
Spooky Encryption and its Applications

Yevgeniy Dodis1, Shai Halevi2, Ron D. Rothblum3, and Daniel Wichs4

1 NYU
2 IBM Research

3 MIT
4 Northeastern University

Abstract. Consider encrypting n inputs under n independent public
keys. Given the ciphertexts {ci = Encpki(xi)}i, Alice outputs ciphertexts
c′1, . . . , c

′
n that decrypt to y1, . . . , yn respectively. What relationships be-

tween the xi’s and yi’s can Alice induce?

Motivated by applications to delegating computations, Dwork, Langberg,
Naor, Nissim and Reingold [11] showed that a semantically secure scheme
disallows signaling in this setting, meaning that yi cannot depend on xj
for j 6= i . On the other hand if the scheme is homomorphic then any
local (component-wise) relationship is achievable, meaning that each yi
can be an arbitrary function of xi. However, there are also relationships
which are neither signaling nor local. Dwork et al. asked if it is possible
to have encryption schemes that support such “spooky” relationships.
Answering this question is the focus of our work.

Our first result shows that, under the LWE assumption, there exist en-
cryption schemes supporting a large class of “spooky” relationships,
which we call additive function sharing (AFS) spooky. In particular,
for any polynomial-time function f , Alice can ensure that y1, . . . , yn are
random subject to

∑n
i=1 yi = f(x1, . . . , xn). For this result, the public

keys all depend on common public randomness. Our second result shows
that, assuming sub-exponentially hard indistinguishability obfuscation
(iO) (and additional more standard assumptions), we can remove the
common randomness and choose the public keys completely indepen-
dently. Furthermore, in the case of n = 2 inputs, we get a scheme that
supports an even larger class of spooky relationships.

We discuss several implications of AFS-spooky encryption. Firstly, it
gives a strong counter-example to a method proposed by Aiello et al. [1]
for building arguments for NP from homomorphic encryption. Secondly,
it gives a simple 2-round multi-party computation protocol where, at the
end of the first round, the parties can locally compute an additive secret
sharing of the output. Lastly, it immediately yields a function secret
sharing (FSS) scheme for all functions.

We also define a notion of spooky-free encryption, which ensures that
no spooky relationship is achievable. We show that any non-malleable
encryption scheme is spooky-free. Furthermore, we can construct spooky-
free homomorphic encryption schemes from SNARKs, and it remains an
open problem whether it is possible to do so from falsifiable assumptions.

1 Introduction

Imagine Alice and Bob, standing on different planets light years apart. They
are “simultaneously” given some input bits x1 and x2 respectively, and must
answer by outputting bits y1 and y2 respectively. Classical physics allows them to
implement local (component-wise) strategies where y1 is an arbitrary function of
x1 and y2 is a function of x2. On the other hand, the impossibility of faster-than-
light communication disallows signaling strategies, meaning that the distribution
of y1 cannot depend on the value of x2 and vice versa.

However, there are strategies that are neither local nor signaling. For exam-
ple, perhaps Alice and Bob want to ensure that y1, y2 are random bits subject
to y1 ⊕ y2 = x1 ∧ x2. In this case, the distribution of y1 does not depend on x2
(and vice versa) so the strategy is not signaling, but it’s also not local. Surpris-
ingly some such strategies which are neither signaling nor local are achievable
using quantum mechanics, if Alice and Bob share an entangled quantum state.
Einstein referred to this phenomenon as “spooky action at a distance”.

In this work, we consider an analogous scenario, first considered by Dwork
et al. [11], where the separation between x1, x2 is enforced not via physical
distance but by encrypting these bits under two independent public keys.5 Here
Alice gets the two ciphertexts c1 ← Encpk1(x1), c2 ← Encpk2(x2), and outputs
two other ciphertexts c′1, c

′
2 which are decrypted as yi ← Decski(c

′
i), i = 1, 2.

As in the physical analogy, here too we can rule out signaling strategies (if the
encryption is semantically secure), and can implement local strategies (if the
encryption is homomorphic). But can we replace the entangled state from above
by a special “spooky encryption scheme” that would allow Alice to implement
spooky strategies? Answering this question is the focus of this work, and we
obtain the following results:

– Assuming the hardness of learning with errors (LWE), there exists a secure
encryption scheme in which Alice can implement a wide class of spooky
strategies that we call additive function sharing (AFS) spooky. Namely, for
any two-argument function f : ({0, 1}∗)2 → {0, 1}, Alice can convert en-
cryption of inputs ci ← Encpki(xi) to encryption of outputs yi ← Decski(c

′
i),

ensuring that y1 ⊕ y2 = f(x1, x2), except for a small error probability.
This construction, described in Section 3, uses the LWE-based multi-key
FHE schemes from [7,23,27], and it inherits from these multi-key scheme
their dependence on a common random string.

– In Section 4 we describe a spooky scheme that supports arbitrary two-input
spooky relations on short inputs, as well as a very wide class of two-input
spooky relations on long inputs. This construction uses probabilistic indis-
tinguishability obfuscation (piO), which is an extension of iO to probabilistic
circuits recently introduced by Canetti et al. [6], in conjunction with lossy en-
cryption schemes which are homomorphic and ensure circuit privacy against
malicious adversaries. This construction works in the plain model without

5 Dwork et al. considered PIR rather than encryption, but the translation is immedi-
ate.

common-random string and has no error, and it can be realized based on
exponentially strong iO, exponentially strong PRFs, and DDH.

– In Section 5 we describe a transformation from a scheme that supports
only two-input spooky relations on one-bit inputs to one that supports AFS
spooky relations on arbitrary number of inputs (of arbitrarily length each).
This transformation can be applied to both our LWE-based and piO-based
constructions from above.

– We show several implications of (AFS-)spooky encryption. On a negative,
it gives a strong counter-example to a method proposed by Aiello et al. [1]
for building succinct arguments for NP from homomorphic encryption6, re-
solving a question posted by [11]. On a positive, it immediately yields a
function secret sharing (FSS) scheme for all functions [4,15], and also gives
a simple 2-round multi-party computation protocol where, at the end of the
first round, the parties can locally compute an additive secret sharing of the
output. These application are discussed in Section 6.

– We also study in Section 7 the concept of spooky free encryption, i.e., an
encryption scheme where we can prove that no spooky strategy is feasible. We
show that any non-malleable encryption scheme is spooky-free, and also build
spooky-free homomorphic encryption schemes from SNARKs. It remains an
open problem to construct spooky-free homomorphic encryption under more
standard assumptions. Spooky-free homomorphic encryption can be used to
instantiate the approach of Aiello et al. to get succinct arguments for NP.

1.1 Technical Overview

LWE-based construction Our LWE-based construction builds on the multi-key
FHE schemes from [7,23,27]. In these schemes (after some syntactic massaging)
secret keys and single-key ciphertexts are vectors in Znq , and decryption consists
of computing w = 〈s, c〉 mod q, then rounding to the nearest multiple of q/2,
outputting zero if w is closer to 0 or one if w is closer to q/2.

These schemes, however, also support homomorphic computation across ci-
phertexts relative to different keys. Roughly, they feature a “lifting procedure”
where a dimension-n ciphertext vector relative to one key si is “lifted” to a
dimension `n vector c′ = (c′1, . . . , c

′
`) relative to the concatenated key s′ =

(s1, . . . , s`) of dimension `n. These lifted ciphertexts can still be computed on,
and the decryption procedure proceeds just as before, except using the higher-
dimension vectors. Namely, to decrypt c′ using s′, one first computes the inner
product w′ = 〈s′, c′〉 modulo q, then rounds to the nearest multiple of q/2. In
other words, we compute the individual inner products wi = 〈si, c′i〉, then add
them all up and round to the nearest multiple of q/2.

We observe (cf. Lemma 1) that for the special case of two keys, ` = 2, instead
of adding the wi’s and then rounding, we can first round each wi to the nearest

6 Although included in the ICALP conference proceedings, the article [1] was with-
drawn before the conference and was not presented there.

multiple of q/2 and then add, and this yields the same result with high prob-
ability. Specifically, the error probability is proportional to the rounding error
for the overall sum w′. This observation immediately yields additive function
sharing (AFS) spooky encryption for two-argument functions: We use one of
the schemes from [7,23,27] to encrypt the two arguments x1, x2 under two keys,
then use the multi-key evaluation procedure to compute a multi-key ciphertext
c′ = (c′1, c

′
2) encrypting the value f(x1, x2). Viewing each c′i as a single-key

ciphertext, we apply the usual decryption procedure to each of them, and the
resulting two bits are an additive secret sharing of f(x1, x2), except with a small
error probability. The error probability can be made negligible by relying on
LWE with a super-polynomial approximation factor.

piO-based construction In Section 4 we show that using iO we can construct
an AFS encryption scheme without CRS and without errors, and moreover we
can support arbitrary spooky relations on two bits, not just additive sharing.
For this overview, let us focus on the simpler task of constructing AFS spooky
scheme for the multiplication function MULT(b1, b2) = b1 · b2.

The starting point of the construction takes a homomorphic encryption scheme
(Gen,Enc,Dec,Eval) and adds to the public key an obfuscation of the randomized
functionality that decrypts, computes the functions f , and re-encrypts secret-
sharing of the result. Specifically, let us denote for any x1, y1 ∈ {0, 1} the function
fx1,y1(x2) = x1 · x2 ⊕ y1, and consider the following randomized program:

Program Psk1,pk1(c1, pk2, c2)

1. y1 ← {0, 1}. 4. c′2 = Eval(pk2, fx1,y1 , c2).
2. c′1 ← Encpk1(y1). 5. Output (c′1, c

′
2).

3. x1 = Decsk1(c1).

Given the two pairs (pk1,Encpk1(x1)), (pk2,Encpk2(x2)), and access to the
program Psk1,pk1 , we can run Psk1,pk1(c1, pk2, c2) to get two ciphertexts c′1 and
c′2, encrypting y1, y2, respectively, such that y1 ⊕ y2 = x1 · x2. We would like,
therefore, to add an obfuscation of Psk1,pk1 to the public key, thereby obtaining
AFS spooky multiplication.

