
Revisiting the Cryptographic Hardness of
Finding a Nash Equilibrium

Sanjam Garg1, Omkant Pandey2, and Akshayaram Srinivasan1

1 University of California, Berkeley
{sanjamg,akshayaram}@berkeley.edu

2 Stony Brook University
omkant@gmail.com

Abstract. The exact hardness of computing a Nash equilibrium is a
fundamental open question in algorithmic game theory. This problem is
complete for the complexity class PPAD. It is well known that problems
in PPAD cannot be NP-complete unless NP = coNP. Therefore, a natural
direction is to reduce the hardness of PPAD to the hardness of problems
used in cryptography.
Bitansky, Paneth, and Rosen [FOCS 2015] prove the hardness of PPAD
assuming the existence of quasi-polynomially hard indistinguishability
obfuscation and sub-exponentially hard one-way functions. This leaves
open the possibility of basing PPAD hardness on simpler, polynomially
hard, computational assumptions.
We make further progress in this direction and reduce PPAD hardness di-
rectly to polynomially hard assumptions. Our first result proves hardness
of PPAD assuming the existence of polynomially hard indistinguishability
obfuscation (iO) and one-way permutations. While this improves upon
Bitansky et al.’s work, it does not give us a reduction to simpler, poly-
nomially hard computational assumption because constructions of iO
inherently seems to require assumptions with sub-exponential hardness.
In contrast, public key functional encryption is a much simpler primi-
tive and does not suffer from this drawback. Our second result shows
that PPAD hardness can be based on polynomially hard compact public
key functional encryption and one-way permutations. Our results further
demonstrate the power of polynomially hard compact public key func-
tional encryption which is believed to be weaker than indistinguishability
obfuscation. Our techniques are general and we expect them to have var-
ious applications.

1 Introduction

The problem of computing a Nash equilibrium is fundamental to algorith-
mic game theory. The hardness of this problem has attracted significant
attention. Since a mixed Nash equilibrium is guaranteed to exist for ev-
ery game [Nas51], the problem belongs to the complexity class TFNP
[MP91]. In a series of works, originating from Papadimitriou [Pap94], the

problem was established to be complete for the complexity class PPAD
[DGP09,CDT09]. PPAD is a subclass of TFNP containing problems that
reduce (in polynomial time) to a special problem called as end-of-line
(or EOL in short). Informally, EOL instance includes a “succinct” descrip-
tion of an exponential sized directed graph where each node has in-degree
and out-degree at most 1 and a source node having in-degree 0 and out-
degree 1. The goal is to find another source or a sink (having in-degree 1
and out-degree 0). It is easy to observe that such a node is guaranteed to
exist by a simple parity argument.

The exact hardness of this problem, however, is still not fully un-
derstood. Since the class PPAD is total, it is unlikely to contain NP-
complete problems unless polynomial hierarchy collapses to the first level
[MP91,Pap94]. This is similar to the status of hardness assumptions in
cryptography which are not believed to be NP-complete, but neverthe-
less, hard. Due to this similarity, cryptographic problems were suggested
as natural candidates in [Pap94] for studying the hardness of PPAD. In-
deed, the hardness of some total super-classes of PPAD, such as PPA and
PPP, can already be reduced to “standard” cryptographic problems like
factoring and collision-resistant hashing [Jer12]. However, such a reduc-
tion is not known for PPAD.

A natural extension of this idea is to consider cryptographic problems
with a richer and more powerful structure. One of the richest crypto-
graphic structure is program obfuscation as formulated by Barak, Gol-
dreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+12]. It is a
compiler to transform any computer program into an “unintelligible one”
while preserving its functionality. Ideally, the obfuscation of a program
should be a “virtual black-box” (VBB), i.e., access to the obfuscated pro-
gram should be no better than access to a black-box implementing the
program [BGI+12]. Abbot, Kane and Valiant [AKV04] show that PPAD-
hardness can be based on VBB obfuscation of a natural pseudo ran-
dom function. Unfortunately, VBB obfuscation is impossible in general
[BGI+12], and there are strong limitations to obfuscating pseudorandom
functions [GK05,BCC+14], including the one in [AKV04].

A natural relaxation of VBB obfuscation is indistinguishability obfus-
cation (iO) [BGI+12]. Informally, iO guarantees that the obfuscation of
a circuit looks indistinguishable from the obfuscation of any other, func-
tionally equivalent, circuit of same size. Starting from the work of Garg,
Gentry, Halevi, Raykova, Sahai and Waters [GGH+13b], several candidate
constructions [BR14,BGK+14,PST14,GLSW15,Zim15,AB15,GMS16] for

iO have been suggested based on various assumptions on multilinear
maps [GGH13a] and public key functional encryption [AJ15,BV15a,AJS15].

Motivated by the progress on obfuscation, Bitansky, Paneth and Rosen
[BPR15] revisit the hardness of PPAD and provide an elegant reduction
to the hardness of iO. This is the first reduction of its kind which reduces
PPAD-hardness to the security of a concrete and plausible cryptographic
primitive. This, together with the progress on iO, gives hope to the possi-
bility of basing PPAD-hardness on simpler, more standard cryptographic
primitives.

1.1 Our contribution

In this work, we revisit the problem of reducing PPAD-hardness to rich
and expressive cryptographic systems. We build upon the work of [BPR15]
with two specific goals:

– Rely on polynomial-hardness of iO: One drawback of the BPR
reduction is that it requires iO schemes with at least quasi-polynomial
security. It is not clear if such a large loss in the reduction is necessary.
Our first goal is to obtain an improved, polynomial time reduction.

– Rely on simpler, polynomially hard, assumptions: While tremen-
dous progress has been made on justifying the security of current iO
schemes, ultimately the security of the resulting constructions still ei-
ther relies on an exponential number of assumptions (basically, one
per pair of circuits), or a polynomial set of assumptions with exponen-
tial loss in the reduction. Our second goal is thus to completely get rid
of iO or any other component with non-polynomial time flavor, and
reduce PPAD-hardness to simpler, polynomially hard, assumptions.

With respect to our first goal, we prove the following theorem:

Theorem 1. Assuming the existence of polynomially hard one-way per-
mutations and indistinguishability obfuscation for P/poly, the end-of-line
problem is hard for polynomial-time algorithms.

This polynomially reduces the hardness of PPAD to iO since PPAD is
the class of problems that are reducible to the end-of-line problem.

With respect to our second goal, we show that PPAD-hardness can be
reduced to the security of compact public-key functional encryption (FE)
in polynomial time. We note that polynomially hard public key functional
encryption is a polynomially falsifiable assumption [Nao03].

A public key functional encryption (FE) scheme for general circuits
[BSW11,O’N10] is similar to an ordinary (public-key) encryption scheme

with the crucial difference that there are many decryption keys, each of
which has an associated function f ; when an encryption of a message m
is decrypted with a key for function f , it decrypts to the value f(m). The
intuitive security guarantee is that given the secret key corresponding
to f and a ciphertext encrypting m, an adversary would not be able to
get any information about m except f(m). Our second result proves the
following theorem:

Theorem 2. Assuming the existence of polynomially-hard one-way per-
mutations and compact public key functional encryption for general cir-
cuits, the end-of-line problem is hard for polynomial-time algorithms.

Compact functional encryption, as demonstrated by the recent results
of Bitansky and Vaikuntanathan [BV15b] and Ananth, Jain and Sahai
[AJS15], can be generically constructed from the so called “collusion-
resistant function encryption with collusion-succinct ciphertexts,” which
in turn can be constructed from simpler polynomial hardness assumptions
over multi-linear maps, as shown by Garg, Gentry, Halevi, and Zhandry
[GGHZ16]. This is in sharp contrast to iO where all constructions still
inherently seem to require exponential loss in the security reduction.3

Combined with the results of [GGHZ16,BV15b,AJS15], theorem 2 bases
PPAD-hardness on simpler polynomial hardness assumptions. It is in-
teresting to note that compact public key functional encryption implies
indistinguishability obfuscators [AJ15,BV15a] but with sub-exponential
security loss.

1.2 Our Techniques

We now present a technical overview of our approach. Building upon the
work of [BPR15], it suffices to show a sampling procedure that samples
hard instances of sink-of-verifiable-line problem. We will first show
how to generate such instances using polynomially-hard iO and then dis-
cuss how to do the same using polynomially-hard FE .

