
Cryptanalysis of GGH15 Multilinear Maps

Jean-Sébastien Coron1, Moon Sung Lee1,
Tancrède Lepoint2, and Mehdi Tibouchi3

1 University of Luxembourg
2 CryptoExperts

3 NTT Secure Platform Laboratories

Abstract. We describe a cryptanalysis of the GGH15 multilinear maps.
Our attack breaks the multipartite key-agreement protocol in polynomial
time by generating an equivalent user private key; it also applies to
GGH15 with safeguards. We also describe attacks against variants of the
GGH13 multilinear maps proposed by Halevi (ePrint 2015/866) aiming
at supporting graph-induced constraints, as in GGH15.

1 Introduction

Multilinear maps. For the past couple of years, cryptographic multilinear maps
have found numerous applications in the design of cryptographic protocols, the
most salient example of which is probably the construction of indistinguishability
obfuscation (iO) [GGH+13b]. The first multilinear maps candidate (GGH13)
was described by Garg, Gentry and Halevi [GGH13a] from ideal lattices. It was
then followed by another candidate (aka, CLT13) due to Coron, Lepoint and
Tibouchi [CLT13] using the same techniques but over the integers, and later by
a third candidate (GGH15) by Gentry, Gorbunov and Halevi [GGH15], related
to the homomorphic encryption scheme from [GSW13].

Unfortunately, these candidates do not rely on well-established hardness
assumptions, and recent months have witnessed a number of attacks (includ-
ing [CHL+15], [CGH+15], [HJ16], [BGH+15], [PS15], [CFL+16]) showing that
they fail to meet a number of desirable security requirements, and that they
cannot be used to securely instantiate such and such protocols. Some attempts
to protect against these attacks have also known a similar fate [CLT15,BGH+15].
The security of the constructions based on these multilinear maps is currently
unclear to the community [Hal15]. While two recent works [CGH+15,MSZ16]
have shown polynomial-time attacks against some obfuscation candidates, many
iO candidates remain unaffected by the attacks proposed so far. The same cannot
be said for the more immediate application of multilinear maps that is one-round
multipartite key agreement.

One-round multipartite key-agreement protocol. Since its discovery in
1976, the Diffie–Hellman protocol [DH76] is one of the most widely used crypto-
graphic protocol to create a common secret between two parties. A generalization

of this one-round protocol to three parties was proposed in 2000 by Joux [Jou00]
using cryptographic bilinear maps; it was later extended to k ≥ 4 parties assuming
the existence of a cryptographic (k−1)-linear map by Boneh and Silverberg [BS02].
In a nutshell, the protocol works as follows: assuming some public parameters are
shared by all the parties, each party broadcasts some data and keeps some data
secret, and then by combining their secret data with the other parties’ published
values using the multilinear map, they can derive a shared common secret key.

The first candidates for a k-partite Diffie–Hellman key-agreement protocol for
arbitrary k were described in [GGH13a,CLT13] using respectively the GGH13
and CLT13 multilinear maps candidates. Unfortunately, the protocols were later
shown to be insecure in [HJ16,CHL+15]: using the public parameters and the
broadcast data, an eavesdropper can recover the shared common secret key in
polynomial time.

The GGH15 key-agreement protocol. Since the third proposed multilinear
maps scheme, GGH15, does not fit the same graded encoding framework as
the earlier candidates, one needs new constructions to use it to instantiate
cryptographic protocols. And the first such application was again a Diffie–Hellman
key-agreement protocol [GGH15, Section 5.1]. To avoid similar attacks as the
one that targeted GGH13 and CLT13, based on encodings of zero, the protocol
was designed in such a way that the adversary is never given encodings of the
same element that could be subtracted without doing the full key-agreement
computation. Namely, each party i has a directed path of matricesAi,1, . . . ,Ai,k+1

all sharing the same end-point Ai,k+1 = A0, and has a secret value si. She can
then publish encodings of si on the chains of the other parties in a “round robin”
fashion, i.e. si is encoded on the j-th edge of the chain of the party i′ = j − i+ 1,
with index arithmetic modulo k. The graph for 3 parties is illustrated in Figure 1.

A0

A1,3A1,2A1,1

A2,3A2,2A2,1

A3,3A3,2A3,1

s1 s2

s3

s3 s1 s2

s2 s3

s1

Fig. 1. Graph for a 3-partite key-agreement protocol with GGH15 multilinear maps.

On the i-th chain, Party i will then be able to multiply these encodings (the
one he kept secret and the ones published by the other parties) to get an encoding
of
∏

j sj relative to the path Ai,1 A0. Now, since the encodings of si cannot

2

be mixed before the end-point A0, it seems difficult to obtain an encoding of 0
on an edge in the middle of the graph to mount “zeroizing attacks” [GGH15].

Halevi’s candidate key-agreement protocols. As no attack was known on
GGH15 multilinear maps and in an attempt to reinstate a key-agreement protocol
for GGH13, Halevi recently proposed, on the Cryptology ePrint Archive, two
variants of GGH13 supporting a similar key-agreement protocol [Hal15].1 The
first variant uses the “asymmetric” GGH13 scheme to handle the graph struc-
ture [Hal15, Section 7]. Namely, in basic GGH13 each encoding is multiplicatively
masked by a power zi of a secret mask z; in asymmetric GGH13, the encodings
can be masked by powers of multiple zj ’s. Therefore, in this new key-agreement
protocol candidate, the public encodings are now associated with independent
masks zi,j ’s such that their product yields the same value Z, i.e.

∏
j zi,j = Z for

all i (so that the final encoding shall extract to the same shared key). The graph
for 3 parties is illustrated in Figure 2.

Z

z1,1
·z1,2

z1,1

z3,1
·z3,2

z3,1

z2,1
·z2,2

z2,11

s1

s2

s
3

s
1

s2

s3

s1 s2 s3

Fig. 2. Multipartite key agreement from asymmetric GGH13, with 3 parties, from [Hal15,
Section 7].

Once again, the fact that the encodings of the same value si are multiplied with
different masks gives hope that no encoding of 0 multiplied by a value other than
Z can be obtained, and therefore that zeroizing attacks are impossible [GGH13a,
CGH+15].

A second variant of GGH13, which we refer to as Graph-GGH13, mimics the
structure of GGH15 encodings more closely and is described in [Hal15, Section 6].
An encoding c ∈ α+gR relative to a path u v is now a matrix C̃ = P−1u ·C ·P v,
where C ∈ Zn×n

q is the multiply-by-c matrix, and the Pw’s are secret random
matrices. In the key-agreement protocol, each party i has a directed path of
matrices P i,1, . . . ,P i,k+1 all sharing the same end-point P i,k+1 = P 0 and the
same start-point P i,1 = P 1, and has a secret value si. She can then publish

1 As mentioned in the last remark of the paper, although the key-agreement protocol
can be described also based on CLT13, the attacks from [CGH+15] can be used to
break it.

