
Adaptively Secure Garbled Circuits from
One-Way Functions

Brett Hemenway1, Zahra Jafargholi2, Rafail Ostrovsky3,?,
Alessandra Scafuro2,4,??, and Daniel Wichs2,? ? ?

1 University of Pennsylvania, fbrett@cis.upenn.edu
2 Northeastern University, {zahra|wichs}@ccs.neu.edu

3 University of California, Los Angeles, rafail@cs.ucla.edu
4 Boston University, scafuro@bu.edu

Abstract. A garbling scheme is used to garble a circuit C and an in-
put x in a way that reveals the output C(x) but hides everything else.
In many settings, the circuit can be garbled off-line without strict effi-
ciency constraints, but the input must be garbled very efficiently on-line,
with much lower complexity than evaluating the circuit. Yao’s garbling
scheme [31] has essentially optimal on-line complexity, but only achieves
selective security, where the adversary must choose the input x prior to
seeing the garbled circuit. It has remained an open problem to achieve
adaptive security, where the adversary can choose x after seeing the gar-
bled circuit, while preserving on-line efficiency.
In this work, we modify Yao’s scheme in a way that allows us to prove
adaptive security under one-way functions. In our main instantiation we
achieve on-line complexity only proportional to the width w of the circuit.
Alternatively we can also get an instantiation with on-line complexity
only proportional to the depth d (and the output size) of the circuit,
albeit incurring in a 2O(d) security loss in our reduction. More broadly,
we relate the on-line complexity of adaptively secure garbling schemes
in our framework to a certain type of pebble complexity of the circuit.
As our main tool, of independent interest, we develop a new notion of
somewhere equivocal encryption, which allows us to efficiently equivocate
on a small subset of the message bits.
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1 Introduction

Garbled Circuits. A garbling scheme (also referred to as a randomized encoding)

can be used to garble a circuit C and an input x to derive a garbled circuit C̃
and a garbled input x̃. It’s possible to evaluate C̃ on x̃ and get the correct output
C(x). However, the garbled values C̃, x̃ should not reveal anything else beyond

this. In particular, there is a simulator that can simulate C̃, x̃ given only C(x).

The notion of garbled circuits was introduced by Yao in (oral presentations
of) [31,32], and can be instantiated based on one-way functions. Garbled cir-
cuits have since found countless applications in diverse areas of cryptography,
most notably to secure function evaluation (SFE) starting with Yao’s work, but
also in parallel cryptography [5,6], verifiable computation [16,7], software pro-
tection [20,22], functional encryption [30,21,19], key-dependent message security
[9,3], obfuscation [4] and many others. These applications rely on various effi-
ciency/functionality properties of garbled circuits and a comprehensive study of
this primitive is explored in the work of Bellare, Hoang and Rogaway [12].

On-line Complexity. In many applications, the garbled circuit C̃ can be computed
in an off-line pre-processing phase before the input is known, and therefore the
efficiency of this procedure may not be of paramount importance. On the other
hand, once the input x becomes available in the on-line phase, creating the
garbled input x̃ should be extremely efficient. Therefore, the main efficiency
measure that we consider here is the on-line complexity, which is the time it
takes to garble an input x, and hence also a bound on the size of x̃. Ideally, the
on-line complexity should only be linear in the input size |x| and independent
of the potentially much larger circuit size |C|.5

Yao’s Scheme. Yao’s garbling scheme already achieves essentially optimal on-line
complexity, where the time to garble an input x and the size of x̃ are only linear
in the input size |x|, independent of the circuit size.6 However, it only realizes a
weak notion of security called selective security, which corresponds to a setting
where adversary must choose the input x before seeing the garbled circuit C̃. In
particular, the adversary first chooses both C and x and then gets the garbled
values C̃, x̃ which are either correctly computed using the “real” garbling scheme
or “simulated” using only C(x). The adversary should not be able to distinguish
between the real world and the simulated world.

Selective vs. Adaptive Security. Selective security is often unsatisfactory in pre-
cisely the scenarios envisioned in the off-line/on-line setting, where the garbled

circuit C̃ is given out first and the garbled input x̃ is only given out later. In
such settings, the adversary may be able to (partially) influence the choice of the

5 Note that, without any other restrictions on the structure of the garbling scheme,
there is a trivial scheme where C̃ is empty and x̃ = C(x), whose on-line complexity
is proportional to |C|.

6 More precisely, in Yao’s garbled circuits, the garbled input is of size |x|·poly(λ) where
λ is the security parameter. The work of [8] shows how to reduce this to |x|+poly(λ)
assuming stronger assumptions such as DDH, RSA or LWE.
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input x after seeing the garbled circuit C̃. Therefore, we need a stronger notion
called adaptive security, defined via the following two stage game:

1. The adversary chooses a circuit C and gets the garbled circuit C̃.
2. After seeing C̃ the adversary adaptively chooses an input x and gets the

garbled input x̃.

In the real world C̃, x̃ are computed correctly using the garbling scheme, while
in the simulated world they are created by a simulator who only gets the output
C(x) in step (2) of the game but does not get the input x. The adversary should
not be able to distinguish these two worlds.

The work of Bellare, Hoang and Rogaway [11] gave the first thorough treat-
ment of adaptively secure garbling schemes and showed that this notion is crucial
in many applications. They point out that it remains unknown whether Yao’s
garbling scheme or any of its many variants can satisfy adaptive security, and the
proof techniques that work in the selective security setting do not extend to the
adaptive setting. They left it as the main open problem to construct adaptively
secure garbling schemes where the on-line complexity is smaller than the circuit
size.7

Finally we emphasize that the problem of achieving adaptively secure garbled
circuits is different from the problem of achieving adaptively secure two-party
computation (with constant rounds) using an approach based on garbled circuits.
The latter means that the adversary can corrupt the players adaptively. It is not
known whether either problem can be reduced to the other.

1.1 Prior Approaches to Adaptive Security

Lower Bound and Yao’s scheme. The work of Applebaum et al. [8] (see also [24])
gives a lower bound on the on-line complexity of circuit garbling in the adaptive
setting, showing that the size of the garbled input x̃ must exceed the output size
of the circuit. This is in contrast to the selective security setting, where Yao’s
garbling scheme achieves on-line complexity that depends only on the input size
and not the output size. In particular, this shows that Yao’s garbling scheme
cannot directly be adaptively secure.

Complexity Leveraging. It turns out that there is a simple and natural modifica-
tion of Yao’s garbling scheme (i.e., by withholding the mapping of output-wire
keys to output bits until the on-line phase) that would match the above lower
bound and could plausibly be conjectured to provide adaptive security. In fact,
one can prove that the above variant of Yao’s scheme is secure in the adaptive

7 The adaptive security notion we described, is denoted prv1 by [11]. They also con-
sider a stronger variant called prv2, where the adversary adaptively chooses bits of
the input x one at a time and gets the corresponding bits of the garbled input x̃.
They show that there is an efficiency preserving transformation from prv1 to prv2
following the ideas from [20]. Therefore, in this work we can focus solely on achieving
prv1.
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setting using complexity leveraging, but only at a 2n security loss in the reduc-
tion, where n is the input size. There is no known proof of security that avoids
this loss.8

One-Time Pad and Random-Oracles. An alternate approach, suggested by [11],
is to use one-time pad encryption to encrypt a Yao garbled circuit in the off-
line phase and then provide the decryption key with the garbled input in the
on-line phase. Intuitively, since a one-time pad encryption is “non-committing”
and the ciphertext can be equivocated to any possible message by providing a
corresponding key, the adversary does not gain any advantage in seeing such a
ciphertext in the off-line phase. Unfortunately, this solution blows up the on-line
complexity to be at least as large as the circuit size.

The work of [11] also noted that one can replace the one-time pad encryption
in the above solution with a random-oracle based encryption scheme, which can
be equivocated by programming random oracle outputs. This gives an adaptively
secure garbled circuit construction with optimal parameters in the random oracle
model. In fact, this approach can even be used to prove security in parameter
regimes that beat the lower bound of [8], and therefore we should be suspicious
about it’s implications in the standard model, when the random oracle is replaced
by a hash function. In particular, the construction is using the random oracle for
equivocation in ways that we know to be uninstantiable in the standard model
[29].

UCE-Security. Bellare at al. [10] show that a variant of Yao garbled circuits
(which does not violate the lower bound of [8]) can be proven secure when instan-
tiated with a hash function that satisfies a security notion called Universal Com-
putational Extractor (UCE) security. However, UCE is a strong, non-standard
and non-falsifiable assumption.

Heavy Hammers. Lastly, we mention two approaches that get adaptively se-
cure garbled circuits with good on-line complexity under significantly stronger
assumptions than one-way functions. The work of Boneh et al. [13] implicitly
provides such schemes where the on-line complexity is proportional to the in-
put/output size and the depth d of the circuit, under the learning with errors
assumption with a modulus-to-noise ratio of 2poly(d). This translates to assuming
the hardness of lattice problems with 2poly(d) approximation factors. The work
of Ananth and Sahai [2] shows how to get an essentially optimal scheme, where
the on-line complexity is only proportional to the input/output size of the cir-
cuit, assuming indistinguishability obfuscation. In terms of both assumptions and
practical efficiency, these schemes are a far cry from Yao’s original scheme.

