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Abstract. A public-key encryption scheme is k-circular secure if a cycle
of k encrypted secret keys (Encpk1(sk2),Encpk2(sk3), . . . ,Encpkk (sk1)) is
indistinguishable from encryptions of zeros. Circular security has appli-
cations in a wide variety of settings, ranging from security of symbolic
protocols to fully homomorphic encryption. A fundamental question is
whether standard security notions like IND-CPA/CCA imply k-circular
security.

For the case k = 2, several works over the past years have constructed
counterexamples—i.e., schemes that are CPA or even CCA secure but not
2-circular secure—under a variety of well-studied assumptions (SXDH,
decision linear, and LWE). However, for k > 2 the only known counterex-
amples are based on strong general-purpose obfuscation assumptions.

In this work we construct k-circular security counterexamples for any
k ≥ 2 based on (ring-)LWE. Specifically:
– for any constant k = O(1), we construct a counterexample based on
n-dimensional (plain) LWE for poly(n) approximation factors;

– for any k = poly(λ), we construct one based on degree-n ring-LWE
for at most subexponential exp(nε) factors.

Moreover, both schemes are k′-circular insecure for 2 ≤ k′ ≤ k.

Notably, our ring-LWE construction does not immediately translate to
an LWE-based one, because matrix multiplication is not commutative.
To overcome this, we introduce a new “tensored” variant of LWE which
provides the desired commutativity, and which we prove is actually
equivalent to plain LWE.

1 Introduction

Classical security definitions for encryption, like semantic security [19], only
consider messages that the attacker itself can generate. In certain contexts,
however, a system must encrypt secret keys, which are unknown to the attacker,
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under corresponding public keys. Prominent examples of this include the anony-
mous credential scheme of Camenisch and Lysyanskaya [13], methods for proving
the computational soundness of symbolic protocols [2], password managers and
disk encryption utilities, and Gentry’s “bootstrapping” technique for obtaining
(unbounded) fully homomorphic encryption [17, 16].

For these reasons, the notions of circular and, more generally, key-dependent
message (KDM) security have attracted much attention in recent years. In-
formally, a public-key cryptosystem is k-circular secure if an encryption cycle
(Encpk1(sk2),Encpk2(sk3), . . . ,Encpkk(sk1)) is indistinguishable from encryptions
of “junk” messages. KDM security considers a broader setting in which (adver-
sarially specified) functions of the secret keys may be encrypted under any of the
public keys.

Early positive results on circular/KDM security go back to Black et al. [8]
and [13], who proposed KDM-secure schemes in the random oracle model. Several
years later, Boneh et al. [9] were the first to give a cryptosystem in the standard
model with a proof of KDM-security (for affine functions) under a well-studied
assumption, namely, Decision Diffie-Hellman (DDH). This was soon followed
by constructions based on the learning with errors (LWE) [5] and quadratic
residuosity [10] assumptions; constructions for richer notions like identity-based
encryption [3]; and “KDM amplification” transforms that extended the class of
functions far beyond affine ones [6, 11, 24, 4].

Despite all this progress, a very basic yet still unresolved question about
circular/KDM security—especially in light of the fact that almost all the systems
cited above are specially designed to obtain it—is:

Do classical security notions like IND-CPA or IND-CCA imply k-circular
security?

For k = 1 there are trivial counterexamples, but for k ≥ 2 the question is much
more interesting, and has been studied extensively in recent years. To date there
is a significant gap between what is known for the cases k = 2 and k > 2.

The case k = 2. In this setting there are several negative results based on
well-studied assumptions. The first counterexamples were presented by Acar
et al. [1] and Cash et al. [14], who respectively gave schemes that are CPA
secure but not 2-circular secure, and schemes that are CPA/CCA secure but not
even weakly two-circular secure. (Weak circular security refers to the secrecy of
other encrypted messages in the presence of an encryption cycle.) In both works,
CPA/CCA security was under the SXDH assumption for groups with asymmetric
bilinear pairings.

Most recently, Bishop et al. [7] gave additional counterexamples for k = 2,
based on the decision linear and LWE assumptions. In addition, they introduced
the useful notion of a cycle tester, which simplifies and modularizes the construc-
tion of counterexamples. For example, they showed how to combine a k-cycle
tester with any CPA/CCA-secure cryptosystem to obtain CPA/CCA-secure
schemes that are not k-circular secure. (However, all their concrete cycle testers
were for k = 2.)



The case k > 2. For larger values of k, the relationship between CPA/CCA
and circular security remained open for many years. Intuitively, constructing
a counterexample for this case is more difficult because encryption must set
up a relation among k ciphertexts that can be efficiently detected; bilinear
maps make this possible for k = 2, but seem less useful for k > 2. Indeed,
the only negative results are two recent concurrent and independent works of
Koppula et al. [20] and Marcedone and Orlandi [25], which used strong obfuscation
assumptions to construct, for any k, encryption schemes that are CPA secure
but k-circular insecure. More specifically, the counterexample in [20] is based on
indistinguishability obfuscation (iO) for arbitrary circuits (e.g., the candidate
construction proposed in [15]), whereas [25] used the even stronger assumption of
virtual black box (VBB) obfuscation for a certain large enough class of functions.
(Later, following [20], the authors of [25] refined their scheme to rely only on iO.)
Separately, Koppula et al. also showed that any k-circular security counterexample
can be generically transformed into one that is not even weakly circular secure,
because an encryption cycle implicitly reveals all the secret keys.

In summary, for k = 2 we have circular-security counterexamples under a
reasonably wide variety of well-studied assumptions, whereas for k > 2 the
available evidence is weaker, since it is based on the more speculative assumption
that secure iO exists. In particular, up to this point we do not have a candidate iO
scheme with a proof of security under simple, plausible, and concrete assumptions.
This stands in contrast to well-studied problems like those relating to bilinear
pairings or (ring-)LWE, the latter of which are provably hard assuming the
worst-case hardness of certain lattice problems [28, 27, 12, 22].

1.1 Contributions

Our main contributions are k-circular security counterexamples, for any k ≥ 2,
based on the LWE [28] and ring-LWE [22] assumptions. We stress that these are
the first circular security counterexamples for k > 2 that do not rely on general-
purpose obfuscation assumptions. More specifically, we prove the following two
main theorems (in what follows, λ denotes the security parameter):

Informal Theorem 1 For any poly(λ)-bounded k ≥ 2, there exists (in the
common random string model) a k-cycle tester based on ring-LWE in degree-n
rings for Õ(nk)O(k) approximation factors. Moreover, it is also a k′-cycle tester
for 2 ≤ k′ ≤ k.