3

encodings of si on the chains of the other parties in a “round robin” fashion. The
graph for 3 parties is illustrated in Figure 3.

P 0

P 1,3P 1,2

P 2,3P 2,2P 1

P 3,3P 3,2

s1

s2

s
3

s3 s1 s2

s
2

s3

s1

Fig. 3. Multipartite key agreement from GGH13 with graph constraints, with 3 parties,
from [Hal15, Section 6].

And here again, the fact that the encodings corresponding to the same si are
multiplied on the left and on the right by completely random matrices P i,j makes
it difficult to cancel them out and obtain an encoding of 0 without evaluating
the full “chains” (that is, the operations of the key agreement itself).

Finally, in order to capture the intuition of what it means for an attacker to
break the scheme, Halevi defined, for both schemes, the “core computational task”
of an adversary as recovering any basis of the (hidden) plaintext space [Hal15,
Section 2.2].

Our contributions. Our main contribution is to describe a cryptanalysis of the
Diffie–Hellman key-agreement protocol when instantiated with GGH15 multilinear
maps. Our attack makes it possible to generate an equivalent user private key in
polynomial time, which in turn allows to recover the shared session key. Our attack
proceeds in two steps: in the first step, we express the secret exponent of one user
as a linear combination of some other secret exponents corresponding to public
encodings, using a variant of the Cheon et al. attack [CHL+15]. This does not
immediately break the protocol because the coefficients of the linear combination
can be large. In the second step, we use the previous linear combination to derive
an encoding equivalent to the user private encoding, by correcting the error
resulting from the large coefficients of the linear combination. Our attack also
applies to GGH15 with safeguards; we extend the basic attack by using another
linear relation to estimate the error incurred from the large coefficients, thus
enabling to recover the shared session key.

In the full version of this paper [CLLT15], we also describe attacks that break
both variants of GGH13 proposed by Halevi in [Hal15]. Our attacks apply some
variant of the Cheon et al. attack [CHL+15] to recover a basis of the secret

4

plaintext space R/gR in polynomial time. This was considered as the “core
computational task of an attacker” in [Hal15].

Source code. A proof-of-concept implementation of our cryptanalysis of GGH15,
using the Sage [Dev16] mathematics software system, is available at:

http://pastebin.com/7kZHnTXY

2 The GGH15 Multilinear Map Scheme

We briefly recall the GGH15 multilinear map scheme; we refer to [GGH15] for
a full description. In the following we only consider the commutative variant
from [GGH15, Section 3.2], as only that commutative variant can be used in the
multipartite key-agreement protocol from [GGH15, Section 5.1].

2.1 GGH15 Multilinear Maps

The construction works over polynomial rings R = Z[x]/(f(x)) and Rq = R/qR
for some degree n irreducible integer polynomial f(x) ∈ Z[x] and an integer q.
The construction is parametrized by a directed acyclic graph G = (V,E). To each
node u ∈ V a random row vector Au ∈ Rm

q is assigned, where m is a parameter.
An encoding of a small plaintext element s ∈ R relative to path u v is a matrix
with small coefficients D ∈ Rm×m such that:

Au ·D = s ·Av +E (mod q)

where E is a small error vector of dimension m with components in R; we refer
to [GGH15] for how such encoding D can be generated, based on a trapdoor
sampling procedure from [MP12]. Only small plaintext elements s ∈ R are
encoded. As in [Hal15] we use the row vector notation for Au, rather than the
column vector notation used in [GGH15].2 It is easy to see that two encodings
D1 and D2 relative to the same path u v can be added; namely from:

Au ·D1 =s1 ·Av +E1 (mod q)

Au ·D2 =s2 ·Av +E2 (mod q)

we obtain:

Au · (D1 +D2) = (s1 + s2) ·Av +E1 +E2 (mod q) .

Moreover two encodings D1 and D2 relative to path u v and v w can
be multiplied to get an encoding relative to path u w. Namely given:

Au ·D1 = s1 ·Av +E1 (mod q)

Av ·D2 = s2 ·Aw +E2 (mod q)

2 With the column vector notation, the corresponding equation in [GGH15] is D ·Au =
s ·Av + E (mod q).

5

we obtain by multiplying the matrix encodings D1 and D2:

Au ·D1 ·D2 = (s1 ·Av +E1) ·D2 (mod q)

= s1 · s2 ·Aw + s1 ·E2 +E1 ·D2 (mod q)

= s1 · s2 ·Aw +E′ (mod q)

for some new error vector E′. Since s1, E1, E2 and D2 have small coefficients,
E′ still has small coefficients (compared to q), and therefore the product D1 ·D2

is an encoding of s1 · s2 for the path u w.

Finally, given an encoding D relative to path u w and the vector Au,
extraction works by computing the high-order bits of Au ·D. Namely we have:

Au ·D = s ·Aw +E (mod q)

for some small E, and therefore the high-order bits of Au ·D only depend on
the secret exponent s.

Remark 1. As emphasized in [GGH15], only the plaintext space of the si’s is
commutative, not the space of the encoding matrices Di. The ability to multiply
the plaintext elements si in arbitrary order will be used in the multipartite
key-agreement protocol below.

2.2 The GGH15 Multipartite Key-Agreement Protocol

We briefly recall the multipartite key-agreement protocol from [GGH15, Section
5.1]. We consider the protocol with k users. As illustrated in Figure 4 for k = 3
users, each user i for 1 ≤ i ≤ k has a directed path of vectors Ai,1, . . . ,Ai,k+1,
all sharing the same end-point A0 = Ai,k+1. The i-th user will use the resulting
chain to extract the session key. Each user i has a secret exponent si. Each
secret exponent si will be encoded in each of the k chains; the encoding of si on
the j-th chain for j 6= i will be published, while the encoding of si on the i-th
chain will be kept private by user i. Therefore on the i-th chain only user i will
be able to compute the session key. The exponents si are encoded in a “round
robin” fashion; namely the i-th secret si is encoded on the chain of user j at
edge ` = i + j − 1, with index arithmetic modulo k. Only the vectors Ai,1 for
1 ≤ i ≤ k are made public to enable extraction of the session-key; the others are
kept private. We recall the formal description of the protocol in the full version
of this paper [CLLT15].