As described, however, this construction is not even secure when Psk1,pk1(c1, pk2, c2)
is only accessed by a perfect black box. The reason is that if the underlying ho-
momorphic encryption is not circuit private, then the evaluated ciphertext c′2
could leak information about x1. To fix this issue, we require the use of circuit-
private homomorphic encryption in this construction. In fact, since the adversary
could run the program Psk1,pk1(c1, pk2, c2) on arbitrary inputs of its choice, we
need a stronger notion of circuit privacy against malicious adversaries [25], that
guarantees privacy even if the public-key and ciphertext given to the evaluation
algorithm are generated adversarially.

Using a malicious circuit private homomorphic encryption scheme, the con-
struction above would be secure if the program Psk1,pk1(c1, pk2, c2) is accessed
as a perfect black box (e.g., using VBB obfuscation). However, we would like

to rely on the weaker notion of indistinguishability obfuscation (iO), or rather
probabilistic iO [6] (since we are dealing with a randomized program). We need
to somehow argue that the secret key sk1 that is encoded within the program
Psk1,pk1 is hidden by the weaker obfuscation, and we do it using a technique from
the work of Canetti et al. [6], employing a lossy encryption scheme.

We note that the construction above only uses homomorphic computations
for single-bit functions (in addition to probabilistic iO), and there are only four
such function (identity, negation, constant 0 and constant 1). A secure and
malicious-circuit-private encryption scheme that supports these operations was
constructed by Naor and Pinkas [24] based on the DDH assumption.

From 2-spooky to n-spooky Both the LWE and piO based constructions
above only support two-argument spooky relations. Specifically the LWE-based
scheme only supports AFS-spooky relations for two-argument functions, and
the piO-based scheme supports a large class of spooky relations but again, only
on two inputs. We extend the supported spooky relations by showing how to
transform a scheme that supports (multiple hops of) AFS-spooky two-input
multiplication and single-key additive homomorphism, into a leveled AFS spooky
scheme for any number of inputs of any length.

The transformation is inspired by the Goldreich-Micali-Wigderson MPC pro-
tocol [16]: Suppose that we are given n public keys pk1, . . . , pkn, bit-by-bit en-
cryptions of the input values Encpki(xi), and an arithmetic circuit C : ({0, 1}∗)n →
{0, 1} that we want to evaluate (i.e., to produce encrypted shares of C(x1, . . . , xn)).
We process the circuit gate by gate, while maintaining the invariant that for ev-
ery wire w we produce ciphertexts Encpk1(w1), . . . ,Encpkn(wn) such that ⊕i∈[n]wi
is equal to the wire w’s value. The wires are processed inductively:

1. For an input wire holding a bit b, which is part of the j’th input xj ,
we take the ciphertext c that encrypts b relative to pkj , and append to
it the ciphertexts ci ← Encpki(0) for all i 6= j. Clearly the ciphertexts
(c1, . . . , cj−1, c, cj+1, . . . , cn) are encryptions of an additive sharing of the
wire’s value b.

2. For an addition gate with input wires u, v and output wire w, by induction
we already have Encpk1(u1), . . . ,Encpkn(un) and Encpk1(v1), . . . ,Encpkn(vn).
Using just an additive homomorphism on each key individually, we can pro-
duce Encpk1(u1⊕v1), . . . ,Encpkn(un⊕vn) which is the desired secret sharing.

3. For a multiplication gate with input wires u, v and output wire w, again by in-
duction we already have Encpk1(u1), . . . ,Encpkn(un) and Encpk1(v1), . . . ,Encpkn(vn).
Using the AFS spooky multiplication we compute an encrypted tensor prod-
uct of the u and v vectors. Namely, for every i, j we use spooky multiplication
to compute(

Encpki(xi,j),Encpkj (yi,j)
)
← SpookyMult

(
Encpki(ui),Encpkj (uj)

)
,

such that xi,j ⊕ yi,j = ui · vj . Then we collapse this tensor product back into
an n-vector using the additive homomorphism relative to each key separately.

That is, for every i ∈ [n] we can compute a ciphertext Encpki(wi) such that
wi =

⊕
j∈[n] xi,j ⊕

⊕
j∈[n] yj,i. We observe that these ciphertexts form a

secret sharing of u · v. Indeed, adding up the plaintexts we get:

⊕
i∈[n]

⊕
j∈[n]

xi,j ⊕
⊕
j∈[n]

zj,i

 =
⊕
i,j∈[n]

(xi,j ⊕ yi,j) =
⊕
i,j∈[n]

ui · vj = (
⊕
i

ui) · (
⊕
j

vj)

(1)

Thus, if the scheme can support 2d interleaved hops of (two-key) spooky
multiplication and (single-key) additive homomorphism then it is an AFS-spooky
scheme for the class of all depth d arithmetic circuits. We note that the resulting
scheme does not depend on the number of inputs or their length, and it only
depends on the complexity of C inasmuch as the underlying scheme depends on
the depth of the evaluated circuit.

Applications of Spooky Encryption In Section 6 we describe both positive
and negative applications of spooky encryption. On the positive, it immediately
yields a function secret sharing (FSS) scheme for all functions [4,15]. Previously
such a general function secret sharing scheme was only known to follow from
sub-exponentially hard indistinguishability obfuscation [4] whereas we can base
it on LWE (using our LWE based spooky encryption).

Spooky encryption also gives a simple 2-round multi-party computation pro-
tocol. Roughly, AFS-spooky encryption lets each party broadcast an encryption
of its input under its own key, then everyone individually performs the AFS-
spooky evaluation locally, each party can locally decrypt and recover a share of
the output, and the output is recover using another round of communication.
There are some technicalities that should be addressed for this idea to work,
and perhaps the easiest way of addressing them is to use AFS-spooky encryp-
tion to construct multi-key FHE with threshold decryption (TMFHE), which can
then be used to get a two-round protocol as done in [23]. Using our obfuscation
based construction (which does not require a CRS), this gives the first 2-round
semi-honest secure MPC protocol in the plain model.7

On the negative side, AFS-spooky encryption yields a counter-example for
the transformation of Aiello et al. [1] from multi-prover (MIP) to single-prover
protocols. Their idea was to send all of the MIP queries to a single prover, but
encrypted under independents keys of a homomorphic encryption scheme. The
single prover can homomorphically implement the actions of the MIP provers
on the individual encrypted queries, and hopefully the fact that the queries are
encrypted under independent keys means that no cross-influence is possible. It
is easy to see that spooky encryption violates this hope (by its very nature).
Moreover, we show that this transformation can lead to a total break of sound-
ness - in Section 6.1 we show how using AFS-spooky encryption can lead to an

7 In contrast, [12] and [23] construct 2-round protocols in the CRS model. As for
security against a malicious adversary, [21] show that 5 rounds are necessary in the
plain model (with respect to black-box proofs of security).

unsound single-prover protocol, when the transformation is applied to a simple
two-prover protocol for graph 3-colorability.

Spooky-Free Encryption Finally, in Section 7 we discuss the notion of spooky-
free (SF) encryption, which provably ensures that any correlation that an at-
tacker can induce between the original messages (m1, . . . ,mn) and “tampered
messages” (m′1, . . . ,m

′
n), can be simulated by a “local simulator” that produces

m′i only as a function of mi (and some shared randomness), see Definition 6.
To validate this definition, we show that a spooky-free FHE suffices to prove
the security of the natural approach of Aiello et al. [1], which was discussed
above, of converting a succinct MIP into a succinct one-round argument dis-
cussed above. Indeed, spooky-freeness ensures that the attacker cannot cause
more damage from seeing all n ciphertexts than what it could have done by
seeing each plaintext independently.

We then turn to the systematic study of spooky-free encryption. First, we
show that spooky-freeness implies semantic security. On the other hand, a very
weak form of non-malleability (called 1-non-malleability here, or 1-bounded
CCA security in [8]) implies spooky-freeness. However, since the scheme is non-
malleable, it is inherently not homomorphic and so we cannot use it to obtain a
delegation scheme via the foregoing approach.

Indeed, to instantiate the approach of Aiello et al. constructing succinct ar-
guments for NP, we need a homomorphic encryption scheme which is spooky
free. As a proof of concept, in the full paper [9] we show how to built such a
homomorphic spooky-free encryption using succinct non-interactive arguments
of knowledge (SNARKs [14,3]), true-simulation-extractable NIZKs [10] and reg-
ular FHE. While the use of SNARKs makes this construction uninteresting in
the application to succinct arguments, the clean definition of SF-encryption,
coupled with our “proof of concept” implementation, might open the door for
more useful future constructions.

1.2 Related Work

The starting point for this line of work is the natural approach, suggested by
Aiello et al. [1], for constructing a secure delegation scheme by combining a multi-
prover interactive proof-system (MIP) with a homomorphic encryption scheme
as described above. This intuition was questioned by Dwork et al. [11] and our
work confirms that the approach of [1] is not always secure.

An approach to overcoming this barrier was taken by Kalai et al. [19,20].
They designed a specific MIP (for P) that is sound even against arbitrary no-
signaling adversaries. Since semantic-security rules out signaling strategies, they
obtain a secure delegation protocol for any language in P.

Spooky Free vs. Homomorphism Extraction. Bitansky and Chiesa defined in [2] a
security notion called homomorphism extraction, that they show can be used to
securely instantiate the construction of Aiello et al. and get succinct arguments

for NP. Intuitively, this notion says that to produce a valid encryption of m′

from an encryption of m, you must know a function f such that m′ = f(m).
Compared to our notion of spooky-free (which is also sufficient for the Aiello
et al. transformation), the main difference is that of “extraction vs. soundness”,
so homomorphism extraction seems a stronger requirement. For example, homo-
morphism extraction implies some form of “plaintext awareness” and therefore
is non-trivial even for schemes that aren’t homomorphic, whereas we show that
any non-malleable encryption scheme is spooky-free.

Multi-key FHE. A notion that is related to spooky-encryption, introduced by
López-Alt et al. [22] is that of multi-key FHE. In a multi-key FHE, similarly
to a spooky encryption scheme, the homomorphic evaluation procedure gets as
input n ciphertexts encrypted under different keys. The difference is that the
output of the evaluation in a multikey FHE is a single ciphertext that can only
be decrypted by combining all the n keys. In contrast, in a spooky encryption
scheme the result of the spooky evaluation is n ciphertexts, c1, . . . , cn where each
ci is encrypted under the ith original,. Thus, spooky encryption can be thought
of as a specific type of multi-key FHE.