As example parameterizations, for any constant k = O(1) we obtain a k-cycle
tester based on poly(n) approximation factors, which are conjectured to offer

2Ω̃(n) hardness. For arbitrary k = poly(λ), we can obtain a k-cycle tester based on
subexponential 2n

ε

factors for any desired constant ε > 0, by letting n = Ω̃(λc/ε)
be a sufficiently large polynomial in λ. For such factors, ring-LWE is conjectured

to offer 2Ω̃(n1−ε) ≥ 2Ω(λ) hardness.



Informal Theorem 2 For any constant k ≥ 2, there exists (in the common
random string model) a k-cycle tester based on plain LWE in n dimensions for

nO(k2) approximation factors. Moreover, it is also a k′-cycle tester for 2 ≤ k′ ≤ k.

We emphasize that unlike many lattice-based cryptographic schemes, the ring-
LWE-based cycle tester from our first theorem does not appear to “mechanically”
translate to plain LWE, so additional ideas are needed to prove our second
theorem. In brief, this is because the ring-LWE problem is usually defined over a
commutative ring, whereas in the plain LWE setting, the corresponding ring of
n-by-n matrices is not commutative (see Section 1.2 below for further details).
To overcome this obstacle, we introduce a new variant of LWE that we call
tensored LWE, and prove that it is equivalent to plain LWE for corresponding
parameters. We note, however, that this technique limits the solution to constant
(but arbitrary) k = O(1), because it induces key sizes that are exponential in k.

Finally, by combining our cycle testers with appropriate (ring-)LWE-based
CPA/CCA-secure encryption schemes [28, 18, 26] using the generic transforma-
tions given in [20, 7], we immediately obtain CPA/CCA-secure cryptosystems
that are k-circular insecure, and (in the CPA-secure case) for which an encryption
cycle even reveals all the encrypted secret keys.

Recent related work. In a concurrent and independent work, Koppula and Wa-
ters [21] also constructed a k-cycle tester for arbitrary (a priori bounded) k based
on plain LWE; it can be easily adapted to ring-LWE using standard transforma-
tions. Like ours, their construction uses “telescoping products,” but the exact
way in which these are used to detect cycles differs significantly—in particular,
their construction does not need secret keys to commute under multiplication
(see Section 1.2 below for further details). This yields different simplicity and
efficiency profiles for the schemes. Specifically, our ring-LWE scheme has public
keys, secret keys, and ciphertexts that are all an Ω(n) factor smaller than in the
ring-LWE version of their scheme, and is arguably technically simpler and more
direct. However, their plain-LWE construction can handle any polynomial cycle
length k = poly(λ), whereas our plain-LWE construction is restricted to any
constant k = O(1) due to an nk factor in our key and ciphertext lengths, which
arises from our “tensored” form of plain LWE that yields commuting secrets. In
addition, their scheme does not use a common random string, whereas ours does.

1.2 Techniques

Here we give an overview of our constructions and proof techniques. To start, we
give a brief exposition of the LWE-based two-cycle tester from [7]. We recall that
a k-cycle tester is a relaxed form of encryption scheme that does not require a
decryption algorithm; it only requires an efficient algorithm that reliably detects
when a k-tuple of ciphertexts forms an encryption cycle.

In the two-cycle tester from [7], a secret key is the randomness used to
generate a uniformly random matrix S ∈ Zn×mq along with a “trapdoor” TS,
using the GenTrap algorithm from, e.g., [26]. The matrix S is interpreted as a



matrix of LWE secrets, and the public key is the LWE instance (A,B ≈ StA)
for a uniformly random A ∈ Zn×mq .

To encrypt under a public key (A,B), we interpret the message as randomness

for GenTrap, thereby generating some Ŝ with trapdoor TŜ. We then choose a
random short integer vector r, let v = Ar, and output the two-component
ciphertext (

x← Ŝ−1[v] , u = Br ≈ StAr = Stv
)
∈ Zm × Zmq .

Here x ← Ŝ−1[v] denotes using the trapdoor TŜ to randomly sample a short

solution to Ŝx = v without revealing any information about TŜ, e.g., using
a discrete Gaussian distribution [18]. (This is used in the proof of IND-CPA
security.) Notice that x is a short integer vector, whereas u is “large.”

Now consider an encryption cycle for two keys, which consists of ciphertexts

( xi = S−1
1−i[vi] , ui ≈ Stivi )

for i ∈ {0, 1}, where Si is the (secret) matrix produced by GenTrap using the ith
secret key as randomness. Because the xi are short, we have

〈u0,x1〉 = ut0 · x1 ≈ vt0S0 · S−1
0 [v1] = vt0 · v1 = 〈v0,v1〉

〈u1,x0〉 = ut1 · x0 ≈ vt1S1 · S−1
1 [v0] = vt1 · v0 = 〈v1,v0〉.

Because the inner product is commutative, testing whether 〈u0,x1〉 ≈ 〈u1,x0〉 (mod q)
will therefore detect a two-cycle. (For ordinary ciphertexts, the approximation is
unlikely to hold, because the inner products are essentially uniform and indepen-
dent.)

Challenges Beyond Two-Cycles Generalizing the above construction to work
for cycle lengths larger than two comes with several technical challenges. One
is that there does not appear to be an appropriate generalization of the inner
product 〈·, ·〉 to three or more vectors. However, a promising idea is to replace v

with a matrix V of many columns, and likewise replace x with X ← Ŝ−1[V],

so that Ŝ ·X = V. Then for, say, a 3-cycle, if we could somehow arrange for
Vi = Zi · Si for some Zi, we would have the “telescoping product”

Ut
0 ·X1 ·X2 = Vt

0 · S0 · S−1
0 [V1] ·X2

= St0 · Zt0 · Z1 · S1 · S−1
1 [V2]

= St0 · Zt0 · Z1 · Z2 · S2,

and similarly for U1 ·X2 ·X0. Unfortunately, we do not see any way to generate
Vi = Zi · Si in the encryption algorithm, because Si is secret (it can only be
obtained from the ith secret key). Alternatively, we might try to obtain a more
“LWE-like” approximation Vi ≈ Zi · Si using the public key, but then the above
equations do not even hold approximately, because V0 is “large” and hence
amplifies the errors too much.



Our Solution With the above attempt in mind, we take a different and arguably
simpler approach to LWE-based cycle testers, which resolves both of the difficulties
identified above. Our approach is easiest to understand in the ring setting first.
For concreteness, define R = Z[X]/(Xn + 1) for n a power of two, and define
Rq = R/qR = Zq[X]/(Xn + 1) for a suitably large modulus q.