PPAD Hardness from Indistinguishability Obfuscation Let us
start by recalling the definition of PPAD. The class PPAD is defined to
be the set of all total search problems that are polynomial time reducible
to the end-of-line (EOL) problem. Intuitively, an EOL instance includes
a succinct description of an exponential sized directed graph with each
node having in-degree and out-degree at most 1. Given a source node

3 An informal explanation of this observation appears in [GLSW15].

(which has in-degree 0 and out-degree 1), the goal is to find another
source or a sink (which has in-degree 1 and out-degree 0). By a simple
parity argument one can observe that such a node is guaranteed to exist.

The hardness of PPAD was proven in [BPR15] by considering a dif-
ferent problem, proposed in [AKV04], called sink-of-verifiable-line
problem (SVL) in [BPR15]. It was shown that SVL reduces to the EOL
problem [AKV04,BPR15], and therefore hardness of SVL implies hardness
of EOL and PPAD.

An instance of the SVL problem is specified by a tuple (xs, Succ,Ver, T)
where xs is called the source node, Succ and Ver are called successor and
verification circuits respectively, and T is a target index. Succ succinctly
defines an (exponential sized) directed line graph starting from the source
node xs. That is, a node x is connected to a node y in the graph through
an outgoing edge if and only if y = Succ(x). Ver is used to verify whether
a given node is the ith node (starting from the source node xs) on the
path defined by Succ. To be more precise, Ver(x, i) = 1 if and only if
x = Succi−1(xs). The goal, given the instance, is to find the T -th node
(Target) on the path. We want to construct an efficiently samplable dis-
tribution over instances of SVL for which no polynomial time algorithm
can find the T -th node with non-negligible probability.

BPR approach. Bitansky et al., building upon [AKV04], consider a line
graph where the i-th node is defined by the output of pseudorandom
function (PRF) on i, i.e., the i-th node is (i, σ) such that σ = PRFS(i) for
a randomly chosen key S. Intuitively, σ is a signature on i. The successor
circuit of the hard SVL instance, Succ, is then defined by obfuscating
a “verify and sign” circuit, VSS , using general purpose iO; VSS simply
outputs the next point (i + 1,PRFS(i + 1)) if the input is a valid point
(i, σ) and rejects otherwise. The verification circuit Ver simply tests that
a given input will not be rejected by the successor circuit. The source
node is given by (1,PRFS(1)) and the target index T is set to a super-
polynomial value in the security parameter.

Intuitively, the hardness of the above instance relies on the fact that
it is impossible to obtain a signature on a node before obtaining the sig-
nature on the previous node in the path. Since T is super-polynomial
in the security parameter, it follows that no polynomial time algorithm
can obtain a signature on T . While the underlying idea of this reduction
is intuitive, reducing its hardness to iO is more involved. This is shown
by first changing the obfuscated circuit Succ so that it does not behave
correctly on a randomly chosen point u, and simply outputs ⊥. One can
think of the Succ circuit being “punctured” at point u. This would also

imply that the “punctured” circuit does not output a signature on u+ 1
unlike the original circuit. The next step uses this fact to “puncture” the
circuit at the point u+ 1. This step is realized through the “punctured”
programming approach of Sahai and Waters [SW14]. At a high level, this
process is then repeated for the next point u+ 2, and then for u+ 3, and
so on, until the circuit does not have the ability to sign on any point in
the interval [u, T]. Once the circuit is “punctured” at T , it can be ob-
served that no algorithm can find the T th node with non-zero probability.
Performing these changes however, requires more care since the number
of points in [u, T] is not polynomial. In hindsight, the primary reason
for sub-exponential loss in this approach is because it is not possible to
“puncture” a larger interval in a “single shot.” In particular, to be able
to use the security of iO, this approach must increase the “punctured”
interval by one point at a time.

Our approach: many chains of varying length. Our main idea is to intro-
duce a richer structure to the nodes in the graph, that avoids the need to
increase the “punctured” interval by one point at a time. Instead, we want
to make longer “jumps,” sometimes of exponential length, in the proof
strategy. Specifically, we aim to make only polynomially many jumps in
total to travel from u to T .

In particular, instead of considering one signature per node, we con-
sider κ signatures for every node where 2κ is the total number of nodes
on the line. That is, a node in our graph is of the form (i, σ1, . . . σκ) where
σj is a signature on the first j bits of i computed using a key Sj (different
for each index) for every j ∈ [κ]. The successor circuit is obfuscation of a
program which simply checks each signature on appropriate prefixes of i,
and if so, it signs all κ prefixes of i+ 1 using appropriate keys. The verifi-
cation circuit is as before, the source node is simply the signatures on the
first node, i.e, (0κ,PRFS1(0), . . . ,PRFSκ(0κ)), and T = 2κ − 1. Observe
that the BPR reduction is equivalent to having only σκ.

We now explain how this structure on the nodes helps us in achieving a
polynomial loss in the reduction. As before, we start by “puncturing” the
successor circuit on a random point u. To illustrate the main idea, let us
assume that the binary representation of u has k trailing 1s, i.e., u is of the
form: u1 · · ·uκ−k−1‖01k where 1 ≤ k ≤ κ. Then, u+1 = u1 · · ·uκ−k−1‖10k,
i.e., it has k trailing 0s. Observe that:

1. The first κ−k prefix bits of u+ 1 are identical to the first κ−k prefix
bits of all points in the interval [u+ 1, u+ 2k].

2. Signature σκ−k (corresponding to the prefix of length κ − k) for the
node u+ 1 is not needed (for checking and signing) anywhere else on
the line graph except for nodes in the interval [u+ 1, u+ 2k].

As before, suppose that we have punctured the successor circuit at a
random node u. Then, the fact that the punctured circuit does not output
any signature on u+ 1 means that it does not output the signature σκ−k
on the first κ− k bits of u+ 1; consequently, and most importantly, this
means that it does not output this signature on the first κ−k bits of any
point in the interval [u+ 1, u+ 2k]. This allows us to increase the interval
from [u + 1, u + 2k] by considering only a constant number of hybrids.
We then repeat this process by considering u+ 2k as our next point and
iterate until we reach T .

Metaphorically, the signatures can be thought of as “virtual chains”
emanating from each node and connecting to other nodes. The first chain
coming out of a node i is connected to i’s immediate neighbor which is
i+ 1. The second chain is connected to a node two hops away from i and
the j-th chain is connected to a node 2j hops away from i and so on. The
number of chains coming out from a node i is one more than the number
of trailing ones in the binary representation of i. Equivalently, the number
of chains coming out of i is the number of bits that change from i to i+1.
Puncturing the circuit is viewed as cutting chains of appropriate lengths
between points. While BPR strategy always cuts a chain of length 1, our
proof strategy cuts the longest possible chain it can and then iterates the
process again until it reaches the target T . See Figure 1 for an illustration.

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

u

Q

Fig. 1. Illustration of cutting a chain for u = 0111

While implementing the above idea we face the difficulty that for a ran-
dom u the number of chains coming out of u could be very small (as
small as 1). We get over this difficulty by initially cutting “smaller” length
chains until we have the ability to cut “larger” length chains. Intuitively,
this is made possible since the number of trailing 1s in u + 2k is strictly

larger than the number of trailing 1s (given by k) in u. We show that we
need to cut no more than a linear (in the security parameter κ) number
of chains to reach T and hence our reduction suffers only a polynomial
(in fact linear) loss in the security parameter.

PPAD Hardness from Functional Encryption We now give a tech-
nical overview of our hardness result for PPAD from compact functional
encryption with polynomial loss. As noted earlier, although iO can be
reduced to compact FE [AJ15,BV15a], we cannot directly rely on this
reduction since it suffers sub-exponential security loss. Instead, we try to
directly reduce PPAD-hardness to compact FE .

To directly reduce PPAD-hardness to FE , we follow the same approach
as before, and generate hard on average instances of SVL using functional
encryption. To demonstrate the technical challenges while proving the re-
sult from FE we will be considering a single PRF key, as in BPR [BPR15],
instead of our idea of using κ keys to implement “multiple chains of vary-
ing length.” The scenario with a single PRF key already captures the
main technical challenges while keeping the exposition simple. Later, we
will explain how to combine the two ideas together to obtain a direct
polynomial reduction to FE .

