon receiving (reveal, sid, ssid, Ps, Pr,m) from FHCOM, V computes

m′ = c + m and outputs m′. Note that, even if c is an addition of two
commitments c1 and c2, this procedure is still valid since c3 = c1 + c2 =
m′1 + m′2 −m1 −m2.

Fig. 9. Protocol ΠAHCOM: Using ΠHCOM to commit to arbitrary messages.
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The security of ΠAHCOM can be trivially observed since all we do is sending
the difference between a random string that the sender is already committed to
and the arbitrary string he wishes to commit to. The random string acts as a
one-time pad hiding all information and binding is guaranteed by FHCOM, hence
we obtain statistical security in the FHCOM-hybrid model (which is realized by
ΠHCOM). Notice that the extra communication does not reduce the rate of the
resuting commitment scheme, since in ΠHCOM’s commitment phase only the
n − k bottom rows of W are sent6 and here we send the remaining k bits that
define m′. Moreover, it is possible to embed the difference c in W so that no
extra rounds are required.

6 Apart from T0,T1, which only depend on the security parameter and are amortized
over many commitments.
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