As in [7], a secret key in our system is the randomness used by (a ring variant
of) GenTrap to produce a row vector a ∈ Rmq with a trapdoor Ta. However, here
we simply take a to be the public key, rather than using it as a vector of ring-LWE
secrets.

To encrypt under public key a, as in [7] we interpret the message as randomness
for GenTrap to obtain an â ∈ Rmq and trapdoor Tâ. We then choose an s ∈ R from
the ring-LWE error distribution, let b ≈ s · a ∈ Rmq (where the approximation
hides ring-LWE errors), and output the ciphertext

C← â−1[b] ∈ Rm×m,

where â−1[b] uses Tâ to randomly sample a short matrix C over R such that
â · C = b. Notice that in contrast with [7], the ciphertext is just one short
matrix—it does not contain any “large” components, which will be important
for cycle testing.

Consider now an encryption cycle of, say, three secret keys, which consists of
ciphertexts

Ci ← a−1
i−1[bi], bi ≈ si · ai

for each i ∈ Z3 (where the subscript arithmetic is modulo three). We then have
the telescoping product

a2 ·C0 ·C1 ·C2 = a2 · a−1
2 [b0] ·C1 ·C2

≈ s0 · a0 · a−1
0 [b1] ·C2

≈ s0 · s1 · a1 · a−1
1 [b2]

≈ s0 · s1 · s2 · a2,

where the approximations hold because all the si and Ci are short. Similarly,

a0 ·C1 ·C2 ·C0 ≈ s1 · s2 · s0 · a0.

Now because the ring R is commutative, the above right-hand sides are
almost identical, except for the different public keys a0,a2. But this issue is
easily addressed: the GenTrap algorithm comes in a version that takes a vector
over Rq as a public parameter, and outputs an a having that vector as its prefix.
Therefore, our cycle tester just checks whether the first entries of the above
products (corresponding to the common prefix of a0,a2) are approximately equal.
More precisely, the difference should be smaller than some bound that depends
on the maximum cycle length k we want to be able to detect; this induces our
choice of the modulus q. Finally, notice that the tester also works equally well
for cycles of length k′ for 2 ≤ k′ ≤ k.



Adapting to Plain LWE There is a standard mechanical translation of cryp-
tosystems from ring-LWE to plain LWE, which replaces every uniformly random
a ∈ Rq with a uniformly random matrix A ∈ Zn×nq , and every error term s ∈ R
with a matrix S ∈ Zn×n whose entries are drawn independently from the LWE
error distribution. However, when this translation is applied to the above scheme,
it is easy to see that the cycle tester does not work, because the error matrices Si
are unlikely to commute with each other under multiplication.

We resolve this difficulty by introducing a new tensoring technique that
guarantees commutativity. (We believe that the technique will find additional
applications.) The central fact we use is that the tensor product of square
n-dimensional matrices obeys the following special case of the mixed-product
property :

S1 ⊗ S2 = (S1 ⊗ In) · (In ⊗ S2) = (In ⊗ S2) · (S1 ⊗ In) ∈ Zn
2×n2

.

In particular, the matrices S1 ⊗ In and In ⊗ S2 commute under multiplication.
(Naturally, the above equations generalize to the tensor product of any k > 2
matrices.)

We apply the above facts in our plain-LWE cycle tester as follows. When
encrypting to the ith public key, we use an LWE secret matrix

S′i = In ⊗ · · · ⊗ In︸ ︷︷ ︸
i terms

⊗ Si ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
k−i−1 terms

∈ Zn
k×nk

,

where Si ∈ Zn×n has entries drawn from the error distribution. By the above,
these Si all commute with each other under multiplication, allowing us to conclude
that (certain entries of) the telescoping products are approximately equal. Also
notice that it is not necessary for all the Si to appear in the final product, so the
same cycle tester also detects k′-cycles for 2 ≤ k′ ≤ k.

In order for all this to work, the public key matrices Ai must have nk

rows, which is why our construction is limited to constant k = O(1). Of course,
it is not immediately obvious whether LWE is actually hard for such highly
structured secret matrices S′i. Fortunately, we prove that this form of the problem
is equivalent to n-dimensional LWE with the same error distribution, up to
a polynomial factor in the number of samples given to the attacker. Known
worst-case hardness theorems for LWE are essentially agnostic to the number of
samples, so the reduction’s lossiness in this respect is of little concern.

2 Preliminaries

For a positive integer t we let [t] = {0, . . . , t−1}. The primary security parameter
is denoted λ.

Tensor products. The tensor (or Kronecker) product A ⊗ B of an m1-by-n1

matrix A with an m2-by-n2 matrix B, both over a common ring R, is the m1m2-
by-n1n2 block matrix consisting of m2-by-n2 blocks, whose (i, j)th block is ai,j ·B,



where ai,j denotes the (i, j)th entry of A. Equivalently, we can view A⊗B as
having rows indexed by [m1]× [m2] and columns indexed by [n1]× [n2], where
the ((i1, i2), (j1, j2))th entry is ai1,j1 · bi2,j2 . This corresponds to the previous
definition by “flattening” the row and column index sets using the bijection that
maps (k1, k2) ∈ [`1]× [`2] to k1 · `2 + k2 ∈ [`1`2].

We extensively use the mixed-product property of tensor products, which says
that

(A⊗B) · (C⊗D) = (AC)⊗ (BD)

for any matrices A,B,C,D of compatible dimensions. In particular,

(A⊗B) = (A⊗Iheight(B)) ·(Iwidth(A)⊗B) = (Iheight(A)⊗B) ·(A⊗Iwidth(B)).

Subgaussians. For analyzing error growth in our schemes it will be convenient to
use the notion of subgaussian random variables and matrices. We say that a real
random variable X (or its distribution) is subgaussian with parameter s if for all
t ∈ R, the (scaled) moment-generating function satisfies1

E[exp(2πtX)] ≤ (1 + negl(λ)) · exp(πs2t2).

More generally, we say that a random matrix (over vector) X is subgaussian
with parameter s if utXv is subgaussian with parameter s for all unit vectors u,v.
It follows immediately from the definitions that a poly(λ)-dimensional matrix
made up of independent subgaussian entries, or of independent subgaussian rows
or columns, with common parameter s is itself subgaussian with parameter s.

The largest singular value, also known as spectral norm, of a matrix X is
defined as s1(X) := maxu6=0‖Xu‖/‖u‖. It is clear that the spectral norm is
sub-additive and sub-multiplicative: s1(X + Y) ≤ s1(X) + s1(Y) and s1(XY) ≤
s1(X) · s1(Y). We use the following standard fact about subgaussian matrices;
see [29] for a proof.