The line graph implicitly defined by this successor circuit will be simi-
lar to the BPR reduction as before. The successor circuit encodes a pseudo
random function PRFS : {0, 1}κ → {0, 1}κ in its description. The source
node is given by (0κ,PRFS(0κ)). A node (x, σ) is present on the line
graph if and only if σ = PRFS(x). The successor circuit takes as input
(x, σ), checks the validity of the node and if the node is valid outputs
(x+ 1,PRFS(x+ 1)). The target index is given by 2κ − 1.

Our goal is to produce an “obfuscated” (or encrypted) version of this
successor circuit using FE . To do this, we will rely on the “binary tree
construction” idea of [AJ15,BV15a] for constructing iO from FE . Note
that though this reduction suffers from sub-exponential loss and we tailor
the construction of our successor circuit so that it suffers only from a
polynomial loss.

Binary tree based evaluation [AJ15,BV15a]. Let us first recall the main
ideas of [AJ15,BV15a] for constructing iO from FE . We present an “over-
simplified” version of their construction which is actually sufficient for our
purposes but is not sufficient for achieving iO security.

An “obfuscation” for a circuit C : {0, 1}κ → {0, 1}∗ is a sequence of
κ + 1 functional keys FSK1, · · · ,FSKκ+1 generated using independently
sampled master secret keys MSK1, · · · ,MSKκ+1 along with a ciphertext

cφ encrypting the empty string under public-key PK1 (corresponding to
MSK1). The first κ function keys implement the “bit-extension” func-
tionality. That is, the ith function key corresponds to a function that takes
in an (i − 1)-bit string y ∈ {0, 1}i−1 and outputs functional encryptions
of y‖0 and y‖1 under PKi+1.

4 The function key FSKκ+1 corresponds to
the circuit C.

To evaluate the obfuscated circuit on an input x ∈ {0, 1}κ, one does
the following: decrypt cφ under FSK1 to obtain encryptions of 0 and 1.
Depending on the bit x1, choose either the left or right encryption and
decrypt it using FSK2 and so on. Thus, in κ steps one can obtain an
encryption of x under PKκ+1 which can be used to compute C(x) using
FSKκ+1. One can think of the construction as having a binary tree struc-
ture where evaluating the circuit on an input x corresponds to traversing
along the path labeled x.

Sub-exponential loss. An intuitive reason for why this construction re-
quires sub-exponential loss to achieve iO is that the behavior of the ob-
fuscated circuit should be changed on all κ-bit inputs which are 2κ in
number. The key insight in our reduction is that we can achieve our goals
by changing the behavior of the obfuscated circuit at only polynomial
many inputs and thus incurring only a polynomial security loss.

Our Construction. We will motivate our construction through a series of
attempts and fixes.

First attempt. Our first attempt was to mimic the construction of [AJ15,BV15a].
We generate 2κ + 1 functional keys FSK1, · · · ,FSK2κ+1 where the first
2κ of them correspond to the bit-extension function used for encrypting
(x, σ) under PK2κ+1 and FSK2κ+1 corresponds to the circuit Next that
checks the validity of the node (x, σ) and outputs the next node in the
graph if (x, σ) is valid. The main question with this approach is: How
does the circuit Next check the validity of the input node and output the
next node in the path? The circuit Next must somehow have access to the
PRF key S but this access should not be “visible” to the outside world.

We definitely cannot hardwire the PRF key S in the circuit as the
current constructions of public key functional encryption schemes do not
provide any meaningful notions of “function-privacy.” One possible ap-
proach is to “propagate” the key S along the entire tree. That is, encrypt
the key S in the ciphertext cφ and the bit extension functions output en-
cryptions that also includes S. Though this approach sounds promising,
we are unable to use the “punctured” programming techniques of Sahai

4 The randomness needed for generating the encryptions is obtained using a PRF.

and Waters that were crucial in the reduction of PPAD hardness to iO.
In particular, to puncture the key S at a point x we need to puncture
the key along every path thus incurring a sub-exponential loss that we
wanted to avoid. To fix this issue, we develop “fine-grained” puncturing
techniques.

Second attempt: “prefix puncturing.” To solve the problem explained ear-
lier, we develop techniques to “surgically” puncture the PRF key S along
a path x without affecting the distribution on rest of the paths. We now
explain the details.

Every string y ∈ {0, 1}≤κ has a natural association with a node in the
binary tree where the root is associated with the empty string φ. At a
high level, we want the set of keys Ky appearing in node y to have the
following properties:

– The keys derived from Ky can be used for checking the validity of
every node in the subtree rooted at y. This translates to be able to
compute the PRF value at x for every (x, σ) that appears in the subtree
rooted at y. We denote this property as prefix puncturability.

– The keys derived from Ky can be used for computing the next node
for every node in the subtree rooted at y. This would translate to the
ability to compute the PRF value at x + 1 for every (x, σ) appearing
at the subtree rooted at y.

A pseudorandom function that has a natural binary tree structure and
has the prefix-puncturable property is the construction due to Goldreich,
Goldwasser and Micali [GGM86]. We exploit this property in the GGM
construction to propagate the “prefix-punctured” keys along the binary
tree.

At every node y ∈ {0, 1}≤κ, we propagate two keys Sy, Sy+1 where
Sy denotes the key S prefix-punctured at string y. Intuitively, Sy is the
key used for checking the input node is valid and Sy+1 is used for gener-
ating the next node on the path.5 The bit extension function generates
Sy‖0, Sy‖0+1 and Sy‖1, Sy‖1+1 from Sy, Sy+1 and propagates these values
along with y‖0 and y‖1 respectively. The circuit Next receives Sx, Sx+1

where x ∈ {0, 1}κ and checks the validity of the input signature using Sx
and generates the next node in the path if the input is valid using Sx+1.

Note that the puncturing of the keys does not happen after the level κ
as by this time we have parsed the x which completely determines the the

5 Note that instead of Sy+1 it is enough to propagate Sy+1‖0κ−|y| . It is in fact crucial
for our reduction that we propagate Sy+1‖0κ−|y| instead of Sy+1. But we will use
Sy+1 for ease of notation and exposition.

key Sx, Sx+1. Therefore, we need to propagate Sx, Sx+1 along the entire
subtree rooted at x where we parse σ. This creates the following problem:
consider a scenario where the successor circuit already outputs ⊥ on the
point x and we are trying to extend the interval to include x+ 1. Recall
that the crucial idea behind the ability to increase the interval is that
Sx+1 does not occur anywhere else in the computation of the circuit. We
observe that Sx+1 gets propagated along the entire subtree (of exponential
size) rooted at x where the input σ is parsed. Hence, to “remove all traces”
of Sx+1 along the subtree rooted at x, we need to incur a sub-exponential
loss.

Final construction: “encrypt the next signature.” We solve the above
problem by “implicitly” checking whether the given node is valid. This
implicit checking is facilitated by encrypting the signature on the next
node by using the signature on the current node. Intuitively, an evaluator
can obtain the signature on the next node if and only if he holds a valid
signature on the current node.

Instead of propagating the keys Sx, Sx+1 in clear in the subtree pars-
ing σ, we “cut-short” the tree at level where x is parsed. Once x is
parsed (and hence we have the values Sx and Sx+1), we apply a length
doubling injective pseudo random generator PRG on the signature Sx
to obtain two halves PRG0(Sx) and PRG1(Sx). We encrypt Sx+1 under
PRG1(Sx) and output the encryption along with PRG0(Sx). The Next
circuit takes σ,PRG0(Sx) and the encrypted version of Sx+1 and checks
whether PRG0(σ) = PRG0(Sx) 6 and if yes it decrypts using PRG1(σ) to
obtain Sx+1. Notice that now we don’t run into the same problem while
trying to increase the interval to include Sx+1. This is because we can first
change Sx to a random string by relying on pseudo randomness at punc-
tured point property of GGM PRF and then relying on semantic security
of secret key encryption we can change the encryption under PRG1(Sx)
to some junk value. Implementing these two steps is non-trivial and we
rely on “hidden trapdoor” technique of Ananth et al. [ABSV15] while
generating the function keys to achieve this.