We illustrate the protocol for k = 3 users. For the chain corresponding to
User 1, we have the following encodings:

A1,1 ·D1,1 = s1 ·A1,2 + F 1,1 (mod q)

A1,2 ·D1,2 = s2 ·A1,3 + F 1,2 (mod q)

A1,3 ·D1,3 = s3 ·A0 + F 1,3 (mod q)

6

A0

A1,3A1,2A1,1

A2,3A2,2A2,1

A3,3A3,2A3,1

s1, (D1,1) s2,D1,2

s3 ,D
1,3

s3,D2,1 s1,D2,2 s2, (D2,3)

s2,D3,1 s3, (D3,2)

s1,
D3,3

Fig. 4. Graph of a key agreement between 3 parties for GGH15. The vertices contain
random vectors Aij , and encodings are represented on the edges. Each party is repre-
sented by a different color, keeps the encoding in parenthesis secret and publishes the
two other encodings.

where D1,2 and D1,3 are public while D1,1 is kept private by User 1. Therefore
User 1 can compute modulo q:

A1,1 ·D1,1 ·D1,2 ·D1,3 = (s1 ·A1,2 + F 1,1) ·D1,2 ·D1,3 (mod q)

= (s1 · s2 ·A1,3 + s1 · F 1,2 +

F 1,1 ·D1,2) ·D1,3 (mod q) .

Letting F̂ 1,2 := s1 · F 1,2 + F 1,1 ·D1,2, we obtain:

A1,1 ·D1,1 ·D1,2 ·D1,3 =
(
s1 · s2 ·A1,3 + F̂ 1,2

)
·D1,3 (mod q)

= s1 · s2 · s3 ·A0 + s1 · s2 · F 1,3 + F̂ 1,2 ·D1,3 (mod q) .

Since s1, s2 and s3 are small and F 1,3, F̂ 1,2 and D1,3 have small components,
User 1 can extract the most significant bits corresponding to s1 · s2 · s3 · A0.
Similarly User 2 will compute the session key using the following chain, where
D2,1 and D2,2 are public while D2,3 is private to User 2:

A2,1 ·D2,1 = s3 ·A2,2 + F 2,1 (mod q)

A2,2 ·D2,2 = s1 ·A2,3 + F 2,2 (mod q)

A2,3 ·D2,3 = s2 ·A0 + F 2,3 (mod q) .

Namely User 2 can compute:

A2,1 ·D2,1 ·D2,2 ·D2,3 = (s3 · s1 ·A2,3 + s3 · F 2,2 +

F 2,1 ·D2,2) ·D2,3 (mod q)

= s3 · s1 · s2 ·A0 + F (mod q)

for some small vector F , and extract the same most significant bits corresponding
to s1 · s2 · s3 ·A0; the same holds for User 3.

7

The previous encodings are generated by random linear combination of public
encodings, corresponding to secret exponents ti,` for 1 ≤ ` ≤ N , for large enough
N . More precisely, for each 1 ≤ i ≤ k one generates random small plaintext
elements ti,` for 1 ≤ ` ≤ N , which are then encoded on all chains j at edge
i′ = i+ j − 1 (with index modulo k), by Cj,i′,`. This means that for k = 3 users,
we have the following encodings corresponding to User 1:

A1,1 ·C1,1,` = t1,` ·A1,2 +E1,1,` (mod q)

A2,2 ·C2,2,` = t1,` ·A2,3 +E2,2,` (mod q)

A3,3 ·C3,3,` = t1,` ·A0 +E3,3,` (mod q)

and the tuple (D1,1,D2,2,D3,3) is generated by linear combination of the tuple
(C1,1,`,C2,2,`,C3,3,`), so that the matrices D1,1, D2,2 and D3,3 encode the same
secret exponent s1; the same holds for users 2 and 3. We refer to the full version
of this paper [CLLT15] for the formal description of the protocol.

3 Cryptanalysis of GGH15 Without Safeguards

In the following we describe a cryptanalysis of the multipartite key-agreement
protocol based on GGH15 multilinear maps recalled in the previous section.
Heuristically our attack recovers the session-key from public element in polyno-
mial-time. Our attack proceeds in two steps.

1. In the first step, we are able to express one secret exponent s1 as a linear
combination of the other secret exponents t1,`, using a variant of the Cheon et
al. attack [CHL+15]. However this does not immediately break the protocol,
because the coefficients are not small.

2. In the second step, we compute an equivalent of the private encoding of
User 1 from the previous linear combination, by correcting the error due to
the large coefficients. This breaks the key-exchange protocol.

3.1 Description With 3 Users

For simplicity we first consider the protocol with only 3 users; the extension to
k ≥ 3 users is relatively straightforward and described in the full version of this
paper [CLLT15]. Therefore we consider the following 3 rows corresponding to
the 3 users:

A1,1 ·D1,1 = s1 ·A1,2 + F 1,1 (mod q) A1,1 ·C1,1,` = t1,` ·A1,2 +E1,1,` (mod q)
A1,2 ·D1,2 = s2 ·A1,3 + F 1,2 (mod q) A1,2 ·C1,2,` = t2,` ·A1,3 +E1,2,` (mod q)
A1,3 ·D1,3 = s3 ·A0 + F 1,3 (mod q) A1,3 ·C1,3,` = t3,` ·A0 +E1,3,` (mod q)

A2,1 ·D2,1 = s3 ·A2,2 + F 2,1 (mod q) A2,1 ·C2,1,` = t3,` ·A2,2 +E2,1,` (mod q)
A2,2 ·D2,2 = s1 ·A2,3 + F 2,2 (mod q) A2,2 ·C2,2,` = t1,` ·A2,3 +E2,2,` (mod q)
A2,3 ·D2,3 = s2 ·A0 + F 2,3 (mod q) A2,3 ·C2,3,` = t2,` ·A0 +E2,3,` (mod q)

A3,1 ·D3,1 = s2 ·A3,2 + F 3,1 (mod q) A3,1 ·C3,1,` = t2,` ·A3,2 +E3,1,` (mod q)
A3,2 ·D3,2 = s3 ·A3,3 + F 3,2 (mod q) A3,2 ·C3,2,` = t3,` ·A3,3 +E3,2,` (mod q)
A3,3 ·D3,3 = s1 ·A0 + F 3,3 (mod q) A3,3 ·C3,3,` = t1,` ·A0 +E3,3,` (mod q)

8

where all encodings Ci,j,` and Di,j are public, except D1,1 which is private on
Row 1,D2,3 is private on Row 2, andD3,2 is private on Row 3. The corresponding
graph is illustrated in Figure 4. Note that on each row we have used the same
index ` for t1,`, t2,` and t3,`, but on a given row one can obviously compute
product of encodings for different indices.