Proposition 1. For a subgaussian matrix X ∈ Rm×n with parameter s, we have
s1(X) ≤ s ·O(

√
m+

√
n) except with probability at most 2−Ω(m+n).

2.1 Cryptographic Definitions

Here we present some cryptographic definitions. The definition of k-cycle tester
is from [7].

Definition 1. Let Π = (Setup,Gen,Enc) be a public-key encryption scheme
(omitting the decryption algorithm) for message space M =Mλ. We say that Π
is IND-CPA secure if every efficient adversary A has negligible (in λ) advantage
in distinguishing the following two games for b ∈ {0, 1}:

1. Generate pp← Setup(1λ) and (pk, sk)← Gen(pp).

1 We remark that the 1 + negl(λ) factor makes this a slight relaxation of the standard
definition of subgaussian; it coincides with the notion of negl(λ)-subgaussian from [26].



2. Given (pp, pk) to A, which outputs a pair of messages (m0,m1) ∈M2.
3. Generate c← Enc(pk,mb) and give c to the adversary.

Definition 2. Let Π = (Setup,Gen,Enc) be a public-key encryption scheme
(omitting the decryption algorithm) for message space M =Mλ ⊇ Sλ, where Sλ
denotes the secret-key space for security parameter λ. We say that Π is IND-CIRC-
CPAk secure if the following two games are computationally indistinguishable.

1. Generate pp← Setup(1λ) and (pki, ski)← Gen(pp) for every i ∈ Zk.
2. In Game 0, let ci ← Enc(pki, ski−1) for i ∈ Zk (where arithmetic in the

subscripts is modulo k).
In Game 1, let ci ← Enc(pki, 0) for i ∈ Zk (where 0 ∈ M denotes some
arbitrary fixed message).

3. Output (pp, (pki)i∈Zk
, (ci)i∈Zk

).

Definition 3 (Cycle Tester [7]). Let Γ = (Setup,Gen,Enc,Test) be a tuple of
randomized algorithms for which:

– Π = (Setup,Gen,Enc) is a public-key encryption scheme for message space
M =Mλ ⊇ Sλ;

– Test((pki, ci)i∈Zk
), given a tuple of public keys pki and corresponding cipher-

texts ci, outputs a bit b ∈ {0, 1}.
We say that Γ is a k-cycle tester if Π is IND-CPA secure, and if Test has
non-negligible advantage in the IND-CIRC-CPAk game against Π.

2.2 Learning With Errors

Definition 4. For positive integer dimensions n,m, modulus q, and error dis-
tribution χ over Z, the decision-LWEn,q,χ,m problem is to distinguish, with non-
negligible advantage, between (A; bt = stA + et) where A ← Zn×mq , s ← χn,
e← χm, and uniformly random (A; bt) of the same dimensions.2

A standard instantiation of LWE is to let χ be a discrete Gaussian distribution
(over Z) with parameter r = 2

√
n, which is known to be subgaussian with

parameter r (see [26]). For this parameterization, and for any polynomially
bounded m, it is known that LWE is at least as hard as quantumly approximating
certain “short vector” problems on n-dimensional lattices, in the worst case,
to within Õ(q

√
n) factors [28]. Classical reductions are also known for different

parameterizations [27, 12].
A standard hybrid argument shows that the multi-secret form of LWE—which

is to distinguish (
A

B = SA + E

)
∈ Z(n+t)×m

q

from uniform, where A ← Zn×mq , S ← χt×n, and E ← χt×m for some desired
t,m = poly(n)—is equivalent to the above single-secret version, up to a t factor
loss in the distinguishing advantage.

2 Notice that the coordinates of s are drawn from the error distribution χ; as shown
in [5], this form of the problem is equivalent (up to a small difference in m) to the
one where s← Zn

q is drawn uniformly at random.



Tensored form. In this work we rely on another equivalent form of LWE, which
we call the tensored form. Let m, t = poly(n) be as above, and additionally let
l, r = poly(n) be arbitrary. The problem is to distinguish(

A
B = (Il ⊗ S⊗ Ir) ·A + E

)
∈ Zl(n+t)r×m

q

from uniform, where A← Zlnr×mq , S← χt×n, and E← χltr×m.

Lemma 1. The tensored form of LWE for parameters n, t,m, l, r is equivalent
to the multi-secret form for the same n, t and M = mlr samples.

Proof. The equivalence follows simply by an appropriate (efficient and reversible)

reindexing. Specifically, given a multi-secret instance (A; B) ∈ Z(n+t)×M
q , we

transform it to a tensored instance (A′; B′) ∈ Zl(n+t)r×m
q as follows. For conve-

nience, we construct A′ by indexing its rows by [l]× [n]× [r] in the standard way,
and similarly for B′. We partition A into m blocks, each consisting of lr columns
of dimension n. We arbitrarily index these columns by [l]× [r], and arrange them
into a single column indexed by [l]× [n]× [r] in the obvious way; the matrix A′

is made up of these m columns. Similarly, we construct B′ from B by grouping
each block of lr columns of dimension t into a single column vector indexed
[l]×[t]×[r]. It is easy to see that if (A; B) is uniformly random, then so is (A′; B′).
Furthermore, by construction and by definition of matrix multiplication it can
be verified that if B = SA + E for some S,E, then B′ = (Il ⊗ S⊗ Ir) ·A′ + E′,
where E′ is obtained from E in exactly the same way that B′ is obtained from B.
Therefore, the transformation is a tight reduction from the multi-secret to the
tensored form. Moreover, the transformation is efficiently reversible, which gives
a reduction in the opposite direction.

2.3 Lattice Trapdoors

We recall some standard facts about trapdoors and preimage sampling for cryp-
tographic lattices; for full details, see [18, 26]. There exist efficient randomized
algorithms GenTrap, SampleDom, and SamplePre having the following proper-
ties. For any positive integers n, q, there exist suitable m̄ < m = O(n log q) for
which the following hold (the parameters n, q, m̄,m are implicit inputs to all the
algorithms):

– GenTrap(Ā; R) takes some Ā ∈ Zn×m̄q and random coins R ∈ R from a
certain space R, and outputs a matrix A ∈ Zn×mq whose first m̄ columns

are Ā, and for which R serves as a “trapdoor.”
– SampleDom() outputs a random x ∈ Zm, drawn from a certain distribution D.