2 Definitions

2.1 Local, No-Signaling, and Spooky Relations

We say that two distributions D1, D2 over a (finite) universe U are ε-close if

their statistical distance 1
2 ||D1 −D2||1 is at most ε, and denote it by D1

ε
≈ D2.

We write D1 ≡ D2 to denote that the distributions are identical. We say that
D1, D2 are δ-far if their statistical distance is at least δ.

Definition 1. Let f : {0, 1}`1 × · · · {0, 1}`n → {0, 1}`′1 × · · · {0, 1}`′n be a ran-
domized mapping from n input to n outputs. For input x = (x1, . . . , xn) to f ,
we denote the i’th component of the output by f(x)i, and more generally for
a subset I ⊂ [n] we denote the projected input by xI = (xi : i ∈ I) and the
projected output by f(x)I = (f(x)i : i ∈ I).

– f is local if there exist n randomized “component mappings” fi : {0, 1}`i →
{0, 1}`′i such that for all (x1, . . . , xn) ∈ {0, 1}`1×· · · {0, 1}`n , the distribution
f(x1, . . . , xn) is a product distribution f(x1, . . . , xn) ≡ f1(x1)×· · ·×fn(xn).

– f is no-signaling if for every subset I ∈ [n] and every two inputs x,x′ with
the same I projection, xI = x′I , the corresponding projected distributions are
equal, f(x)I ≡ f(x′)I .

– We say that f is ε-spooky for some ε > 0 if it is no-signaling, but for every
local f ′ there exists some input x such that f(x) and f ′(x) are at least ε-far.

These definitions extends to an ensemble of mappings F = {fk : k ∈ N}, with
the mapping parameters n, `i, `

′
i and the distance bound ε possibly depending on

the ensemble parameter k. In this case we say that F is spooky if the fk’s are
ε-spooky for a non-negligible ε = ε(k).

As an example, consider the randomized function f(x1, x2) = (y1, y2) where
y1, y2 are uniformly random subject to y1 ⊕ y2 = x1 ∧ x2. This function is
no-signaling since the distributions f(x)1 and f(x)2 are individually uniform,
no matter what x is. However, it’s easy to show that for any local function
f ′ = (f ′1, f

′
2) there is an input x = (x1, x2) such that Pr[f ′1(x1) ⊕ f ′2(x2) =

x1 ∧ x2] ≤ 1/2. Therefore the function f is ε-spooky for ε = 1/2.

2.2 Spooky Encryption

A public-key encryption scheme consists of a tuple (Gen,Enc,Dec) of polynomial-
time algorithms. The key-generation algorithm Gen gets as input a security pa-
rameter κ ∈ N and outputs a pair of public/private keys (pk, sk). The encryption
algorithm Enc gets as input the public-key pk and a bit m ∈ {0, 1}poly(κ) and
outputs a ciphertext c, whereas the decryption algorithm Dec gets as input the
private-key sk and the ciphertext c and outputs the plaintext bit m. The basic
correctness guarantee is that Pr[Decsk(Encpk(m)) = m] > 1 − negl(k), where
the probability is over the randomness of all these algorithms. The security re-
quirement is that for every pair of polynomial-sized adversaries (A1, A2) it holds
that

Pr
(pk,sk)←Gen(1κ)

b←{0,1}

[
(m0,m1)← A1(pk) s.t. |m0| = |m1|

A2 (pk,Encpk(mb)) = b

]
≤ 1

2
+ negl(κ).

If the message space consists of just a single bit then we say that the scheme is
a bit encryption scheme.

Definition 2 (Spooky Encryption). Let (Gen,Enc,Dec) be a public-key bit-
encryption scheme and Spooky-Eval be a polynomial-time algorithm that takes
as input a (possibly randomized) circuit with n = n(κ) inputs and n outputs,
C : ({0, 1}∗)n → ({0, 1}∗)n, and also n pairs of (public-key, ciphertext), and
outputs n ciphertexts.

Let C be a class of such circuits, we say that (Gen,Enc,Dec,Spooky-Eval) is a
C-spooky encryption scheme if for every security parameter κ, every randomized
circuit C ∈ C, and every input x = (x1, . . . , xn) for C, the distributions

SPOOK[C, x1, . . . , xn]
def
=(Dec(sk1, c

′
1), . . . ,Dec(skn, c

′
n)) :

∀i ∈ [n] (pki, ski)← Gen(1κ),
ci ← Enc(pki, xi),

(c′1, . . . , c
′
n)← Spooky-Eval(C, (pki, ci)i)

and C(x1, . . . , xn) are close upto a negligible distance in κ.

We note that the name spooky encryption stems from the application of
Definition 2 to circuits C that compute spooky mappings. Indeed, as shown
by Dwork et al. [11], the semantic security of (Gen,Enc,Dec) implies that only
(almost) no-signaling C’s can be realized, and every homomorphic scheme can
realize C’s that compute product mappings.

Spooky Encryption with CRS. We say that (Gen,Enc,Dec,Spooky-Eval) is a C-
spooky encryption scheme with CRS if Definition 2 is satisfied except that we
allow all algorithms (and the adversary) to get as input also a public uniformly
distributed common random string.

2.3 Additive-Function-Sharing Spooky Encryption

An important special case of spooky encryption allow us to take encryptions
ci ← Encpki(xi) under n independent keys of inputs x1, . . . , xn to an n-argument
function f , and produce new ciphertexts under the same n keys that decrypt
to additive secret-shares of y = f(x1, . . . , xn). An encryption scheme that sup-
ports such “non-interactive sharing” is called additive-function-sharing spooky
encryption (or AFS-spooky). Several variants of this concept are defined below:

– We can either insist on getting a random secret sharing of y, or contend
ourselves with any secret sharing. Below we call the latter variant weak
AFS-spooky, and the former is strong AFS-spooky (or just AFS-spooky).

– Similarly to homomorphic encryption schemes, we can have either a leveled
variant where key-generation receives an additional depth parameter d and
the result supports only circuits of depth upto d, or a fully AFS-spooky
scheme that supports any circuit with a fixed parameter setting.

– We can either allow non-negligible error probability (i.e., the probability that
the computation fails to produce a secret-sharing of the right output y), or
insist on a negligible error probability. Below we denote by ε-AFS-spooky
the variant where the error probability is bounded by some ε (that need
not be negligible), and the variant with negligible error probability is just
AFS-spooky.

– Sometimes we want to consider only two-argument functions f(x1, x2), a
scheme that only supports two-argument functions is called AFS-2-spooky.

The formal definition itself is provided in the full version [9], where we also
show that the weak and strong variants are essentially equivalent.

3 LWE-Based Spooky Encryption

3.1 Learning with Errors (LWE) and Multi-Key FHE

The LWE assumption roughly says that adding just a little noise to a set of
linear equations makes them hard to solve. In our context, we consider equations
modulo some integer q and the noise consists of numbers whose magnitude is
much smaller than q, as expressed via a noise distribution χ that yields such
“small numbers” with high probability. Below we identify Zq with the symmetric
interval [−q/2, q/2) and let [x]q denote the reduction of x modulo q into this
interval.

Definition 3 (Learning With Errors [29]). Let n = n(κ), q = q(κ) ∈ Z
be functions of the security parameter κ and χ = {χ(κ)}κ be a distribution
ensemble over Z. The decision-LWE assumption with parameters (n, q, χ) says
that for any polynomial m = m(κ) ∈ Z, the following two distribution ensembles
are computationally indistinguishable

LWE [n,m, q, χ]
def
=
{

(A, b) : A← Zn×mq , s← Znq , e← χm, b := [sA+ e]q
}
,

and U [n,m, q]
def
=
{

(A, b) : A← Zn×mq , b← Zmq
}

(i.e., uniform over Z(n+1)×m
q).

For α = α(κ) ∈ (0, 1), the α-DLWE assumption asserts the existence of param-
eters n, q, χ as above with n polynomial in κ, such that e ← χ yields |e| < αq
with overwhelming probability.

Note that the α-DLWE assumption becomes stronger as α gets smaller, and it
is known to be false in the extreme case where α = 2−Ω(n) using lattice-reduction
techniques. On the other hand, we have ample evidence to belive the α-DLWE
assumption with α = 1/poly(n) [29,26,5], and it is commonly belived to hold
also for super-polynomially (and perhaps even sub-exponentially) small α’s.

We show that assuming hardness of the learning-with-errors problem, there
exists a function-secret sharing (in the common-random-string model) for any
n-argument function f . Our construction can be built on the multi-key fully
homomorphic encryption construction of Mukherjee and Wichs [23] or the one
of Peikert and Shiehian [27], which are variations of the Clear-McGoldrick scheme
from [7]. We summarize the relevant properties of these constructions:

Theorem 1 ([7,23,27]). Assuming the hardness of α-DLWE (for some α(κ)),
there exists a multi-key homomorphic encryption with the following properties:

– The construction works in the common-random-string model. For parameters
n,m, q = poly(κ), all instances have access to a uniformly random matrix

A ∈ Z(n−1)×m
q .

– For any depth parameter d, the scheme supports multi-key evaluation of
depth-d circuits using public keys of size d · poly(κ), while secret keys are
vectors s ∈ Znq , regardless of the depth parameter.
Specifically, there is an efficient procedure Eval that is given as input:
• Parameters d, ` ∈ N;
• A depth-d circuit computing an `-argument function f : ({0, 1}∗)` →
{0, 1};

• Public keys (pk1, . . . , pkn) and fresh encryptions (bit-by-bit) of each ar-
gument xi ∈ {0, 1}∗ under key pki, denoted ci ← Encpki(xi).

On such input, the Eval procedure outputs a dimension n`-vector, c′ =
(c′1 . . . c

′
`) (with each c′i ∈ Znq),8 such that for the secret keys si corresponding

to pki it holds that

∑̀
i=1

〈si, c′i〉 = bq/2c · f(x1, . . . , xn) + e (mod q)

for some error e ∈ Zq with |e| < αq · poly(κ).