1.2 Our results

In this work, we construct the first adaptively secure garbling scheme whose
on-line complexity is smaller than the circuit size and which only relies on the

8 Even if we’re willing to assume exponentially secure primitives, the use of complexity
leveraging blows up parameter sizes so that the garbled input must be of size at least
n2 · poly(λ) where λ is the security parameter to get any meaningful security.
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existence of one-way functions. Our construction is an adaptation of Yao’ scheme
that maintains essentially all of its desirable properties, such as having highly
parallelizable circuit garbling and projective/decomposable input garbling.9 In
particular, our construction simply encrypts a Yao garbled circuit with a some-
where equivocal symmetric-key encryption scheme, which is a new primitive that
we define and construct from one-way functions. The encrypted Yao garbled cir-
cuit is sent in the off-line phase, and the Yao garbled input along with the
decryption key is sent in the on-line phase. We get various provably secure in-
stantiations of the above approach depending on how we set the parameters of
the encryption scheme.

As our main instantiation, we get a garbling scheme whose on-line complexity
is w ·poly(λ) where w is the width of the circuit and λ is the security parameter,
but is otherwise independent of the depth d of the circuit.10 Note that, if we
think of the circuit as representing a Turing Machine or RAM computation,
then the width w of the circuit corresponds to the maximum of the input size
n, output size m, and space complexity s of the computation, meaning that our
on-line complexity is (n + m + s) · poly(λ), but otherwise independent of the
run-time of the computation.

Alternately, we also get a different instantiation where the on-line complexity
is only (n+m+d) ·poly(λ), where n is the input size, m is the output size, and d
is the depth of the circuit, but is otherwise independent of the circuit’s width w.
In this case, we also incur a 2O(d) security loss in our reduction, but this can be
a significant improvement over the naive complexity-leveraging approach which
incurs a 2n security loss, where n is the input size. In particular, in the case
of NC1 circuits where d = O(log n), we get a polynomial reduction and achieve
optimal on-line complexity of (n+m) · poly(λ).11

More broadly, we develop a connection between constructing adaptively se-
cure schemes in our framework and a certain type of pebble complexity of the
given circuit. The size of the garbled input is proportional to the maximal num-
ber of pebbles and the number of hybrids in our reduction is proportional to the
number of moves needed to pebble the circuit.

1.3 Applications of Our Results

We briefly mention how our results can be used to get concrete improvements
in several applications of garbled circuits in prior works.

9 Each bit of the garbled input only depends on one bit of the original input.
10 We consider circuits made up of fan-in 2 gates with arbitrary fan-out. The circuit is

composed of levels and wires can only connect gates in level i with those at the next
level i+ 1. The width of the circuit is the maximal number of gates in any level and
the depth is the number of levels.

11 For NC1 circuits, there are perfectly (information theoretically) secure variants of
Yao [25,26] which also achieve adaptive security. However, the on-line complexity in
these schemes grows exponentially in the circuit depth d whereas ours is only linear
in d. For example, for a boolean NC1 circuit with depth d = 100 logn, the on-line
complexity of those schemes is O(n100) whereas ours would be O(n).
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On-line/Off-line Two-Party Computation. One of the main uses of garbled cir-
cuits is in two-party secure computation protocols. In this setting, Alice holds
an input xA, Bob holds an input xB and they wish to compute f(xA, xB). To

do so, Alice creates a garbled circuit C̃f for the function f and sends C̃f along
with her portion of the garbled input x̃A to Bob. Bob runs an oblivious transfer
(OT) protocol to get the garbled version of his input x̃B without revealing xB
to Alice. This can be done if the garbling scheme is projective/decomposable
(see footnote 9) so that each bit of the garbled input only depends on one bit of
the original input. Security against fully malicious parties can be obtained via
zero-knowledge proofs or cut-and-choose techniques. It is possible to instantiate
the above construction with selectively secure garbled circuits, by having Bob
commit to xB before he gets the garbled circuit C̃f . This ensures that the choice
of the input cannot depend on the garbled circuit.

However, in many cases, creating the garbled circuit C̃f for the function f
is expensive and we would like to do this off-line before the inputs xA, xB are
known to Alice and Bob. Once the inputs become known, the on-line phase
should be extremely efficient, and ideally much smaller than the size of the cir-
cuit of f . This setting was recently explored in the work of Lindell and Riva
[28] who showed how to solve this problem very efficiently using cut-and-choose
techniques, given an adaptively secure garbling scheme with low on-line complex-
ity. To instantiate the latter primitive, they relied on the random oracle model.
Using our construction of adaptively secure garbled circuit, we can instantiate
the scheme of [28] in the standard model, where the on-line complexity of the
two-party computation protocol would match that of our garbling schemes.

One-Time Programs and Verifiable Computation. As noted by [11], two prior
works from the literature on one-time programs [20] and verifiable computation
[16] implicitly require adaptively secure garbling.12 In both cases, we can plug
in our construction of adaptively secure garbling to these constructions.

In the case of one-time programs, the on-line complexity of the garbling
scheme translates to the number of hardware tokens needed to create the one-
time program. In the case of verifiable computation, the on-line complexity of
the garbling scheme translates to the complexity of the verification protocol –
it is essential that this is smaller than the circuit size to make the verification
protocol non-trivial.

Compact Functional Encryption. The recent work of [1] shows how to convert any
selectively secure functional encryption (FE) scheme into an adaptively secure
FE. However, their transformation is not compact and the ciphertext size is as
large as the maximum circuit size of the allowed functions. This is true even if
the selectively secure FE that they start with is compact. Implicitly, the main
bottleneck in the transformation is having adaptively secure garbled circuits
with low on-line complexity. The work of [2] gives an alternate and modular
transformation from a selectively secure compact FE to an adaptively secure

12 The work of [20] requires an even stronger notion of adaptivity called prv2 but this
can be generically achieved given an adaptively secure scheme in our sense. See
footnote 7.
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one using adaptively secure garbled circuits (actually, their main construction is
for Turing Machines and relies on garbling TMs which require heavier machinery
– however, it can be scaled down to work for circuits to get the above result).
This transformation applies to both bounded-collusion schemes and unbounded-
collusion schemes. By plugging in our construction of adaptively secure garbled
circuits into the above result we get a transformation from compact selectively
secure FE to adaptive FE where the ciphertext size is only proportional to the
on-line complexity of our garbling scheme.

1.4 Our Techniques

In order to explain our techniques, we must first explain the difficulties in proving
the adaptive security of Yao’s garbling schemes. Since these difficulties are subtle,
we begin with a description of the scheme and the proof of selective security,
following Lindell and Pinkas [27]. This allows us to fix a precise notation and
terminology which will be needed to also explain our new construction and proof.
We expect that the reader is already familiar with the basics of Yao circuits and
refer to [27] for further details.

Yao’s Scheme and The Challenge of Adaptive Security Yao’s Scheme.
For each wire w in the circuit, we pick two keys k0w, k

1
w for a symmetric-key en-

cryption scheme. For each gate in the circuit computing a function g : {0, 1}2 →
{0, 1} and having input wires a, b and output wire c we create a garbled gate
consisting of 4 randomly ordered ciphertexts created as:

c0,0 = Enck0a(Enck0b (k
g(0,0)
c )) c1,0 = Enck1a(Enck0b (k

g(1,0)
c )),

c0,1 = Enck0a(Enck1b (k
g(0,1)
c )) c1,1 = Enck1a(Enck1b (k

g(1,1)
c ))

(1)

where (Enc,Dec) is a CPA-secure encryption scheme. The garbled circuit C̃
consists of all of the gabled gates, along with an output mapping {k0w → 0, k1w →
1} which gives the correspondence between the keys and the bits they represent
for each output wire w . To garble an n-bit value x = x1x2 · · ·xn, the garbled
input x̃ consists of the keys kxi

wi
for the n input wires wi.

To evaluate the garbled circuit on the garbled input, it’s possible to decrypt

(exactly) one ciphertext in each garbled gate and get the key k
v(w)
w corresponding

to the bit v(w) going over the wire w during the computation C(x). Once the
keys for the output wires are computed, it’s possible to recover the actual output
bits by looking them up in the output mapping.

Selective Security Simulator. To prove the selective security of Yao’s scheme, we
need to define a simulator that gets the output y = y1y2 · · · ym = C(x) and must

produce C̃, x̃. The simulator picks random keys k01, k
1
w for each wire w just like

the real scheme, but it creates the garbled gates as follows:

c0,0 = Enck0a(Enck0b (k0c )) c1,0 = Enck1a(Enck0b (k0c )),

c0,1 = Enck0a(Enck1b (k0c )) c1,1 = Enck1a(Enck1b (k0c ))
(2)
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where all four ciphertext encrypt the same key k0c . It creates the output mapping
{k0w → yw, k

1
w → 1 − yw} by “programming it” so that the key k0w corresponds

to the correct output bit yw for each output wire w. This defines the simulated
garbled circuit C̃. To create the simulated garbled input x̃ the simulator simply
gives out the keys k0w for each input wire w. Note that, when evaluating the
simulated garbled circuit on the simulated garbled input, the adversary only
sees the keys k0w for every wire w.

Selective Security Hybrids. To prove indistinguishability between the real world
and the simulation, there is a series of carefully defined hybrid games that switch
the distribution of one garbled gate at a time, starting with the input level and
proceeding up the circuit level by level. In each step we switch the distribution
of the ciphertexts in the targeted gate to:

c0,0 = Enck0a(Enck0b (k
v(c)
c )) c1,0 = Enck1a(Enck0b (k

v(c)
c )),

c0,1 = Enck0a(Enck1b (k
v(c)
c )) c1,1 = Enck1a(Enck1b (k

v(c)
c ))

(3)

where v(c) is the correct value of the bit going over the wire c during the com-
putation of C(x).