For brevity we usually write x← D.
– For any Ā ∈ Zn×m̄q and R ∈ R defining A as above, and any u ∈ Znq ,

SamplePre(Ā,R,u) outputs a random x ∈ Zm (drawn from a certain distri-
bution) such that Ax = u.



When A and R are clear from context, we usually write A−1[u] for the sake
of brevity, and because it satisfies the identity A ·A−1[u] = u. (We stress
that A−1[·] denotes a randomized algorithm, not a formal matrix inverse.)

We extend the above notation column-wise to matrices, i.e., D` is the distri-
bution over Zm×` in which the columns are drawn independently from D, and
A−1[B] ∈ Zm×` for B ∈ Zn×`q applies A−1 independently to each column of B.

Proposition 2. The above algorithms satisfy the following statistical properties:

1. For uniformly random A← Zn×mq and x← D, the distribution of (A,Ax)
is within negligible statistical distance of uniform.

2. For uniformly random Ā and R← R, the distribution of A = GenTrap(Ā,R)
is within negligible statistical distance of uniform.

3. For any Ā and any R ∈ R defining A = GenTrap(Ā; R), the following
experiments are within negligible statistical distance:

(a) choose x← D and output (x,u = Ax);
(b) choose uniformly random u← Znq , let x← A−1[u], and output (x,u).

4. For any A output by GenTrap (on randomness R), and any u ∈ Znq , the

distribution A−1[u] is subgaussian with parameter Õ(m) = Õ(n log q).

Remark 1. We emphasize that Item 3 of Proposition 2 applies for any (possibly
adversarial) choice of the trapdoor R, which is needed in our application because
the trapdoor will indeed be provided by the adversary. Fortunately, the GenTrap
and SamplePre algorithms described in [26] can easily be instantiated to satisfy
this property. In brief, this is GenTrap produces a short random matrix R ∈ R
as the trapdoor, and SamplePre works for any Gaussian parameter exceeding a
certain Θ̃(s1(R)) bound. By defining R to be, say, the set of all binary matrices
of appropriate dimensions, we ensure that s1(R) ≤ m for every R ∈ R, while
also satisfying Item 2 via the leftover hash lemma.

2.4 The Ring Setting

Here we provide some background on rings, their geometry, and ring-LWE; then
we recall analogous facts about trapdoors in the ring setting. For more details
see [22, 26]. (This material is only used for our ring-LWE construction in Section 4,
and may be safely skipped.)

For simplicity, we work in the 2nth cyclotomic ring R := Z[X]/(Xn+1) for n a
power of two. (However, all of our results can be adapted to arbitrary cyclotomics
using the techniques from [23].) The canonical embedding σ : R→ Cn maps r ∈ R
to (σi(r))i∈Z∗

2n
, where σi(r) = r(ωi) and ω = exp(π

√
−1/n) ∈ C is the principal

complex 2nth root of unity. (Notice that this definition is agnostic to the choice
of Z[X]-representative of r ∈ Z[X]/(Xn + 1), which makes it “canonical.”)

We use the canonical embedding to endow R with a geometry. Specifically, for
a ring element r ∈ R we define ‖r‖ := ‖σ(r)‖ and ‖r‖∞ := ‖σ(r)‖∞. We extend

the norm notation to vectors and matrices by defining ‖x‖ = (
∑
i‖xi‖

2
)
1/2

for



any vector x over R, and ‖X‖∞ = max‖xi,j‖∞ for any vector or matrix X over R.
Finally, we define the spectral norm of X as

s1(X) := sup
u6=0
‖Xu‖/‖u‖,

where the supremum is taken over all nonzero vectors (of appropriate dimension)
over R. Clearly, the spectral norm is sub-additive and sub-multiplicative: s1(X +
Y) ≤ s1(X) + s1(Y) and s1(XY) ≤ s1(X) · s1(Y). The following standard fact
relates the spectral and `∞ norms.

Proposition 3. For any matrix E ∈ Rl×k we have s1(E) ≤
√
lk · ‖E‖∞.

The following standard fact bounds the coefficients of a ring element r ∈ R by
its `∞ norm.

Proposition 4. For a ring element r ∈ R, let r =
∑n−1
j=0 rj · Xj ∈ Z[X] for

rj ∈ Z denote its canonical representative (with respect to the standard power
basis of R). Then rj ≤ ‖r‖∞ for every j.

Ring-LWE For an integer q, define Rq := R/qR = Zq[X]/(Xn + 1).

Definition 5. Let χ be an error distribution over R. The decision-RLWER,q,χ,m
problem is to distinguish, with non-negligible advantage, between (a; b = s·a+e) ∈
Rmq ×Rmq where a← Rmq , s← χ, e← χm, and uniformly random (a; b) of the
same dimensions.

For appropriate parameters, decision-RLWE problem is (quantumly) at least as
hard as the (q · poly(n,m))-approximate shortest vector problem on any ideal
lattice in R, i.e., in the worst case [22]. The standard error distribution for which
this theorem applies is a sufficiently wide discrete Gaussian distribution χ over R,
for which

Pr
e←χ

[‖e‖∞ > nc] = negl(n) (1)

for some universal constant c > 1.

Trapdoors Similarly to the plain setting, there are efficient randomized algo-
rithms GenTrap, SampleDom, and SamplePre having the following properties. For
any modulus q, there exist suitable m̄ < m = Õ(log q) for which the following
hold (the parameters R, q, m̄,m are implicit inputs to all the algorithms):

– GenTrap(ā; R) takes some ā ∈ Rm̄q and random R ∈ R from a certain
space R, and outputs a vector a ∈ Rmq whose first m̄ components are ā, and
for which R serves as a “trapdoor.”

– SampleDom() outputs a random column vector xt ∈ Rm, drawn from a
certain distribution D. For brevity we usually write xt ← D.



– For any ā ∈ Rm̄q and R ∈ R defining a as above, and any u ∈ Rq,
SamplePre(ā,R, u) outputs a random column vector xt ∈ Rm (drawn from a
certain distribution) such that a · xt = u.
We usually write a−1[u] for the sake of brevity, and because it satisfies the
identity a · a−1[u] = u. Moreover, Dl is the distribution over Rm×l in which
the columns are drawn independently from D. The notation a−1[v] ∈ Rm×lq ,

where v ∈ Rlq, applies a−1 to each component of v independently.

The following proposition follows by a standard adaptation of “plain” trapdoor
constructions (e.g., [26]) to the ring setting, and by the regularity lemma for
rings given in [23].

Proposition 5. The above algorithms satisfy the following statistical properties:

1. For uniformly random a← Rmq and xt ← D, the distribution of (a,a · xt) ∈
Rm+1 is within negligible statistical distance of uniform.

