
Obfuscation Combiners

Marc Fischlin1, Amir Herzberg2, Hod Bin Noon2, and Haya Shulman3

1 Technische Universität Darmstadt, Germany
marc.fischlin@cryptoplexity.de

2 Bar Ilan University, Israel
3 Fraunhofer SIT, Darmstadt, Germany

Abstract. Obfuscation is challenging; we currently have practical can-
didates with rather vague security guarantees on the one side, and the-
oretical constructions which have recently experienced jeopardizing at-
tacks against the underlying cryptographic assumptions on the other
side. This motivates us to study and present robust combiners for obfus-
cators, which integrate several candidate obfuscators into a single obfus-
cator which is secure as long as a quorum of the candidates is indeed
secure.
We give several results about building obfuscation combiners, with match-
ing upper and lower bounds for the precise quorum of secure candidates.
Namely, we show that one can build 3-out-of-4 obfuscation combiners
where at least three of the four combiners are secure, whereas 2-out-of-
3 structural combiners (which combine the obfuscator candidates in a
black-box sense) with only two secure candidates, are impossible. Our
results generalize to (2γ + 1)-out-of-(3γ + 1) combiners for the positive
result, and to 2γ-out-of-3γ results for the negative result, for any integer
γ.
To reduce overhead, we define detecting combiners, where the combined
obfuscator may sometimes produce an error-indication instead of the
desired output, indicating that some of the component obfuscators is
faulty. We present a (γ + 1)-out-of-(2γ + 1) detecting combiner for any
integer γ, bypassing the previous lower bound. We further show that
γ-out-of-2γ structural detecting combiners are again impossible.
Since our approach can be used for practical obfuscators, as well as for
obfuscators proven secure (based on assumptions), we also briefly report
on implementation results for some applied obfuscator programs.

1 Introduction

Software obfuscation has a long tradition in aiming at protecting against reverse
engineering. For example, the first International Obfuscated C Code Contest
(www.ioccc.org) has been organized in 1984 and experienced the 23rd event
in this series in 2014. There are obfuscators for all popular programming lan-
guages today. For example, for Java, there are several open-source projects like
ProGuard, ClassEncrypt, or JavaGuard, and an even larger number of com-
mercial products. These approaches are usually based on heuristics and best

practices, ranging from simple renaming of function and variables names, to
elaborate schemes, e.g. [19]. However, these practical obfuscators do not provide
verifiable, proven security guarantees.

Provably secure obfuscation, in the sense that it is based on some reasonable
cryptographic assumption, has long been a highly desirable yet hard-to-reach
goal. Even worse, there have been devastating impossibility results for the nat-
ural notion of virtual black-box obfuscation [8] and only limited positive results
for special cases like point functions [16]. A significant breakthrough came with
the work by Garg et al. [28], indicating that the relaxed yet useful notion of in-
distinguishability obfuscation may be achievable for general circuits. This notion
basically says that one cannot distinguish the obfuscated codes of two function-
ally equivalent circuit programs.

It is fair to say that the underlying cryptographic assumption, on which is
security of the construction of Garg et al. [28] is based upon, is non-standard
and not well analyzed (yet). This is also true for the alternative approach to
build indistinguishability obfuscators proposed by Pass et al. [48]. This is com-
plemented by yet other proposals of Gentry et al. [32] based on a more standard-
like computational assumption about multilinear maps, and of Ananth and Jain
[3] based on compact functional encryption. At the same time, recent attacks
[18,23,31,21,22] on multilinear maps, albeit currently not known to break the
aforementioned obfuscation candidates, testify that constructions may suddenly
turn out to lack the desired security guarantees. New suggestions and attacks
keep on appearing at high frequency [41,6,30,46].

The above leaves us with multiple choices of candidates for building obfusca-
tors, both in practice as well as in theory, and it is currently difficult to determine
the best choice in terms of security. For the heuristic, practical obfuscators, it
may be even harder to distinguish sound constructions from weak approaches,
since the design strategies may be vague. A straightforward idea to boost con-
fidence in obfuscator candidates, both in theory as well as in practice, is to
interlock multiple solutions and approaches. This idea of failure-tolerant cryp-
tographic designs has traditionally been subsumed under the notion of robust
combiners.

1.1 Robust Combiners for Obfuscation

The notion of robust combiners has been introduced by Harnik et al. [34] based
on the idea of tolerant cryptographic designs by Herzberg [35,36,37]. Such com-
biners take several candidates for a cryptographic task and provide a secure
solution if a quorum of the candidates is indeed secure. The idea has been suc-
cessfully applied to several cryptographic primitives, including hash functions
[14,49,25,50,47,27,45], encryption [24,34], commitments [34,35,36], and oblivious
transfer [34,43,44].

A robust combiner for obfuscation would take as input a program (abstractly
in form of a circuit or a Turing machine4) and create an obfuscated version with
the help of the candidate obfuscators O1,O2, . . . ,ON . As long as a sufficient
number of candidate obfuscators is indeed secure, the combiner should also pro-
vide a secure obfuscator. In order to make formal claims about the robustness
of the combiner, due to the lack of rigorous security properties for practical ob-
fuscators, one inevitably needs to base the notion of security for the combiner
on the various models in the cryptographic literature, such as virtual black-box
obfuscation or indistinguishability obfuscation.5

What distinguishes the idea of combiners for obfuscation from the previous
scenarios is that obfuscation combiners are higher-order combiners which are
closely linked to the functionality of their inputs. Consider for instance the case
of hash function combiners where it usually suffices that the combiner preserves
the security property only, enabling solutions like the concatenation combiner
CombH1,H2(x) = H1(x)||H2(x) with longer output for collision resistance. De-
vising hash combiners with equal output size as H1, H2, retaining this mild
functional property, is conceivably hard [14,49,50]. An obfuscation combiner, in
contrast, must provide a circuit which computes the same function as the input
circuit; it cannot implement a different function with a larger output. Indeed,
note that functional preservation and input hiding are conflicting requirements
for obfuscation and one is easy to achieve without the other.

As a concrete example consider combiners in the context of virtual black-box
obfuscation. Herzberg and Shulman [38] show that the cascading construction
CombO1,O2(·) = O2(O1(·)) of two candidate obfuscators O1,O2 is robust for this
notion as long as functional correctness of the candidates is guaranteed. If this
is not granted and the inner obfuscator is corrupt then O1 may implement an
arbitrary function, such that the combiner neither preserves functional correct-
ness nor necessarily input hiding. The latter holds as one usually does not have
any security guarantees for input circuits with diverging functionalities, even if
obfuscator O2 is sound. Analogously, if the outer obfuscator is corrupt then the
resulting cascade may no longer sustain functionality.

While functional correctness of an obfuscator is usually not based on un-
proven cryptographic assumptions, unlike the obfuscation property, there are
two reasons why certifying functional correctness may still be hard. First, soft-
ware implementations are error prone, and the complexity of previous theoretical
proposals for obfuscation [28,48,32] seems to be inimical in this regard. Secondly,
one may have little control over, or insights into, the actual obfuscation program.
This is clearly true for commercial obfuscation programs; in fact, the programs
of such obfuscators are often themselves obfuscated. The creation of a corrupt
obfuscator, which intentionally leaks some information, is easy; to demonstrate

4 In our presentation of our formal results we focus on circuits instead of Turing
machines, since our approach applies equally well to both settings but the state of
the art of solutions is much more advanced in the circuit setting.

5 There are approaches to define metrics for practical obfuscators [20,5], but mainly
in terms of software complexity. We discuss them in Section 7.

this, we implemented demos of different types of corrupted-obfuscators, includ-
ing obfuscators which leak information even when used in cascade.

The concern about corrupt-obfuscators may also emerge in theoretical solu-
tions. As an example for the latter, in the universal-parameter generation setting
[39] a trusted party publishes an obfuscated program which parties can use to
generate common parameters. What if we now prefer to use several potentially
untrusted authorities and combine their obfuscated programs?