Let us give names to the three modes for creating garbled gates that we
defined above: (1) is called RealGate mode, (2) is called SimGate mode, and
(3) is called InputDepSimGate mode, since the way that it is defined depends
adaptively on the choice of the input x.

We can switch a gate from RealGate to InputDepSimGate mode if the gates in
the previous level are in InputDepSimGate mode (or we are in the input level) by
CPA security of ecryption. In particular, we are not changing the value contained

in ciphertext cv(a),v(b) encrypted under the keys k
v(a)
a , k

v(b)
b that the adversary

obtains during evaluation, but we can change the values contained in all of the
other ciphertexts since the keys k1−v(a), k1−v(b) do not appear anywhere inside
the garbled gates in the previous level.

At the end of the above sequence of hybrid games, all gates are switched
from RealGate to InputDepSimGate mode and the output mapping is computed
as in the real world. The resulting distribution is statistically identical to the
simulation where all the gates are in SimGate mode and the output mapping is
programmed. This is because, at any level that’s not the output, the keys k0c , k

1
c

are used completely identically in the subsequent level so there is no difference

between always encrypting k
v(c)
c (InputDepSimGate) and k0c (SimGate). At the

output level there is no difference between encrypting k
v(c)
c and giving the real

mapping k
v(c)
c → yc or encrypting k0c and giving the programmed mapping

k0c → yc where yc is the output bit on wire c.

Challenges in Achieving adaptive security. There are two issues in using the
above strategy in the adaptive setting: an immediate but easy to fix problem
and a more subtle but difficult to overcome problem.

The first immediate issue is that the selective simulator needs to know the
output y = C(x) to create the garbled circuit C̃ and in particular to program the
output mapping {k0w → yw, k

1
w → 1− yw} for the output wires w. However, the
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adaptive simulator does not get the output y until after it creates the garbled
circuit C̃. Therefore, we cannot (even syntactically) use the selective security
simulator in the adaptive setting. This issue turns out to be easy to fix by
modifying the construction to send the output-mapping as part of the garbled
input x̃ in the on-line phase, rather than as part of the garbled circuit C̃ in the
off-line phase. This modification raises on-line complexity to also being linear in
the output size of the circuit, which we know to be necessary by the lower bound
of [8]. With this modification, the adaptive simulator can program the output
mapping after it learns the output y = C(x) in the on-line phase and therefore
we get a syntactically meaningful simulation strategy in the adaptive setting.

The second problem is where the true difficulty lies. Although we have a syn-
tactically meaningful simulation strategy, the previous proof of indistinguishabil-
ity of the real world and the simulation completely breaks down in the adaptive
setting. Recall that the proof consisted of a sequence of hybrids where we changed
one garbled gate at a time (starting from the input level) from RealGate mode
to the InputDepSimGate mode. In the latter mode, the gate is created in a way
that depends on the input x, but in the adaptive setting the input x is chosen
adaptively after the garbled circuit is created, leading to a circularity. In other
words, the distribution of InputDepSimGate as specified in equation (3) doesn’t
even syntactically make sense in the adaptive setting. Therefore, although we
have a syntactically meaningful simulation strategy for the adaptive setting, we
do not have any syntactically meaningful sequence of intermediate hybrids to
prove indistinguishability between the real world and the simulated world.

(One could hope to bypass InputDepSimGate mode altogether and define the
hybrids by changing a gate directly from RealGate mode to SimGate mode. Un-
fortunately, this change is easily distinguishable already for the very first gate
we would hope to change at the input level – the output value on the gate would
no longer be v(w) but 0 which may result in an overall incorrect output since
we have not programmed the output map yet. On the other hand, we cannot
immediately jump to a hybrid where we program the output map since all of
the keys and their semantics are contained under encryption in prior levels of
the circuit and we haven’t argued about the security of the ciphertexts in these
levels yet.)

Our Solution Outer Encryption Layer. Our construction starts with the ap-
proach of [11] which is to encrypt the entire garbled circuit with an additional
outer encryption layer in the off-line phase (this is unrelated to the encryption
used to construct the garbled gates). Then, in the on-line phase, we give out
the secret key for this outer encryption scheme. The approach of [11] required a
symmetric-key, one-time encryption scheme which is equivocal, meaning that the
ciphertext doesn’t determine the message and it is possible to come up with a
secret key that can open the ciphertext to any possible message. Unfortunately,
any fully equivocal encryption scheme where a ciphertext can be opened to any
message (e.g., the one-time pad) must necessarily have a secret key size which
is as large as the message size. In our case, this is the entire garbled circuit and
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therefore this ruins the on-line efficiency of the scheme. Our main idea is to use a
new type of partially equivocal encryption scheme, we call somewhere equivocal.

Somewhere Equivocal Encryption. Intuitively, a somewhere equivocal encryption
scheme allows us to create a simulated ciphertext which contains “holes” in some
small subset of the message bit positions I chosen by the simulator, but all other
message bits are fixed. The simulator can later equivocate this ciphertext and
“plug the holes” with any bits it wants by deriving a corresponding secret key. An
adversary cannot distinguish between seeing a real encryption of some message
m = m1m2 · · ·mn and the real secret key, from seeing a simulated encryption
created using only (mi)i 6∈I with “holes” in positions I and an equivocated secret
key that later plugs the holes to the correct bits (mi)i∈I . We show how to
construct somewhere equivocal encryption using one-way functions. The size of
the secret key is only proportional to the maximum number of holes t = |I| that
we allow, which we call the “equivocation parameter”, but can be much smaller
than the message size.13

Our proof of security departs significantly from that of [11]. In particular, our
simulator does not take advantage of the equivocation property of the encryption
scheme at all, and in fact, our simulation strategy is identical to the adaptive
simulator we outlined above for the variant of Yao’s garbling where the output
map is sent in the on-line phase. However, we crucially rely on the equivocation
property to carefully define a meaningful sequence of hybrids that allows us to
prove the indistinguishability of the real and simulated worlds.

Hybrids for adaptive security. We define hybrid distributions where various gar-
bled gates will be created in one of three modes discussed above: RealGate,
SimGate and InputDepSimGate. However, to make the last option meaningful
(even syntactically) in the adaptive setting, we rely on the somewhere equivocal
encryption scheme. For these hybrids, when we create the encrypted garbled
circuit in the off-line phase, we will simulate the outer encryption layer with a
ciphertext that contains “holes” in place of all gates that are in InputDepSimGate
mode. Only when we open the outer encryption in the on-line phase after the
input x is chosen, we will “plug the holes” by sampling these gates correctly in
InputDepSimGate mode in a way that depends on the input x. Our equivocation
parameter t for the somewhere equivocal encryption scheme therefore needs to
be large enough to support the maximum number of gates in InputDepSimGate
mode that we will have in any hybrid.

Sequence of hybrids. For our main result, we use the following sequence of hybrids
to prove indistinguishability of real and simulated worlds. We start by switching
the first two levels of gates (starting with the input level) to InputDepSimGate
mode. We then switch the first level of gates to SimGate mode and switch the
third level InputDepSimGate mode. We continue this process, where in each step
i we maintain level i in InputDepSimGate mode but switch the previous level

13 A different notion of partially equivocal encryption, called somewhat non-committing
encryption, was introduced in [15]. The latter notion allows a ciphertext to be opened
to some small, polynomial size, set of messages which can be chosen arbitrarily by
the simulator at encryption time. The two notions are incomparable.



Adaptively Secure Garbled Circuits from One-Way Functions 11

i − 1 from InputDepSimGate to SimGate and then switch the next level i + 1
from RealGate to InputDepSimGate. Eventually all gates will be in SimGate mode
as we wanted. We can switch a level i − 1 from InputDepSimGate to SimGate
mode when the subsequent level i is in InputDepSimGate mode since the keys
k0c , k

1
c for wires c crossing from level i − 1 to i are used identically in level i

and therefore there is statistically no difference between encrypting the key k
v(c)
c

(InputDepSimGate) and k0c (SimGate). We can also switch a level i + 1 from
RealGate to InputDepSimGate when the previous level i is InputDepSimGate (or
i+ 1 is the input level) by CPA security following the same argument as in the
selective setting. With this strategy, at any point in time we have at most two
levels in InputDepSimGate mode and therefore our equivocation parameter only
needs to be proportional to the circuit width w.

Connection to pebbling. We can generalize the above idea and get other meaning-
ful sequences of hybrids with different parameters and implications. We can think
of the process of switching between RealGate, SimGate and InputDepSimGate
modes as a new kind of graph pebbling game, where pebbles can be placed on the
graph representing the circuit according to certain rules. Initially, all gates are
in RealGate mode, which we associate with not having any pebble on them. We
associate InputDepSimGate mode with having a black pebble and SimGate mode
with having a gray pebble. The rules of the game go as follows:

– We can place or remove a black pebble on a gate as long as both predecessors
of that gate have black pebbles on them (or the gate is an input gate).

– We can replace a black pebble with a gray pebble on a gate as long as all
successors of that gate have black or gray pebbles on them (or the gate is
an output gate).

The goal of the game is to end up with a gray pebble on every gate. Any such
pebbling strategy leads to a sequence of hybrids that shows the indistinguisha-
bility between the real world and the simulation. The number of moves needed
to complete the pebbling corresponds to the number of hybrids in our proof, and
therefore the security loss of our reduction. The maximum number of black peb-
bles that are in play at any given time corresponds to the equivocation parameter
needed for our somewhere equivocal encryption scheme.