2. For uniformly random ā and R← R, the distribution of a = GenTrap(ā,R)
is within negligible statistical distance of uniform.

3. For any ā and any R ∈ R defining a = GenTrap(ā; R), the following experi-
ments are within negligible statistical distance:
(a) choose xt ← D and output (x, u = a · xt);
(b) choose uniformly random u← Rq, let xt ← a−1[u], and output (x, u).

4. There exists a universal constant c > 1 such that, for any a output by GenTrap
(on randomness R), and for any u ∈ Rq,

Pr
[∥∥a−1[u]

∥∥
∞ > nc

]
= negl(n).

3 LWE-Based Construction

In this section we construct, for any constant k ≥ 2, a k-cycle tester that is
IND-CPA secure based on the conjectured hardness of (plain) LWE, appropriately
parameterized. The scheme involves the following parameters:

– N := nk for a positive integer n, an integer modulus q, and an error distri-
bution χ over Z, where n, q, χ are the parameters of the underlying LWE
problem. For concreteness, we use the standard LWE error distribution χ,
which is subgaussian with parameter O(

√
n).

– M̄ < M = O(N log q), where M̄,M are the dimensions associated with
GenTrap for N, q.

– The secret-key and message spaces are both the randomness/trapdoor spaceR
of GenTrap when given an N -by-M̄ input.

Finally, each key is uniquely and arbitrarily identified with some i ∈ Zk =
{0, . . . , k − 1}, which is provided to the key-generation algorithm. The tester is
defined as follows.

– Setup(): output a uniformly random Ā← ZN×M̄q .



– Gen(i, Ā): let Ai = GenTrap(Ā; Ri) for Ri ← R, and output (i,Ai) as the
public key and the trapdoor Ri as the secret key.
Recall from Proposition 2 that the first M̄ columns of Ai are Ā, and that
Ai is negligibly far from uniform over the random choice of Ā and Ri.

– Enc((i,Ai),R ∈ R): let A = GenTrap(Ā; R), so that R is a trapdoor for A.
Choose an LWE secret matrix Si ← χn×n and an error matrix Ei ← χN×M ,
and output the ciphertext matrix

C← A−1[S′i ·Ai + Ei] ∈ ZM×M ,
where S′i = (Ini ⊗ Si ⊗ Ink−i−1) ∈ ZN×N .

(The A−1 operation is performed using trapdoor R.)
– Test((Ai,Ci)i∈Zk

): given public key matrices Ai and ciphertexts Ci, check
whether

(Ak−1·C0·C1 · · ·Ck−1−A0·C1 · · ·Ck−1·C0)·Ī ∈ (−q/4, q/4)N×M̄ (mod q),
(2)

where Ī =
(
IM̄
0

)
∈ ZM×M̄ . (Notice that Ai · Ī = Ā for every i, which we use

in the analysis below.)

Remark 2. In Equation (2), the choice of products appearing in the difference is
not special; the difference between any two products Ai ·Ci+1 ·Ci+2 · · ·Ci for
distinct values of i ∈ Zk would work equally well.

Remark 3. The number and order of ciphertexts in an encryption cycle is also
not too important. The Test algorithm naturally generalizes to work on any k′

public keys and ciphertexts indexed by an ordered set S ⊆ Zk, for 2 ≤ k′ ≤ k.
We simply take the difference of two products Ai ·

∏
j∈S Cj for two distinct i,

where the order of indices j cyclically follows the order of S and ends with j = i.

In the remainder of this section we prove the following theorem:

Theorem 1. For any constant k ≥ 2 and a sufficiently large q = Õ(n3(k2−1)/2),
the above scheme is a k′-cycle tester for 2 ≤ k′ ≤ k, assuming the hardness of
decision-LWEn,q,χ,M ·nk−1 .

Recall that the LWE instantiation from Theorem 1 is at least as hard as
(quantumly) approximating certain lattice problems on n-dimensional lattices, in

the worst case, to within Õ(n3k2/2−1) = poly(n) factors, which is conjectured to
be exponentially hard in n.

In Section 3.1 below we prove IND-CPA security, in Section 3.2 we show that
Test almost always accepts on an encryption cycle, and in Section 3.3 we show
that Test almost never accepts on a non-cycle. Together these prove Theorem 1.

3.1 Security

Lemma 2. The tuple (Setup,Gen,Enc) is IND-CPA secure under the LWE as-
sumption from Theorem 1.



Proof. We consider the following sequence of hybrid experiments, showing that
adjacent hybrids are indistinguishable (either computationally or statistically),
and that the last one does not depend on the adversary’s choice of challenge
message, which proves the claim. For simplicity, assume that the adversary names
some target identity i ∈ Zk at the start of the IND-CPA game. (The proof easily
adapts to the case where the adversary adaptively chooses i after seeing all the
public keys.)

Hybrid 1: Here the matrix Ai ∈ ZN×Mq in the public key is generated uniformly
at random, instead of by GenTrap. By Item 2 of Proposition 2, this experiment
is statistically indistinguishable from the real IND-CPA game.

Hybrid 2: Here the matrix Bi ∈ ZN×Mq given as input to the A−1 operation
is chosen uniformly at random, rather than as Bi = S′i ·Ai + Ei (as in the
previous hybrid).

Using the tensored form of LWE, which by Lemma 1 is equivalent to the
one appearing in the theorem statement, a straightforward reduction shows
that this experiment is computationally indistinguishable from the previous
one. Specifically, given an instance (A′; B′) of the tensored form of LWE, the
reduction sets Ai = A′, Bi = B′, and finally lets Ci ← A−1[Bi], using the
adversary’s challenge message to define A and compute the A−1[·] operation
(using the SamplePre algorithm) in the usual way.

Hybrid 3: Here the matrix Ci is drawn from DM , i.e., each column is indepen-
dently drawn from D, instead of by invoking A−1[Bi] for a matrix A defined
by the adversary’s challenge message.

We claim that for any choice of Ā and challenge message, this experiment is
within negligible statistical distance of the previous one. This follows imme-
diately by Item 3 of Proposition 2, applied across each pair of corresponding
columns of Ui and Ci.

Clearly, the final hybrid experiment does not depend on the adversary’s choice
of challenge message, so the proof is complete.

3.2 Testing an Encryption Cycle

Lemma 3. For a sufficiently large q = Õ(n3(k2−1)/2), the Test algorithm accepts
with all but negligible probability when given an encryption k-cycle, i.e., in Game
0 of Definition 2.