1.2 Our Results

Our goal is to provide a general combiner for obfuscation. It should satisfy the
formal requirements in order to allow for sound solutions both in theory and in
practice. Ideally, the combiner should tolerate a large number of corrupt obfusca-
tors, be very efficient, and ensure various notions of obfuscation simultaneously.
Note that, while virtual black-box obfuscation may be impossible in general, for
some functions and attack models [15,7] the notion may still be achievable, such
that our combiner should also comply with this notion.

On the positive side we present a 3-out-of-4 combiner which can tolerate a
single corrupt combiner out of four candidates. It is depicted in Figure 1 and
consists of two layers. In the first layer we insert the input circuit C into three
combinations of three of the obfuscators each; in each combination, we output
a circuit that produces the majority of the three obfuscated circuits. We only
require three of the four combinations of picking three of four obfuscators. Each
unit ensures that if at most one candidate is corrupt then functional correctness
is still preserved. In the next layer we then run each of the first-layer major-
ity circuits through the complementary fourth obfuscation candidate and again
take the majority to ensure correctness. Obfuscation follows as either all three
candidates on the first layer are sound and thus hide the input circuit, or the
fourth candidate on the second layer ensures this.

Our combiner indeed works for different notions of obfuscation such as vir-
tual black-box and grey box obfuscation,6 indistinguishability obfuscation, and
differing-input obfuscation. In total it requires twelve calls to obfuscators and
has depth 2. The latter is important as obfuscation may cause a polynomial
blow-up in size. Remarkably, while most theoretical solutions currently induce
a significant size expansion, with a few exceptions [13,4], obfuscators in practice
only display a mild increase in code size. Note that devising combiners of depth
1 with a structure as above is impossible as the corrupt obfuscator may then
leak information about the input circuit via the output.

We then show an impossibility result for 2-out-of-3 combiners. There are, of
course, trivial combiners in this case, such as the combiner which simply uses
the sound candidate only, and the (inefficient) combiner for indistinguishability
obfuscation that evaluates the input circuit and then outputs the lexicographic
smallest equivalent circuit. We thus focus on structural combiners that use a fixed
pattern, independently of the status of the candidates, and do not semantically
6 With respect to dependent auxiliary inputs [33].

Fig. 1: Our 3-out-of-4 combiner. The MAJ circuit has three hardwired circuits C1, C2
and C3 with equal input and output sizes, which also correspond to the input and
output size of the MAJ circuit. For input x the MAJ circuit evaluates each of the three
circuits for x and returns the bit-wise majority of the circuit’s outputs.

interpret the input circuit. Our 3-out-of-4 combiner is structural in this regard.
We show that no 2-out-of-3 structural combiner may ensure both functional cor-
rectness and obfuscation. This holds for the weaker notion of indistinguishability
obfuscation and therefore also for the stronger notions of black-box and grey-box
obfuscation. Note that this also applies to any 1-out-of-2 combiner.7

We extend the positive result as well as the negative result to the case of (2γ+
1)-out-of-(3γ + 1) resp. 2γ-out-of-3γ combiners. That is, we give a construction
which can be seen as a less efficient generalization of our basic solution if one
can corrupt at most γ out of 3γ+ 1 obfuscators. We then argue that one cannot
have structural combiners if γ out of the 3γ obfuscators can be corrupt. For both
settings we can draw on the the ideas and techniques from the basic cases.

The combiners above are correcting in the sense that they guarantee func-
tional correctness if a quorum of input obfuscator candidates is secure. One can
also envision a weaker notion of combiners, which output circuits that either
compute the correct output of the input circuit, but may also output, instead, a
special error indicator ⊥. This error indicator should be output only when one
of the component obfuscator is faulty; if all obfuscators are sound then the com-
biner must never output ⊥. In particular, such combiners cannot output false
answers. We call them detecting combiners in analogy to coding theory.

For detecting combiners we achieve slightly different bounds. That is, we show
that one can have (γ+1)-out-of-(2γ+1) combiners for any γ. For the case γ = 1
and 2-out-of-3 combiners we can again provide an optimized version similar to
our original 3-out-of-4 combiner. Concerning lower bounds, we can apply the
7 Every 1-out-of-2 combiner is also a 2-out-of-3 combiner if it ignores the third obfus-
cator.

ideas of the other combiners to show that there cannot exist structural γ-out-of-
2γ detecting combiners for any γ. The reduced overhead of detecting combiners
may make them attractive option for practical implementations, where once
detection ability exists, the attack-vector of providing faulty obfuscator appears
unlikely.

While our main results follow the common approach in provably secure ob-
fuscation, we stress that we view our approach to be equally well suited for
practice. In Section 7 we therefore evaluate performance of our combiner when
applied to practical obfuscators, and discuss the implications of our findings in
this domain.

Concurrent Work. Independently of our work, Ananth et al. [2] also discuss the
idea of obfuscation combiners. Their approach is fundamentally different from
ours, and results in (non-structural) obfuscation combiners which are secure as
long as a single candidate is secure. However, this comes at the cost of a sig-
nificant overhead, and also requires additional cryptographic assumptions such
as LWE or DDH, and indistinguishability obfuscation against sub-exponential
adversaries.

2 Preliminaries

We exclusively treat circuits here; the approach can be transfered to the case
of Turing machines straightforwardly. When speaking of circuits C from some
class C = (Cλ)λ∈N we usually mean some arbitrary (but efficiently computable)
description of the circuit. When considering specific encodings with dedicated
properties, as required for our lower bounds, we usually write 〈C〉 for the en-
coding of the circuit under scheme 〈·〉. If, on the other hand, we consider the
function implemented by the circuit we usually write C(·) instead, and C(x) for
the output of circuit C on input x. When writing C(·) = C ′(·) or C ≡ C ′ we refer
to functional equality of circuits C and C ′, comprising input and output length,
whereas C = C ′ or 〈C〉 = 〈C ′〉 means equal descriptions (under the encoding in
question).

2.1 Obfuscators

Barak et al. [8] defined several notions of obfuscators, with virtual black-box
(VBB) obfuscators being the strongest one. This notion says that the adversary
cannot learn anything from an obfuscated circuit beyond the circuit’s outputs
for chosen inputs. While they also showed that this notion is in general un-
achievable, for specific cases such as point functions one may be able to attain
this level of obfuscation. Below we mainly consider obfuscation of circuits, and
we also consider the possibility that the obfuscator itself may be non-uniform
and work specifically for different values of λ. The latter allows corrupt (also
called malicious) obfuscators to match the algorithm class of adversaries and
distinguishers. All obfuscators here, sound and corrupt ones, are nonetheless
considered to be stateless.

Definition 1 (Virtual Black-Box Obfuscation). A (possibly non-uniform)
PPT algorithm O is a virtual black-box obfuscator for circuit class C = (Cλ)λ∈N
if the following holds:

Functional Correctness: For any λ ∈ N, any circuit C ∈ Cλ, any obfuscated
version O ← O(1λ, C) we have C ≡ O.

VBB Obfuscation: For any (possibly non-uniform) PPT algorithm A there
exists a (possibly non-uniform) algorithm PPT S and a negligible function
ε(λ) such that for all circuits C ∈ Cλ we have∣∣Prob

[
A(1λ,O(1λ, C)) = 1

]
− Prob

[
SC(1λ) = 1

]∣∣ ≤ ε(λ),

where the probabilities are over the randomness of O and A resp. S.

Virtual grey-box (VGB) obfuscation [10] is defined analogously, only that
the simulator above is computationally unbounded but can make at most a
polynomial number of queries to its oracle circuit. Clearly, VBB obfuscation
implies VGB obfuscation. A stronger notion is based on the extension to (de-
pendent) auxiliary inputs [33] where both the adversary and the simulator receive
a random sample aux as additional input, where aux may depend on any circuit
C ′ ∈ Cλ.8 We will use this version for proving the security of our combiners for
VBB and VGB obfuscation.