For example, the sequence of hybrids discussed above corresponds to a peb-
bling strategy where the number of black pebbles used is linear in the circuit
width w (but independent of the depth) and the number of moves is linear in the
circuit size. We give an alternate recursive pebbling strategy where the number
of black pebbles used is linear in the circuit depth d (but independent of the
width) and the number of moves is 2O(d) times the circuit size.

Constructing somewhere equivocal encryption. Lastly, we discuss our construc-
tion of somewhere equivocal encryption from one-way functions, which may be
of independent interest. Recall that a somewhere equivocal encryption provides
a method for equivocating some small number (t out of n) of bits of the message.

Our construction is based on the techniques developed in recent construc-
tions of distributed point functions [17,14]. These techniques give us a way to
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construct a pseudorandom function (PRF) family fk with the following equivo-
cation property: for any input x, we can create two PRF keys k0, k1 that each
individually look uniformly random but such that fk0(x′) = fk1(x′) for all x′ 6= x
and fk0(x) 6= fk1(x). The construction is based on a clever adaptation of the
Goldreich-Goldwasser-Micali (GGM) PRF [18].

Using distributed point functions, we can immediately create a somewhere
equivocal encryption with equivocation parameter t = 1. We rely on a PRF
family fk with the above equivocation property and with one-bit output. To
encrypt a message m = m1m2 · · ·mn ∈ {0, 1}n we create a ciphertext c =
fk(1) ⊕m1||fk(2) ⊕m2|| · · · ||fk(n) ⊕mn using the PRF outputs as a one-time
pad. To create a simulated encryption with a hole in position i, the simulator
samples two PRF keys k0, k1 that only differ on input x = i. The simulator
encrypts the n-bit message by setting the unknown value in position i to mi := 0
and using k0. If it later wants to open this value to 0, it sets the decryption key
to k0 else k1.

We can extend the above approach to an arbitrarily large equivocation pa-
rameter t, by using the XOR of t independently chosen PRFs with the above
equivocation property. The key size will be t · poly(λ).

2 Preliminaries

General Notation. For a positive integer n, we define the set [n] := {1, . . . , n}.
We use the notation x ← X for the process of sampling a value x according to
the distribution X. For a vector m = (m1,m2, · · · ,mn), and a subset P ⊂ [n],
we use (mi)i∈P to denote a vector containing only the values mi in positions
i ∈ P and ⊥ symbols in all other positions. We use (mi)i/∈P as shorthand for
(mi)i∈[n]\P .

Circuit Notation. A boolean circuit C consists of gates gate1, . . . , gateq and
wires w1, w2, . . . , wp. A gate is defined by the tuple gatei = (g, wa, wb, wc) where
g : {0, 1}2 → {0, 1} is the function computed by the gate, wa, wb are the
incoming wires, and wc is the outgoing wire. Although each gate has a unique
outgoing wire wc, this wire can be used as an incoming wire to several different
gates and therefore this models a circuit with fan-in 2 and unbounded fan-out.
We let q denote the number of gates in the circuit, n denotes the number of input
wires and m denote the number of output wires. The total number of wires is
p = n+ q (since each wire can either be input wire or an outgoing wire of some
gate). For convenience, we denote the n input wires by in1, . . . , inn and the m
output wires by out1, . . . , outm. For x ∈ {0, 1}n we write C(x) to denote the
output of evaluating the circuit C on input x.

We say C is leveled, if each gate has an associated level and any gate at level
l has incoming wires only from gates at level l − 1 and outgoing wires only to
gates at level l+1. We let the depth d denote the number of levels and the width
w denote the maximum number of gates in any level.

A circuit C is fully specified by a list of gate tuples gatei = (g, wa, wb, wc).
We use Φtopo(C) to refer to the topology of a circuit– which indicates how gates
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are connected, without specifying the function implemented by each gate. In
other words, Φtopo(C) is the list of sanitized gate tuples ĝatei = (⊥, wa, wb, wc)
where the function g that the gate implements is removed from the tuple.

3 Garbling Scheme

We now give a formal definition of a garbling scheme. There are many vari-
ants of such definitions in the literature, and we refer the reader to [12] for a
comprehensive treatment.

Definition 1. A Garbling Scheme is a tuple of PPT algorithms GC = (GCircuit,
GInput, Eval) such that:

– (C̃, k)
$← GCircuit(1λ, C): takes as input a security parameter λ, a circuit

C : {0, 1}n → {0, 1}m, and outputs the garbled circuit C̃, and key k.
– x̃← GInput(k, x): takes as input x ∈ {0, 1}n, and key k and outputs x̃.

– y = Eval(C̃, x̃): given a garbled circuit C̃ and a garbled input x̃ output y ∈
{0, 1}m.

Correctness There is a negligible function ν such that for any λ ∈ N, any
circuit C and input x it holds that Pr[C(x) = Eval(C̃, x̃)] = 1 − ν(λ), where

(C̃, k)← GCircuit(1λ, C), x̃← GInput(k, x).

Adaptive Security. There exists a PPT simulator Sim = (SimC,SimIn) such
that, for any PPT adversary A, there exists a negligible function ν such that:

Pr[ExpadaptiveA,GC,Sim(1λ, 0) = 1]− Pr[ExpadaptiveA,GC,Sim(1λ, 1) = 1] ≤ ν(λ)

where the experiment ExpadaptiveA,GC,Sim(1λ, b) is defined as follows:

1. The adversary A specifies C and gets C̃ where C̃ is created as follows:

– if b = 0: (C̃, k)← GCircuit(1λ, C),

– if b = 1: (C̃, state) ← SimC(1λ, Φtopo(C)), where Φtopo(C) reveals the
topology of C.

2. The adversary A specifies x and gets x̃ created as follows:

– if b = 0, x̃← GInput(k, x),
– if b = 1, x̃← SimIn(C(x), state).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

On-line Complexity. The time it takes to garble an input x, (i.e., time complex-
ity of GInput(·, ·)) is the on-line complexity of the scheme. Clearly the on-line
complexity of the scheme gives a bound on the size of the garbled input x̃. Ideally,
the on-line complexity should be much smaller than the circuit size |C|.
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Projective Scheme. A garbling scheme is projective if each bit of the garbled
input x̃ only depends on one bit of the actual input x. In other words, each bit of
the input, is garbled independently of other bits of the input. Projective schemes
are essential for two-party computation where the garbled input is transmitted
using an oblivious transfer (OT) protocol. Our constructions will be projective.

Hiding Topology. A garbling scheme that satisfies the above security definition
may reveal the topology of the circuit C. However, there is a way to transform
any such garbling scheme into one that hides everything, including the topology
of the circuit, without a significant asymptotic efficiency loss. More precisely,
we rely on the fact that there is a function HideTopo(·)that takes a circuit C
as input and outputs a functionally equivalent circuit C ′, such that for any two
circuits C1, C2 of equal size, if C ′1 = HideTopo(C1) and C ′2 = HideTopo(C2), then
Φtopo(C

′
1) = Φtopo(C

′
2). An easy way to construct such function HideTopo is by

setting C ′ to be a universal circuit, with a hard-coded description of the actual
circuit C. Therefore, to get a topology-hiding garbling scheme, we can simply
use a topology-revealing scheme but instead of garbling the circuit C directly,
we garble the circuit HideTopo(C).

4 Somewhere Equivocal Symmetric-Key Encryption

We introduce a new cryptographic primitive called somewhere equivocal encryp-
tion scheme. Intuitively, a somewhere equivocal encryption scheme allows one
to create a simulated ciphertext which contain “holes” in some small subset of
the messages in positions I chosen by the simulator, but all other messages are
fixed. The simulator can later equivocate this ciphertext and “plug the holes”
with any message it wants by deriving a corresponding secret key.

In more detail, encryptions can be computed in two modes: real mode and
simulated mode. In the real mode, a key key ← KeyGen(1λ) is generated using
the honest key generation procedure and a vector of n messages m = m1, . . . ,mn

is encrypted using the honest encryption procedure c← Enc(key,m).
In the simulated mode, there is an encryption procedure SimEnc that given

a set I (set of holes) and only a subset of messages (mi)i/∈I , outputs simulated
ciphertext c that is equivocal in positions I. In a later stage, upon learning the
remaining messages (mi)i∈I , there exists a procedure SimKey that plugs the
holes by generating a key key′ that will decrypt c correctly according to m.

The security property that we require is that the distributions of {c, key}
generated in the two modes are indistinguishable. To capture this property, one
could envision a non-adaptive security game where and adversary A first selects
the full vector m and the set I, then it receives the tuple (c, key) and needs
to distinguish which distribution it belongs to. However, such security defini-
tion is not sufficient for our indistinguishability proof where instead we need an
adversary to decide on the missing messages after she receives the ciphertex c.
Therefore, we consider an adaptive security definition where the security game
is defined in two stages: in the first stage, the adversary chooses I, an incomplete



Adaptively Secure Garbled Circuits from One-Way Functions 15

vector of messages (mi)i/∈I , and a challenge index j /∈ I and receives the cipher-
tex c. In the second stage, the adversary sends the remaining messages (mi)i∈I
and gets key. The adversary knows that all positions in I are equivocal and are
plugged to the values (mi)i∈I chosen in the second stage. The challenge is to
distinguish whether the position j is also equivocal or not. Note that this two-
stage (adaptive) security definition is stronger than the non-adaptive security
definition sketched above. For completeness, we give the simpler non-adaptive
definition and prove the above implication in the full version [23].