By further making a circular-security assumption, there exists a scheme that
supports evaluation of circuits of any depth without growing the public keys.

3.2 LWE-Based AFS Spooky Encryption

Below we show that under the decision-LWE assumption we can construct AFS-
spooky encryption schemes (in the common-random-string model). Namely, for
every n-argument function f(x1, . . . , xn), given encryption of the arguments un-
der n independent public keys, we can compute an encryption of shares under
the same keys of an additive secret-sharing of the output y = f(x1, . . . , xn).

Theorem 2. Assuming the hardness of α-DLWE, there exists a leveled ε-AFS-2-
Spooky encryption scheme for ε = α ·poly(κ). Further making a circular-security
assumption, we get a (non-leveled) ε-AFS-2-spooky encryption scheme.

Proof. We show that the encryption scheme from Theorem 1 is already essen-
tially a leveled weak AFS-2-spooky encryption scheme. Specifically, Theorem 1
tells us that given the description of a depth-d circuit C, computing a 2-argument
function f : ({0, 1}∗)2 → {0, 1}, together with two public-key and correspond-
ing bit-by-bit encryptions, ci ← Encpki(xi), the Eval procedure yields (c′1, c

′
2)←

Eval(C, (pk1, c1), (pk2, x2)) such that 〈sk1, c
′
1〉 + 〈sk2, c

′
2〉 = y · q/2 + e (mod q),

where the ski’s are the secret keys corresponding to the pki’s, y = f(x1, x2), and
|e| < αq · poly(κ) = εq.

Denote vi = [〈ski, c
′
i〉]q for i = 1, 2 and v = [v1 + v2]q. Lemma 1 below says

that instead of first adding the vi’s and then rounding to the nearest multiple of
q/2, we can first round and then add, and this will yield the same result except
with error probability of at most 2ε. The only catch is that Lemma 1 assumes
that v1, v2 are chosen at random subject to their sum modulo q being v, whereas
in our case we do not have this guarantee. To account for this, we modify our
Spooky-Eval procedure, letting it choose a random shift amount δ ∈ Zq and
adding/subtracting it from v1, v2, respectively. More detail is provided in the
full version [9].

Lemma 1. Fix some modulus q ∈ Z, bit b ∈ {0, 1}, and a value v ∈ Zq such
that v = b ·q/2+e (mod q) for some bounded error |e| < q/4. Consider choosing
v1, v2 uniformly at random in Zq subject to v1 + v2 = v (mod q), and denote
vi = bi · q/2 + ei (mod q) with bi = [dvi · 2/qc]2 ∈ {0, 1} and |ei| ≤ q/4. Then
Prv1,v2 [b1 ⊕ b2 = b] > 1− 2(|e|+ 1)/q.

Proof. We break the proof into four cases, namely b = 0 vs. b = 1 and e ≥ 0 vs.
e < 0. Below we prove only the first the case b = 0 and v = e ≥ 0, the other
three cases are similar. For the first case consider choosing at random v1 ∈ Zq
8 Referring to [23, Sec. 5.4], the vector c′i is the result of the product Ĉ(i)× Ĝ−1(ŵT),

without the added noise term esmi .

and setting v2 = [v−v1]q = [e−v1]q. It is straightforward (but tedious) to check
that the condition b1 ⊕ b2 = b = 0 is satisfied whenever we have

either v1, v2 ∈
(−q

4
+ e,

q

4

)
, or v1, v2 ∈

[−q
2
,
−q
4

)
∪
(q

4
+ e,

q

2

)
.

For example when v1 ∈
(
q
4 + e, q2

)
then we have b1 = 1 and

v2 = e− v1 ∈
(
e− q

2
, e− (

q

4
+ e)

)
⊆
(
− q

2
, − q

4

)
,

so we get also b2 = 1 and therefore b1 ⊕ b2 = 0 = b.
The only error regions are v1, v2 ∈ (−q4 ,

−q
4 + e), v1, v2 ∈ (q4 ,

q
4 + v), and

(depending on rounding) also upto two of the four points v1 ∈ {±q4 ,
±q
4 +e}∩Z.

3.3 Beyond AFS-2-Spooky Encryption

The construction from Theorem 2 does not directly extend to functions with
more than two arguments, since Lemma 1 no longer holds for more than two
vi’s (even for the no-error case of e = 0). Instead, we can use the GMW-like
transformation that was sketched in the introduction and is described in detail
in Section 5 to get a general AFS-spooky scheme.

To support this transformation, we need an AFS-2-spooky scehme which is
multi-hop (in the sense of [13]), i.e. we need to apply the spooky evaluation
procedure not just to fresh ciphertexts, but also to evaluated ciphertexts that
resulted from previous applications of spooky evaluation. The AFS-2-spooky
scheme in Theorem 2 may or may not have this property, depending on the
underlying multi-key FHE scheme. In particular the Peikert-Shiehian scheme in
[27] is “natively multi-hop,” so we can base our construction on that scheme
and get directly a multi-hop AFS-2-spooky scehme which is suitable for our
transformation.

On the other hand, the schemes from [7,23] support only one hop, since only
fresh cipehrtexts can be processed in a multi-key fashion. We can stil use them
for our purposes by applying the same bootstrapping-based transformation as
in [13, Theorem 4], which transforms any compact fully-homomorphic scheme
to a multi-hop one:9 More details are provided in the full version [9].

Theorem 3. Assuming the hardness of α-DLWE, there exists a leveled FHE
scheme that supports d interleaved levels of AFS-2-spooky multiplicatoins and
single-key addition, with total error probability ε = α · d · poly(κ).

Corollary 1. Assuming the hardness of α-DLWE, there exists a leveled ε-AFS-
spooky encryption scheme for ε = α·d·poly(κ). Further making a circular-security
assumption, we get a (non-leveled) ε-AFS-spooky encryption scheme. ut
9 The transformation in [13] is described for single-key FHE schemes, but it applies

also to multi-key schemes.

4 piO based Spooky Encryption

In this section we show a construction based on probabilistic iO, in conjunction
with lossy homomorphic encryption, that can support many 2-key spooky rela-
tions, even beyond AFS-spooky. Compared to our LWE-based construction from
Section 3, the construction here does not need a CRS and has zero error prob-
ability, and it supports more spooky distributions. On the other hand, we are
making a much stronger assumption here, and also we need a different scheme
for different spooky relations.10

The construction in this section supports in particular the functionality that
we need for our generic transformation from Section 5, that turns an AFS-2-
spooky scheme to an AFS-n-spooky one. The resulting AFS-n-spooky also does
not use a CRS and has no error probability. Moreover, applying this transfor-
mation yields a single scheme supporting all AFS-spooky relations.

Organization of this Section. In Section 4.1 we introduce our tools, defining
probabilistic indistinguishability obfuscation (using a slightly weaker variant of
the definition of Canetti et al. [6]) and lossy homomorphic encryption with ma-
licious circuit privacy. In Section 4.2 we describe and prove our construction for
2-input spooky encryption scheme, and finally in Section 4.3 we show how to
obtain a multi-input AFS-spooky encryption.

4.1 Tools

Probabilistic Indistinguishability Obfuscation. Our construction uses prob-
abilistic iO, a notion that was recently introduced by Canetti et al. [6]. Loosely
speaking, this is an obfuscator for probabilistic circuits with the guarantee that
the obfuscations of any two “equivalent” circuits are computationally indistin-
guishable.

Canetti et al. define several variants of piO, where the main distinction is the
precise formulation of what it means for circuits to be equivalent. Our definition
corresponds to a (weakened variant) of their X-Ind piO (which can be realized
assuming sub-exponentially secure iO and sub-exponentially secure OWF, see
Theorem 4 below). Roughly, our variant only considers pairs of circuits with the
property that for every input, their output distributions are identical, while the
definition in [6] allows a small statistical gap.

To formally define piO, we consider a (possibly randomized) PPT sampling al-
gorithm S that given as input a security parameter 1κ, outputs a triple (C0, C1, z),
where C0 and C1 are randomized circuits (to be obfuscated) and z is some aux-
iliary input. We say that a sampler S is an equivalent-circuit-sampler if with
probability 1 it outputs circuits C0 and C1 such that for every x the circuits
C0(x) and C1(x) generate identical distributions.

10 We can extend the construction so that a single scheme can handle an entire class
of spooky relations, as long as we can describe relations in that class and verify that
a given relation is no-signaling.

Definition 4 (Probabilistic Indistinguishable Obfuscation (piO), [6]).
A probabilistic indistinguishability obfuscator is a probabilistic polynomial-time

algorithm piO that, given as input a security parameter 1κ and a probabilistic
circuit C, outputs a circuit C ′ = piO(1κ, C) (which may be deterministic) of size
at most |C ′| = poly(κ, |C|) such that the following two properties hold:

1. For every individual input x, the distribution C(x) and
(
piO(1κ, C)

)
(x) are

identical.11

2. For every equivalent-circuit-sampler S, drawing (C0, C1, z)← S(1κ) we get
computationally indistinguishable distributions:

{(C0, C1, z, piO(1κ, C0))} c
= {(C0, C1, z, piO(1κ, C1))}

We note that our correctness guarantee is incomparable to that given by [6].
Indeed, motivated by their PRF based construction, the definition in [6] basically
requires that no PPT adversary can distinguish between oracle access to C and
to piO(1κ, C) (so long as the adversary is not allowed to repeat its queries).
On the one hand our definition is weaker in that it only considers each input
individually, but on the other hand it is stronger in that it requires that for each
such individual input the distributions are identical. Our correctness guarantee
can be easily obtained from the construction in [6], by using an underlying PRF
{fs}s with the property that fs(x) is individually uniformly random for every
x. The latter can be easily obtained by taking any PRF and xor-ing its output
with a fixed random string.

Theorem 4 ([6]). Assuming the existence of a sub-exponentially indistinguish-
able indistinguishability obfuscator for circuits and a sub-exponentially secure
puncturable PRF, there exists a probabilistic indistinguishability obfuscator.

Lossy Encryption. Loosely speaking, a lossy encryption scheme has a procedure

G̃en for generating “lossy public keys.” These keys are indistinguishable from
normal public keys, but have the property that ciphertexts generated using such
lossy keys contain no information about their plaintext. We defer the formal
definition to the full version [9].