Note that we still haven’t explained how the successor circuit is “punc-
tured” at a random point in the first place. To this end, we “artificially”
change the honest execution of the circuit to have a hardwired random
value v and the circuit checks if PRG(x) = v and if so outputs ⊥. The
honest execution does not output ⊥ for any input x with overwhelming

6 We need this explicit check for the verification circuit to decide if a particular node
is an ith node or not. Also, we need a stronger property on pseudo random generator
called as left half injectivity for this check to be correct always.

probability since PRG has sparse images. We then change this random v
to PRG(u) for a random u relying on the security of the PRG. A conse-
quence of this fix is that even our honest evaluation of the successor circuit
looks somewhat “artificial.” This seems necessary to circumvent the sub-
exponential loss incurred while constructing obfuscation from functional
encryption.

Putting it all together. To show hardness of PPAD from FE by incurring
polynomial loss in the security reduction we need to combine the above
ideas with that of “multiple-chains of varying length”. As explained in the
chain-cutting technique we generate κ GGM keys S1, · · · , Sκ. We propa-
gate the “prefix-punctured” keys corresponding to every index i ∈ [κ]
along every node in the binary tree. A careful reader might have noticed
that though it is necessary to check the validity of the input signatures
for every prefix, it is actually sufficient to generate signatures on the next
node on the path only for those bit positions that change when incre-
menting by 1. This is because for the rest of the bit positions that share
the same prefix with the input node and we can just output those input
signatures along with those newly computed ones, provided the input is
valid. This observation is in fact crucial to prove the security of our con-
struction. We need to ensure that the Next circuit must have the ability
to check the validity of every signature but it has access only to those pre-
fix punctured keys corresponding to the bit positions that change when
incrementing by 1.

We satisfy these two “conflicting” properties by decoupling the process
of checking the input signatures and the process of generating the next
node on the path. In order to check the input signatures we propagate
PRG0(Si,x) for every i ∈ [κ] and to generate the signatures on the next
node on the path we propagate an encrypted version of Sj,x+1 under
PRG1(Sj,x) only for those bits j that change when incrementing x.

1.3 Subsequent Work

Garg, Pandey, Srinivasan and Zhandry in [GPSZ16] extended our tech-
niques to base Trapdoor Permutations on polynomial hardness of com-
pact Functional Encryption. In the same work, they also showed how to
base Non-Interactive Key Exchange (NIKE) for unbounded parties from
polynomially hard compact Functional Encryption. Recently, Garg and
Srinivasan [GS16] extended our techniques to construct adaptively secure
Functional Encryption against unbounded collusions from single-key, se-
lectively secure Functional encryption with weakly compact ciphertexts.

Rosen, Segev and Shahaf [RSS16] investigated the possibility of bas-
ing average-case PPAD hardness on standard cryptographic assumptions.
They showed that average-case PPAD hardness does not imply one-way
functions in a black-box manner and average-case SVL hardness cannot
be based on injective trapdoor functions in a black-box manner. An im-
plication of this work is that it might be possible to base PPAD hardness
on one-way functions but such a result has to use techniques that signif-
icantly deviate from Bitansky et al. [BPR15] and our work.

Hubác̆ek and Yogev [HY16] extended our result to base hardness of
a complexity class CLS on compact Functional Encryption. CLS is a sub-
class of PPAD and captures Continuous Local Search problems. They
showed a reduction between the SVL problem and a problem called as
end-of-metered-line which is contained in CLS. This allowed them to
base hardness of CLS on polynomially hard compact Functional Encryp-
tion.

2 PPAD

A large part of this section is taken verbatim from [BPR15]. A search
problem is given by a tuple (I,R). I defines the set of instances and R is
an NP relation. Given x ∈ I, the goal is to find a witness w (if it exists)
such that R(x,w) = 1. We say that a search problem (I1, R1) polynomial
time reduces to another search problem (I2, R2) if there exists polynomial
time algorithms P,Q such that for every x1 ∈ I1, P (x1) ∈ I2 and given
w2 such that (P (x1), w2) ∈ R2, R1(x1, Q(w2)) = 1.

A search problem is said to be total if for any x ∈ {0, 1}∗, there exists
a polynomial time procedure to test whether x ∈ I and for all x ∈ I,
the set of witnesses w such that R(x,w) = 1 is non-empty. The class
of total search problems is denoted by TFNP. PPAD [Pap94] is a subset
of TFNP and is defined by its complete problem called as end-of-line
(abbreviated as EOL).

Definition 1 ([Pap94]). EOL = {IEOL, REOL} where IEOL = {(xs,Succ,
Pred) : Succ(xs) 6= xs = Pred(xs)} and REOL((xs,Succ,Pred), w) = 1 iff(
Pred(Succ(w)) 6= w

)
∨
(
Succ(Pred(w)) 6= w ∧ w 6= xs).

Definition 2 ([Pap94]). The complexity class PPAD is the set of all
search problems (I,R) such that (I,R) ∈ TFNP and (I,R) polynomial
time reduces to EOL.

A related problem to EOL is the sink-of-verifiable-line (abbrevi-
ated as SVL) which is defined as follows:

Definition 3 ([AKV04,BPR15]). SVL = {ISVL, RSVL} where ISVL =
{(xs, Succ,Ver, T)} and RSVL((xs,Succ,Ver, T), w) = 1 iff

(
Ver(w, T) =

1
)
.

SVL instance defines a single directed path with the source being xs.
Succ is the successor circuit and there is a directed edge between u and
v if and only if Succ(u) = v. Ver is the verification circuit and is used to
test whether a given node is the ith node from xs. That is, Ver(x, i) = 1
iff x = Succi−1(xs). The goal is to find the T th node in the path. It is
easy to observe that for every valid SVL instance the set of witness w is
not empty. But SVL may not be total since there is no known efficient
procedure to test whether the instance is valid or not. But it was shown
in [AKV04,BPR15] that SVL polynomial time reduces to EOL.

Lemma 1 ([AKV04,BPR15]). SVL polynomial time reduces to EOL.

3 Preliminaries

κ denotes the security parameter. A function µ(·) : N → R+ is said to
be negligible if for all polynomials poly(·), µ(κ) < 1

poly(κ) for large enough

κ. For a probabilistic algorithm A, we denote by A(x; r) the output of A
on input x with the content of the random tape being r. We will omit r
when it is implicit from the context. We denote y ← A(x) as the process of
sampling y from the output distribution of A(x) with a uniform random

tape. For a finite set S, we denote x
$← S as the process of sampling x

uniformly from the set S. We model non-uniform adversaries A = {Aκ}
as circuits such that for all κ, Aκ is of size p(κ) where p(·) is a polynomial.
We will drop the subscript κ from the adversary’s description when it is
clear from the context. We will also assume that all algorithms are given
the unary representation of security parameter 1κ as input and will not
mention this explicitly when it is clear from the context. We will use PPT
to denote Probabilistic Polynomial Time algorithm. We denote [κ] to be
the set {1, · · · , k}. We will use negl(·) to denote an unspecified negligible
function and poly(·) to denote an unspecified polynomial.

A binary string x ∈ {0, 1}κ is represented as x1 · · ·xκ. x1 is the most
significant (or the highest order bit) and xκ is the least significant (or
the lowest order bit). The i-bit prefix x1 · · ·xi of the binary string x is
denoted by x[i]. We use x‖y to denote concatenation of binary strings x
and y. We say that a binary string y is a prefix of x if and only if there
exists a string z ∈ {0, 1}∗ such that x = y‖z.

Injective Pseudo Random Generator. We give the definition of an injective
Pseudo Random Generator PRG.

Definition 4. An injective pseudo random generator PRG is a determin-
istic polynomial time algorithm with the following properties:

– Expansion: There exists a polynomial `(·) (called as the expansion
factor) such that for all κ and x ∈ {0, 1}κ, |PRG(x)| = `(κ).

– Pseudo randomness: For all κ and for all poly sized adversaries A,

|Pr[A(PRG(Uκ)) = 1]− Pr[A(U`(κ)) = 1]| ≤ negl(κ)

where Ui denotes the uniform distribution on {0, 1}i.
– Injectivity: For every κ and for all x, x′ ∈ {0, 1}κ such that x 6= x′,

PRG(x) 6= PRG(x′).

We in fact need an additional property from an injective PRG. Let us
consider PRG where the expansion factor (or the output length) is given
by 2 · `(·). Let us denote the first `(·) bits of the output of the PRG by the
function PRG0 and the next `(·) bits of the output of the PRG by PRG1.