Definition 2. A somewhere equivocal encryption scheme with block-length s,
message-length n (in blocks), and equivocation-parameter t (all polynomials in
the security parameter) is a tuple of probabilistic polynomial algorithms Π =
(KeyGen, Enc,Dec, SimEnc, SimKey) such that:

– The key generation algorithm KeyGen takes as input the security parameter
1λ and outputs a key: key← KeyGen(1λ).

– The encryption algorithm Enc takes as input a vector of n messages m =
m1, . . . ,mn, with mi ∈ {0, 1}s, and a key key, and outputs ciphertext c ←
Enc(key,m).

– The decryption algorithm Dec takes as input ciphertext c and a key key and
outputs a vector of messages m = m1, . . . ,mn. Namely, m← Dec(key, c).

– The simulated encryption algorithm SimEnc takes as input a set of indexes
I ⊂ [n], such that |I| ≤ t, and a vector of n−|I| messages (mi)i/∈I and outputs
ciphertext c, and a state state. Namely, (state, c)← SimEnc((mi)i/∈I , I).

– The simulated key algorithm SimKey, takes in the variable state and messages
(mi)i∈I and outputs a key key′. Namely, key′ ← SimKey(state, (mi)i∈I).

and satisfies the following properties:

Correctness. For every key← KeyGen(1λ), m ∈ {0, 1}s×n it holds that:

Dec(key, (Enc(key,m)) = m

Simulation with No Holes. We require that the distribution of (c, key) com-
puted via (c, state) ← SimEnc(m, ∅) and key ← SimKey(state, ∅) to be iden-
tical to key ← KeyGen(1λ) and c← Enc(key,m). In other words, simulation
when there are no holes (i.e., I = ∅) is identical to honest key generation
and encryption.

Security. For any PPT adversary A, there is a negligible function ν(λ) s.t.:

Pr[Expsimenc
A,Π (1λ, 0) = 1]− Pr[Expsimenc

A,Π (1λ, 1) = 1] ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π (1λ, b)

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, vector
(mi)i/∈I , and a challenge index j ∈ [n] \ I. Let I ′ = I ∪ j.

2. – If b = 0, compute c as follows: (state, c)← SimEnc((mi)i/∈I , I).
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– If b = 1, compute c as follows: (state, c)← SimEnc((mi)i/∈I′ , I
′).

3. Send c to the adversary A.
4. The adversary A outputs the set of remaining messages (mi)i∈I .

– If b = 0, compute key as follows: key← SimKey(state, (mi)i∈I).
– If b = 1, compute key as follows: key← SimKey(state, (mi)i∈I′).

5. Send key to the adversary A.
6. A outputs b′ which is the output of the experiment.

In the full version of this paper, [23], we construct somewhere equivocal
encryption from one-way functions, proving the following theorem.

Theorem 1. Assuming the existence of one-way functions, there exists a some-
where equivocal encryption scheme for any polynomial message-length n, block-
length s, and equivocation parameter t, having key size t·s·poly(λ) and ciphertext
of size n · s bits.

5 Adaptively Secure Garbling Scheme and Simulator

In this section we describe our garbling scheme and the simulation strategy.

5.1 Construction

Our adaptively-secure garbling scheme consists in two simple steps: (1) gar-
ble the circuit using Yao’s garbling scheme; (2) hide the garbled circuit (with-
out the output tables) under an outer layer of encryption instantiated with a
somewhere-equivocal encryption scheme. In the on-line phase, the garbled input
consists of Yao’s garbled input plus the output tables. Next we provide the formal
description of our scheme that contains the details of Yao’s garbling scheme.

Let C be a leveled boolean circuit with fan-in 2 and unbounded fan-out, with
inputs size n, output size m, depth d and width w. Let q denote the number of
gates in C. Recall that wires are uniquely identified with labels w1, w2, . . . , wp,
and a circuit C is specified by a list of gate tuples gate = (g, wa, wb, wc). To
simplify the description of our construction, we first describe the procedure for
garbling a single gate, that we denote by GarbleGate. Let Γ = (G,E,D) be a
CPA-secure symmetric-key encryption scheme satisfying the special correctness
property, that is, the decryption procedure will abort if an incorrect key is used.
GarbleGate(g, {kσa , kσb , kσc }σ∈{0,1}) computes 4 ciphertexts cσ0,σ1 : σ0, σ1 ∈ {0, 1}
as defined below and outputs them in a random order as g̃ = [c1, c2, c3, c4].

c0,0 ← Ek0a(Ek0b (k
g(0,0)
c )) c0,1 ← Ek0a(Ek1b (k

g(0,1)
c ))

c1,0 ← Ek1a(Ek0b (k
g(1,0)
c )) c1,1 ← Ek1a(Ek0b (k

g(1,1)
c ))

Let Π = (KeyGen, Enc,Dec, SimEnc, SimKey) be a somewhere-equivocal
symmetric-encryption scheme as defined in Section 4. Recall that in this prim-
itive the plaintext is a vector of n blocks, each of which has s bits. In our
construction we use the following parameters: the vector size n = q is the num-
ber of gates and the block size s = |g̃| is the size of a single garbled gate. The
equivocation parameter t is defined by the strategy used in the security proof
and will be specified later. The garbling scheme is formally described in Figure 1.
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GCircuit(1λ, C)

1. Garble Circuit (Yao’s scheme)

– (Wires) kσwi
← G(1λ), i ∈ [p], σ ∈ {0, 1}.

(Input wires) K = (k0ini , k
1
ini

)i∈[n].

– (Gates) For gatei = (g, wa, wb, wc) in C:

g̃i ← GarbleGate(g, {kσwa
, kσwb

, kσwc
}σ∈{0,1})

– (Output tables) For each output j ∈ [m]:

d̃j := [(k0outj → 0), (k1outj → 1)].

2. Outer Encryption

– key
$← KeyGen(1λ).

– C̃ ← Enc(key, (g̃1, . . . , g̃q)).

Output C̃, k = (K, key, (d̃j)j∈[m]).

GInput(x, k)

– (Select input keys)

Kx = (kx1in1
, . . . , kxninn

).

– Output x̃ = (Kx, key, (d̃j)j∈[m]).

Eval(C̃, x̃)

1. Parse x̃ = (K, key, (d̃j)j∈[m]).

2. Decrypt Outer Encryption

(g̃i)i∈q ← Dec(key, C̃).

3. Evaluate Circuit.

Parse K = (kin1 , . . . , kinn).

For each level j = 1, . . . , d,

For ĝatei = (⊥, wa, wb, wc) at level j:

– Let g̃i = [c1, c2, c3, c4];

– For δ ∈ [4] let k′wc
← Dkwa

(Dkwb
(cδ))

If k′wc
6= ⊥ then set kwc := k′wc

.

4. Decrypt output.

For j ∈ [m]:

– Parse d̃j = [(k0outj → 0), (k1outj → 1)].

– Set yj = b iff koutj = kboutj .

Output y1, . . . , ym.

Fig. 1: Adaptively-secure Garbling Scheme.

5.2 Adaptive Simulator

The adaptive security simulator for our garbling scheme is essentially the same as
the static security simulator for Yao’s scheme (as in [27]), with the only difference
that the output table is sent in the on-line phase, and is computed adaptively
to map to the correct output. Note that the garbled circuit simulator does not
rely on the simulation properties of the somewhere equivocal encryption scheme
- these are only used in the proof of indistinguishability.

More specifically, the adaptive simulator (SimC,SimIn) works as follows. In
the off-line phase, SimC computes the garbled gates using procedure GarbleSimGate,
that generates 4 ciphertexts that encrypt the same output key. More precisely,
GarbleSimGate({kσwa

, kσwb
}σ∈{0,1}, k′wc

) takes both keys for input wires wa, wb and
a single key for the output wire wc, that we denote by k′wc

. It then outputs
g̃c = [c1, c2, c3, c4] where the ciphertexts, arranged in random order, are com-
puted as follows.

c0,0 ← Ek0a(Ek0b (k′c)) c0,1 ← Ek0a(Ek1b (k′c))

c1,0 ← Ek1a(Ek0b (k′c)) c1,1 ← Ek1a(Ek0b (k′c))

The simulator invokes GarbleSimGate on input k′c = k0c . It then encrypts
the garbled gates so obtained by using the honest procedure for the somewhere
equivocal encryption.
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In the on-line phase, SimIn, on input y = C(x) adaptively computes the
output tables so that the evaluator obtains the correct output. This is easily
achieved by associating each bit of the output, yj , to the only key encrypted in
the output gate goutj , which is k0outj . For the input keys, SimIn just sends keys k0ini
for each i ∈ [n]. The detailed definition of (SimC,SimIn) is provided in Figure 2.

Simulator

SimC(1λ, Φtopo(C))

– (Wires) kσwi
← G(1λ) for i ∈ [p], σ ∈ {0, 1}.

– (Garbled gates) For each gate g̃atei = (⊥, wa, wb, wc) in Φtopo(C):
g̃i ← GarbleSimGate ({kσwa

, kσwb
}σ∈{0,1}, k0wc

).

– (Outer Encryption): key
$← KeyGen(1λ), C̃ ← Enc(key, g̃1, . . . , g̃q).

– Output C̃, state = ({kσwi
}, key).

SimIn(y, state)

– Generate output table: s̃dj ← [(k
yj
outj → 0), (k

1−yj
outj → 1)]j∈[m]. // ensures

k0outj → yj
– Output x̃ = ((k0ini)i∈[n], key, (s̃dj)j∈[m]).

Fig. 2: Simulator for Adaptive Security.