Another meaningful relaxation, implied by both notions above in the non-
uniform setting, is indistinguishability obfuscation [8] which basically says that
the obfuscations of two functional equivalent circuits are indistinguishable:

Definition 2 (Indistinguishability Obfuscator). A (possibly non-uniform)
PPT algorithm iO is called an indistinguishability obfuscator for a circuit class
C = (Cλ)λ∈N if the following conditions hold:

Functional Correctness: For any λ ∈ N, any circuit C ∈ Cλ, any obfuscated
version O ← iO(1λ, C) we have C ≡ O.

Indistinguishability: For any (possibly non-uniform) PPT distinguisher D,
there exists a negligible function ε(λ) such that for all circuits C0, C1 ∈ Cλ
with C0 ≡ C1 we have∣∣Prob

[
D(1λ, C0, C1, iO(1λ, C0)) = 1

]
− Prob

[
D(1λ, C0, C1, iO(1λ, C1)) = 1

] ∣∣ ≤ ε(λ),

where the probabilities are over the randomness of iO and D.

There are several variations of the above definitions. For one, we can allow for
a negligible error in the functional correctness (over the random choices of the
obfuscator). Both our positive and our negative result are robust with respect
to such a change. That is, our 3-out-of-4-combiners uses a constant number of
8 This slightly strengthens the original auxiliary input setting [33] where only C′ = C
is allowed.

obfuscator calls such that the error would remain negligible; obfuscation would
still hold, because the leakage due to incorrect obfuscator outputs has negli-
gible probability. Similarly, our impossibility result about 2-out-of-3 combiners
would still hold, even if the starting combiners would have perfect functional
correctness, but the (fixed-size structural) combiner could have a negligible er-
ror. Alternatively, one may use the recent approach in [12] to eliminate the error
first.

Finally, yet another version of obfuscation, called differing-inputs obfuscation
[8], demands indistinguishability of two obfuscated circuits, but only if the input
circuits C0, C1 can be sampled such that finding inputs where C0 and C1 differ,
is infeasible. More formally, we assume that there is a PPT algorithm Sampler
associated to the circuit family C such that for any PPT algorithm A there exists
a negligible function ε(λ) such that the probability that C0(x) 6= C1(x), where
(C0, C1, aux) ← Sampler(1λ) and x ← A(1λ, C0, C1, aux), is at most ε(λ). Note
that we assume that Sampler(1λ) only outputs circuits C0, C1 ∈ Cλ,

A differing-inputs obfuscator diO for C and Sampler is now defined anal-
ogously to an indistinguishability obfuscator, only that it is infeasible to dis-
tinguish outputs diO(1λ, C0) and diO(1λ, C1) for (C0, C1, aux) ← Sampler(1λ),
even if given aux as additional input. While the notion is also quite useful for
the design of protocols [1], Garg et al. [29] argue that the notion may be hard
to achieve.

2.2 Combiners for Obfuscators

Roughly, a combiner for obfuscators is a procedure which uses a set of obfuscators
O1,O2, . . . to turn an input circuit C into an obfuscated one, with the guarantee
that if an (unspecified) quorum of the underlying obfuscators is secure, then so
is the combiner. In the definition below we abstractly speak of o-obfuscators,
leaving open which obfuscation category o ∈ {VBB,VGB,indistinguishability,
differing-inputs} we refer to.

For combiners of primitives with multiple properties, such as functional cor-
rectness and obfuscation here, there are varying levels of combiners, called weak,
mild, and strong [26,27]. A strong combiner preserves security “property-wise”,
i.e., for each property individually if sufficiently many candidates have this prop-
erty then so does the combiner. A weak combiner only preserves all properties
if there are enough candidates which are secure and thus have all properties
simultaneously. The mild notion is in between where the candidates must some-
how cover all properties but for each property possibly by different candidates.
In [26,27] it has been discussed that strong robustness implies mild robustness
which in turn implies weak robustness, and that the implications are strict in
case of hash functions for some properties.

Definition 3 (Robust Combiner for o-Obfuscation). Let Comb be a PPT
oracle algorithm and let O1, . . . ,ON be o-obfuscators candidates. Then Comb is
called a

– strongly robust t-out-of-N combiner if for each of functional correctness and
o-obfuscation, if at least t of the N candidates have this property, then so
does the combiner CombO1,...,ON ;

– mildly robust t-out-of-N combiner if, whenever functional correctness and
o-obfuscation are each satisfied by at least t of the N candidates, then the
combiner too has both properties;

– weakly robust t-out-of-N combiner if the combiner is a functional correct o-
obfuscator if there are at least t out of N candidates which are simultaneously
functionally correct and o-obfuscators.

The definition assumes that the obfuscators and combiner all work for the
same class C of obfuscatable circuits. This neglects an important aspect, though:
If the combiner calls obfuscators recursively then the candidates need to be able
to handle obfuscated circuits, too. We assume that this is indeed the case —
and discuss it more explicitly for our structural combiners below— making the
implicit assumption that the candidates also allow for a superclass CComb of
circuits which is rich enough tor capture intermediate circuits created by the
specific combiner. Still, the task for the combiner is to obfuscate the “core” class
C of circuits.

Fig. 2: Example of a unit (with pass-through version on the right-hand side).

As usual for combiners in general, there is always a secure obfuscation com-
biner, namely, the one which “obliviously” uses the secure obfuscator Oi and
ignores the other ones in order to obfuscate the input circuit. However, this
only provides an existential proof and says nothing about how to design an ac-
tual solution. Even worse, for indistinguishability obfuscation there is a trivial
(non-efficient) combiner for obfuscators which can be described effectively [8].
The combiner takes as input (the description of) a circuit C and finds the (lex-
icographically) minimal circuit Cmin which computes the same functionality as
C and outputs this circuit Cmin. Then any two circuits C,C ′ with the same
functionality yield the same obfuscated circuit Cmin. This combiner ignores the
candidate obfuscators and already constitutes an unconditionally secure obfus-
cator itself. It is even efficient relative to a Σp

2 oracle. Hence, any lower bound

for combiners would need to bypass this result and therefore need to implicitly
show that Σp

2 6= P .
One option to circumvent the first problem is to require to have an effective

mean to turn attacks against the combiner into attacks for the candidate ob-
fuscators. This option of so-called black-box combiners has been used for other
lower bounds such as for hash function combiners [14,49,50]. Still, in our setting
such black-box combiners would have to deal with the problem of the inefficient
combiner.

An alternative path, which we also take here, is therefore to restrict the way
how the combiner works. Whereas the above unconditional combiner approaches
the circuit semantically by plotting its behavior, we look into what we call struc-
tural combiners here. Basically, these are combiners which have a prescribed
structure with place-holder gates for the obfuscators, and they merely plug in
the input circuit and derive the output circuit according to this fixed structure,
without evaluating the circuits. It turns out that our 3-out-of-4 combiner is in
fact structural.

2.3 Structural Combiners

A structural combiner for obfuscators is a circuit consisting of NAND gates
and of obfuscator gates, where each one of the latter is labeled with one of
the obfuscators Oi. The layout is independent of the actual obfuscators and
should thus work with any concrete obfuscator candidates, i.e., be black-box.
The combiner is structured in so-called units. A unit is a sub circuit which takes
as input the descriptions of circuits and itself describes a circuit. The unit first
inserts the input circuits into some of the obfuscators, where we allow multiple
appearances of obfuscators in a unit, and then processes the output circuits by
a circuit consisting of NAND gates only. An example is given in the left part of
Figure 2. If the input circuit is given to obfuscators i1, i2, . . . then we call this an
{i1, i2, . . . }-unit for the multiset {i1, i2, . . . }. The example in Figure 2 describes
a {1, 3}-unit. Furthermore, we can even let some input circuit be passed to the
NAND-circuit completely, saying that the unit is pass-through in this case. Since
it is irrelevant for our lower bound which circuit is passed through, we do not
need to specify the identifier. The right hand side of Figure 2 shows a pass-
through version of a {1, 3}-unit.