Definition 5. A pseudo random generator PRG is said to be left half
injective if for every κ and for all x, x′ ∈ {0, 1}κ such that x 6= x′.
PRG0(x) 6= PRG0(x

′).

Note that left half injective PRG is also an injective PRG. We note
that the standard construction of pseudo random generator for arbitrary
polynomial stretch from one-way permutations is left half injective. For
completeness, we state the construction:

Lemma 2. Assuming the existence of one-way permutations, there exists
a pseudo random generator that is left half injective.

Proof. Let f : {0, 1}κ → {0, 1}κ be a one-way permutation with hardcore
predicate B : {0, 1}κ → {0, 1} [GL89]. Let G be an algorithm defined as
follows: On input x ∈ {0, 1}κ,G(x) = fn(x)‖B(x)‖B(f(x)) · · ·B(fn−1(x))
where n = 2`(κ) − κ. Clearly, |G(x)| = 2`(κ). The pseudo randomness
property of G(·) follows from the security of hardcore bit. The left half
injectivity property follows from the observation that fn is a permutation.

Puncturable Pseudo Random Function. We recall the notion of punc-
turable pseudo random function from [SW14]. The construction of pseudo
random function given in [GGM86] satisfies the following definition [BW13],
[KPTZ13],[BGI14].

Definition 6. A puncturable pseudo random function PRF is a tuple of
PPT algorithms (KeyGenPRF ,PRF,Punc) with the following properties:

– Efficiently Computable: For all κ and for all S ← KeyGenPRF (1κ),
PRFS : {0, 1}poly(κ) → {0, 1}κ is polynomial time computable.

– Functionality is preserved under puncturing: For all κ, for all
y ∈ {0, 1}κ and ∀x 6= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF (1κ) and S{y} ← Punc(S, y).
– Pseudo randomness at punctured points: For all κ, for all y ∈
{0, 1}κ, and for all poly sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1]− Pr[A(Uκ, S{y}) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ), S{y} ← Punc(S, y) and Uκ denotes the
uniform distribution over {0, 1}κ.

Indistinguishability Obfuscator. We now define Indistinguishability ob-
fuscator from [BGI+12,GGH+13b].

Definition 7. A PPT algorithm iO is an indistinguishability obfuscator
for a family of circuits {Cκ}κ that satisfies the following properties:

– Correctness: For all κ and for all C ∈ Cκ and for all x,

Pr[iO(C)(x) = C(x)] = 1

where the probability is over the random choices of iO.
– Security: For all C0, C1 ∈ Cκ such that for all x, C0(x) = C1(x) and

for all poly sized adversaries A,

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Functional Encryption. We recall the notion of functional encryption with
selective indistinguishability based security [BSW11,O’N10].

A functional encryption FE is a tuple of PPT algorithms (FE.Setup,
FE.Enc,FE.KeyGen,FE.Dec) with the message space {0, 1}∗ having the
following syntax:

– FE.Setup(1κ) : Takes as input the unary encoding of the security pa-
rameter κ and outputs a public key PK and a master secret key
MSK.

– FE.EncPK(m): Takes as input a message m ∈ {0, 1}∗ and outputs an
encryption C of m under the public key PK.

– FE.KeyGen(MSK, f) : Takes as input the master secret key MSK and
a function f (given as a circuit) as input and outputs the function key
FSKf .

– FE.Dec(FSKf , C): Takes as input the function key FSKf and the ci-
phertext C and outputs a string y.

Definition 8 (Correctness). The functional encryption scheme FE is
correct if for all κ and for all messages m ∈ {0, 1}∗,

Pr

y = f(m)

∣∣∣∣∣∣∣∣
(PK,MSK)← FE.Setup(1κ)
C ← FE.EncPK(m)
FSKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(FSKf , C)

 = 1

Definition 9 (Selective Security). For all κ and for all poly sized
adversaries A,∣∣Pr[Expt1κ,0,A = 1]− Pr[Expt1κ,1,A = 1]

∣∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two mes-
sages m0, m1 such that |m0| = |m1| to the challenger.

– The challenger samples (PK,MSK) ← FE.Setup(1κ) and generates
the challenge ciphertext C ← FE.EncPK(mb). It then sends (PK,C)
to A.

– Function Queries: A submits function queries f to the challenger.
The challenger responds with FSKf ← FE.KeyGen(MSK, f).

– If A makes a query f to functional key generation oracle such that
f(m0) 6= f(m1), output of the experiment is ⊥. Otherwise, the output
is b′ which is the output of A.

Remark 1. We say that the functional encryption scheme FE is single-
key, selectively secure if the adversary A in Expt1κ,b,A is allowed to
query the functional key generation oracle FE.KeyGen(MSK, ·) on a single
function f .

Definition 10 (Compactness, [AJS15,BV15a,AJ15]). The functional
encryption scheme FE is said to be compact if for all κ ∈ N and for
all m ∈ {0, 1}∗ the running time of the encryption algorithm FE.Enc is
poly(κ, |m|).

Prefix Puncturable Pseudo Random Functions. We now define the notion
of prefix puncturable pseudo random function PPRF which is satisfied by
the construction of the pseudo random function in [GGM86].

Definition 11. A prefix puncturable pseudo random function PPRF is
a tuple of PPT algorithms (KeyGenPPRF ,PrefixPunc) satisfying the fol-
lowing properties:

– Functionality is preserved under repeated puncturing: For all

κ, for all y ∈ ∪poly(κ)k=0 {0, 1}k and for all x ∈ {0, 1}poly(κ) such that there
exists a z ∈ {0, 1}∗ s.t. x = y‖z,

Pr[PrefixPunc(PrefixPunc(S, y), z) = PrefixPunc(S, x)] = 1

where S ← KeyGenPPRF (1κ).
– Pseudorandomness at punctured prefix: For all κ, for all x ∈
{0, 1}poly(κ), and for all poly sized adversaries A

|Pr[A(PrefixPunc(S, x),Keys) = 1]− Pr[A(Uκ,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ) and Keys = {PrefixPunc(S, x[i−1]‖(1 −
xi))}i∈[poly(κ)].

4 Hardness from Indistinguishability Obfuscation

In this section, we prove that SVL is hard on average assuming poly-
nomial hardness of indistinguishability obfuscation, injective PRGs and
puncturable pseudo random functions. Coupled with the fact that SVL re-
duces to EOL (Lemma 1) we have the following theorem.

Theorem 3. Assume the existence of one-way permutations and indis-
tinguishability obfuscation against polynomial time adversaries then we
have that EOL problem is hard for polynomial time algorithms.

4.1 Hard on Average SVL Instances

In this section, we describe an efficient sampler that provides hard on
average instances (xs,Succ,Ver, 1κ) of SVL. Here xs is the source node
and Succ is the successor circuit. We define a directed edge between u
and v if and only if Succ(u) = v. Ver is the verification circuit and is used
to test whether a given node is the kth node from xs. That is, Ver(x, k) = 1
iff x = Succk−1(xs). For the generated instances, we argue that it is hard
to find the 1κ node in the path.

The formal description of hard on average SVL instance sampler is
provided in Figure 3. Internally this sampler generates an obfuscation of
the Next circuit provided in Figure 2. Next we describe the SVL instances
which we consider informally.

The instance we generate defines a line graph. The nodes in the graph
are of the form: (x, σ1, · · · , σκ) where x ∈ {0, 1}κ. The nodes satisfy the
following relation: for all i ∈ [κ], PRFSi(x[i]) = σi and in that case we
say that (x, σ1, · · · , σκ) is valid. The node (x, σ1, · · · , σκ) is connected to
(x + 1, σ′1, · · · , σ′κ) through an outgoing edge and is connected to (x −
1, σ′′1 , · · · , σ′′κ) through an incoming edge where σ′1, · · · , σ′κ and σ′′1 , · · · , σ′′κ
satisfy the above described PRF relationship. The source node is given by
(0κ,PRFS1(0), · · · ,PRFSκ(0κ)).

At a very high level successor circuit of our SVL instances provides
a method for moving forward from one node to the next. The successor
circuit in our instances corresponds to an obfuscation of the Next circuit.
This circuit on input a node of the form (x, σ1, · · · , σκ) checks for the
validity of the input. If it is valid, it outputs the next node (x+1, σ′1 · · ·σ′κ)
where σ′i = PRFSi((x+ 1)[i]) in the path. On an invalid input, it outputs
⊥.