5 Hybrid Games

We now need to prove the indistinguishability of our garbling scheme and the
simulation. We devise a modular approach for proving indistinguishability using
different strategies that result in different parameters. We first provide a tem-
plate for defining hybrid games, where each such hybrid game is parametrized by
a circuit configuration, that is, a vector indicating the way the gates are garbled
and encrypted. Then we define the rules that allow us to indistinguishably move
from one configuration to another. With this framework in place, an indistin-
guishability proof consists of a strategy to move from the circuit configuration
of the real game to the circuit configuration of the simulated game, using the
allowed rules.

5.1 Template for Defining Hybrid Games

Gate/Circuit Configuration. We start by defining a gate configuration. A gate
configuration is a pair (outer mode, garbling mode) indicating the way a gate
is computed. The outer encryption mode can be {EquivEnc,BindEnc} depend-
ing on whether the outer encryption contains a “hole” in place of that gate
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or whether it is binding on that gate. The garbling mode can be {RealGate,
SimGate, InputDepSimGate} which corresponds to the distributions outlined in
Figure 3. We stress that, if the garbling mode of a gate is InputDepSimGate then
we require that the outer encryption mode is EquivEnc. This means that there
are 5 valid gate configurations for each gate.

RealGate

c0,0 ← Ek0a(Ek0
b
(k
g(0,0)
c ))

c0,1 ← Ek0a(Ek1
b
(k
g(0,1)
c ))

c1,0 ← Ek1a(Ek0
b
(k
g(1,0)
c ))

c1,1 ← Ek1a(Ek1
b
(k
g(1,1)
c ))

SimGate

c0,0 ← Ek0a(Ek0
b
(k0c))

c0,1 ← Ek0a(Ek1
b
(k0c))

c1,0 ← Ek1a(Ek0
b
(k0c))

c1,1 ← Ek1a(Ek1
b
(k0c))

InputDepSimGate

c0,0 ← Ek0a(Ek0
b
(k
v(c)
c ))

c0,1 ← Ek0a(Ek1
b
(k
v(c)
c ))

c1,0 ← Ek1a(Ek0
b
(k
v(c)
c ))

c1,1 ← Ek1a(Ek1
b
(k
v(c)
c ))

Fig. 3: Garbling Gate modes: RealGate (left), SimGate (center), InputDepSimGate
(right). The value v(c) depends on the input x and corresponds to the bit going
over the wire c in the computation C(x).

A circuit configuration simply consists of the gate configuration for each gate
in the circuit. More specifically, we represent a circuit configuration by a tuple
(I, (modei)i∈[q]) where

– Set I ⊆ [q] contains the indices of the gates i whose outer mode is EquivEnc.
– The value modei ∈ {RealGate,SimGate, InputDepSimGate} describes the gar-

bling mode of gate i.

A valid circuit configuration is one where all indexes i such that modei =
InputDepSimGate satisfy i ∈ I.

The Hybrid Game Hyb(I, (modei)i∈[q]). Every valid circuit configuration I,
(modei)i∈[q] defines a hybrid game Hyb(I, (modei)i∈[q]) as specified formally Fig-
ure 4 and described informally below. The hybrid game consists of two proce-
dures: GCircuit′ for creating the garbled circuit C̃ and GInput′ for creating the
garbled input x̃ respectively. The garbled circuit is created by picking random
keys kσwj

for each wire wj . For each gate i, such that modei ∈ {RealGate,SimGate}
it creates a garbled gate g̃i using the corresponding distribution as described in
Figure 3. The garbled circuit C̃ is then created by simulating the outer encryp-
tion using the values g̃i in locations i 6∈ I and “holes” in the locations I. The
garbled input is created by first sampling the garbled gates g̃i for each i such
that modei = InputDepSimGate using the corresponding distribution in Figure
3 and using knowledge of the input x. Then the decryption key key is simulated
by plugging in the holes in locations I with the correctly sampled garbled gates
g̃i. There is some subtlety about how the input labels K[i] and the output label

maps d̃j are created when computing x̃:

– If all of the gates having ini as an input wire are in SimGate mode, then
K[i] := k0ini else K[i] := kxi

ini
.
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Game Hyb(I, (modei)i∈[q])

Garble Circuit C:

– Garble Gates
(Wires) kσwi

← G(1λ) for i ∈ [p], σ ∈ {0, 1}.
(Gates) For each gatei = (g, wa, wb, wc) in C.

– If modei = RealGate: run g̃i ← GarbleGate(g, {kσwa
, kσwb

, kσwc
}σ∈{0,1}).

– if modei = SimGate: run g̃i ← GarbleSimGate({kσwa
, kσwb
}σ∈{0,1}, k0wc

).

– Outer Encryption.

1. (state, C̃)← SimEnc((g̃i)i/∈I , I).

2. Output C̃.

Garble Input x:

(Compute adaptive gates)
For each i ∈ I s.t. modei = InputDepSimGate:

Let gatei = (gi, wa, wb, wc), and let v(c)
be the bit on the wire wc during the computation C(x).

Set g̃i ← GarbleSimGate((kσwa
, kσwb

)σ∈{0,1}, k
v(c)
wc ).

(Decryption key) key′ ← SimKey(state, (g̃i)i∈I)
(Output tables) Let y = C(x). For j = 1, . . . ,m:
Let i be the index of the gate with output wire outj .

– If modei 6= SimGate, set d̃j := [(k0outj → 0), (k1outj → 1)],

– else, set d̃j := [(k
yj
outj
→ 0), (k

1−yj
outj

→ 1)].

(Select input keys) For j = 1, . . . , n:

– If all gates i having inj as an input wire satisfy modei = SimGate, then
set K[i] := k0ini ,

– else set K[i] := kxiini
.

Output x̃ := (K, key′, {d̃j}j∈[m]).

Fig. 4: The Hybrid Game.

– If the unique gate having outj as an output wire is in SimGate mode, then

we give the simulated output map d̃j := [(k
yj
outj → 0), (k

1−yj
outj → 1)] else the

real one d̃j := [(k0outj → 0), (k1outj → 1)].

Real game and Simulated Game. By definition of adaptively secure garbled cir-
cuits (Definition 1), the real game ExpadaptiveA,GC,Sim(1λ, 0) is equivalent to Hyb(I =

∅, (modei = RealGate)i∈[q]) and the simulated game ExpadaptiveA,GC,Sim(1λ, 1) is equiva-
lent to Hyb(I = ∅, (modei = SimGate)i∈[q]). Therefore, the main aim is to show
that these hybrids are indistinguishable.14

14 Note that, the games Hyb(· · · ) use the simulated encryption and key generation
procedures of the somewhere equivocal encryption, while the games ExpadaptiveA,GC,Sim(1λ, b)
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5.2 Rules for Indistinguishable Hybrids

Next, we provide rules that allow us to move from one configuration to another
and prove that the corresponding hybrid games are indistinguishable. We define

three rules that allow us to do this. We define mode
def
= (modei)i∈[q].

Indistinguishability Rule 1: Changing the Outer Encryption Mode
BindEnc ↔ EquivEnc. This rule allows to change the outer encryption of a
single gate. It says that one can move from a valid circuit configuration (I,mode)
to a circuit configuration (I ′,mode) where I ′ = I ∪ j. Thus one more gate is now
computed equivocally (and vice versa).

Lemma 1. Let (I,mode) be any valid circuit configuration, let j ∈ [q]\I and let

I ′ = I ∪ j. Then Hyb(I,mode)
comp
≈ Hyb(I ′,mode) are computationally indistin-

guishable as long as Π = (KeyGen, Enc,Dec, SimEnc, SimKey) is a somewhere
equivocal encryption scheme with equivocation parameter t such that |I ′| ≤ t.

Proof. Towards a contradiction, assume there exists a PPT distinguisher A that
distinguishes the distributions H0 = Hyb(I,mode) and H1 = Hyb(I ′,mode) as
defined in the Lemma.

We construct a distinguisher B for the security of somewhere equivocal en-
cryption scheme as follows. Informally, adversary B is playing in experiment
Expsimenc

B,Π (1λ, b) and uses her oracle access to SimEnc to reproduce the distri-
bution of Hb. B, on input I, j and mode = mode1, . . . ,modeq computes each
garbled gate g̃i on its own exactly as in H0/ H1 accordingly to modei. B com-
putes the outer encryptions of the gates by sending the gates, along with sets
I, j to Expsimenc.

In the on-line phase, after obtaining x from A, B computes the values for
the missing gates (g̃i)i∈I and send them to Expsimenc, and obtain a key key′. B
uses such key to compute the garbled inputs x̃.

Now, if B is playing the game Expsimenc
B,Π (1λ, b) with a bit b, then the view

generated by B is distributed identically to Hb. Thus, B distinguishes whether
it is playing the game with b = 0 or b = 1 with the same probability that A
distinguishes H0 from H1. A more detailed description of adversary B is provided
in the full version [23].

Indistinguishability Rule 2. Changing the Garbling Mode RealGate ↔
InputDepSimGate This rule allows us to change the mode of a gate j from
RealGate to InputDepSimGate as long as j ∈ I and that gatej = (g, wa, wb, wc)
has incoming wires wa, wb that are either input wires or are the outgoing wires
of some predecessor gates both of which are in InputDepSimGate mode.

only use the real key generation and encryption procedures. However, by definition,
these are equivalent when I = ∅ (no “holes”).
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Double Encryption Encryption Security. For convenience, we use the notion of
double encryption security, following [27]. This notion is implied by standard
CPA security but is more convenient to use in our security proof of garbled
circuit security. See the full version [23] for more details.