The output of a unit can itself serve again as the input for another unit. We
can therefore nest units in a tree-like structure as in Figure 3. In particular, we
can analogously to the notion of depths of circuits define the depth of a unit,
starting with level-1 units, as well as paths from the input circuit to the final
unit. We call the path of units form level-1 units to the final unit a full path.
A unit which is level-1 always receive the combiner’s input circuit as inputs,
but potentially also other unit circuits if it is simultaneously a higher level unit.
Every unit has at least one input circuit, and a unit can of course serve as
multiple inputs to other units.

To complete the description of a structural combiner we need to specify the
output of our combiner for some input circuit C, once the obfuscator candidates

are determined. We call this the initialization of the combiner with C. Basically
the output is again a circuit and it is derived by stepwise replacing the obfuscator
gates in units (starting with level-1 units which receive C as input) with samples
of the output of the corresponding obfuscator. Note that the structure of the
combiner circuit remains, only the obfuscator gates are now filled in with concrete
circuits. In case of pass-through units we additionally place the code of the unit’s
input circuit inside the new circuit at the corresponding position. Once a unit
has been initialized we can use it as input to a higher-level unit and initialize
that unit, till we have eventually initialized the final unit. Instructively, the
reader may think of this as a left-to-right pass in Figure 3 to compute the
final output circuit, denoted as as CombO1,O2,...(C). Note that this is a random
variable, depending on the randomness of the obfuscators. A sample of this
random variable can then be fed with inputs x to produce some output y.

Fig. 3: Combiner circuit consisting of units.

The above assumes that the class of obfuscatable circuits for structural cir-
cuits is closed under recursive constructions of units. We note that for concrete
constructions such as our 3-out-of-4 combiner in the next section it suffices that
we can also obfuscate level-1 units of the original input circuits. Given a circuit
class C = (Cλ)λ∈N, some fixed structural combiner Comb, and fixed obfuscators
O1,O2, . . . we denote by CComb = (CComb

λ)λ∈N the class of circuits which, besides
all circuits C ∈ Cλ, for any C also includes all possible initializations of all units
of the combiner (except for the final unit) for the given obfuscators. It is under-
stood that, when considering a specific combiner Comb, all candidate obfuscators
O1,O2, . . . must be able to handle the class CComb, whereas the combiner only
works for the “inner” class C. Instructively, one may think of C as the class one
would like to obfuscate, although the candidate obfuscators allow for broader
classes.

3 Robust 3-out-of-4 Combiner for Obfuscators

In this section we present a 3-out-of-4 (structural) combiner for obfuscation,
depicted in Figure 1 on Page 5.

3.1 Construction

The idea is to first obfuscate the input circuit C by all combinations of 3 out of
the 4 given obfuscators O1, . . . ,O4 and for each combination taking the majority
of the output of the three obfuscated circuits. Note that since at least 2 of the 3
obfuscators in such a combination work properly, the majority decision provides
a functionally correct output. Formally, for the majority circuit MAJ combining
three input circuits by evaluating each one for a given input x and taking the
bit-wise majority of the outputs, we thus build the circuits

Oi1,i2,i3 ← MAJ(Oi1(C),Oi2(C),Oi3(C)), 1 ≤ i1 < i2 < i3 ≤ 4

for all possible 4 combinations of i1, i2, i3. Since we merely need an arbitrary
3 of these 4 circuits for the next stage, we take the combinations leaving out
obfuscators 1, 2 and 3 (in this order).

Of course, a corrupt obfuscator among Oi1 ,Oi2 ,Oi3 in the majority combi-
nation could still reveal information about the input circuit C. We hence add
another layer where we now combine three of the majority combinations as
before, by running each combination Oi1,i2,i3 through the complementary ob-
fuscator Oi4 and taking the majority of these circuits again. Put differently, we
now build the circuit

MAJ(O1(O2,3,4),O2(O1,3,4),O3(O1,2,4)).

Functional correctness of our combiner is guaranteed because each of the in-
put circuits O2,3,4, O1,3,4, O1,2,4 computes the correct function and at least two
of the level-2 obfuscators O1,O2,O3 are correct. The obfuscation property holds
because if one of the level-2 obfuscators, say, O∗1 , is malicious, then the level-1
obfuscators generating O2,3,4 already hide the input circuit. Furthermore, the
malicious obfuscator O∗1 cannot bias the functional correctness of the circuits
O1,3,4 and O1,2,4 in the other branches, such that the sound second-layer obfus-
cators O2,O3 also hide O1,3,4 and O1,2,4 and thus the input circuit C, even if
O∗1 on the first level reveals information about C.

3.2 Security

We start by showing that the combiner is (strongly) robust for indistinguisha-
bility obfuscation. Recall that strong robustness refers to the fact that each
property, functional correctness and obfuscation, is preserved individually. Note
that for our combiner (and also the security proof) it suffices that the parties
merely have black-box access to all obfuscators.

Theorem 1. The combiner in Figure 1 is a strongly robust 3-out-of-4 combiner
for indistinguishability obfuscation.

Proof. Functional correctness is straightforward, given that for each unit at least
two obfuscators are functionally correct and since we apply the majority of the
outputs.

We next show indistinguishability. Take an arbitrary distinguisher D against
our combiner. We need to show that there exists a negligible function ε such
that for an arbitrary pair C0, C1 ∈ Cλ of circuits, the distinguishing advantage
of D is smaller than ε(λ). The idea is to show that one can gradually replace the
input circuits C0 to the obfuscators in the combiner by circuit C1, taking some
care with the single corrupt obfuscator.

For the gradual replacement fix the order of the nine level-1 obfuscators
O2,O3,O4, . . . ,O1,O2,O4 according to their appearance in Figure 1 from top
to down, with one exception: for a parameter k ∈ {1, 2, 3, 4}, a reminiscent for the
index of the corrupt obfuscator O∗k, we move all occurrences of this obfuscator
to the very end of the list. For instance, for k = 2 we would have the order
O3,O4,O1, . . . ,O4,O∗2 ,O∗2 . Let K = K(k) ∈ {7, 8} be the first index of O∗k in
that list. Define now the random hybrid variables Hk

i (C0, C1) for i = 0, 1, . . . , 9
as the output of our combiner if we pass circuit C0 for the first i obfuscators
(according to our order) and C1 for the remaining 9 − i ones. Then, clearly
Hk

9 (C0, C1) corresponds to the distribution of our combiner for input C0, and
Hk

0 (C0, C1) to the one of our combiner for C1. It hence suffices to show for any
i that D’s probability of distinguishing adjacent Hk

i−1, H
k
i is negligible.

To bound the advantage of D for each pair (Hk
i−1, H

k
i) we will wrap the algo-

rithm into a sequence of distinguishers Dki for i = 1, 2, . . . , 9. The distinguisher
Dki works in two modes, depending on the status of the i-th obfuscator in our
sequence:

– If i is such that the i-th obfuscator is not corrupt, i.e., i < K(k), then Dki
expects as input a pair C0, C1 and an obfuscated circuit O′ generated by
the i-th obfuscator in our order for Cb, b ∈ {0, 1}. Algorithm Dki computes
the output of our combiner (with the given obfuscators) but inserts C1 as
input in the first i−1 level-1 obfuscators, O′ as the output of the i-th level-1
obfuscator, and C0 as input in the final 9− i slots. It completes the output
O of the combiner for these data and lets D run on C0, C1 and O. Algorithm
Dki returns whatever D outputs.