First step: linear relations. In the first step of the attack, we show that we
can express s1 as a linear combinations of the t1,`’s. For this we consider the
rows 2 and 3, for which the encodings D2,2 and D3,3 corresponding to s1 are
public. In the remaining of the attack, we always consider a fixed index ` = 1
for the encodings corresponding to t3,`, and for simplicity we write t3 := t3,1,
C1,3 := C1,3,1, C2,1 := C2,1,1 and C3,2 := C3,2,1.

Since we always work with the same t3, on Row 2 we define the product
encodings Ĉ2,2,` := C2,1 ·C2,2,`, and on Row 3 we define the product encodings

Ĉ3,2,` := C3,1,` ·C3,2; recall that we use a fixed index for t3. Therefore we can
write:

A2,1 · Ĉ2,2,` = t1,` · t3 ·A2,3 + Ê2,2,` (mod q) (1)

A2,3 ·C2,3,` = t2,` ·A0 +E2,3,` (mod q)

A3,1 · Ĉ3,2,` = t2,` · t3 ·A3,3 + Ê3,2,` (mod q)

A3,3 ·C3,3,` = t1,` ·A0 +E3,3,` (mod q)

for some small error vectors Ê2,2,` and Ê3,2,`.
For simplicity of notations, we first consider a fixed index i for the encodings

corresponding to t1,i, and we write t1 := t1,i, Ĉ2,2 := Ĉ2,2,i and C3,3 := C3,3,i.
Similarly we consider a fixed index j for the encodings corresponding to t2,j and

we write t2 := t2,j , C2,3 := C2,3,j and Ĉ3,2 := Ĉ3,2,j . We use similar notations
for the corresponding error vectors.

All previous equations hold modulo q only. To get a result over R instead
of only modulo q, we compute the difference between two rows, for the same
product of secret exponents. More precisely, we compute:

ω = A2,1 · Ĉ2,2 ·C2,3 −A3,1 · Ĉ3,2 ·C3,3 (2)

= t1 · t3 · t2 ·A0 + t1 · t3 ·E2,3 + Ê2,2 ·C2,3

− t2 · t3 · t1 ·A0 − t2 · t3 ·E3,3 − Ê3,2 ·C3,3

= t1 · t3 ·E2,3 + Ê2,2 ·C2,3 − t2 · t3 ·E3,3 − Ê3,2 ·C3,3 . (3)

Namely the latter equation holds over R (and not only modulo q) because all
the terms in (3) have small coefficients; namely the only term t1 · t2 · t3 ·A0 with
large coefficients modulo q is canceled when doing the subtraction.

We have that ω is a vector of dimension m. Now an important step is to
restrict ourselves to the first component of ω. Namely in order to apply the same
technique as in the Cheon et al. attack, we would like to express ω as the product
of two vectors, where the left vector corresponds to User 1 and the right vector

9

corresponds to User 2. However due to the “round-robin” fashion of exponent
encodings, for this we would need to swap the product Ê3,2 · C3,3 appearing

in (3), since Ê3,2 corresponds to User 2 while C3,3 corresponds to User 1; this
cannot be done if we consider the full vector ω. By restricting ourselves to the
first component of ω, the product Ê3,2 ·C3,3 becomes a simple scalar product

that can be swapped; namely the scalar product of Ê3,2 by the first column
vector C ′3,3 of the matrix C3,3. We obtain the scalar:

ω = t1 · t3 · E2,3 + Ê2,2 ·C ′2,3 − t2 · t3 · E3,3 −C ′3,3 · Ê3,2

where C ′2,3 and C ′3,3 are the first column vectors of C2,3 and C3,3 respectively,
both of dimension m; similarly E2,3 and E3,3 are the first components of E2,3

and E3,3 respectively.
We can now write ω as the scalar product of 2 vectors, the left one corre-

sponding only to User 1, and the right one corresponding only to User 2:

ω =
[
t1 Ê2,2 E3,3 C ′3,3

]
·

t3 · E2,3

C ′2,3
−t2 · t3
−Ê3,2

 .
Note that the two vectors in the product have dimension 2m+ 2.

As in the Cheon et al. attack [CHL+15], we can now extend ω to a matrix
by considering many left row vectors and many right column vectors. However
instead of a square matrix as in the Cheon et al. attack, we consider a rectangular
matrix with 2m+ 3 rows and 2m+ 2 columns. In Equation (2), this is done by
considering 2m+ 3 public encodings Ĉ2,2,i and C3,3,i corresponding to User 1,

and similarly 2m+ 2 encodings C2,3,j and Ĉ3,2,j corresponding to User 2, for
1 ≤ i ≤ 2m+ 3 and 1 ≤ j ≤ 2m+ 2. More precisely we compute as previously
over R the following matrix elements, restricting ourselves to the first component:

(W)ij = A2,1 · Ĉ2,2,i ·C ′2,3,j −A3,1 · Ĉ3,2,j ·C ′3,3,i (4)

and as previously we can write:

(W)ij =
[
t1,i Ê2,2,i E3,3,i C

′
3,3,i

]
·

t3 · E2,3,j

C ′2,3,j
−t2,j · t3
−Ê3,2,j

 .
We obtain a (2m+ 3)× (2m+ 2) matrix W with:

W =

. . .

t1,i Ê2,2,i E3,3,i C
′
3,3,i

. . .

︸ ︷︷ ︸

A

·

t3 · E2,3,j

...
C ′2,3,j ...−t2,j · t3
−Ê3,2,j

︸ ︷︷ ︸

B

10

where the matrix A has 2m+ 3 rows vectors, each of dimension 2m+ 2, and the
matrix B has 2m+ 2 column vectors, each of dimension 2m+ 2; hence B is a
square matrix.

By doing linear algebra, we can find a vector u over R of dimension 2m+ 3
such that u ·W = 0, which gives:

(u ·A) ·B = 0 .

Heuristically with good probability the matrix B is invertible, which implies:

u ·A = 0 .

Since the first column of the matrix A is the column vector given by the t1,i’s,
such vector u gives a linear relation among the secret exponents t1,i.