Definition 3 (Predecessor/Successor/Sibling Gates). Given a circuit C
and a gate j ∈ [q] of the form gatej = (g, wa, wb, wc) with incoming wires wa, wb
and outgoing wire wc:

– We define the predecessors of j, denoted by Pred(j), to be the set of gates
whose outgoing wires are either wa or wb. If wa, wb are input wires then
Pred(j) = ∅, else |Pred(j)| = 2.

– We define the successors of j, denoted by Succ(j) to be the set of gates that
contain wc as an incoming wire. If wc is an output wires then Succ(j) = ∅.

– We define the siblings of j, denoted by Siblings(j) to be the set of gates that
contain either wa or wb as an incoming wire.

Lemma 2. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and let
j ∈ I be an index such that modej = RealGate and for all i ∈ Pred(j): modei =
InputDepSimGate. Let mode′ = (mode′i)i∈[q] be defined by mode′i = modei for

all i 6= j and mode′j = InputDepSimGate. Then the games Hyb(I,mode)
comp
≈

Hyb(I,mode′) are computationally indistinguishable as long as Γ = (G,E,D) is
an encryption scheme secure under chosen double encryption.

Proof. Let I,mode, j and mode′ be as in the statement of the Lemma. Towards
a contradiction, assume that there exists a PPT adversary A distinguishing
distributions generated in H0 := Hyb(I,mode) and H1 := Hyb(I,mode′).

We construct an adversary B that breaks the CPA-security of the inner
encryption scheme Γ = (G,E,D) which is used to garble gates. More specifically,
we show thatB wins the chosen double encryption security game which is implied
by CPA security. Informally, B, on input mode, I and target gate j aims to use
her CPA-oracle access in Expdouble(1λ, b) to generate a distribution Hb. Recall
that the only difference between H0 and H1 is in the way that the garble gate g̃j
is computed. On a high level, the reduction B will compute all garbled gates g̃i for
i 6= j, according to experiment Hyb(I,mode), and will compute the garbled gate
g̃j using the ciphertexts obtained as a challenge in the experiment Expdouble(1λ, b).

In more detail, let gatej = (g, wa, wb, wc) be the target gate. Recall j ∈ I
and therefore the value g̃j is only needed in the on-line phase. If the values
going over the wires wa, wb during the computation C(x) are α, β respectively,
the reduction B will know all wire keys except for k1−αwa

, k1−βwb
. To create the

garbled gate g̃j it will create the cihertext cα,β as an encryption of k
g(α,β)
wc on

its own, but the remaining three cihertexts cα′,β′ will come from the experiment

Expdouble(1λ, b) as either encryptions of different values k
g(α′,β′)
wc (real) or of the

same value k
g(α,β)
wc .

The one subtlety is that reduction needs to create encryptions under the keys
k1−αwa

, k1−βwb
to create garbled gates g̃i for gates i that are siblings of gate j. It
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can do that by using the encryption oracles which are given to it as part of the
experiment Expdouble(1λ, b). However, since some of the sibling gates i might be
in RealGate or SimGate modes, the reduction needs to create these encryptions
already in the offline phase and therefore needs to know the values of α, β in the
offline phase before the input x is chosen. To deal with this, we simply have the
reduction guess the bits α, β randomly in the offline phase. If in the online phase
it finds out that the guess is incorrect it outputs a random bit and aborts, else
continues. See the full version [23], for a detailed description of the reduction B.

Let Correct be the event that B guesses α and β correctly. Then

|Pr[ExpdoubleB (1λ, 0) = 1]− Pr[ExpdoubleB (1λ, 1) = 1]|

=
1

4
|Pr[ExpdoubleB (1λ, 0) = 1|Correct]− Pr[ExpdoubleB (1λ, 1) = 1|Correct]|

=
1

4
|Pr[H0

A(1λ) = 1]− Pr[H1
A(1λ)]|

=⇒ |Pr[H0
A(1λ) = 1]− Pr[H1

A(1λ)]|
≤ 4|Pr[ExpdoubleB (1λ, 0) = 1]− Pr[ExpdoubleB (1λ, 1) = 1]| ≤ negl(λ)

which proves the Lemma.

Indistinguishability Rule 3. Changing the Garbling Mode:
InputDepSimGate ↔ SimGate. This rule allows us to change the mode of a
gate j from InputDepSimGate to SimGate under the condition that all successor
gates i ∈ Succ(j) satisfy that modei ∈ {InputDepSimGate,SimGate}.

Lemma 3. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and
let j ∈ I be an index such that modej = InputDepSimGate and for all i ∈
Succ(j) we have modei ∈ {SimGate, InputDepSimGate}. Let mode′ = (mode′i)i∈[q]
be defined by mode′i = modei for all i 6= j and mode′j = SimGate. Then the games

Hyb(I,mode) ≡ Hyb(I,mode′) are identically distributed.

Proof. Define H0 := Hyb(I,mode) and H1 := Hyb(I,mode′). Let gatej = (g, wa,
wb, wc), and let v(c) be the bit on the wire wc during the computation C(x),
which is defined in the on-line phase.

The main difference between the hybrids is how the garbled gate g̃j is created:

– In H0, we set g̃j ← GarbleSimGate((kσwa
, kσwb

)σ∈{0,1}, k
v(c)
wc ).

– In H1, we set g̃j ← GarbleSimGate((kσwa
, kσwb

)σ∈{0,1}, k
0
wc

).

If j is not an output gate, and all successor gates i ∈ Succ(j) are in {SimGate,
InputDepSimGate} modes then the keys k0wc

and k1wc
are treated symmetrically

everywhere in the game other than in g̃j . Therefore, by symmetry, there is no

difference between using k0wc
and k

v(c)
wc in g̃j

If j is an output gate then the keys k0wc
and k1wc

are only used in g̃j and in

the output map d̃j . Therefore, by symmetry, there is no difference between using
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k
yj
wc in g̃j and setting d̃j := [(k0outj → 0), (k1outj → 1)] (in H0) versus using k0wc

in

g̃j and setting d̃j := [(k
yj
outj → 0), (k

1−yj
outj → 1)] (in H1).

One last difference between the hybrids occurs if some wire ini becomes only
connected to gates that are in SimGate in H1. In this case, when we create the
garbled input x̃, then in H0 we give K[i] := kxi

ini
but in H1 we give K[i] := k0ini .

Since the keys k0ini , k
1
ini

are treated symmetrically everywhere in the game (both
in H0 and H1) other than in K[i], there is no difference between setting K[i] :=
k0ini versus K[i] := kxi

ini
.

6 Pebbling and Sequences of Hybrid Games

In the last section we defined hybrid games parameterized by a configuration
(I,mode). We also gave 3 rules, which describe ways that allow us to indisit-
nguishably move from one configuration to another. Now our goal is to use the
given rules so as to define a sequence of indistinguishable hybrid games that
takes us from the real game Hyb(I = ∅, (modei = RealGate)i∈[q]) to the simula-
tion Hyb(I = ∅, (modei = SimGate)i∈[q]).

Pebbling Game. We show that the problem of finding such sequences of hybrid
games can be captured by a certain type of pebbling game on the circuit C.
Each gate can either have no pebble, a black pebble, or a gray pebble on it (this
will correspond to RealGate, InputDepSimGate and SimGate modes respectively).
Initially, the circuit starts out with no pebbles on any gate. The game consist of
the following possible moves:

Rule A. We can place or remove a black pebble on a gate as long as both
predecessors of that gate have black pebbles (or the gate is an input gate).

Rule B. We can replace a black pebble with a gray one, only if successors of
that gate have black or gray pebbles on them (or the gate is an output gate).

A pebbling of a circuit C is a sequence of γ moves that follow rules A and B
and that end up with a gray pebble on every gate. We say that a pebbling uses
t black pebbles if this is the maximal number of black pebbles on the circuit at
any point in time during the game.

From Pebbling to Sequence of Hybrids. In our next theorem we prove that any
pebbling of a circuit C results in a sequence of hybrids that shows indistinguisha-
bility of the real and simulated games. The number of hybrids is proportional
to the number of moves in the pebbling and the equivocation parameter is pro-
portional to the number of black pebbles it uses.

Theorem 2. Assume that there is a pebbling of the circuit C in γ moves. Then
there is a sequence of 2 ·γ+1 hybrid games, starting with the real game Hyb(I =
∅, (modei = RealGate)i∈[q]) and ending with the simulated game Hyb(I = ∅,
(modei = SimGate)i∈[q]) such that any two adjacent hybrid games in the sequence
are indistinguishable by rules 1,2 or 3 from the previous section. Furthermore if
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pebbling uses t∗ black pebbles then every hybrid Hyb(I,mode) in the sequence sat-
isfies |I| ≤ t∗. In particular, indistinguishability holds as long as the equivocation
parameter is at least t∗.

Proof. A pebble configuration specifies whether each gate contains no pebble, a
black pebble, or a gray pebble. A pebbling in γ moves gives rise to a sequence
of γ + 1 pebble configurations starting with no pebbles and ending with a gray
pebble on each gate. Each pebble configuration follows from the preceding one
by a move that satisfies pebbling rules A or B.

We let each pebble configuration define a hybrid Hyb(I,mode) where:

– For every gate i ∈ [q], we set modei = RealGate if gate i has no pebble,
modei = InputDepSimGate if gate i has a black pebble, and modei = SimGate
if gate i has a gray pebble.

– We set I to be the set of gates with black pebbles on them.