– If the i-th obfuscator is corrupt, i.e., i ≥ K(k), then Dki expects as extra
auxiliary input a pair C0, C1 and a sample O′ of one of the sound obfuscator
candidates. Here the obfuscator Oj producing O′ is determined by looking
at the level-1 unit u in which the i-th (corrupt) obfuscator O∗k appears. For
this unit, and its three obfuscators, there exists the fourth, complementing
obfuscator Oj to which the unit’s output is fed to on the level-2 unit. For
instance, if k = 2, K = 8, and i = 8, then the corresponding level-1 unit u
is the top one in Figure 1, and the complementing obfuscator is O1.
The input to the complementing obfuscator Oj for deriving O′ is either a
sample of the level-1 unit where all honest obfuscators are initialized with

C0 and the corrupt one with C1, or all of them are initialized with C0. By
assumption, both samples are in the class CComb

λ such that the sample can
be passed to Oj . Algorithm Dki now evaluates our combiner, by replacing
inputs to obfuscators up to index i by C1, for subsequent indices giving input
C0, and replacing the output of the complementing obfuscator Oj in unit u
when evaluating our combiner by O′. Return D’s output bit on input C0, C1
and the combiner’s output O.

Assume i is such that the i-th obfuscator in order is still different from O∗k,
i.e., i < K. Then if O′ is the obfuscation of C1, then Dki runs D exactly on
the distribution of the hybrid variable Hk

i−1(C0, C1). In particular, for i = 1
algorithm Dki runs D on a sample of our combiner’s output for C1. Analogously,
for i = 9 and O′ stemming from the complementing obfuscator for a sample of
the level-1 unit with all C0 inputs, the input to D is distributed like a sample of
our combiner for C0 (and thus of Hk

9 (C0, C1)).
Assume that the k-th obfuscator is indeed corrupt. For i < K it follows

from the indistinguishability obfuscation of the sound obfuscators that there
exist negligible functions εi(λ) such that for any C0, C1, the advantage of Dki
in distinguishing the two input cases is at most εi(λ). For i ≥ K this follows
as the input circuits to the two sound obfuscators in unit u are already C0,
such that the majority computation of the unit ensures that in both cases the
unit circuit computes the function C0(·). It follows that both input circuits
to the complementing obfuscator Oj compute the same function and we can
again conclude from the security of the obfuscator that the advantage must be
bounded by some function εi(λ). Note that here we take advantage of the fact
that indistinguishability holds for all circuits and therefore in paticular also for
our partly combiner samples.

It therefore also holds for any i that the advantage of D in distinguishing
Hi−1(C0, C1) and Hi(C0, C1) for any C0, C1 is at most εi(λ), too. Hence, the
overall advantage of D is at most ε(λ) :=

∑9
i=1 εi(λ) and thus negligible.9

The claim carries over to the case of differing-inputs obfuscation. Recall that
the main difference to indistinguishability obfuscation is that, for the differing-
inputs case, the circuits in question are generated by an algorithm Sampler such
that the circuits may compute different functions, but Sampler ensures that find-
ing differing inputs is infeasible. We can basically apply the same hybrid argu-
ment in this case as above. However, for the step i ≥ K, when using the obfusca-
tion of our level-1 unit, we need to specify sampler Sampler′k with oracle access
to O1, . . . ,O4 to generate the input circuit for the complementing obfuscator.
Algorithm Sampler′k first runs Sampler to get (C0, C1, aux), then generates two
samples of the level-1 unit (one time using C0 for the honest obfuscators and C1
for O∗k, and the other time using C0 everywhere), and finally outputs these two
samples and aux′ = (C0, C1, aux) as auxiliary data. Note that finding an input

9 Note that we do not need to know the index k of the obfuscator; unlike the con-
struction it suffices that the proof provides an existential result.

x where the two level-1 unit samples differ is impossible, as both implement the
same function.

We next show that the claim remains true with respect to virtual black-
box and grey-box obfuscation. For this we assume that the adversary and the
simulator receive some circuit-dependent auxiliary input aux as additional input,
as explained in Section 2.

Proposition 1. The combiner in Figure 1 is a strongly robust 3-out-of-4 com-
biner for virtual black-box and grey-box obfuscation with respect to dependent
auxiliary input.

Proof. Functional correctness follows as in the case of indistinguishability ob-
fuscation. We only discuss the VBB property here; the VGB property follows
analogously.

Consider an adversary A0 against VBB obfuscation. This adversary receives
an output sample O′ of our combiner as input and some auxiliary input aux[0] =
aux[0](C). Let k be again the index of the malicious obfuscator and this time
define L = L(k) ∈ {3, 5} as follows. For k = 4 we would have the malicious
obfuscator O∗4 only on first-level units and we only need to look at the L = 3
second-level obfuscators. For k ∈ {1, 2, 3}, on the other hand, the malicious
combiner appears in a second-level unit and we thus consider the L = 5 sound
obfuscators, consisting of the 3 obfuscators leading to the second-level appear-
ance of O∗k and the remaining 2 honest level-two obfuscators.

Assume now that we change the auxiliary input to include the obfusca-
tor results of our combiner for all L sound obfuscators defined above. Denote
these intermediate results, ordered according to the obfuscator application, by
O[1..L] = (Oi1 , Oi2 , Oi3 , . . . , OiL), and let O[1..i] denote the first i entries in
O[1..L]. Let aux[0..i] denote the sample given by a sample of first i obfuscator
outputs, together with the (independent) sample aux[0] of A0.

Instead of considering A0(1λ, O′, aux[0]) we construct an algorithm A1 which
receives 1λ and aux[0..L] as input, assembles a combiner output O′ from aux[1..L]
by possibly evaluating the (level-2) malicious obfuscator, and runs adversary
A0(1λ, O′, aux[0]). Then, clearly, the output distribution of both algorithms are
identical. We can now view A1 as an algorithm which receives aux[0..L − 1] as
auxiliary input, and the obfuscated circuit aux[L] together with 1λ as regular
input.10 For this algorithm A1, by assumption about the security of OiL pro-
ducing OiL , there exists a simulator SC1 (1λ, aux[0..L − 1]) with negligibly close
output distribution.

Given S1 we construct an adversaryA2 which receives auxiliary input aux[0..L−
2], and 1λ and aux[L− 1] as regular input. It runs S1(1λ, aux[0..L− 2]) and uses
aux[L − 1] to answer oracle calls. Note that, by the functional correctness of
OiL−1 , using aux[L− 1] to simulate the oracle C of S1 is sound as both circuits
compute the same function. We can set this argument forth to eventually obtain
10 By construction, if we shift the input of a level-2 obfuscator then this is a sample

of a level-1 unit, whereas the other auxiliary inputs are based on the original and
functional equivalent circuit C.

a simulator SCL (1λ, aux[0]), producing some output distribution which is negligi-
bly close to the one of our initial adversary A0(1λ, O′, aux[0]). This shows VBB
obfuscation.

4 Lower Bounds for Combiners

To illustrate how we use the two required security properties, function preserva-
tion and indistinguishability, against each other to derive our general result, it is
useful to demonstrate our technique for some toy examples. In the examples we
use an unspecified notion of indistinguishability of the obfuscators as we merely
highlight the issues; the reader may think for sake of concreteness of the notion
of indistinguishability obfuscation.

4.1 Simple Attempts That Fail

The first attempt to build a secure combiner consists of a single unit and is given
in the left hand part of Figure 4. It uses three obfuscators O1,O2,O3 and runs
the input circuit through each of them. Then it combines the three obfuscated
circuits by a majority circuit. Note that this means that this part takes the
circuits and has some input wires for the input x, and it evaluates each circuit
on x and outputs y as the bit-wise majority of the answers. While we cannot
break the functional correctness of the combiner with a single corrupt obfuscator
O∗i , we can easily break the indistinguishability property. To this end we take
control of obfuscator O∗1 and let it simply output the input circuit in clear. Note
that this means that the unit, after having been initialized, reveals the input
circuit in clear as well, and this easy to distinguish.