Moreover, since the encodings D2,2 and D3,3 corresponding to s1 are public,
we can express s1 as a linear combination of the t1,i’s, over R. Namely we can

define as previously the product encoding D̂2,2 := C2,1 ·D2,2, with:

A2,1 · D̂2,2 = s1 · t3 ·A2,3 + F̂ 2,2 (mod q)

for some small error vector F̂ 2,2, and we can now compute the same (W)ij as

in (4) but with D̂2,2 and D′3,3 instead of Ĉ2,2,i and C ′3,3,i, where D′3,3 is the
first column of D3,3. More precisely, we compute for all 1 ≤ j ≤ 2m+ 2:

ωj = A2,1 · D̂2,2 ·C ′2,3,j −A3,1 · Ĉ3,2,j ·D′3,3

which gives as previously:

ωj =
[
s1 F̂ 2,2 F3,3 D′3,3

]
·

t3 · E2,3,j

C ′2,3,j
−t2,j · t3
−Ê3,2,j

 .
This implies that we can replace any row vector [t1,i Ê2,2,i E3,3,i C

′
3,3,i] in the

matrix A by the row vector:

[s1 F̂ 2,2 F3,3 D′3,3] (5)

where D′3,3 is the first column of D3,3, and F3,3 is the first component of F 3,3.
Using the previous technique, we can therefore obtain a linear relation between
s1 and the t1,i’s over R. More precisely, with overwhelming probability, such a
relation can be put in the form:

µ · s1 =

2m+2∑
i=1

λi · t1,i (6)

with µ ∈ Z and λ1, . . . , λ2m+2 ∈ R. Indeed, we obtain such a relation by com-
puting the kernel of the matrix analogous to W above in echelon form over

11

the fraction field of R, which gives the kernel of the corresponding matrix A
(assuming that B is invertible). Unless a minor of that matrix vanishes, which
happens with only negligible probability, this gives a relation where the coefficient
of s1 is 1 and the other coefficients are in the fraction field R ⊗Z Q of R. By
clearing denominators, we get an expression of the form (6).

Then, by considering exactly one additional t1,i (say t1,2m+3) and carrying out
the same computations with indices i = 2, . . . , 2m+3 instead of i = 1, . . . , 2m+2,
we get a second relation:

ν · s1 =

2m+3∑
i=2

λ′i · t1,i .

If the integers µ and ν are relatively prime, which happens with significant
probability3, we can apply Bézout’s identity to obtain a linear relation in R
where the coefficient of s1 is 1:

s1 =

2m+3∑
i=1

αi · t1,i . (7)

Note that we have the same linear relations for the other components of the
vector (5) corresponding to s1, namely:

F̂ 2,2 =

2m+3∑
i=1

αi · Ê2,2,i, F3,3 =

2m+3∑
i=1

αi · E3,3,i, D′3,3 =

2m+3∑
i=1

αi ·C ′3,3,i . (8)

Second step: equivalent private-key. In this second step, we show how to
publicly compute an encoding equivalent to D1,1, which is private to User 1; this
will break the key-agreement protocol. In the first step, we had considered rows
2 and 3 to derive the linear relations (7) and (8); we now consider Row 1. On
Row 1, the encodings D1,2 and D1,3 are public, so we can define as previously

the product encoding D̂1,3 = D1,2 ·D1,3, which gives:

A1,2 · D̂1,3 = s2 · s3 ·A0 + F̂ 1,3 (mod q)

for some small error vector F̂ 1,3. Recall that the encoding D1,1 is private to
User 1, with:

A1,1 ·D1,1 = s1 ·A1,2 + F 1,1 (mod q) . (9)

Therefore only User 1 can privately compute:

A1,1 ·D1,1 · D̂1,3 = s1 · s2 · s3 ·A0 + s1 · F̂ 1,3 + F 1,1 · D̂1,3 (mod q) (10)

3 Heuristically, it is the probability that two random elements of R have coprime norms,
since the rational integer denominator of an element of the fraction field has the
same prime factors as its norm. For R = Z[x]/(x2n + 1), that probability is close to
3/4: see the full version of this paper [CLLT15].

12

and extract the high order bits of s1 · s2 · s3 ·A0 mod q to generate the session
key.

We cannot compute the previous equation since D1,1 is private. However
since we know a linear relation (7) between s1 and the t1,i’s, and the encodings
C1,1,i corresponding to t1,i are public, with:

A1,1 ·C1,1,i = t1,i ·A1,2 +E1,1,i (mod q)

it is then natural to compute:

D̃1,1 =

2m+3∑
i=1

αi ·C1,1,i ,

which gives:

A1,1 · D̃1,1 = s1 ·A1,2 +

2m+3∑
i=1

αi ·E1,1,i (mod q) . (11)

The difference with (9) is that the error term
∑2m+3

i=1 αi ·E1,1,i is not necessarily
small since the coefficients αi can be large. Therefore if we compute:

A1,1 ·D̃1,1 ·D̂1,3 = s1 ·s2 ·s3 ·A0 +s1 · F̂ 1,3 +

(
2m+3∑
i=1

αi ·E1,1,i

)
·D̂1,3 (mod q)

(12)
then as opposed to (10) this does not reveal the high-order bits of s1 · s2 ·
s3 · A0 mod q. In the following, we show how to derive an approximation of∑2m+3

i=1 αi · E1,1,i over R, in order to correct the error in (11) and break the
protocol. This is the second part of our attack.

As in the first step of the attack, to get equations over R and not only modulo
q, we consider the difference between two rows, this time the difference between
rows 1 and 3 (instead of rows 2 and 3). We have the public encodings:

A1,1 ·C1,1,` = t1,` ·A1,2 +E1,1,` (mod q)

A1,2 · Ĉ1,3,` = t2,` · t3 ·A0 + Ê1,3,` (mod q)

A3,1 · Ĉ3,2,` = t2,` · t3 ·A3,3 + Ê3,2,` (mod q)

A3,3 ·C3,3,` = t1,` ·A0 +E3,3,` (mod q)

where we let Ĉ1,3,` := C1,2,` · C1,3, for some small error vector Ê1,3,`. As
previously we can compute over R, restricting ourselves to the first component,
where Ĉ ′1,3,j and C ′3,3,i are the first columns of Ĉ1,3,j and C3,3,i respectively:

ωij = A1,1 ·C1,1,i · Ĉ ′1,3,j −A3,1 · Ĉ3,2,j ·C ′3,3,i
= t1,i · Ê1,3,j +E1,1,i · Ĉ ′1,3,j − t2,j · t3 · E3,3,i − Ê3,2,j ·C ′3,3,i .

13

We can therefore compute over R, using the coefficients αi from the linear relation
(7):

Ωj =

2m+3∑
i=1

αi ·
(
A1,1 ·C1,1,i · Ĉ ′1,3,j −A3,1 · Ĉ3,2,j ·C ′3,3,i

)
(13)

=

2m+3∑
i=1

αi ·
(
t1,i · Ê1,3,j +E1,1,i · Ĉ ′1,3,j − t2,j · t3 · E3,3,i − Ê3,2,j ·C ′3,3,i

)
.