Input: (x, σ1, · · · , σκ)
Hardcoded Parameters: S1, · · · , Sκ

1. For any i ∈ [κ], if σi 6= PRFSi(x[i]) then output ⊥.
2. If x = 1κ, then output SOLVED.
3. Else output (x + 1, σ′1, · · · , σ′κ), where for all i ∈ [κ] compute σ′i =

PRFSj ((x+ 1)[i]).

Padding: This circuit is padded so that total size of the circuit is p(κ), for some
polynomial p(·) specified later.

Fig. 2. NextS1,··· ,Sκ

For the hard SVL instances we additionally need to provide a verifi-
cation circuit. The verification circuit just uses the successor circuit in a
very natural manner. The verification circuit on input (x, σ1, · · · , σκ, j)
outputs 1 if and only if x = j − 1 and NextS1,··· ,Sκ(x, σ1, · · · , σκ) 6= ⊥.

Due to space constraints we defer the proof of hardness to full version
of this paper [GPS15].

– Sampled Ingredients: Sample {Si}i∈[κ] ← KeyGenPRF (1κ). For all i ∈ [κ],
Si is a seed for a PRF mapping i bits to κ bits. That is, PRFSi : {0, 1}i →
{0, 1}κ.

– Source Node: The source node xs = (0κ,PRFS1(0), · · · ,PRFSκ(0κ)).
– Successor Circuit: The successor circuit is given by iO(NextS1,··· ,Sκ) where

the circuit NextS1,··· ,Sκ is described in Figure 2.
– Verification Circuit: The verification circuit, given by Ver, on input

((x, σ1 · · ·σκ), j) checks if x = j − 1 and iO(NextS1,··· ,Sκ)((x, σ1 · · ·σκ)) 6= ⊥.

Fig. 3. Sampler for hard on average instances of SVL based on hardness of iO

5 Hardness Result based on Functional Encryption

In this section we show that SVL is hard on average assuming polyno-
mially hard functional encryption and one-way permutations. Coupled
with the fact that SVL reduces to EOL (Lemma 1) we have the following
theorem.

Theorem 4. Assume the existence of one-way permutations and func-
tional encryption against polynomial time adversaries then we have that
EOL problem is hard for polynomial time algorithms.

Recall that hard SVL instance based on iO (Section 4), required κ
puncturable PRF keys. Basing hardness on polynomially hard functional
encryption requires us to still maintain κ keys. However, now we need to
use prefix-puncturing (see Definition 11) which is more delicate and needs
to be handled carefully. Consequently the construction ends up being
complicated. However, the special mechanism of prefix-puncturing that
we use is crucial to understanding our construction. So towards simplify-
ing exposition, we start by abstracting out the details of this puncturing
and present a special tree structure and some properties about it next.

5.1 Special Tree Key Structure

Let x[i] denote the first i (higher order) bits of x i.e x1 · · ·xi. Now note
that any y ∈ {0, 1}i can be identified with a node in a binary tree for
which nodes at depth i correspond to strings {0, 1}i. Note that the root
of the tree corresponds to the empty string φ. As previously mentioned
our construction needs κ PPRF keys, namely S1, . . . Sκ. The key Si works
on inputs of length i. We use Si,x to denote the key Si prefix punctured
at a string x ∈ {0, 1}≤i.

Looking ahead, in our hard-on-average instances of SVL each x ∈
{0, 1}κ will be attached with associated signature values σ1, . . . , σκ where
for each i ∈ [κ] we have that σi = PrefixPunc(Si, x[i]). Furthermore in our
construction given x and the associated signature values, we will need to
verify these values and provide the associated signature values for x+ 1,
but this has to be done in a circuitous manner because of several security
reasons. We do not delve into the security arguments right away, but focus
on describing the prefix-puncturing that we need to perform.

We next describe the set Vix where x ∈ {0, 1}≤i, which contains suit-
able prefix-puncturings of the key Si. Intuitively, we want this set to
contain all keys that will allow us to perform the task of checking the
validity of the ith associated signature on any input of the form x‖y
where y ∈ {0, 1}κ−|x| as well as computing the ith associated signature
for (x‖y) + 1. Furthermore, it should suffice to generate Vix‖y for all y.

For any node x ∈ {0, 1}≤i, this very naturally translates to the keys Si,x
and Si,x+1. A careful reader might have noticed that instead of Si,x+1, it
in fact suffices to just have Si,(x+1)‖0i−|x| . As it turns out we must only
include Si,(x+1)‖0i−|x| . Including Si,x+1 prevents the Derivability Lemma
(Lemma 4) from going through.

Recall that the key Si corresponds to a PPRF key for inputs of length
i. Therefore, for x‖y such that |x| = i, the key Si can be prefix-punctured
only for the prefix x = (x‖y)[i]. This raises the following question. Should

we include Si,x and Si,x+1 in all Vix‖y? As we will see later, in our construc-
tion, we carefully decouple the checking of associated signatures from the
generation of new associated signatures. An important consequence, rele-
vant here is that, even though the checks need to be performed for all x‖y,
a new ith associated signature needs to be generated for only one choice
of y, namely 1κ−|x| (the all 1 string of length κ− |x|). This design choice
(which is crucial for polynomial security loss) also allows us to set Vix‖y
for all other choices of y to be ∅. In terms of the binary tree structure one
can think of this as Vix getting passed only along the rightmost path in
the subtree rooted at x. At a very high level, this allows us to argue that
the key Si (proved formally in Lemma 4) can be punctured at a special
point by removing keys fron Vix for only a polynomial number of choices
of x and i. This is crucial for ensuring that our proof of security has only
a polynomial number of hybrids.

Next note that dropping keys from V i
x‖y (such that |x| = i) hinders the

checking of associated signatures provided along with inputs x‖y where
y 6= 1κ−i. We tackle this issue by introducing a vestigial set Wi

x‖y corre-

sponding to each Vix‖y. This vestigial set contains remnants of the keys

that were dropped from Vix. We craft these remnants to be such that
they suffice for performing the necessary checks. In particular, we set
these remnants to be the left half of an left half injective PRG evaluation
on the dropped key. More formally, Vix and Vx are defined as follows. In

φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

V2
0 = {S2,0, S2,10}

V2
01 = {S2,01, S2,10}

V2
010 = ∅

W2
0 = ∅

W2
01 = {PRG0(S2,01)}

W2
010 = {PRG0(S2,01)}

Fig. 4. Example of values contained in V 2
x for x ∈ {0, 1}≤3.

the following, for any i ∈ [κ] we treat 1i + 1 as 1i, and φ + 1 as φ. Here
1i is a string of i 1s and φ is the empty string.

Vx =
⋃
i∈[κ]

Vix Vix =

{Si,x[i] , Si,x[i]+1} if |x| > i and x = x[i]‖1|x|−i

{Si,x, Si,(x+1)‖0i−|x|} if |x| ≤ i
∅ otherwise

Wx =
⋃
i∈[κ]

Wi
x Wi

x =

{
{PRG0(Si,x[i])} if |x| ≥ i
∅ otherwise

For the empty string x = φ, these sets can be initialized as follows.

Vφ =
⋃
i∈[κ]

Viφ Viφ = {Si}

Wφ =
⋃
i∈[κ]

Wi
φ Wi

φ = ∅

Illustration with an example. Finally we explain what sets V2
x,W

2
x con-

tain when x is a prefix of 010 in Figure 4. At the root node we have

V2
φ = {S2} and Wφ = ∅. The set V2

0 contains S2,0 and S2,10 and the set

W2
0 is still empty. Next note that V2

01 contains S2,01, S2,10 and W2
01 con-

tains PRG0(S2,01). Finally set V2
010 = ∅ and W2

010 continues to contain
PRG0(S2,01).

Properties of the special tree key structure. We now prove several prop-
erties about the special tree key structure. Intuitively speaking the crux
of the lemmas is the claim V-set for can a node can be used to derive
its children. Furthermore each element in V-set for any node can only be
derived from the V-set of nodes in exactly two different paths.

Lemma 3 (Computability Lemma). There exists an explicit efficient
procedure that given Vx,Wx computes Vx‖0,Wx‖0 and Vx‖1,Wx‖1.