Malicious Circuit-Private Encryption. A public-key encryption scheme (Gen,Enc,Dec),
with message space {0, 1}`, is a homomorphic encryption scheme for a class of
Boolean circuits C on `-bit inputs if there exists a PPT algorithm Eval, such
that for every key-pair (pk, sk), circuit C ∈ C and ciphertext c = Encpk(x),
where x ∈ {0, 1}`, on input (C, c) the algorithm Evalpk outputs c∗ such that
Decsk(c

∗) = C(x). If the length of c∗ does not depend on C then we say that the
scheme is compact.

11 The latter distribution is defined also over the randomnees of piO. Note that this
does not imply that the joint distribution for multiple inputs will be the same in the
two cases.

As noted in the introduction, our construction requires a homomorphic en-
cryption scheme that has malicious circuit privacy, which means that the cipher-
text c∗ does not reveal any non-trivial information about the circuit C which was
used to generate it, even for an adversarially chosen public-key pk and ciphertext
c. We defer the formal definition to the full version [9].

Malicious circuit privacy for evaluating NC1 circuits can be achieved by a
“folklore” combination of an information theoretic variant of Yao’s garbled cir-
cuit [18] with an oblivious transfer protocol that has perfect security against a
malicious receiver. The latter can be constructed based on DDH [24]. Moreover,
these schemes can be made lossy using standard techniques.

Moreover, we can apply the techniques of Ostrovsky et al. [25] to bootstrap
this result to any poly-circuit, assuming the existence of (leveled) fully homo-
morphic encryption with NC1 decryption. The latter scheme can be instantiated
based on LWE, see more details in the full version [9]. Hence we obtain:

Theorem 5. Assuming the hardness of LWE and DDH, there exists a lossy levled
fully-homomorphic encryption scheme with malicious circuit privacy.

4.2 Two-Key Spooky Encryption from piO

Our construction relies on a property of two-input relations that we call re-
sampleability. Roughly, it should be possible to sample efficiently from the dis-
tribution of the second coordinate conditioned on a particular fixed value for the
first coordinate.

Definition 5 (Efficiently Re-Sampleable). A randomized polynomial-size
circuit C : {0, 1}`1 × {0, 1}`2 → {0, 1}`′1 × {0, 1}`′2 is efficiently re-sampleable
if there exists a polynomial-size randomized “resampling circuit” RSC , such that
for any input (x1, x2) to C, the distribution C(x1, x2) is identical to the “resam-
pled distribution” {(y1, y′2) : (y1, y2)← C(x1, x2), y′2 ← RSC(x1, x2, y1)} .

We construct a 2-key spooky scheme that supports any 2 input/output circuit
that is both efficiently re-sampleable and no-signaling.

Theorem 6 (2-Key Spooky Encryption from piO). Let C : {0, 1}`1 ×
{0, 1}`2 → {0, 1}`′1 ×{0, 1}`′2 be an efficiently re-sampleable no-signaling circuit,
with re-sampling circuit RSC . If there exist (1) piO, and (2) a perfectly-lossy
homomorphic encryption scheme that can evaluate C and RSC , and is perfectly
malicious circuit private, then there exists a C-spooky encryption scheme, which
is also perfectly lossy (and hence semantically secure).

We stress that the encryption scheme that we need for Theorem 6 must be
able to evaluate C and RSC and be perfectly malicious circuit private, but it
need not be compact. In the full paper we describe such a scheme for NC1 circuits
based on DDH. Hence, under DDH and piO, we get a C-spooky scheme for every
re-sampleable and no-signaling C in NC1. Moreover, we can use the techniques
of Ostrovsky et al. [25] to supports any poly-size circuit, assuming both DDH

and FHE. Since [6] show that full-fledged FHE can be built based on piO, we get
a construction under DDH and piO for C-spooky scheme for every re-sampleable
and no-signaling polynomial-size circuit C.

Remark 1 (Almost No-Signaling). A natural relaxation of no-signaling circuits,
considered in previous works (e.g., [11,19,20]), allows the distributions C(x, y)1
and C(x, y′)1 to be indistinguishable (rather than identical). Such circuit is called
almost no-signaling.

It is clear that for a secure C-spooky encryption scheme to exist, C must be
(at least) almost no-signaling (cf. [11]). However our construction does not extend
to the “almost” case, Theorem 6 requires that C to be perfectly no-signaling, i.e.
C(x, y)1 and C(x, y′)1 must be identically distributed for all x, y, y′. Supporting
almost no-signaling circuits is left to future work.

Proof of Theorem 6 Let piO be a probabilistic indistinguishability obfuscator
and let (Gen,Enc,Dec) be the encryption scheme from the theorem statement,

with G̃en the corresponding lossy key generation algorithm and Eval the homo-
morphic evaluation algorithm with malicious circuit privacy.

Each instance of our construction uses two public/secret keys pairs, where
only the first pair is used for “normal encryption and decryption,” and the other
pair is only used for spooky evaluation. In addition to the two pairs, the public
key also contains an obfuscated program that implements spooky evaluation
using the secret key. That obfuscated program has a secret key hard-wired,
and given two ciphertexts c1, c2 it decrypt the first one, then evaluates the re-
sampling circuit RSC homomorphically on the other. A complete description of
the resulting scheme is found in Fig. 1.

We first show that the scheme supports spooky evaluation of C and then show
that it is a lossy encryption scheme (and in particular is semantically secure).

Lemma 2. The scheme (Gen-Spooky,Enc-Spooky,Dec-Spooky,Spooky-Eval) is
C-spooky.

Proof. The spooky evaluation procedure gets as input two public-keys pk-spooky1 =(
pk11, pk21, P̃1

)
, pk-spooky2 =

(
pk12, pk22, P̃2

)
, and matching ciphertexts c1 =

Enc-Spooky(pk-spooky1, x1) and c2 = Enc-Spooky(pk-spooky2, x2) (for some in-
puts x1, x2 to C). It simply runs the obfuscated program P̃1 = piO(1κ, P [sk11, pk21])
on input (c1, pk12, c2) and returns its output.

By construction and using the correctness of piO, this procedure outputs
c′1 and c′2 such that c′1 ← Enc(pk21, y1), where y1 ←

(
C(x1, 0

`2)
)
1
, and c′2 ←

Evalpk12(RS[x1, y1, r], c2), where RS[x1, y1, r](x2) ≡ RSC(x1, x2, y1; r). By the no-
signaling property y1 is distributed identically to y′1 ←

(
C(x1, x2)

)
1

and so c′2 is
distributed as Evalpk12(RS[x1, y

′
1, r], c2). Hence

Dec-Spooky(sk-spooky1, c
′
1) = Decsk11 (Enc(pk21, y

′
1)) = y′1

and Dec-Spooky(sk-spooky2, c
′
2) = RS[x1, y

′
1, r](x2) = RSC

(
x1, x2, y

′
1; r
)
2
.

The probabilistic circuit P [sk1, pk2](c1, pk, c):

Hardwired: a private-key sk1 and a public-key pk2.
Input: a ciphertext c1 (presumably under pk1),

and additional (presumably matching) public-key pk and ciphertext c.

1. Decrypt x1 ← Decsk1(c1);a

2. Choose randomness r, r′ ← {0, 1}∗ for C and RSC , respectively;
3. Set y1 ← C(x1, 0

`2 ; r)1 and encrypt c′1 ← Encpk2(y1);

4. Define the circuit RS[x1, r, r
′](x2) ≡ RSC(x1, x2,

=y1︷ ︸︸ ︷
C(x1, 0

`2 ; r)1; r′);
5. Compute homomorphically c′2 ← Evalpk(RS[x1, r, r

′], c).
6. Output

(
(2, c′1), (1, c′2)

)
.b

piO based Spooky Encryption

– Gen-Spooky(1κ):

1. Select (pk1, sk1) , (pk2, sk2)← Gen(1κ), and set P̃ ← piO(1κ, P [sk1, pk2]).
2. Output the secret key sk-spooky = (sk1, sk2) and public key pk-spooky =(

pk1, pk2, P̃
)

.

– Enc-Spooky
(

(pk1, pk2, P̃), x
)

: Output
(
1,Encpk1(x)

)
.

– Dec-Spooky
(
(sk1, sk2), (tag, c)

)
: If tag = 1 output Decsk1(c), else output Decsk2(c).

– Spooky-Eval
(
(pk11, pk21, P̃1), c1, (pk12, pk22, P̃2), c2,

)
: Output P̃1(c1, pk12, c2).

a We assume that Dec always returns some value, even if c1 is not a valid ciphertext.
b The tags “2”, “1” signal to the decryption algorithm which secret key to use.

Fig. 1. piO based Spooky Encryption

The probabilistic circuit P ′[sk1, pk2](c1, pk, c):

The same as P [sk1, pk2](c1, pk, c), but setting c1 ← Encpk2(0`1) in Step 3 rather than
c1 ← Encpk2(y1).

The probabilistic circuit P ′′[pk2]:

Hardwired: a public-key pk2.
Input: a ciphertext c1, a public-key pk and a ciphertext c (presumably under pk).

1. Encrypt c′1 ← Encpk2(0`1).
2. Choose randomness r ← {0, 1}∗ for C, and define f [r](·) ≡ C(0`1 , · ; r)2.
3. Compute homomorphically c′2 ← Evalpk(f [r], c).
4. Output

(
(2, c1), (1, c′2)

)
.

Fig. 2. The Probabilistic Circuits P ′[sk1, pk2] and P ′′[pk2]

By the definition of re-sampling, the joint distribution
(

Dec-Spooky(sk-spooky1, c
′
1),

Dec-Spooky(sk-spooky2, c
′
2)
)

is identical to C(x1, x2), as required.

Lemma 3. The scheme (Gen-Spooky,Enc-Spooky,Dec-Spooky) is a perfectly lossy
encryption scheme.

Proof. We need to show that there is an alternative key-generation procedure
˜Gen-Spooky, producing public keys that are indistinguishable from the real ones,

but such that ciphertexts encrypted relative to these keys contain no information
about the encrypted plaintext.