Using the linear relations (7) and (8), we obtain:

Ωj = s1 · Ê1,3,j − t2,j · t3 · F3,3 − Ê3,2,j ·D′3,3 +

(
2m+3∑
i=1

αi ·E1,1,i

)
· Ĉ ′1,3,j

which gives:

Ωj = uj +

(
2m+3∑
i=1

αi ·E1,1,i

)
· Ĉ ′1,3,j (14)

for some small uj in R. In summary we obtain a large scalar Ωj because the
coefficients αi in (13) are large, but eventually what makes Ωj large is only

the contribution from (
∑2m+3

i=1 αi ·E1,1,i) · Ĉ ′1,3,j ; namely because of the linear
relations (7) and (8) the other terms remain small.

We can now write (14) in vectorial form, where we let Ĉ ′′1,3 be the square

matrix whose columns are the column vectors Ĉ ′1,3,j for 1 ≤ j ≤ m; recall that

the Ĉ ′1,3,j are the first column vectors of the matrix encodings Ĉ1,3,j . We obtain
a row vector Ω of dimension m, where:

Ω = u+

(
2m+3∑
i=1

αi ·E1,1,i

)
· Ĉ ′′1,3 (15)

where Ĉ ′′1,3 is a public square matrix of dimension m.
Now the crucial observation is that because the vector u has small components,

we can get an approximation of the vector
∑2m+3

i=1 αi · E1,1,i by reducing the

vector Ω modulo the matrix Ĉ ′′1,3, assuming that Ĉ ′′1,3 is an invertible matrix,
which heuristically holds with good probability. This can be done by solving
over the fraction field of R the linear system Ω = y · Ĉ ′′1,3 and then rounding
to R the coefficients of y. Heuristically the vector E = bye should be a good

approximation of
∑2m+3

i=1 αi ·E1,1,i; namely letting:

E′ =

2m+3∑
i=1

αi ·E1,1,i −E (16)

we get using y = Ω · Ĉ ′′−11,3 :

E′ = (Ω − u) · Ĉ ′′−11,3 −E

= y −E − u · Ĉ ′′−11,3

14

and therefore since y −E and u are small, the difference vector E′ should be
small if the norm of the transpose of the matrix Ĉ ′′−11,3 remains small. We know

that such a bound holds with probability close to 1 if we model Ĉ ′′1,3 as a random

matrix (e.g. Rudelson [Rud08] provides a bound of the form O(m3/2)), and so
we expect E′ to be small (compared to q) for randomly generated encodings,
since in the GGH15 parameter selection one takes m = Θ(log q).

Combining (11) and (16), we get:

A1,1 · D̃1,1 −E = s1 ·A1,2 +E′ (mod q)

for a small vector E′. Note that the previous equation is very similar to the
original equation for the private encoding D1,1:

A1,1 ·D1,1 = s1 ·A1,2 + F 1,1 (mod q)

the only difference being the publicly computed correction vector E. Therefore
the pair (D̃1,1,E) gives us an equivalent of the private encoding D1,1, which
breaks the protocol. More precisely we can eventually compute from public
parameters:(

A1,1 · D̃1,1 −E
)
·D1,2 ·D1,3 = (s1 ·A1,2 +E′) · D̂1,3 (mod q)

= s1 · s2 · s3 ·A0 +

s1 · F̂ 1,3 +E′ · D̂1,3 (mod q) .

Since all the error terms are small, this enables to extract the high-order bits of
s1 · s2 · s3 ·A0 mod q, and breaks the protocol.

3.2 Extension to k ≥ 3 Users

The extension of our attack to k ≥ 3 users is relatively straightforward and
described in the full version of this paper [CLLT15].

4 Cryptanalysis of GGH15 With Safeguards

In [GGH15, Section 5.1] two safeguards for multipartite key agreement based on
GGH15 multilinear maps are described:

1. Kilian-style randomization of the encodings, where C is replaced by C̄ :=
R−1 ·C ·R′ using the randomizer matrices R, R′ belonging to two adjacent
nodes.

2. Choosing the first encoding matrix in each chain to have large entries.

In the following, we show how to extend our previous attack when those two
safeguards are used.

15

4.1 First Safeguard: Kilian-Style Randomization of the Encodings.

The following safeguard for GGH15 multilinear maps is described in [GGH15],
using Kilian-type randomization [Kil88]. For each internal node v in the graph
one can choose a random invertible m ×m matrix Rv modulo q, and for the
sinks and sources we set Rv = I. Then each encoding C relative to path u v
is replaced by a masked encoding C̄ := R−1u ·C ·Rv. Concretely, in the GGH15
key-agreement protocol, instead of publishing encodings Ci,j with:

Ai,j ·Ci,j,` = t1+(j−i mod k),` ·Ai,j+1 +Ei,j,` (mod q)

one would only publish the masked encodings modulo q:

C̄i,j,` := R−1i,j ·Ci,j,` ·Ri,j+1 (17)

with Ri,1 = Ri,k+1 = I for all i; the same masking is applied to the encodings
Di,j . Since the product of encoding on any source-to-sink path remains the same,
the same value is eventually extracted. Namely for all i we have:

k∏
j=1

C̄i,j =

k∏
j=1

Ci,j

and therefore exactly the same session-key as before is computed by all users.

4.2 Second Safeguard: First Encodings With Large Entries

The second safeguard described in [GGH15, Section 5.1] consists in choosing the
first encodings Ci,1 in each chain to have large entries modulo q, instead of small
entries. Namely the first encoding Ci,1 does not contribute in the error term
when computing the session-key, so it can have large entries.

4.3 Cryptanalysis of GGH15 With Both Safeguards

In this section we show how to extend our attack from Section 3 when both
safeguards are used. Note the first step of our attack still applies, since in the
first step we are only using product of encodings from source to sink. Namely
in Equation (4) exactly the same value (W)ij is obtained when using masked
encodings. Therefore we can still derive the same linear relation between secret
exponents as in (7) and (8).

However the second step of our attack does not apply directly, since our
second step requires the knowledge of the matrix Ĉ ′′1,3 in (15), which is obtained

from the first columns of the encodings Ĉ1,3,j = C1,2,j ·C1,3. Since these are
partial products only, such partial products would be masked by the unknown
randomization matrix R−11,2 modulo q, hence the matrix Ĉ ′′1,3 is unknown.