Proof. We start by noting that it suffices to show that for each i, given
Vix,W

i
x one can compute Vix‖0,W

i
x‖0 and Vix‖1,W

i
x‖1. We argue this next.

Observe that two cases arise either |x| < i or |x| ≥ i. We deal with the
two cases:

- |x| < i: In this case Vix is {Si,x, Si,(x+1)‖0i−|x|} and these values can be
used to compute Si,x‖0, Si,x‖1, Si,(x‖0)+1 = Si,x‖1 and Si,((x‖1)+1)‖0i−|x|−1 =
Si,(x+1)‖0‖0i−|x|−1 = Si,(x+1)‖0i−|x| . Observe by case by case inspec-

tion that these values are sufficient for computing Vix‖0,W
i
x‖0 and

Vix‖1,W
i
x‖1 in all cases.

- |x| ≥ i: Note that according to the constraints placed on x by the
definition, if Vix = ∅ then both Vix‖0 and Vix‖1 must be ∅ as well.

On the other hand if V i
x 6= ∅ then Vix‖0 is still ∅ while Vix‖1 = Vix.

Additionally, W i
x‖0 = W i

x‖1 = W i
x.

This concludes the proof.

Lemma 4 (Derivability Lemma). For every i ∈ [κ], x ∈ {0, 1}i and
x 6= 1i we have that, Si,x+1 can be derived from keys in Viy if and only if
y is a prefix of x‖1κ−i or (x+ 1)‖1κ−i. Additionally, Si,0i can be derived
from keys in Vy if and only if y is a prefix of 0i‖1κ−i.

Proof. We start by noting that for any y ∈ {0, 1}>i ∩ {0, 1}≤κ, by defi-
nition of V-sets we have that Viy = Viy[i] or Viy = ∅. Hence it suffices to

prove the above lemma for y ∈ {0, 1}≤i.
We first prove that if y is a prefix of x or (x+ 1) then we can derive

Si,x+1 from V i
y . Two cases arise:

φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Fig. 5. Black nodes represent the choices of x ∈ {0, 1}≤3 such that V 2
x can be used to

derive S2,10.

- Observe that if y is a prefix of x then we must have that either y is a
prefix of x+1 or x+1 = (y+1)‖0i−|y|. Next note that by definition of
V-sets we have that Viy = {Si,y, Si,(y+1)‖0i−|y|}, and one of these values
can be used to compute Si,x+1.

- On the other hand if y is a prefix of x+ 1 then again by definition of
V-sets we have that Viy = {Si,y, Si,(y+1)‖0i−|y|}, and Si,y can be used
to compute Si,x+1.

Next we show that no other y ∈ {0, 1}≤i allows for such a derivation.
Note that by definition of V-sets we have that V i

y = {Si,y, Si,(y+1)‖0i−|y|}.
We will argue that neither Si,y nor Si,(y+1)‖0i−|y| can be used to derive
Si,x+1.

- We are given that y is not a prefix of x + 1. This implies that Si,y
cannot be used to derive Si,x+1.

- Now we need to argue that Si,(y+1)‖0i−|y| cannot be used to compute

Si,x+1. For this, it suffices to argue that x + 1 6= (y + 1)‖0i−|y|. If
x + 1 = (y + 1)‖0i−|y| then y must be prefix of x. However, we are
given that this is not the case. This proves our claim.

The argument for the value Si,0i follows analogously. This concludes the
proof.

5.2 Hard on Average SVL Instances

In this section, we describe our construction for hard on average instance
of SVL. In particular, we describe our sampler that samples hard on
average instances (xs,Succ,Ver, 1κ). Here xs is the source node and Succ

is the successor circuit. We define a directed edge between u and v if
and only if Succ(u) = v. Ver is the verification circuit and is used to test
whether a given node is the kth node from xs. That is, Ver(x, k) = 1 iff
x = Succk−1(xs). For the generated instances, we argue that it is hard to
find the 1κ node in the path.

In our construction we use a selectively secure functional encryp-
tion scheme (FE.Setup,FE.KeyGen, FE.Enc,FE.Dec), a prefix-puncturable
PRF (Definition 11), a semantically secure symmetric key encryption
(SK.KeyGen, SK.Enc, SK.Dec) and injective PRGs having the left half in-
jectivity property Definition 5. PRG0 and PRG1 denote the left and the
right part of the output of this PRG.

The formal description of hard on average SVL instance sampler is
provided in Figure 6. Internally this sampler generates the successor cir-
cuit to include functional encryption secret keys for circuits provided in
Figure 7. Next we informally describe the SVL instances considered.

A sampled instance implicitly defines a line graph where each node in
the graph is of the form (x, σ1, · · · , σκ) where σi = PrefixPunc(Si, x[i]) for
all i ∈ [κ]. We say a node is valid if the above condition holds. The node
(x, σ1, · · · , σκ) is connected to (x + 1, σ′1, · · · , σ′κ) by an outgoing edge
and to (x− 1, σ′′1 , · · · , σ′′κ) by an incoming edge. The successor circuit on
input (x, σ1, · · · , σκ) checks for the validity of the node and if the node
is valid it outputs (x + 1, σ′1, · · · , σ′κ). The verification circuit on input
(x, σ1, · · · , σκ, j) outputs if and only if x = j − 1 and (x, σ1, · · · , σκ) is
valid.

We now explain how the successor circuit works. The successor circuit
is described by a sequence of κ+1 secret keys FSK1, · · · ,FSKκ+1 for appro-
priate functions. There keys are generated corresponding to independent
instances of functional encryption. Along with the keys the successor cir-
cuit also contains a ciphertext cφ that encrypts the empty string, φ, under
PK1 alsong with the key values Vφ and Wφ. Intuitively, the function key
FSKi corresponds to a function Fi that takes as input a binary string
x of length i and outputs an encryption of x‖0 and x‖1 under PKi+1.
Additionally these ciphertexts, in addition to x‖0 and x‖1, also contain
key values Vx‖0,Wx‖0 and Vx‖1,Wx‖1 respectively. Recall from Section 5.1
that the keys in these sets are used to test validity of signatures provides
as input and to generate the new ones.

The successor circuit on an input of the form (x, σ1, · · · , σκ) does
the following. It first obtains an encryption of x along with key values
Vx and Wx under the public key PKκ+1. This is done as follows. Start
with cφ and decrypt it using key FSK1 to obtain encryptions of 0 and 1.

- Sampled Ingredients:
1. Sample {Si}i∈[κ] and Kφ from KeyGenPPRF (1κ). Here Si’s is a key that

works for i bit inputs, namely PPRFSi : {0, 1}i → {0, 1}κ for all i ∈ [κ].
Similarly, Kφ works on inputs of length rand(κ) where rand(·) would be
specified later. Initialize Viφ = Si, Vφ =

⋃
i∈[κ] Viφ and Wφ = ∅.

2. Sample (PKi,MSKi)← FE.Setup(1κ) for all 1 ≤ i ≤ κ+ 1.
3. Sample sk ← SK.KeyGen(1κ) and let Π ← SK.Encsk(π) and Λ ←

SK.Encsk(λ) where π = 0`(κ) and λ = 0`
′(κ). Here `(·) and `′(·) are ap-

propriate length functions specified later.
4. Sample v ← {0, 1}2κ.

- Functional encryption ciphertext and keys to simulate obfuscation:
1. For each i ∈ [κ] generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Π) and

FSKκ+1 ← FE.KeyGen(MSKκ+1, Gv,Λ), where Fi,PKi+1,Π and Gv,Λ are
circuits described in Figure 7.

2. Let cφ = FE.EncPK1(φ,Vφ,Wφ, 0
κ, 0)

- Source node: The source node xs is given by (0κ, σ1, · · · , σκ) where σi =
PPRFSi(0

i) for all i ∈ [κ].
- Successor Circuit: The successor circuit Succ in our setting takes as in-

put x, σ1, . . . , σκ and outputs x + 1, σ′1, . . . , σ
′
κ if the associated signatures

σ1, · · · , σκ are valid. It proceeds as follows:
1. For i ∈ [κ] compute cx[i−1]‖0, cx[i−1]‖1 := FE.Dec(FSKi, cx[i−1]

).