Remark 4. The lemma and its proof easily adapt to the case where Test is given a
k′-cycle for 2 ≤ k′ ≤ k, as described in Remark 3. This is because the matrices S′i
commute with each other under multiplication, and the error terms are no larger
in size and number.

Proof. We have ((i,Ai),Ri)← Gen(i, Ā) and Ci ← Enc((i,Ai),Ri−1) for each
i ∈ Zk, where all arithmetic in the subscripts is modulo k. Notice that when



encrypting secret key Ri−1 to produce Ci, the encryption algorithm performs
the A−1 operation for A = Ai−1. We therefore have

Ci ← A−1
i−1

[
S′i ·Ai + Ei

]
∈ ZM×M

where S′i = (Ini ⊗ Si ⊗ Ink−i−1)

= (In ⊗ · · · ⊗ In︸ ︷︷ ︸
i terms

⊗ Si ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
k−i−1 terms

) ∈ ZN×N

for some error matrices Si,Ei. Notice that because each Si appears in a different
position in its tensor product, the mixed-product property implies that the
matrices S′i commute with each other under multiplication, i.e.,

S′i · S′j = S′j · S′i.

Now observe that in Equation (2), the minuend (left-hand term) of the
difference expands as

L := Ak−1 ·A−1
k−1[S′0 ·A0 + E0] ·C1 · · ·Ck−1

≈ S′0 ·A0 ·A−1
0 [S′1 ·A1 + E1] ·C2 · · ·Ck−1 (error E0 ·C1 · · ·Ck−1)

≈ S′0 · S′1 ·A1 ·A−1
1 [S′2 ·A2 + E2] ·C3 · · ·Ck−1 (error S′0 ·E1 ·C2 · · ·Ck−1)

· · ·
≈ S′0 · · ·S′k−1 ·Ak−1. (error S′0 · · ·S′k−2 ·Ek−1)

(We analyze the error terms below.) Similarly, the subtrahend (right-hand term)
of the difference expands in the same way as

R := A0 ·C1 · · ·Ck−1 ·C0 ≈ S′1 · · ·S′k−1 · S′0 ·A0

= S′0 · S′1 · · ·S′k−1 ·A0,

with error terms as in the previous expansion, but with all the subscripts incre-
mented (modulo k). Finally, observe that

(L−R) · Ī ≈ S′0 · · ·S′k−1 · (Ak−1 −A0) · Ī = 0,

where the approximation includes the errors (times Ī) from both of the above
expansions.

It remains analyze the error terms from the above expansions. Recall that
each Ei and Si is made up of independent entries drawn from χ, which is
subgaussian with parameter O(

√
n). Similarly, by Item 4 of Proposition 2, every

Ci has independent subgaussian columns with parameter Õ(M). Therefore, by
Proposition 1,

s1(Ei) = O(
√
nM), s1(S′i) = s1(Si) = O(n), s1(Ci) = Õ(M3/2)



except with negligible probability. It follows that in the analysis of L,R above, the
spectral norm of each error matrix—and thereby the magnitude of every entry—
is bounded by Õ(n1/2 ·M3k/2−1). Taking a sufficiently large q = Õ(n3(k2−1)/2)
ensures that every entry in the sum of the error matrices has magnitude less
than q/4, so the tester accepts.

3.3 Testing a Non-Cycle

Lemma 4. Under the LWE assumption from Theorem 1, the Test algorithm
accepts with only negligible probability when given ciphertexts that all encrypt
zero, i.e., in Game 1 of Definition 2.

Proof. We consider the following sequence of hybrid experiments for generating
the tester’s input. We show that successive hybrids are indistinguishable (either
computationally or statistically), which implies that the tester’s acceptance
probability differs by only a negligible amount in successive hybrids. Moreover,
we show that its acceptance probability in the final hybrid is exponentially small,
which proves the claim.

Hybrid 1: here the public keys Ai are uniformly random and independent
(modulo their common prefix Ā), and each ciphertext Ci is independently
sampled from DM .
Following the proof of Lemma 2, this experiment is computationally indis-
tinguishable from the real one (under the LWE assumption), and hence
the tester’s acceptance probability is only negligibly different in the two
experiments.

Hybrids 2, 3, . . . , k + 1: in hybrid 2, in the cycle-test algorithm (Equation (2))
we replace Ak−1 · C0 with a uniformly random A′0, and similarly replace
A0 ·C1 with a uniformly random A′1 (both independent of everything else).
Hybrids 3 through k + 1 are defined similarly, so that the final cycle-test
algorithm simply tests whether (A′k−1 −A′0) · Ī ∈ (−q/4, q/4) (mod q) for
uniformly random and independent A′k−1,A

′
0. Clearly, this test accepts with

probability bounded by the negligible quantity 2−N ·M̄ ≤ 2−n.
We claim that each of these hybrids is within negligible statistical distance of
the previous one. For Hybrid 2 this follows by Item 1 of Proposition 2: because
Ak−1,A0 are uniformly random, and C0,C1 are independent, Ak−1 ·C0 and
A0 ·C1 are negligibly far from uniformly random and independent. (This is
where we use the fact that k ≥ 2.) The same argument applies for subsequent
hybrids. This completes the proof.

4 Ring-LWE Construction

In this section we present a k-cycle tester that is IND-CPA secure assuming the
hardness of ring-LWE (RLWE), appropriately parameterized. The construction
works very similarly to the plain LWE one from Section 4. However, it is not
limited to constant k = O(1), but can be instantiated for any k = poly(λ),



because it does not use the tensoring technique. The scheme involves the following
parameters:

– the ring R = Z[X]/(Xn + 1) for power-of-two n, the standard ring-LWE
error distribution χ over R, and an integer modulus q (which we instantiate
below);

– m̄ < m = Õ(log q), where m̄,m are the dimensions associated with the
ring-based GenTrap for parameters R, q;

– The secret-key and message spaces are both R, the randomness/trapdoor
space of the ring-based GenTrap.

The construction is as follows.

– Setup(): output a uniformly random ā ∈ Rm̄q .

– Gen(ā): let a← GenTrap(ā; R) for R← R. Output a as the public key and
the trapdoor R as the secret key.

– Enc(a,R ∈ R): let v ← GenTrap(ā; R) where v ∈ Rmq . Choose s ← χ and
e← χm. Output the ciphertext

C← v−1[s · a + e] ∈ Rm×m,

where the v−1 operation is performed using the trapdoor R.