We can however adapt our second step as follows. For simplicity we keep the
same notations as previously, that is we describe our extended attack in term of

16

the original encodings Ci,j,`, instead of the masked encodings C̄i,j,` from (17);
in that case we are only allowed to use products of encodings from source to sink.
We first start with a slightly different equation from (15):

Ω = u+

(
2m+3∑
i=1

αi ·E1,1,i

)
· Ĝ′′1,3 (18)

where Ĝ′′1,3 is a matrix whose columns are the first column vectors of D1,2 ·C1,3,j

for 1 ≤ j ≤ 2m+ 2. Note that in (12) the error term that we must estimate to
recover the session key is:

E =

(
2m+3∑
i=1

αi ·E1,1,i

)
· D̂1,3 (19)

Using a similar approach as in the attack first step, our approach consists in
finding a vector x with coefficients in the fraction field R⊗Z Q of R such that:

D̂′1,3 = Ĝ′′1,3 · x

where D̂′1,3 is the first column vector of D̂1,3. Applying the vector x on (18) and
rounding in R, we obtain:

bΩ · xe = bu · xe+

(
2m+3∑
i=1

αi ·E1,1,i

)
· D̂′1,3

Since the components of u (over R) are small, and moreover the coefficients of
x (over R ⊗Z Q) are heuristically also small, the scalar bu · xe in R is small
compared to q, and therefore we obtain a good estimate of the first component
of the error vector E from (19), which enables to recover the first component of
the session key and breaks the scheme.4

4.4 Detailed Description

First step: linear relations in R. The first step of our attack is exactly the
same as previously. Namely as mentioned previously the first step of our previous
attack still applies, since in the first step we are only using product of encodings
from source to sink. More precisely in Equation (4) exactly the same value (W)ij
is obtained when using masked encodings, and therefore we can still derive the
same linear relations as in (7) and (8):

s1 =

2m+3∑
i=1

αi · t1,i, F̂ 2,2 =

2m+3∑
i=1

αi · Ê2,2,i,

F3,3 =

2m+3∑
i=1

αi · E3,3,i, D′3,3 =

2m+3∑
i=1

αi ·C ′3,3,i. (20)

4 Other components of the session key can be also obtained analogously.

17

Note that as opposed to Section 3 we don’t know the value of the encodings
D′3,3 and C ′3,3,i, since they are masked by the Rij matrices; we only recover the
coefficients αi in R.

Second step: another linear relation. In the second step, our goal is to find
a vector x with coefficients in the fraction field R⊗Z Q of R such that:

D′1,3 =

2m+2∑
i=1

xi ·C ′1,3,i

where D′1,3 and C ′1,3,i are the first column vectors of D1,3 and C1,3,i respectively.
We show that this can be done using the same approach as in the attack first
step.

Namely letting Ĉ1,2,` := C1,1,` ·C1,2 where we let C1,2 := C1,2,1 correspond-
ing to t2 := t2,1, we obtain:

A1,1 · Ĉ1,2,` = t1,` · t2 ·A1,3 + Ê1,2,` (mod q)

A1,3 ·C1,3,` = t3,` ·A0 +E1,3,` (mod q)

Similarly letting Ĉ2,3,` := C2,2,` ·C2,3 where C2,3 := C2,3,1, we get:

A2,1 ·C2,1,` = t3,` ·A2,2 +E2,1,` (mod q)

A2,2 · Ĉ2,3,` = t1 · t2,` ·A0 + Ê2,3,` (mod q)

We can therefore compute the following matrix elements in R, restricting ourselves
as previously to the first component of the vectors:

(W)ij = A1,1 · Ĉ1,2,i ·C ′1,3,j −A2,1 ·C2,1,j · Ĉ ′2,3,i
= t1,i · t2 · E1,3,j + Ê1,2,i ·C ′1,3,j − t3,j · Ê2,3,i −E2,1,j · Ĉ ′2,3,i

for all 1 ≤ i ≤ 2m+ 2 and 1 ≤ j ≤ 2m+ 2, where C ′1,3,j and Ĉ ′2,3,i are the first

column vectors of C1,3,j and Ĉ2,3,i respectively. This gives:

(W)ij =
[
t1,i t2 Ê1,2,i Ê2,3,i Ĉ

′
2,3,i

]
·

E1,3,j

C ′1,3,j
−t3,j
−E2,1,j

 .
Moreover, since the encodings D1,3 and D2,1 corresponding to s3 on rows 1 and
2 are public, we can additionally compute the corresponding vector:

(V)i = A1,1 · Ĉ1,2,i ·D′1,3 −A2,1 ·D2,1 · Ĉ ′2,3,i

=
[
t1,i t2 Ê1,2,i Ê2,3,i Ĉ

′
2,3,i

]
·

F1,3

D′1,3
−s3
−F 2,1

 .

18

where D′1,3 is the first column vector of D1,3. Therefore assuming that the matrix
W is invertible, we can find x in R⊗Z Q such that:

W · x = V

which gives as required:

D′1,3 =

2m+2∑
i=1

xi ·C ′1,3,i (21)

Note that the only difference with the linear relations from Step 1 is that we
don’t require the xi’s to be in R, only in the fraction field R ⊗Z Q of R; this
implies that heuristically such coefficients should remain small in absolute value.

Third step: estimating the error term. In the third step our goal is to
estimate the error term when computing the session-key, as in the second step of
the basic attack. We first start with a slightly different equation from (15):

Ω = u+

(
2m+3∑
i=1

αi ·E1,1,i

)
· Ĝ′′1,3 (22)

where Ĝ′′1,3 is a matrix whose columns are the first column vectors of D1,2 ·C1,3,j

for 1 ≤ j ≤ 2m+ 2. Therefore the only difference with (15) is that we use the
matrix Ĝ′′1,3 instead of Ĉ ′′1,3.

To obtain (22) we proceed as follows. Instead of letting Ĉ1,3,` = C1,2,` ·C1,3

as in the basic attack, we let Ĉ1,3,` = D1,2 · C1,3,`. Similarly we let Ĉ3,2,` :=
D3,1 ·C3,2,`. This is possible because on rows 1 and 3 the encodings D1,2 and
D3,1 corresponding to s2 are public. We obtain:

A1,1 ·C1,1,` = t1,` ·A1,2 +E1,1,` (mod q)

A1,2 · Ĉ1,3,` = s2 · t3,` ·A0 + Ê1,3,` (mod q)

A3,1 · Ĉ3,2,` = s2 · t3,` ·A3,3 + Ê3,2,` (mod q)

A3,3 ·C3,3,` = t1,` ·A0 +E3,3,` (mod q)

As previously we can compute over R, restricting ourselves to the first com-
ponent, where Ĉ ′1,3,j and C ′3,3,i are the first columns of Ĉ1,3,j and C3,3,i respec-
tively:

ωij = A1,1 ·C1,1,i · Ĉ ′1,3,j −A3,1 · Ĉ3,2,j ·C ′3,3,i
= t1,i · Ê1,3,j +E1,1,i · Ĉ ′1,3,j − s2 · t3,j · E3,3,i − Ê3,2,j ·C ′3,3,i .