The main challenge in establishing the lossiness of the scheme is in showing
that the public-keys are indistinguishable from lossy keys despite the obfuscated
programs in the public-key (which depend on the corresponding secret keys).
Toward that end, we will (gradually) show that these obfuscated programs are
computationally indistinguishable from programs that do not depend on the
secret keys.

Below we state and prove a few claims, where we consider the distributions

(pk1, sk1), (pk2, sk2)← Gen(1κ) and p̃k1, p̃k2← G̃en(1κ), where G̃en is the lossy
key-generation of the underlying encryption scheme.

Claim.
(

pk1, pk2, piO(1κ, P [sk1, pk2])
)

c
=
(

pk1, p̃k2, piO(1κ, P [sk1, p̃k2])
)

.

Proof. Follows from the indistinguishability between standard and lossy public-
keys of the underlying scheme.

Claim.
(

pk1, p̃k2, piO(1κ, P [sk1, p̃k2])
)

c
=
(

pk1, p̃k2, piO(1κ, P ′[sk1, p̃k2])
)

, where

P ′[sk1, p̃k2] is similar to P [sk1, p̃k2] except that it encrypts 0`1 rather than y1 in
Step 3, see Fig. 2.

Proof. Since p̃k2 is a lossy public-key, Encp̃k2(0`1) and Encp̃k2(y1) are identically

distributed. Hence P and P ′ have identical output distribution for every input,
and so their piO-obfuscations are indistinguishable.

We proceed to the main claim:

Claim.
(

pk1, p̃k2, piO(1κ, P ′[sk1, p̃k2])
)

c
=
(

pk1, p̃k2, piO(1κ, P ′′[p̃k2])
)

, where

the program P ′′[p̃k2], defined in Fig. 2, does not have the secret key sk1 (hence
it cannot recover x1 or compute y1), so on c = Encpk(x2) it evaluates homomor-
phically f ′′(x2) = C(0`1 , x2)2 rather than f ′(x2) = RSC(x1, x2, y1).

Proof. We will show that for every valid secret key sk1 and arbitrary public

key p̃k2, the randomized programs P ′[sk1, p̃k2] and P ′′[p̃k2] are functionally
identical, in the sense that their outputs are identically distributed for every
input. The claim will then follow from the fact that piO is a probabilistic indis-
tinguishability obfuscator (see Definition 4).

Note that the first output c′1 = Encp̃k2(0`
′
1) is generated identically by the two

programs, and is independent of everything else that happens in these programs,
so we only need to show that the second output c′2 is identically distributed. To
show this, we first establish that c′2 is an encryption under pk of a value y2
that is distributed identically in the two programs, and then we appeal to the
malicious circuit-privacy of the underlying scheme to conclude that also c′2 itself
is identically distributed.

For starters, fix some arbitrary x1 ∈ {0, 1}`1 and x ∈ {0, 1}`2 , and consider
the following distributions

D1[x1, x] =
{
y1 ← C(x1, 0

`2)1, output y2 ← RSC(x1, x, y1)
}
, // Output distribution of P ′

D2[x1, x] =
{
y1 ← C(x1, x)1, output y2 ← RSC(x1, x, y1)

}
,

D3[x1, x] =
{

output y2 ← C(x1, x)2
}
,

D4[x] =
{

output y2 ← C(0`1 , x)2
}
. // Output distribution of P ′′

Since C is a no-signaling circuit then D1[x1, x] = D2[x1, x] and D3[x1, x] = D4[x],
and since RC is the re-sampling circuit for C then we also have D2[x1, x] =
D3[x1, x]. We therefore conclude that the two distributions D1[x1, x] and D4[x]
are identical for every x1, x.

Now consider x1 = Decsk1(c1), and x which is the “effective plaintext” for
pk, c (such x must exist since the underlying scheme is malicious circuit-private).

Recall that the second output of P ′[sk1, p̃k2] consists of a homomorphic evalu-

ation of D1[x1, x], while the second output of P ′′[p̃k2] consists of homomorphic
evaluation of D4[x]. Using perfect malicious circuit privacy, we conclude that
these outputs are identically distributed.

Having established that the output distributions of P ′[sk1, p̃k2] and P ′′[p̃k2]
are identical (for every input), the claim follows because piO is a probabilistic
indistinguishability obfuscator.

Claim.
(

pk1, p̃k2, piO(P ′′
p̃k2

)
)

c
=
(

p̃k1, p̃k2, piO(P ′′
p̃k2

)
)

.

Proof. This claim follows from the indistinguishability between standard and
lossy public-keys of the underlying scheme.

Combining Claims 4.2-4.2, the two distributions
(

pk1, pk2, piO(Psk1,pk2)
)

and(
p̃k1, p̃k2, piO(P ′′

p̃k2
)
)

are computationally indistinguishable. We complete the

proof of Lemma 3 by observing that keys drawn from the latter distribution

are lossy, since the key p̃k1 is lossy, the Enc-Spooky procedure just uses the

underlying encryption procedure with p̃k1, and the program P ′′[pk2] that we

obfuscate is independent of p̃k1.

4.3 piO based Multi-key Spooky Encryption

To obtain spooky encryption for more than two inputs, we would like to in-
voke our general transformation from 2-key spooky encryption to n-key spooky

encryption (see Theorem 8). The scheme in Theorem 6 supports spooky mul-
tiplication, but we need it to support multiple alternating hops of (single-key)
additive homomorphism and spooky multiplication. This is obtained by the fol-
lowing lemma:

Lemma 4. Assume the existence of (1) piO and (2) a lossy encryption scheme
that is homomorphic for all one-bit to one-bit functions with perfect malicious
circuit privacy. Then, for every d = d(κ), there exists an encryption scheme
that supports d interleaved levels of AFS-2-spooky multiplications and single-key
additions.

Proof (Proof Sketch). To obtain an additive homomorphism, we use a construc-
tion of Canetti et al. [6] which, assuming piO, transforms any lossy encryption
into a d-leveled FHE. This is done by taking d copies of keys of the original lossy
scheme and publishing d− 1 obfuscated programs where the ith obfuscated pro-
gram takes as input two ciphertexts encrypted under the ith key, decrypts them
(using the ith private-key which is hard-wired) applies one operation (AND,
XOR, NAND, etc.) and encrypts the result under the (i+ 1)th key. Using the
fact that the scheme is lossy, Canetti et al. show that the piO obfuscation hides
the hard-wired private keys and semantic security is maintained.

For our application, we need to compute multiple spooky multiplications,
and then sum them up with single-key addition. To get n-input AFS-spooky we
need to sum up n ciphertexts, which can be done using an addition tree of depth
d = log n.

Looking more closely at the construction from [6], we observe that by set-
ting d = i log n we can already support i interleaving hops of (single-key) addi-
tive homomorphism and 2-input spooky multiplications. This follows since the
transformation in [6] has the property that after every additive homomorphic
operation, we obtain a fresh ciphertext (under a new-key).

Using the scheme from Lemma 4 and applying Theorem 8, we get:

Theorem 7 (n-Key Spooky from piO). Assume existence of (1) piO and
(2) a lossy encryption scheme that is homomorphic for all single-bit to single-
bit functions with perfect malicious circuit privacy. Then there exists a leveled
AFS-spooky encryption scheme.

5 From 2-Input to n-Input AFS-Spooky

Theorem 8 (2-Spooky to n-Spooky). Let d = d(κ) and assume that there
exists a public-key bit-encryption scheme that supports 2d (interleaving) hops of
(1) single-key compact additive homomorphism and (2) two-key spooky multipli-
cation. Then, that same scheme is a d-level AFS-spooky encryption.

Proof. Let (Gen,Enc,Dec) be the encryption scheme in the theorem statement,
let Spooky-Mult be the spooky multiplication PPT algorithm and let Eval be the
single-key homomorphic evaluation algorithm (that supports compact additive
homomorphism). We show a procedure that given as input:

1. A depth-d, fan-in-2, n-input arithmetic circuit over GF(2), C : ({0, 1}∗)n →
{0, 1};

2. n public-keys pk1, . . . , pkn; and

3. n ciphertexts c1, . . . , cn, where cj = Enc(pkj , xj),

outputs a sequence of ciphertexts c′1, . . . , c
′
n such that

∑
j∈[n] Decskj (c

′
j) = C(x1, . . . , xn)

(where addition is over GF(2)).

The procedure processes the circuit wire by wire. We maintain the invari-
ant that whenever a wire w is processed, the procedure generates ciphertexts

c
(w)
1 , . . . , c

(w)
n such that

∑
j∈[n] Decskj (c

(w)
j) is the correct value of the wire w

when the circuit C is evaluated on input (x1, . . . , xn). Furthermore, if the wire

w is at distance i from the input then c
(w)
1 , . . . , c

(w)
n have passed at most 2i hops

of homomorphic operations. In particular, at the end of the process the pro-
cedure will have generated the sequence of ciphertexts cout1 , . . . , coutn such that∑
j∈[n] Decskj (c

out
j) is equal to the output value of the circuit, as required. We

proceed to describe how the wires are (inductively) processed.

Consider an input wire w, corresponding to an input bit b which is part of
the ith input xi, and for which we are given the input ciphertext c = Encpki(b).

For that wire we set c
(w)
i = c and c

(w)
j = Encpkj′ (0) for all j 6= i. Hence,∑

j∈[n] Decskj (c
(w)
j) = Decski(c) = b, which is the correct value for the wire w.

Consider a gate g with input wires u, v and output wire w. Let bu (resp., bv)
be the value on the wire u (resp., v) when C is evaluated on input (x1, . . . , xn). By

induction, we have already generated ciphertexts c
(u)
1 , . . . , c

(u)
n and c

(v)
1 , . . . , c

(v)
n

such that
∑
j∈[n] Decskj (c

(u)
j) = bu and

∑
j∈[n] Decskj (c

(v)
j) = bv.

For the case that g is an addition gate, we set c
(w)
j = Eval

(
pkj ,⊕, c

(u)
j , c

(v)
j

)
and we get:

∑
j∈[n]

Decskj (c
(w)
j) =

∑
j∈[n]

Decskj (Evalpkj (⊕, c
(u)
j , c

(v)
j)) =

∑
j∈[n]

Decskj (c
(u)
j) ⊕ Decskj (c

(v)
j) = bu⊕bv,

which is the correct value for the wire w. Furthermore, each new ciphertext was
obtained by just a single homomorphic operation.