Fig. 4: Examples of (insecure) structural combiners

In our second example we have two obfuscatorsO1,O2, let the output of them
be combined arbitrarily, and then input the derived circuit into obfuscator O3.
Note that in this case it is unclear how to break the indistinguishability property
by corrupting a single obfuscator only. If it is O3 then the obfuscators of the first
unit already hide the input circuit; if we corrupt one of the obfuscators O1,O2
then the final obfuscation hides the actual circuit.

We can, nonetheless, in the second example break the functional preservation
property. Namely, assume that both O1 and O2 are secure and that there are
two potential input circuits D0, D1 computing different functions for the same
input and output length. If we control O1, then we let it on any input circuit
rather obfuscate D1. Vice versa, if we control O2 then we let it always obfuscate
D0, independently of the actual input. It follows that the initialized combiners
for D0 (with our malicious O∗1 and with genuine O2) and for D1 (with genuine
O1 and our malicious O∗2) have the same distribution. For at least one of the two
cases the computed function must then be incorrect, as the initialization samples
for both input circuits D0, D1 have the same distributions in both cases.

4.2 The General Case of 2-out-of-3 Combiners

The attacks in the simple case show the path for our general impossibility result
for 2-out-of-3 structural combiners. If one of the three obfuscators appears in all
units on the path from some level-1 unit to the final unit, then it can pass on
information about the input circuit C to the final unit. This is done by forwarding
some information about the input circuit in the output of the obfuscator. This
would clearly violate the indistinguishability property. Hence, on all paths there
must be a unit which only uses (at most) the same two obfuscators. But then
we can “confuse” the combiner as we did in the second example above. The
argument, however, requires some care to deal with the fact that we have many
paths. Note also that the confusion strategy fails in our 3-out-of-4 construction
because the majority of the three combiners yields the correct function.

For sake of concreteness we use the notion of indistinguishability obfuscation
for the obfuscators and the combiners. Recall that this means that for any func-
tionally equivalent circuits C0, C1 from class C the combiners initialization with
these two circuits must be computationally indistinguishable. To avoid trivial
cases we assume that the class C contains at least two distinct but functionally
equivalent circuits E0, E1, and that it also contains two circuits D0, D1 comput-
ing different functions. We call such classes non-trivial.

Since we pass on circuits as inputs we need to fix some encoding. Let 〈·〉
denote such a function mapping circuits from the class C to strings. We as-
sume that the encoding is such that given an encoding of a unit (after ini-
tialization) one can reconstruct the circuits output by the obfuscators. That
is, there exists an efficient algorithm reconstruct such that given any initializa-
tion V ← U(C1, C2, C3, . . .) of a unit U , including obfuscated circuits Oi ←
Oij (Ci) and possibly pass-through circuits Oi = Ci, we have reconstruct(〈V 〉) =
(〈O1〉 , 〈O2〉 , 〈O3〉 , . . .). Furthermore, we assume that the encoding of no unit
coincides with the encoding of our equivalent circuits E0 or E1 such that it is
clear if each 〈Oi〉 is the result of a unit initialization or rather one of the cir-
cuits E0 or E1. We call such encodings 〈·〉 admissible. Note that this means that
the combiner itself cannot apply any obfuscation techniques beyond the ones
provided by the obfuscators placed inside the unit.

We first show that on any full path (from level-1 units to the final unit) each
of the three combiners does not appear in a unit (and that a unit in which it

does not appear is not pass-through). This holds for any structural combiner,
independently of the total number of obfuscators and the number of malicious
ones:
Lemma 1. Let CombO1,O2,...,ON be a structural combiner for a non-trivial cir-
cuit class C with admissible encoding 〈·〉. Then for any full path of units of the
combiner and for any i ∈ {1, 2, . . . , N} there must be a unit which is not pass-
through and which is not an {i, . . . }-unit, or else the combiner cannot be an
indistinguishable obfuscator.

Proof. Assume that there exists a full path of units and an i ∈ {1, 2, . . . , N}
such that each unit on the path is an {i, . . . }-unit or that it is pass-through (or
both). Then we show how to break indistinguishability obfuscation as follows. Let
E0, E1 be some functional equivalent circuits in the class with distinct encodings
under 〈·〉. We corrupt obfuscator Oi and for each input circuit let it, for each call,
simply output the input circuit in clear, by duplicating the input description.

Since each unit on the pass includes the i-th obfuscator (or is pass through)
a distinguisher can distinguish between a combiner obfuscation of E0 and E1
as follows. The distinguisher receives as input the initialization of the final unit
U , and runs reconstruct(〈U〉) to recover all (obfuscated or pass-through) input
circuits O1, O2, Since the distinguisher knows the layout of the combiner it
can recursively apply the reconstruction algorithm to outputs of the i-th com-
biner resp. to passed circuits; both are initialized units. Following the full path
in question, the distinguisher eventually obtains either E0 or E1 as the input
circuit, and can thus distinguish the two cases easily. ut

We next show that, given that each full path contains a unit in which, say,
obfuscator O3 does not appear, we can confuse the combiner. This time, the
claim only holds for 2-out-of-3 combiners:
Lemma 2. Let CombO1,O2,O3 be a structural combiner for a non-trivial circuit
class C with admissible encoding 〈·〉. Then the combiner cannot be perfectly cor-
rect.

In particular, if u denotes the number of units in the structural combiner and
m the maximal number of obfuscator gates in a unit, then with probability at
least 2−u(mu)−mu (over the random choices of the obfuscators) the combiner’s
function is different from the one of the input circuit. If u and m are constant,
for instance, this means a constant error in functional preservation.

Proof. By Lemma 1 for each path from level-1 units to the final unit there exists
a unit which does not contain, say, the obfuscator O3 and which is neither pass-
through. Put differently, such a unit contains (at most) the obfuscators O1,O2,
each one possibly multiple times Let U1, U2, . . . be the corresponding units which
we call confusion units. In the example in Figure 5 the confusion units on the
three paths are marked by dotted lines.

We consider two cases, one time corrupting obfuscator O1, the other time
corrupting obfuscator O2. Let us first consider the case that we corrupt obfus-
cator O1. Our version O∗1 of the obfuscator will internally hold, and formally

Fig. 5: Confusion units in this example are marked by dotted lines.

attributed to the non-uniformity, an initialization sample of CombO1,O2,O3(D1)
with the genuine obfuscators for input circuit D1. In particular, for each confu-
sion unit Ui it will include the j ≤ m circuit codes of Oji [D1] which the original
obfuscator O1 output in unit Ui in this sample. In order to make our obfuscator
state-free we will guess the right insertion positions and injected circuits. That
is, for each call (about some input circuit) our malicious obfuscator O∗1 tosses a
coin. If it comes out as head, then the obfuscator proceeds as the genuine ob-
fuscator would. If it is tail, then it picks one of the at most mu circuits Oji [D1]
at random, and returns this circuit. An example of a run with good guesses is
given in the left part of Figure 5.

For the other case we corrupt O2 and include a sample of CombO1,O2,O3(D0)
of the genuine obfuscators, this time for input circuit D0. Analogously to the
other case denote the output of O2 in the confusion unit Ui by Oji [D0]. When
called, the malicious obfuscator O∗2 also generates an honest answer with proba-
bility 1

2 , and inserts one of the pre-sampled circuits Oji [D0], the choice made at
random, in the other case.

Fig. 6: Confusion strategy with malicious obfuscator O∗1 injecting parts of the upper
D1 initialization sample into the lower D0 initialization (left), and malicious obfuscator
O∗2 injecting parts of the upper D0 initialization sample into the lower D1 initialization
(right).