We can therefore compute over R, using the coefficients αi from the linear
relations (20):

Ωj =

2m+3∑
i=1

αi · ωij

=

2m+3∑
i=1

αi ·
(
t1,i · Ê1,3,j +E1,1,i · Ĉ ′1,3,j − s2 · t3,j · E3,3,i − Ê3,2,j ·C ′3,3,i

)

19

Using the linear relations in (20), we obtain:

Ωj = s1 · Ê1,3,j − s2 · t3,j · F3,3 − Ê3,2,j ·D′3,3 +

(
2m+3∑
i=1

αi ·E1,1,i

)
· Ĉ ′1,3,j

where D′3,3 is the first column vector of D3,3. This gives:

Ωj = uj +

(
2m+3∑
i=1

αi ·E1,1,i

)
· Ĉ ′1,3,j

for some small uj in R. Since we have let Ĉ1,3,j = D1,2 ·C1,3,j for 1 ≤ j ≤ 2m+2,

in vectorial form we obtain (22) as required, where Ĝ′′1,3 is the matrix whose
columns are the first column vectors of D1,2 ·C1,3,j for 1 ≤ j ≤ 2m+ 2.

Recall that in (12) the error term that we must estimate to recover the session
key is:

E =

(
2m+3∑
i=1

αi ·E1,1,i

)
· D̂1,3 (23)

where D̂1,3 = D1,2 · D1,3. In the following we will only estimate the first

component, so we let D̂′1,3 = D1,2 ·D′1,3, where D̂′1,3 and D′1,3 are the first

column vectors of D̂1,3 and D1,3 respectively.
We now use the vector x computed in the second step. In matrix notation,

Equation (21) gives:

D′1,3 = C ′′1,3 · x

where C ′′1,3 is the matrix whose columns are the first column vectors of C1,3,i for

1 ≤ i ≤ 2m+ 2. Using Ĝ′′1,3 = D1,2 ·C ′′1,3, this gives:

D̂′1,3 = D1,2 ·D′1,3 = D1,2 ·C ′′1,3 · x = G′′1,3 · x

where D̂′1,3 is the first column vector of D̂1,3. Applying the vector x on (22), we
therefore get:

Ω · x = u · x+

(
2m+3∑
i=1

αi ·E1,1,i

)
· D̂′1,3

We claim that this provides a good estimate of the first component of the error
vector E from (23). Recall that the components of x are in R⊗ZQ, so by rounding
to the nearest integer we can get the following value in R:

E′ = bΩ · xe = bu · xe+

(
2m+3∑
i=1

αi ·E1,1,i

)
· D̂′1,3 (24)

Since the components of u (over R) are small, and moreover the coefficients of x
(over R⊗Z Q) are also small (heuristically), the scalar bu · xe in R is small.

20

Finally, letting as previously:

D̃1,1 =

2m+3∑
i=1

αi ·C1,1,i ,

we obtain:

A1,1 · D̃1,1 = s1 ·A1,2 +

2m+3∑
i=1

αi ·E1,1,i (mod q) .

which gives as previously:

A1,1 · D̃1,1 · D̂′1,3 = s1 · s2 · s3 ·A0 + s1 · F̂1,3 +

(
2m+3∑
i=1

αi ·E1,1,i

)
· D̂′1,3 (mod q)

Therefore combining with (24) we can compute from public parameters:

A1,1 · D̃1,1 · D̂′1,3 − E′ = s1 · s2 · s3 ·A0 + s1 · F̂ ′1,3 − bu · xe (mod q)

Since the terms s1 · F̂ ′1,3 and bu ·xe are small, this reveals the first component of
the secret vector s1 · s2 · s3 ·A0, which breaks the scheme.

Acknowledgments. This work has been supported in part by the European
Union’s H2020 Programme under grant agreement number ICT-644209.

References

[BGH+15] Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrède Lepoint, Amit Sahai,
and Mehdi Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH.
Cryptology ePrint Archive, Report 2015/845, 2015. Available at https:

//eprint.iacr.org/2015/845.
[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to

cryptography. Contemporary Mathematics, 324:71–90, 2002.
[CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and

Hansol Ryu. Cryptanalysis of the new CLT multilinear map over the integers.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 509–536. Springer, 2016.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, He-
manta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi
Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks and their
limitations. In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO
2015, Part I, volume 9215 of LNCS, pages 247–266. Springer, 2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien
Stehlé. Cryptanalysis of the multilinear map over the integers. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 3–12. Springer, 2015.

21

[CLLT15] Jean-Sebastien Coron, Moon Sung Lee, Tancrede Lepoint, and Mehdi
Tibouchi. Cryptanalysis of GGH15 multilinear maps. Cryptology ePrint
Archive, Report 2015/1037, 2015. http://eprint.iacr.org/. Full version
of this paper.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical
multilinear maps over the integers. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 476–493.
Springer, 2013.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multi-
linear maps over the integers. In Rosario Gennaro and Matthew Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 267–286.
Springer, 2015.

[Dev16] The Sage Developers. Sage Mathematics Software (Version 7.0), 2016.
http://www.sagemath.org.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In Omer Reingold, editor, FOCS 2013,
pages 40–49. IEEE Computer Society, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear
maps from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 498–527. Springer, 2015.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Ran Canetti and Juan A. Garay, editors, CRYPTO
2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, 2013.

[Hal15] Shai Halevi. Graded encoding, variations on a scheme. Cryptology ePrint
Archive, Report 2015/866, 2015. Available at https://eprint.iacr.org/

2015/866.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume
9665 of LNCS, pages 537–565. Springer, 2016.

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Wieb
Bosma, editor, ANTS-IV, volume 1838 of LNCS, pages 385–394. Springer,
2000.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon,
editor, STOC 1988, pages 20–31. ACM, 1988.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
2012.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for
multilinear maps: Cryptanalysis of indistinguishability obfuscation over
GGH13. Cryptology ePrint Archive, Report 2016/147, 2016. Available at
https://eprint.iacr.org/2016/147.

22

[PS15] Alice Pellet-Mary and Damien Stehlé. Cryptanalysis of Gu’s ideal multilin-
ear map. Cryptology ePrint Archive, Report 2015/759, 2015. Available at
https://eprint.iacr.org/2015/759.

[Rud08] Mark Rudelson. Invertibility of random matrices: Norm of the inverse.
Annals of Mathematics, 168(2):575–600, 2008.

23