– Test((ai,Ci)i∈Zk
): Given public keys ai and ciphertexts Ci, check whether

(ak−1 ·C0 ·C1 · · ·Ck−1 − a0 ·C1 · · ·Ck−1 ·C0) · Ī ∈ Qm̄ (mod q), (3)

where Ī =
(
Im̄
0

)
∈ Rm×m̄, and Q ⊆ R is the set of ring elements whose

coefficients (with respect to the standard power basis) all are in (−q/4, q/4).

In the remainder of this section we prove the following theorem:

Theorem 2. For any k = poly(λ) and a sufficiently large q = Õ(nk)O(k), the
above scheme is a k′-cycle tester for 2 ≤ k′ ≤ k, assuming the hardness of
decision-RLWER,q,χ,m.

Recall that the Ring-LWE instantiation from Theorem 2 is at least as hard
as (quantumly) approximating certain lattice problems on ideal lattices in R, in
the worst case, to within Õ(nk)O(k) factors.

Lemma 5 below establishes IND-CPA security. In Section 4.1 we show that
Test almost always accepts on an encryption cycle, and in Section 4.2 we show
that Test almost never accepts on a non-cycle. Together these prove Theorem 2.

Lemma 5. The tuple (Setup,Gen,Enc) is IND-CPA secure under the RLWE
assumption from Theorem 2.

Due to space restrictions, we omit the proof, which proceeds very similarly to
the proof of Lemma 2.



4.1 Testing an Encryption Cycle

Lemma 6. For a sufficiently large q = Õ(nk)O(k), the Test algorithm accepts
with all but negligible probability when given an encryption k-cycle, i.e., in Game
0 of Definition 2.

Proof. For input (ai,Ci)i∈Zk
, we have

Ci ← a−1
i−1[si · ai + ei]

for some si ← χ and ei ← χm. Moreover, by commutativity of R we have
sisj = sjsi for any i, j ∈ Zk. Now for the left-hand term of Equation (3) we have

l := ak−1 · a−1
k−1[s0 · a0 + e0] ·C1 · · ·Ck−1

≈ s0 · a0 · a−1
0 [s1 · a1 + e1] ·C2 · · ·Ck−1 (error e0 ·C1 · · ·Ck−1)

≈ s0 · s1 · a1 · a−1
1 [s2 · a2 + e2] ·C3 · · ·Ck−1 (error s0 · e1 ·C2 · · ·Ck−1)

· · ·
≈ s0 · · · sk−1 · ak−1. (error s0 · · · sk−2 · ek−1)

(We analyze the error terms below.) Similarly, for the right-hand term of Equa-
tion (3), we have

r := a0 ·C1 · · ·Ck−1 ·C0 ≈ s1 · · · sk−1 · s0 · a0

= s0 · · · sk−1 · a0,

with error terms as in the previous expansion, but with all the subscripts incre-
mented (modulo k). Therefore,

(l− r) · Ī ≈ s0 · · · sk−1 · (ak−1 − a0) · Ī = 0,

where the approximation includes the errors from the expansions of both l and r,
and where we use the fact that ai · Ī = ā for every i ∈ Zk.

It remains to analyze the error terms. Recall that each ei is made up of inde-
pendent entries from χ. Also, each secret si comes from χ. Lastly, each ciphertext
Ci ∈ Rm×m is drawn as some a−1[·]. Then by Equation (1), Proposition 3, and
Item 4 of Proposition 5, we have (except with negligible probability)

s1(si) ≤ nc, s1(ei) ≤
√
m · nc, s1(Ci) ≤ m · nc

for some universal constant c > 1. Let e denote the sum of all the error terms in
the above approximations for l, r. We have

‖e‖∞ ≤ s1(e) ≤ 2k ·mk−1 · nck.

Because m = Õ(log q), for a sufficiently large q = Õ(nk)O(k), Proposition 4
guarantees that every coefficient of every entry of e has the magnitude less
than q/4, and therefore e ∈ Qm and Test accepts, as desired.



4.2 Testing a Non-Cycle

Lemma 7. Under the same RLWE assumption from Theorem 2, for k ≥ 2
the Test algorithm accepts with only negligible probability on ciphertexts that all
encrypt zero, i.e., in Game 1 of Definition 2.

Proof. We consider the following sequence of hybrids. We show that adjacent
hybrids are indistinguishable, either computationally or statistically. Hence, the
tester’s acceptance probability differs by only a negligible amount in successive
hybrids.

Hybrid 1: In this hybrid, the public keys are uniformly random and independent
(modulo their common prefix ā), and each ciphertext is sampled independently
from Dm. Following the proof of Lemma 5, this hybrid is computationally
indistinguishable from real game.

Hybrids 2, 3, . . . , k + 1: In the second hybrid, in Equation (3) we replace
ak−1 ·C0 with a uniformly random a′0 and replace a0 ·C1 with a uniformly
random a′1. We define hybrids 3 through k + 1 similarly. Hence, the final
algorithm tests whether (a′k−1 − a′0) · Ī ∈ Qm̄, where both terms in the
difference are uniformly random and independent. The acceptance probability
is therefore bounded by 2−n.
Statistical indistinguishability of each of these hybrids from the previous
one follows by Item 1 of Proposition 5. Therefore, the algorithm rejects on
non-cycles with high probability, and proof is complete.
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Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

13. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In EUROCRYPT,
pages 93–118, 2001.

14. David Cash, Matthew Green, and Susan Hohenberger. New definitions and separa-
tions for circular security. In PKC 2012, pages 540–557, 2012.

15. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, pages 40–49, 2013.

16. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. http://crypto.stanford.edu/craig.

17. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

18. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

19. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984. Preliminary version in STOC 1982.

20. Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular security
for arbitrary length key cycles. In TCC, pages 378–400, 2015.

21. Venkata Koppula and Brent Waters. Circular security separations for arbitrary
length cycles from LWE. In CRYPTO, 2016. To appear.

22. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. Journal of the ACM, 60(6):43:1–43:35, November
2013. Preliminary version in Eurocrypt 2010.

23. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE
cryptography. In EUROCRYPT, pages 35–54, 2013.

24. Tal Malkin, Isamu Teranishi, and Moti Yung. Efficient circuit-size independent
public key encryption with KDM security. In EUROCRYPT, pages 507–526, 2011.

25. Antonio Marcedone and Claudio Orlandi. Obfuscation (→) (IND-CPA security
!→ circular security). In SCN, pages 77–90, 2014.

26. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT, pages 700–718, 2012.

27. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC, pages 333–342, 2009.

28. Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM, 56(6):1–40, 2009. Preliminary version in STOC 2005.

29. Roman Vershynin. Compressed Sensing, Theory and Applications, chapter 5, pages
210–268. Cambridge University Press, 2012. Available at http://www-personal.

umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf.