For the analysis we start with the case of a malicious obfuscator O∗1 . Note
that, if we let u denote the number of units in the combiner, then with probability

2−u we overwrite the obfuscator’s behavior exactly for the confusion units, since
we predict the status of each unit (confusion or not) exactly with probability 1

2 . If
so, then we also inject the hardwired circuits Oji [D1] “correctly” in confusion unit
Ui with probability at least (mu)−mu, since we have at most u units with at most
m obfuscator gates and need to guess for each unit correctly among the at most
mu possibilities among all Oji [D1]’s. If this happens, and the combiner receives
circuit D0 as input, then in the confusion units we have consistent samples for
O1 gates (if present), as if the combiners input had been D1. See the left part of
Figure 6 for an example. Simultaneously, in the same unit, we have consistent
samples for O2 gates (if present), as if the overall input had been circuit D0.

By symmetry, the same is true if we control obfuscator O∗2 and the combiner’s
input is D1. Hence, with probability at least 2−u(mu)−mu either case creates the
same output distribution. If this happens, then on each path to the final unit
the corresponding confusion unit produces the same distribution upon the single
initialization in both cases. It follows that the combiner must implement an
incorrect function in one of the cases, showing that functional preservation is
not satisfied. It follows that the combiner cannot be perfectly correct.

Noting that the combiner cannot work even if 2 of the 3 obfuscators both
have both properties simultaneously, the previous lemmas imply that there are
not even weakly robust 2-out-of-3 combiners for indistinguishability obfuscation.
It follows that there cannot exist stronger forms of structural combiners either,
such as 1-out-of-2 combiners, strong combiner, or virtual grey-box combiners.

Theorem 2. For any o ∈ {VBB,VGB, indistinguishability, differing-inputs} there
is no structural weakly robust 2-out-of-3 o-obfuscation combiner CombO1,O2,O3

for non-trivial circuit classes C with admissible encoding 〈·〉.

5 The General Case of (2γ[+1])-out-of-(3γ[+1])
Combiners

In this section we present a generalization of our 3-out-of-4 combiner to the case
of (2γ+1)-out-of-(3γ+1) combiners for any fixed integer γ. In fact, our combiner
for γ = 1 in Section 3 can be seen as a special parallelized version of the general
approach here. We then discuss that our lower bound for 2-out-of-3 structural
combiners also carries over to the more general case of 2γ-out-of-3γ combiners,
showing that our general combiner here is optimal in this regard.

5.1 Robust (2γ + 1)-out-of-(3γ + 1) Combiners

Consider all sets I of subsets of {1, 2, . . . , 3γ+1} of size 2γ+1. For each such set I
form the unit which, similar to our 3-out-of-4 case, first in parallel obfuscates the
input circuit with each obfuscator Oi for i ∈ I, and then compute the majority
circuit over all these 2γ + 1 obfuscated circuits. We write

OI(·) = MAJ {Oi(·) | i ∈ I }

for this unit. To obfuscate a circuit C compose each of these units for all the I’s
sequentially, in arbitrary order. Let us denote this process by

(
∏
I

OI)(·) = OI`(· · ·OI3(OI2(OI1(·))) · · ·)

for constant ` =
(3γ+1

2γ+1
)
. Call this the sequential-subset combiner for γ.

Intuitively, the sequential-subset combiner guarantees robustness as there
exists a subset I such that this subset only uses the 2γ+1 uncorrupt obfuscators.
At the same time each circuit OI computes the correct function as the majority
of the 2γ + 1 obfuscators faithfully computes the correct function.

Theorem 3. For any constant γ the sequential-subset combiner is a strongly
robust (2γ + 1)-out-of-(3γ + 1) combiner for indistinguishability obfuscation, for
differing-inputs obfuscation, for virtual black-box obfuscation, and for grey-box
obfuscation, the latter ones for dependent auxiliary inputs.

The proof is similar to our 3-out-of-4 combiner. Functionally correctness fol-
lows from the fact that the majority computation in each OIi ensures that the at
most γ corrupt obfuscators cannot bias the outcome. Obfuscation follows as be-
fore because there must exist one set I which exclusively contains non-malicious
obfuscators.

5.2 Impossibility for 2γ-out-of-3γ Combiners

In this section we discuss that our lower bound for 2-out-of-3 structural combin-
ers carries over to the more general case of 2γ-out-of-3γ combiners.

Theorem 4. There is no structural weakly robust 2γ-out-of-3γ obfuscation com-
biner CombO1,O2,...,O3γ for non-trivial circuit classes C with admissible encoding
〈·〉.

Proof. Recall the proof for the 2-out-of-3 case. There, in the first step we have
shown that on each path from a level-1 unit to the output unit there must be
a unit in which obfuscator O3 does not appear and which is not pass-through.
We called these units confusion units.

The same argument now applies here as well for the γ obfuscators with
indices 2γ+1, . . . , 3γ. Else, if there was a path in which one of these obfuscators
appears in each unit (or if the unit is pass-through), then we could easily corrupt
these obfuscators and forward information about the input circuit through the
admissible encoding 〈·〉. Hence, in the case here there must be a confusion unit
on each path, which only uses circuits with indices 1, 2, . . . , 2γ and which are
not pass-through.

In the second step of the proof for the 2-out-of-3 case we then show that in
the confusion units with obfuscators O1 and O2 we can confuse the combiner.
One time we corrupt O1 and let it insert samples of circuit D1, and the other
time we corrupt O2 and insert samples for D0, where D0, D1 compute different

functions. Then the combiner’s view when run on input D0 in the first case, and
on D1 in the second case, has the same distribution and the combiner cannot
provide functional correctness.

We apply the same argument here, one time corrupting the first γ obfuscators
with indices 1, . . . , γ and inserting a sample forD1, and the other time corrupting
obfuscators with indices between γ + 1, . . . , 2γ and using a sample for D0. Then
the combiner’s views in both cases (for input circuit D0 in the first case, and for
D1 in the second case) are identical again such that it cannot provide a correct
combiner.

As in the 2-out-of-3 case the malicious obfuscators above insert the confusion
samples at random positions, such that it only achieves confusion with the same
bound as in the previous case. Note also that we took advantage of the fact that
corrupt combiners are coordinated centrally by the adversary.

6 Detecting Combiners

The combiners in the previous section were correcting in the sense that they guar-
anteed functionality correctness if a quorum if obfuscator candidates is secure.
Here we consider combiners which should create circuits which either output
the correct value, but may give some error output ⊥. We call them detecting
combiners.

For detecting combiners we require a weaker correctness property, namely
that for any circuit C ∈ C, for any O ← CombO1,O2,...(C) we have that O(x) ∈
{C(x),⊥} for all x ∈ {0, 1}∗ in the domain of C. This means that the combiner
may sometimes fail to compute the correct function value but then it signals this
by outputting a special symbol ⊥. To prevent trivial solutions like the combiner
which outputs the circuit that always returns ⊥ we assume that C ≡ O if all ob-
fuscators are secure. Note that our assumption about the obfuscators O1,O2, . . .
being able to deal with (intermediate) combiner outputs in CComb implies that
the obfuscators may now also receive circuits which occasionally output ⊥.

6.1 Robust (γ + 1)-out-of-(2γ + 1) Detecting Combiners

To build our (γ + 1)-out-of-(2γ + 1) combiner we follow the approach of our
sequential-subset combiner. We can also straightforwardly give the optimized
version for the case of a 1-out-of-3 combiner, akin to our 1-out-of-4 combiner,
but omit this step here. To build the sequential-subset combiner consider here
all sets I of subsets of {1, 2, . . . , 2γ+ 1} of size γ+ 1. For each such set I we first
obfuscate the input circuit with each obfuscator Oi for i ∈ I. But now instead
of completing the computation by adding a majority sub circuit, we now use the
detecting version which (a) either outputs the string on which all circuits agree
upon as output (even if it is ⊥), or (b) returns ⊥ is there is no such unanimous
decision. Let

OI(·) = UNAN {Oi(·) | i ∈ I }

denote this unit with the unanimity circuit at the end. For obfuscation of C now
compute the sequential-subset combiner

(
∏
I

OI)(·) = OI`(· · ·OI3(OI2(OI1(·))) · · ·)

as before for constant ` =
(2γ+1
γ+1

)
.