2. Obtain dx = ((α1, . . . , ακ), (βj , . . . , βκ)) as output of FE.Dec(FSKκ+1, cx).
Here j = f(x) where f(x) is the smallest j such that x = x[j]‖1κ−j .

3. Output ⊥ if PRG0(σi) 6= αi for any i ∈ [κ] or if dx = ⊥.
4. If x = 1κ, output SOLVED.
5. For each i ∈ [j − 1] set σ′i = σi.
6. For each i ∈ {j, . . . , κ} set γi = PRG1(σi) and σ′i as SK.Decγj ,··· ,γκ(βi),

decrypting βi encrypted under γj , . . . γκ.
7. Output (x+ 1, σ′1, · · · , σ′κ).

- Verification Circuit: The verification circuit Ver on input x, σ1, . . . , σκ, j
outputs 1 if Succ on input x, σ1, . . . , σκ doesn’t output ⊥ and x = j − 1 and
0 otherwise.

Fig. 6. Hard on average instance for SVL based on hardness of FE.

Choose one of them based on which one is a prefix of x and continue the
process. Repeating this process κ times results in the desired ciphertext.
Next decrypt the obtained ciphertext using FSKκ+1 and it provides some
information essential for checking validity of provided input signatures
and additional information to generate the signatures for the next node.
More details are provided in Figures 6 and 7.

Fi,PKi+1,Π

Hardcoded Values: i, PKi+1, Π.
Input: (x ∈ {0, 1}i−1, Vx,Wx, Kx, sk, mode)

1. If (mode = 0) then output FE.EncPKi+1(x‖0,Vx‖0,Wx‖0,Kx‖0, sk,mode;K′x‖0)
and FE.EncPKi+1(x‖1,Vx‖1,Wx‖1,Kx‖1, sk,mode;K′x‖1), where for b ∈ {0, 1},
Kx‖b = PrefixPunc(Kx, b‖0) and K′x‖b = PrefixPunc(Kx, b‖1) and
(Vx‖0,Wx‖0), (Vx‖1,Wx‖1) are computed using the efficient procedure
from the Computability Lemma (Lemma 3).

2. Else recover (x||0, cx‖0) and (x‖1, cx‖1) from SK.Decsk(Π) and output cx‖0
and cx‖1.

Gv,Λ

Hardcoded Values: v, Λ
Input: x ∈ {0, 1}κ,Vx,Wx,Kx, sk,mode

1. If (PRG(x) = v) then output ⊥.
2. If mode = 0, (Below j = f(x) where f(x) is the largest j such that x =

x[j]‖1κ−j .)
(a) For each i ∈ [κ], set αi = PRG0(σi) (obtained from Wi

x for i ≤ j and from
Vix for i > j).

(b) For each i ∈ {j, . . . , κ} set γi = PRG1(σi) and βi =
SK.Encγj ,··· ,γκ(Si,x[i]+1), encrypting Si,x[i]+1 under γj , . . . γκ. (Using ran-
domness obtained by expanding Kx sufficiently.)

(c) Output ((α1, . . . , ακ), (βj , . . . , βκ))
3. Else recover (x, dx) from SK.Decsk(Λ) and output dx.

Fig. 7. Circuits for which functional encryption secret keys are given out.

Setting rand(·) We set rand(κ) = 2κ + r(κ) where r(κ) is the maximum
number of random bits used for generating encryptions of Si,x[i]+1 under
γj , · · · , γκ for every i ∈ [j, κ].

Due to space constraints, we defer the proof of hardness of the sampled
SVL instance to the full version of the paper [GPS15].

Acknowledgements. The first author would like to thank Sidharth Telang
for useful discussions on related topics. Research supported in part from
DARPA Safeware Award W911NF15C0210, AFOSR Award FA9550-15-1-
0274, and NSF CRII Award 1464397. The views expressed are those of the

author and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via
composite-order graded encoding. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 528–
556, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikun-
tanathan. From selective to adaptive security in functional encryption.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, pages 657–677, 2015.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation
from compact functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 308–326, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compact-
ness generically: Indistinguishability obfuscation from non-compact func-
tional encryption. IACR Cryptology ePrint Archive, 2015:730, 2015.

[AKV04] Tim Abbot, Daniel Kane, and Paul Valiant. On Algorithms for Nash
Equilibria, 2004. http://web.mit.edu/tabbott/Public/final.pdf.

[BCC+14] Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser, Yael Tauman
Kalai, Omer Paneth, and Alon Rosen. The impossibility of obfuscation
with auxiliary input or a universal simulator. In CRYPTO, pages 71–89,
2014.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. J. ACM, 59(2):6, 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures
and pseudorandom functions. In Public-Key Cryptography - PKC 2014
- 17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings,
pages 501–519, 2014.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Protecting obfuscation against algebraic attacks. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 221–238, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hard-
ness of finding a nash equilibrium. In FOCS, 2015.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation
for all circuits via generic graded encoding. In Yehuda Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 1–25, San Diego, CA, USA, Febru-
ary 24–26, 2014. Springer, Heidelberg, Germany.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Defini-
tions and challenges. In Theory of Cryptography - 8th Theory of Cryptog-
raphy Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011.
Proceedings, pages 253–273, 2011.

[BV15a] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. In 56th FOCS, pages 171–190. IEEE Computer
Society Press, 2015.

[BV15b] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. IACR Cryptology ePrint Archive, 2015:163,
2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In Advances in Cryptology - ASIACRYPT 2013 - 19th
International Conference on the Theory and Application of Cryptology and
Information Security, Bengaluru, India, December 1-5, 2013, Proceedings,
Part II, pages 280–300, 2013.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of
computing two-player nash equilibria. J. ACM, 56(3), 2009.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadim-
itriou. The complexity of computing a nash equilibrium. Commun. ACM,
52(2):89–97, 2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17, Athens, Greece,
May 26–30, 2013. Springer, Heidelberg, Germany.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th FOCS, pages 40–49, Berkeley,
CA, USA, October 26–29, 2013. IEEE Computer Society Press.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure
functional encryption from multilinear maps. In TCC, 2016.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfus-
cation with auxiliary input. In FOCS, pages 553–562, 2005.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-
way functions. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages
25–32, 1989.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. In-
distinguishability obfuscation from the multilinear subgroup elimination
assumption. In 56th FOCS, pages 151–170. IEEE Computer Society Press,
2015.

[GMS16] Sanjam Garg, Pratyay Mukherjee, and Akshayaram Srinivasan. Obfus-
cation without the vulnerabilities of multilinear maps. IACR Cryptology
ePrint Archive, 2016:390, 2016.

[GPS15] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. On the exact
cryptographic hardness of finding a nash equilibrium. Cryptology ePrint
Archive, Report 2015/1078, 2015. http://eprint.iacr.org/2015/1078.

[GPSZ16] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark
Zhandry. Breaking the sub-exponential barrier in obfustopia. Cryptol-

ogy ePrint Archive, Report 2016/102, 2016. http://eprint.iacr.org/

2016/102.
[GS16] Sanjam Garg and Akshayaram Srinivasan. Unifying security notions of

functional encryption. Cryptology ePrint Archive, Report 2016/524, 2016.
http://eprint.iacr.org/.

[HY16] Pavel Hubácek and Eylon Yogev. Hardness of continuous local search:
Query complexity and cryptographic lower bounds. Electronic Colloquium
on Computational Complexity (ECCC), 23:63, 2016.

[Jer12] Emil Jerábek. Integer factoring and modular square roots. CoRR,
abs/1207.5220, 2012.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, pages 669–684, 2013.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, ex-
istence theorems and computational complexity. Theor. Comput. Sci.,
81(2):317–324, 1991.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk).
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 96–
109, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg,
Germany.

[Nas51] John Nash. Non-cooperative games. The Annals of Mathematics,
54(2):286–295, 1951.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryp-
tology ePrint Archive, 2010:556, 2010.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and
other inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532,
1994.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfusca-
tion from semantically-secure multilinear encodings. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 500–517, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Heidelberg, Germany.

[RSS16] Alon Rosen, Gil Segev, and Ido Shahaf. Can PPAD hardness be based on
standard cryptographic assumptions? Electronic Colloquium on Compu-
tational Complexity (ECCC), 23:59, 2016.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484,
2014.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 439–467, Sofia, Bulgaria, April 26–30, 2015. Springer, Hei-
delberg, Germany.