Therefore a pebbling defines a sequence of hybrids Hybα =Hyb(Iα,modeα) for α
= 0, . . . , γ where Hyb0 = Hyb(∅, (mode0i = RealGate)i∈[q]) is the real game and
Hybγ = Hyb(∅, (modeγi =SimGate)i∈[q]) is the simulated game, and each Hybα
is induced by the pebbling configuration after α moves. We will need to add
additional intermediate hybrids (which we call “half steps”) to ensure that each
pair of consecutive hybrids is indistinguishable by rules 1,2 or 3. We do this as
follows:

– Assume that move α + 1 of the pebbling applies rule A to place a black
pebble on gate j.
Let Hybα = Hyb(Iα,modeα) and Hybα+1= Hyb(Iα+1,modeα+1). Then Iα+1

= Iα∪{j}, modeα+1
i = modeαi for all i 6= j, and modeαj = RealGate, modeα+1

j

= InputDepSimGate.
Define the intermediate “half-step” hybrid Hybα+ 1

2
:= Hyb(Iα+1, modeα).

It holds that Hybα
comp
≈ Hybα+ 1

2
by rule 1, and Hybα+ 1

2

comp
≈ Hybα+1 by rule

2. The conditions needed to apply rule 2 are implied by pebbling rule A.
– Assume that move α + 1 of the pebbling applies rule A to remove a black

pebble from gate j.
Let Hybα = Hyb(Iα,modeα) and Hybα+1 = Hyb(Iα+1,modeα+1). Then Iα+1

= Iα \ {j}, modeα+1
i = modeαi for all i 6= j, and modeαj = InputDepSimGate,

modeα+1
j = RealGate.

Define the intermediate “half-step” hybrid Hybα+ 1
2

:= Hyb(Iα,modeα+1).

It holds that Hybα
comp
≈ Hybα+ 1

2
by rule 2, and Hybα+ 1

2

comp
≈ Hybα+1 by rule

1. The conditions needed to apply rule 2 are implied by pebbling rule A.
– Assume that move α + 1 of the pebbling applies rule B to replace a black

pebble with a gray pebble on gate j.
Let Hybα = Hyb(Iα,modeα) and Hybα+1= Hyb(Iα+1, modeα+1). Then Iα+1 =

Iα \ {j}, modeα+1
i = modeαi for all i 6= j, and modeαj = InputDepSimGate,

modeα+1
j = SimGate.
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Define the intermediate “half-step” hybrid Hybα+ 1
2

:= Hyb(Iα,modeα+1).

It holds that Hybα
comp
≈ Hybα+ 1

2
by rule 3, and Hybα+ 1

2

comp
≈ Hybα+1 by rule

1. The conditions needed to apply rule 3 are implied by pebbling rule B.

Therefore the sequence Hyb0,Hyb 1
2
,Hyb1,Hyb1+ 1

2
,Hyb2, . . . ,Hybγ consisting

of 2γ + 1 hybrids satisfies the conditions of the theorem.

Combining Theorem 2 and Theorem 1 we obtain the following corollary.

Corollary 1. There exists an adaptively secure garbling scheme such that the
following holds. Assuming the existence of one-way functions, there is an instan-
tiation of the garbling scheme that has on-line complexity (n + m + t∗)poly(λ)
for any circuit C that admits a pebbling with γ = poly(λ) moves and t∗ black
pebbles. Furthermore, assuming the existence of sub-exponentially secure one-
way functions, there is an instantiation of the garbling scheme that has on-line
complexity (n+m+ t∗)poly(λ, log γ) for any circuit C admits a pebbling strategy
with γ = 2poly(λ) moves and t∗ black pebbles.

Proof. We instantiate our construction from Section 5 with a CPA-secure “inner
encryption” Γ having special correctness, and a somewhere-equivocal “outer
encryption” Π from Section 4 using an equivocation parameter t = t∗. Both
components can be instantiated from one-way functions. Assuming that γ =
poly(λ), Theorem 2 tells us that the resulting garbling scheme is adaptively
secure as long as Γ,Π are. The on-line complexity consists of n+m keys for Γ
along with the key of Π for a total of (n+m)poly(λ) + t∗poly(λ) as claimed.

When γ = 2poly(λ), then Theorem 2 tells us that the resulting garbling scheme
is adaptively secure as long as the schemes Γ,Π provide a higher level of secu-
rity so as to survive 2γ + 1 hybrids, meaning that the distinguishing advantage
for each of the schemes needs to be 2−(2γ+1)negl(λ). This can be accomplished
assuming sub-exponentially secure one-way functions by setting the security pa-
rameter of Γ,Π to some λ′ = poly(λ, log γ) and results in on-line complexity
(n+m)poly(λ, log γ) + t∗poly(λ, log γ) as claimed.

6.1 Pebbling Strategies

In this section we give two pebbling strategies for arbitrary circuit with width
w, depth d, and q gates. The first strategy uses O(q) moves and O(w) black
pebbles. The second strategy uses O(q2d) moves and O(d) black pebbles.

Strategy 1 To pebble the circuit proceed as follows:

Pebble(C):
1. Put a black pebble on each gate at the input level (level 1).
2. For i = 1 to d− 1, repeat:

(a) Put a black pebble on each gate at level i+ 1.
(b) For each gate at level i, replace the black pebble with a gray pebble.
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(c) i← i+ 1
3. For each gate at level d, replace the black pebble with a gray pebble.

This strategy uses γ = 2q moves and t∗ = 2w black pebbles. By instantiating
Corollary 1 with this strategy, we obtain the following corollary.

Corollary 2. Assuming the existence of one-way functions there exists an adap-
tively secure garbling scheme with on-line complexity w · poly(λ), where w is the
width of the circuit.

Strategy 2 This is a recursive strategy defined as follows.

– Pebble(C):
• For each gate i in C starting with the gates at the top level moving to

the bottom level:
1. RecPutBlack(C, i)
2. Replace the black pebble on gate i with a gray pebble.

– RecPutBlack(C, i): // Let LeftPred(C, i) and RightPred(C, i) are the two pre-
decessors of gate i in C.
1. If gate i is an input gate, put a black pebble on i and return.
2. Run RecPutBlack(C, LeftPred(C, i)), RecPutBlack(C,RightPred(C, i))
3. Put a black pebble on gate i.
4. Run RecRemoveBlack(C, LeftPred(C, i))

and RecRemoveBlack(C,RightPred(C, i))
– RecRemoveBlack(C, i): This is the same as RecPutBlack, except that instead

of putting a black pebble on gate i, in steps 1 and 3, we remove it.

To analyze the correctness of this strategy, we note the following invariants:
if the circuit C is in a configuration where it does not contain any pebbles at
any level below that of gate i, then (1) the procedure RecPutBlack(C, i) results
in a configuration where a single black pebble is added to gate i, but nothing
else changes, (2) the procedure RecRemoveBlack(C, i) results in a configuration
where a single black pebble is removed from gate i, but nothing else changes.
Using these two invariants the correctness of of the entire strategy follows.

To calculate the number of black pebbles used and the number of moves
that the above strategy takes to pebble C, we use the following simple recursive
equations. Let #PebPut(d) and #PebRem(d) be the number of black pebbles on
gate i and below it used to execute RecPutBlack and RecRemoveBlack on a gate
at level d, respectively. We have,

#PebPut(1) = 1, #PebPut(d) ≤ max(#PebPut(d− 1),#PebRem(d− 1)) + 2

#PebRem(1) = 1, #PebRem(d) ≤ max(#PebPut(d− 1),#PebRem(d− 1)) + 2

Therefore the strategy requires at most 2d black pebbles to pebble the circuit.
To calculate the number of moves it takes run Pebble(C), we use the following

recursive equations. Let #Moves(d) be the number of moves it takes to put a
black pebble on, or remove a black pebble from, a gate at level d. Then

#Moves(1) = 1, #Moves(d) = 4(#Moves(d− 1)) + 1
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Hence, each call of RecPutBlack takes at most 4d moves, and the total number
of moves to pebble the circuit is at most q4d.

In summary, the above gives us a strategy to pebble any circuit with at most
γ = q4d moves and t∗ = 2d black pebbles. By instantiating Corollary 1 with the
above strategy, we obtain the following corollary.

Corollary 3. Assuming the existence of (standard) one-way functions, there
exists an adaptively secure garbling schemes that has on-line complexity (n +
m)poly(λ) for all circuits having depth d = O(log λ).

Assuming the existence of sub-exponentially secure one-way functions, there
exists an adaptively secure garbling scheme that has on-line complexity (n +
m)poly(λ, d), for arbitrary circuits of depth d = poly(λ).

7 Conclusions

We have shown how to achieve adaptively secure garbling schemes under one-
way functions by augmenting Yao’s construction with an additional layer of
somewhere-equivocal encryption. The on-line complexity in our constructions
can be significantly smaller than the circuit size. In our main instantiation, the
on-line complexity only scales with the width w of the circuit, which corresponds
to the space complexity of the computation.

It remains as an open problem to get the optimal on-line complexity (n +
m)poly(λ) which does not depend on the circuit depth or width. Currently,
this is only known assuming the existence of indistinguishability obfuscation
and therefore it remains open to achieve the above under one-way functions
or even stronger assumptions such as DDH or LWE. It also remains open if
Yao’s scheme (or more precisely, a variant of it where the output map is sent
in the on-line phase) can already achieve adaptive security without relying on
somewhere-equivocal encryption. We have no proof nor a counter-example. It
would be interesting to see if there is some simple-to-state standard-model se-
curity assumption that one could make on the encryption scheme used to create
the garbled gates in Yao’s construction (e.g., circular security, key-dependent
message security, etc.), under which one could prove that the resulting garbling
scheme is adaptively secure.
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