Now consider the case that g is a multiplication gate. We first compute

auxiliary ciphertexts (fj,j′ , gj,j′) = Spooky-Mult(pkj , pkj′ , c
(u)
j , c

(v)
j′), for every

j, j′ ∈ [n]. We then set

c
(w)
j = Evalpkj (⊕, fj,1, . . . , fj,n, g1,j , . . . , gn,j).

We obtain that:∑
j∈[n]

Decskj
(
c
(w)
j

)
=
∑
j∈[n]

Decskj
(
Evalpkj (⊕, xj,1, . . . , xj,n, y1,j , . . . , yn,j)

)
=
∑
j∈[n]

∑
j′∈[n]

Decskj (fj,j′)⊕ Decskj (gj′,j)

=
∑
j∈[n]

∑
j′∈[n]

Decskj (c
(u)
j) · Decskj (c

(v)
j′)

=
(∑
j∈[n]

Decskj (c
(u)
j)
)
·
(∑
j′∈[n]

Decskj (c
(v)
j′)
)

= bu · bv,

which is the correct value for the wire w (where the fourth equality is due to
the Spooky-Mult guarantee). Furthermore, each new ciphertext was obtained by
applying two hops of homomorphic operations.

6 Applications of Spooky Encryption

6.1 Counter Example for the [1] Heuristic

Building on [11], we show that AFS-2-spooky encryption gives a counter-example
to a natural method proposed by Aiello et al. [1] for building succinct arguments
for NP, resolving a question posed by [11]. The suggestion of Aiello et al. [1] was
to take any multi-prover interactive proof-system (MIP) and to use that proof-
system using only a single prover by sending all of the MIP queries encrypted
under independents keys of a homomorphic encryption scheme.12 The fact that
the scheme is homomorphic allows the honest prover to answer the different
queries (homomorphically) and the intuition was that the use of different keys
means that only local homomorphisms are possible. Dwork et al. [11] questioned
this intuition and raised the question of whether there exist spooky encryption
schemes that allow for other kinds of attacks which can break the soundness
of the [1] protocol. We show that this is indeed the case: there exists an MIP
(suggested by [11]) which, when combined with any AFS-2-spooky encryption
scheme via the [1] transformation, yields an insecure protocol. The MIP that we
use is based on a PCP for 3-coloring due to Petrank [28]:

Theorem 9. [28] There exists a universal constant ε > 0 such that distinguish-
ing between the following two types of graphs is NP complete:

– G is 3-colorable.

– Every 3-coloring of G has at least ε fraction of monochromatic edges.

12 Actually, the original suggestion in [1] was to use a PCP (rather than an MIP).
Dwork et al. [11] show that using PCPs is not sound and raise the question of
whether soundness can be obtained by replacing the PCP with an MIP.

This PCP leads to the following natural MIP protocol between a verifier V
and two non-communicating provers P1 and P2 (who, in case G is 3-colorable,
also have access to the same 3-coloring of G).

1. V chooses a random edge (u, v) ∈ E, then with probability 1/3 it sets q1 = u
and q2 = v, with probability 1/3 it sets q1 = u and q2 = u, and with
probability 1/3 it sets q1 = v and q2 = v. V sends q1 to P1 and q2 to P2.

2. Each Pi sends the color ai ∈ {0, 1, 2} of the vertex qi (encoded as two bits).
3. V accepts if q1 = q2 and a1 = a2, or if q1 6= q2 and a1 6= a2.

Completeness and soundness are easy to see, some details are given in the
full version [9].

Insecurity of the 3-coloring MIP. Composed the foregoing MIP with any AFS-
2-spooky encryption scheme yields an insecure protocol. More specifically, the
cheating prover is given ciphertexts c1 = Encpk1(q1) and c2 = Encpk2(q2). Loosely
speaking, using the spooky evaluation algorithm it can produce ciphertexts
Encpk1(a1) and Encpk2(a2) for bits a1, a2 ∈ {0, 1} such that a1 = a2 if and only if
u = v. It sends as its answers to V the ciphertext

(
Encpk1(0),Encpk1(a1)

)
as its

answer to the first query and
(
Encpk1(0),Encpk1(a2)

)
as its answer to the second

query (the extra encryption of 0 is used simply because the verifier expects an
answer with 2 bits).

Now, if the verifier choose q1 = u and q2 = v (corresponding to the first of
the three possibilities) then q1 6= q2 and so a1 6= a2 and the verifier accepts.
Otherwise, (i.e. if q1 = q2) then we have that a1 = a2 and again the verifier
accepts. Hence, we have shown a strategy that breaks the soundness of the
scheme with probability 1.

6.2 2-Round MPC from AFS-Spooky Encryption

AFS-spooky encryption seems to be a useful tool for minimally-interactive multi-
party protocols: it lets each party broadcast an encryption of its input under its
own key, then everyone individually performs the AFS-spooky evaluation locally,
and each party can locally decrypt and recover a share of the output (relative to
an additive n-out-of-n secret-sharing scheme). Finally another round of commu-
nication can be used to recover the secret from all the shares. Implementing this
the approach requires attention to some details, such as ensuring that the spooky
evaluation is deterministic (so that all the parties arrive at the same sharing)
and making the shares simulatable. The latter can be done by having each party
distribute a random additive sharing of 0 in the first round, and then adding all
their received shares to their spooky generated share before broadcasting it in
the second round.

A different (but similar) avenue for implementing 2-round MPC, is by reduc-
ing AFS-spooky encryption to multi-key FHE with threshold decryption (TMFHE).
This primitive was recently formalized by Mukherjee and Wichs [23], who showed
how to use it to generically construct 2-round MPC. Just like spooky encryp-
tion, a TMFHE scheme can homomorphically process n ciphertexts c1, . . . , cn,

encrypting values x1, . . . , xn under independent public keys pk1, . . . , pkn, pro-
ducing for any function f a ciphertext c∗ = Eval(f, (pk1, c1), . . . , (pkn, cn)). The
ciphertexts c∗ cannot be decrypted by any single secret keys ski individually,
but each party can compute a partial decryption yi = PartDecski(c

∗) and these
y’s can be combined to get y = FinDec(y1, . . . , yn) = f(x1, . . . , xn). For security,
Mukherjee and Wichs required that for each individual i, the partial decryption
yi can be simulated given the evaluated ciphertext c∗, the final output y and the
secret key skj for j 6= i (see [23] for formal definitions).

We observe that an AFS-spooky encryption with perfect correctness imme-
diately yields a TMFHE scheme. The homomorphic evaluation procedure Eval
of the TMFHE runs the Spooky-Eval procedure of the AFS-spooky encryption
and sets c∗ = (c′1, . . . , c

′
n) to be the resulting ciphertexts. The partial decryption

procedure PartDecski(c
∗) outputs yi = Decski(c

′
i) and the combination procedure

FinDec(y1, . . . , yn) outputs y =
⊕n

i=1 yi. For security, we observe that each par-
tial decryption yi can be simulated given c∗ = (c′1, . . . , c

′
n), y and skj for j 6= i

by computing yj = Decskj (c
′
j) and setting yi = y⊕ (

⊕
j 6=i yj).

13 This proves the
following theorem.

Theorem 10. An AFS-spooky encryption scheme with perfect correctness im-
plies a multi-key FHE with threshold decryption (TMFHE).

Using the above theorem and the results of [23] which constructs a 2-round
MPC from TMFHE, we get the following corollaries.

Corollary 2. Assuming the existence of a weak AFS-spooky encryption scheme:

– There exists a 2-round MPC protocol with semi-honest security. If the en-
cryption scheme is in the plain model then so is the MPC protocol and if the
encryption scheme requires a CRS then so does the MPC protocol.

– Furthermore, assuming the existence of NIZKs in the CRS model, there exists
a 2-round MPC protocol with malicious security in the CRS model.

Combining this with our construction of AFS-spooky encryption without a CRS
from iO, we get the first construction of a 2-round semi-honest MPC protocol in
the plain model.

Corollary 3. Assume existence of (1) piO and (2) a lossy encryption scheme
that is homomorphic for all single-bit to single-bit functions with perfect mali-
cious circuit privacy. Then, there exists a 2-round MPC protocol with semi-honest
security in the plain model.

6.3 Function Secret Sharing

Function secret sharing (FSS), recently introduced by Boyle, Gilboa and Ishai
[4], allows a dealer to split a function f into k succinctly described functions

13 We note that imperfect correctness of the AFS-spooky scheme will translate into a
security problem for the TMFHE scheme, as the simulated yi will have a different
distribution than the real ones.

f̂1, . . . , f̂k such that (1) any strict subset of the f̂i’s reveals nothing about f

and (2) for any x it holds that the values f̂1(x), . . . , f̂k(x) are an additive secret
sharing of f(x). Boyle et al. gave constructions under standard assumptions for
certain restricted families of functions and a general construction for any poly-
size circuit, based on piO. We show how to construct such a general FSS scheme
given any AFS-spooky encryption scheme. In particular, we obtain a leveled FSS
scheme assuming only LWE.

To construct such an FSS scheme, the dealer first generates a k-out-of-k
secret sharing f1, . . . , fk of the description of the function f . The dealer also
generates k key pairs (pki, ski)i∈[k] for the AFS spooky scheme and publishes

f̂i
def
=
(
ski, pk1, . . . , pkk,Encpk1(f1), . . . ,Encpkk(fk)

)
as the ith share. Assuming

the scheme is semantically secure, any strict subset of the f̂i’s hides the original
function f (upto its description length).

For the FSS functionality, given an input x we can consider the circuit Cx
that takes as input k shares of a function f , adds them up and applies the
resulting function to the input x (which, say, is hardwired). To evaluate f̂i on x,
we run the spooky evaluation algorithm, which we assume wlog is deterministic,
on Encpk1(f1), . . . ,Encpkk(fk) with respect to the circuit Cx. Thus, given each f̂i
separately, we can generate the same ciphertexts c1, . . . , ck which are encryptions
of an additive secret sharing of f(x). Each function f̂i can then be used to decrypt
ci and publish its share of f(x).

A De-Centralized View. We remark that the above construction can be viewed
as a de-centralized FSS. More specifically, we may have some k (not necessarily
secret or functional) shares f1, . . . , fk of a function f , where each share is owned
by a different player. Player i can generate a key pair (pki, ski) and broadcast
(pki,Encpki(fi)) to all other players. Using our scheme, after learning the input
x, the players can (non-interactively) generate an additive secret sharing of f(x).

7 Spooky-Free Encryption

We turn now to study spooky-free encryption, i.e. an encryption scheme that en-
sures that no spooky relations can be realized by an adversary. The formal def-
inition roughly states that any correlation that an attacker can induce between
the original messages (m1, . . . ,mn) and “tampered messages” (m′1, . . . ,m

′
n), can

be simulated by a “local simulator” that produces m′i only as a function of mi

(and some shared randomness).

Definition 6 (Spooky-Free Encryption). An encryption scheme (Gen,Enc,Dec)
is spooky-free if for every PPT adversary A there exists a PPT simulator S such
that for all PPT message distributions D, the two distributions REALD,A(κ)
and SIMD,S(κ) specified below are computationally indistinguishable:

REALD,A(κ): 1. Sample (m1, . . . ,mn, α)← D(1κ); // α is auxiliary information

2. Choose (pki, ski)← Gen(1κ), set ci ← Encpki(mi) for i = 1, . . . , n;

3. Let (c′1, . . . , c
′
n)← A(pk1, . . . , pkn, c1, . . . , cn);

4. Set m′i = Decski(ci) for i = 1, . . . , n;
5. Output (m1, . . . ,mn,m

′
1, . . . ,m

′
n, α).

SIMD,S(κ): 1. Sample (m1, . . . ,mn, α)← D(1κ); // α is auxiliary information

2. Sample a random r, let m′i = S(1κ, 1n, i,mi; r) for i = 1, . . . , n;
3. Output (m1, . . . ,mn,m

′
1, . . . ,m

′
n, α).

It is not hard to see that spooky-freeness for n ≥ 2 implies semantic security.
As a small subtlety, here the attacker must choose the messages it claims to
distinguish before seeing the public-key, since the message sampler D does not
know anything public keys used in the real experiment. (We defined it this way
since stronger security was not needed for our delegation application.) Of course,
this minor difference from standard semantic security is without loss of generality
when the message space is polynomial small (e.g., for bit encryption).

Lemma 5. A spooky-free scheme for n ≥ 2 is semantically secure (in the “se-
lective” sense discussed above).

Proof. Suppose that a scheme (Enc,Dec,Gen) is not semantically secure, and let
B be an attacker that can distinguish Encpk(x0) from Encpk(x1). We use B to
construct a sampler D and attacker A that can fool any simulator S with non-
negligible probability. We assume that D and A (and S) know the messages x0
and x1 whose encryption B can distinguish.
D draws at random m1 ← {x0, x1} and sets mi := 0 for i > 1. Upon seeing n

ciphertexts c1, . . . , cn, A gives c1 to B, asking him to guess whether it encrypts
x0 or x1. Let σ be the guess that B makes, then we know that m1 = xσ with
probability ≥ 1/2 + ε. A then sets c′i = ci for all i 6= 2, and sets c′2 to be a fresh
encryption of xσ under pk2.

As we can see, the output of the real experiment has the tuple (m1,m
′
2)

distributed as (xb, xσ), where b is a random bit and σ = b with probability
≥ 1/2 + ε. On the other hand, the simulator for the second message m′2 is only
given m2 = 0 as the input, and has to guess σ′ s.t., Pr[b = σ′] ≥ 1/2 + ε, which
is impossible information-theoretically.

In the full version of this work [9] we show that spooky-free homomorphic
encryption is exactly the ingredient needed to instantiate the idea of Aiello et
al. [1] for converting general multi-prover (MIP) systems into single-prover argu-
ments.14 We also show there that non-malleable encryption is always spooky-free
(albeit without any homomorphic capabilities), and we construct a spooky-free
FHE scheme using a strong security component called succinct non-interactive
argument of knowledge (SNARK).15

14 An alternate route for instantiating the [1] idea due to [19,20] is to use special types
of MIP, which satisfy a stronger soundness condition, together with any (possibly
spooky) homomorphic encryption scheme.

15 Of course, this construction does not give any new one-round delegation schemes,
since SNARKs trivially imply the existence of such a scheme directly (i.e., without

Spooky-Free Encryption with CRS. Definition 6 can be naturally extended to
the common-reference-string model. We use this relaxation in the full version
to gain somewhat better efficiency (at the price of a slightly harder proof of
security). We note that, unlike the setting of spooky encryption from Section 3,
we do not need the CRS to get the desired functionality, but rather use it only
to improve efficiency. Our construction remains spooky-free (but slower) if all
the public keys are chosen completely independently.

Acknowledgments

This work was done in part while the authors were visiting the Simons Institute
for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-
1523467.

The first author was partially supported by gifts from VMware Labs and
Google, and NSF grants 1319051, 1314568, 1065288, 1017471.

The second author was supported in part by the Defense Advanced Research
Projects Agency (DARPA) and Army Research Office(ARO) under Contract
No. W911NF-15-C-0236.

The third author was supported by NSF MACS - CNS-1413920, DARPA
IBM - W911NF-15-C-0236, SIMONS Investigator award Agreement Dated 6-5-
12 and DARPA NJIT - W911NF-15-C-0226.

The last author was supported in part by NSF grants CNS-1347350, CNS-
1314722, CNS-1413964.

References

1. W. Aiello, S. Bhatt, R. Ostrovsky, and S. R. Rajagopalan. Fast verification of
any remote procedure call: Short witness-indistinguishable one-round proofs for
NP. In ICALP: Annual International Colloquium on Automata, Languages and
Programming, 2000.

2. N. Bitansky and A. Chiesa. Succinct arguments from multi-prover interactive
proofs and their efficiency benefits. In CRYPTO, volume 7417 of Lecture Notes in
Computer Science, pages 255–272. Springer, 2012.

3. D. Boneh, G. Segev, and B. Waters. Targeted malleability: homomorphic encryp-
tion for restricted computations. In S. Goldwasser, editor, Innovations in Theo-
retical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages
350–366. ACM, 2012.

4. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In E. Oswald and
M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of
Lecture Notes in Computer Science, pages 337–367. Springer, 2015.

building spooky-free encryption). Still, if better constructions of spooky-free FHE
are found, they would immediately imply new delegation schemes for NP.

5. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness
of learning with errors. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 575–584. ACM, 2013.

6. R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan. Obfuscation of probabilistic
circuits and applications. In Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II,
pages 468–497, 2015.

7. M. Clear and C. McGoldrick. Multi-identity and multi-key leveled FHE from
learning with errors. In R. Gennaro and M. Robshaw, editors, Advances in Cryp-
tology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 630–656. Springer, 2015.

8. R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, A. Shelat, and
V. Vaikuntanathan. Bounded cca2-secure encryption. In K. Kurosawa, editor,
Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on
the Theory and Application of Cryptology and Information Security, Kuching,
Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Com-
puter Science, pages 502–518. Springer, 2007.

9. Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. Spooky encryption and its
applications. IACR Cryptology ePrint Archive, 2016:272, 2016.

10. Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryp-
tography in the presence of key leakage. In M. Abe, editor, Advances in Cryptology -
ASIACRYPT 2010 - 16th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceed-
ings, volume 6477 of Lecture Notes in Computer Science, pages 613–631. Springer,
2010.

11. C. Dwork, M. Langberg, M. Naor, K. Nissim, and O. Reingold. Succinct proofs for
NP and spooky interactions. Unpublished manuscript, available at http://www.

cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf, 2004.
12. S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from in-

distinguishability obfuscation. In Theory of Cryptography - 11th Theory of Cryp-
tography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 74–94, 2014.

13. C. Gentry, S. Halevi, and V. Vaikuntanathan. i-hop homomorphic encryption
and rerandomizable Yao circuits. In T. Rabin, editor, Advances in Cryptology -
CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer Sci-
ence, pages 155–172. Springer, 2010. http://eprint.iacr.org/2010/145.

14. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC, pages 99–108, 2011.

15. N. Gilboa and Y. Ishai. Distributed point functions and their applications. In
P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 640–658. Springer, 2014.

16. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York, New
York, USA, pages 218–229, 1987.

http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
http://eprint.iacr.org/2010/145

17. S. Halevi and Y. T. Kalai. Smooth projective hashing and two-message oblivious
transfer. J. Cryptology, 25(1):158–193, 2012.

18. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 294–304, 2000.

19. Y. T. Kalai, R. Raz, and R. D. Rothblum. Delegation for bounded space. In
STOC, pages 565–574, 2013.

20. Y. T. Kalai, R. Raz, and R. D. Rothblum. How to delegate computations: the power
of no-signaling proofs. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 485–494, 2014.

21. J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In Ad-
vances in Cryptology - CRYPTO 2004, 24th Annual International CryptologyCon-
ference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, pages
335–354, 2004.

22. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 1219–1234, 2012.

23. P. Mukherjee and D. Wichs. Two round mutliparty computation via multi-key
FHE. In Eurocrypt 2016, to appear, 2016. http://eprint.iacr.org/2015/345,
accessed Jan 2016.

24. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Proceedings
of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001,
Washington, DC, USA., pages 448–457, 2001.

25. R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky. Maliciously
circuit-private FHE. In J. A. Garay and R. Gennaro, editors, Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lec-
ture Notes in Computer Science, pages 536–553. Springer, 2014. Available from
https://eprint.iacr.org/2013/307.

26. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In M. Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, pages 333–342. ACM, 2009.

27. C. Peikert and S. Shiehian. Multi-key fhe from lwe, revisited. Cryptology ePrint
Archive, Report 2016/196, 2016. http://eprint.iacr.org/.

28. E. Petrank. The hardness of approximation: Gap location. Computational Com-
plexity, 4:133–157, 1994.

29. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

http://eprint.iacr.org/2015/345
https://eprint.iacr.org/2013/307
http://eprint.iacr.org/

	Spooky Encryption and its Applications