Theorem 5. For any constant γ the sequential-subset combiner is a strongly
robust (γ+1)-out-of-(2γ+1) detecting combiner for indistinguishability obfusca-
tion, for differing-inputs obfuscation, for virtual black-box obfuscation, and for
grey-box obfuscation, the latter ones for dependent auxiliary inputs.

The proof is similar to the case of correcting combiners, except that we only
guarantee the weaker functional correctness. This property is given since in each
unit for index set I there is at least one honest obfuscator among the γ + 1
ones, the unanimity circuit either outputs the function value computed by the
honest obfuscator (if all other circuits agree), which may either be the correct
function value for some x or ⊥, or it returns the error message ⊥. It follows that
the overall output of the combiner circuit can only comply with the circuit’s
output, or returns ⊥. The obfuscation properties follow as before noting that
the obfuscators are able to handle input circuits with output ⊥, and that there
must exist an index set I which only contains good obfuscators.

6.2 Impossibility of γ-out-of-2γ Detecting Combiners

The idea for the lower bound for correcting combiners carries over to detecting
combiners, with

Theorem 6. There is no structural weakly robust γ-out-of-2γ obfuscation com-
biner CombO1,O2,...,O2γ for non-trivial circuit classes C with admissible encoding
〈·〉.

Proof. As in the case of 2-out-of-3 combiners and 2γ-out-of-3γ combiners, here,
there must be also (non-pass-through) confusion units in each path from input
units to the final unit, where none of the obfuscators with indices γ + 1, . . . , 2γ
appears. Assume now that we corrupt the obfuscators with indices 1, . . . , γ and
let these obfuscators insert intermediate samples of a circuitD0 of the combiner’s
obfuscation in the confusion units, independently of the input. If the insertions
happen at the right position with significant probability, then the combiner must
output an obfuscated circuit as if the combiner has been run on D0 for honest
obfuscators. In particular, the combiner’s circuit must then compute the function
D0 on every input. This holds even if the original input circuit wasD1, computing
a different function than D0, i.e., D0(z) 6= D1(z) for some string z. But then the
combiner’s circuit produces a false output D0(z) 6= ⊥ for input z and cannot be
detecting.

7 Implementation and Evaluation

Our formal results have been stated in terms of the common notion of cir-
cuit obfuscation. In practice, however, programs are usually considered to be
better modeled for Turing machines. We stress that our results, especially for
the majority-based combiner, hold for such Turing machine programs as well.
Namely, our 3-out-of-4 combiner would then output the program implementing
the nested majority implementations.

Concerning provably secure instantiations for Turing machine obfuscation,
we note that if the running time and the input length of the Turing machine are
bounded then one can in principle transform such machines into corresponding
circuits, albeit at the cost of increasing the complexity significantly. A more
efficient solution is to use obfuscation techniques for Turing machines directly.
Given the current state of constructions this is possible if the input length can be
bounded [40] and, for other constructions, if the space is also bounded beforehand
[17,11].

To evaluate the suggested combiners for typical obfuscation programs in prac-
tice we implemented the PyObf python package [9] that can be used to wrap
existing obfuscators and to implement new combiners. Even though the concep-
tual construction of a combiner is not related to the concrete implementation
of the underlying obfuscators, implementations for different programming lan-
guages might differ, since some constructions introduce new run-time parts (e.g.,
as the MAJ circuit in our case) to the program. We chose to use JavaScript as the
implementation programming language because of the relatively high number of
available obfuscators.

7.1 Performance Evaluation

For performance evaluation we used Yahoo!’s YUICompressor v2.4.811 as O1, a
slightly randomized version of it as O2, Google’s Closure Compiler v2015101512

as O3, and jsPacker.pl v1.00b13 as O4. Note that there is no essential difference
between O1 and O2, especially in terms of obfuscation overhead, since the latter
only uses different and randomized symbol selection routine. Security of combin-
ers usually relies on somewhat independent components but since we are mainly
interested in performance evaluation here we opted for using the related choice.
The evaluated combiners are:

C1(.) = O4(O3(O2(O1(.))))
C2(.) = O2(O1(O4(O3(.))))
C3(.) = MAJ(O1(O2,3,4),O2(O1,3,4),O3(O1,2,4))
C4(.) = MAJ(O3(O4,1,2),O4(O3,1,2),O1(O3,4,2))

11 https://github.com/yui/yuicompressor
12 https://github.com/google/closure-compiler
13 http://dean.edwards.name/download/

https://github.com/yui/yuicompressor
https://github.com/google/closure-compiler
http://dean.edwards.name/download/

The evaluated programs (with varying input size, ranging from a few thou-
sand bytes to a roughly million bytes) are Cookies.js v1.2.214 (6, 637 bytes), High-
light.js v9.0.015 (22, 604 bytes), jCarousel v0.3.416 (46, 007 bytes), Backbone.js
v1.2.317 (71, 415 bytes), Chart.js v1.0.218 (109, 612 bytes), Epoch v0.8.419 (115, 940
bytes), Swig v1.4.220 (143, 975 bytes), PhysicsJS v0.7.021 (171, 847 bytes), jQuery
v1.6.422 (238, 166 bytes), Raphaël v2.1.423 (304, 254 bytes), Dojo v1.10.424 (629, 481
bytes), Video.js v5.4.425 (675, 527 bytes) and AngularJS v1.4.526 (1, 052, 336
bytes).

Note that the above circuit model describes a program as a function with
input and output, in contrast to the common software design of JavaScript li-
braries that heavily depends on the JavaScript context (e.g., the window object).
But this difference is irrelevant to performance evaluation.

213 214 215 216 217 218 219 220

0

20

40

60

80

Input size

O
bf
us
ca
tio

n
tim

e
(s
ec
.)

O1 vs. O3 vs. O4

O1

O3

O4

213 214 215 216 217 218 219 220

0.2

0.4

0.6

Input size

O
ut
pu

t
bl
oa

t
ra
tio

O1 vs. O3 vs. O4

O1

O3

O4

Fig. 7: Overhead of individual obfuscators (time and output bloat ratio) for the various
programs (in relation to their input sizes for the obfuscator). Note that we do not
display obfuscator O2 here as its performance is essentially identical to the one of O1.

Figure 7 gives the effectiveness of the obfuscators in terms of obfuscation
time and of output-bloat ratio. Here we show the figures in relation of the sizes

14 https://github.com/ScottHamper/Cookies
15 https://highlightjs.org
16 http://sorgalla.com/jcarousel/
17 http://backbonejs.org/
18 http://www.chartjs.org/
19 http://epochjs.github.io/epoch/
20 http://paularmstrong.github.io/swig/
21 http://wellcaffeinated.net/PhysicsJS/
22 https://jquery.com/
23 https://github.com/DmitryBaranovskiy/raphael
24 https://dojotoolkit.org/
25 http://videojs.com/
26 https://angularjs.org/

https://github.com/ScottHamper/Cookies
https://highlightjs.org
http://sorgalla.com/jcarousel/
http://backbonejs.org/
http://www.chartjs.org/
http://epochjs.github.io/epoch/
http://paularmstrong.github.io/swig/
http://wellcaffeinated.net/PhysicsJS/
https://jquery.com/
https://github.com/DmitryBaranovskiy/raphael
https://dojotoolkit.org/
http://videojs.com/
https://angularjs.org/

213 214 215 216 217 218 219 220

0

10

20

30

40

50

Input size

O
bf
us
ca
tio

n
tim

e
(s
ec
.)

O1 vs. C1 vs. C2

O1

C1

C2

213 214 215 216 217 218 219 220

0.2

0.4

0.6

Input size

O
ut
pu

t
bl
oa

t
ra
tio

O1 vs. C1 vs. C2

O1

C1

C2

Fig. 8: Overhead of cascaded combiner (time and output bloat ration).

213 214 215 216 217 218 219 220

0

50

100

150

200

Input size

O
bf
us
ca
tio

n
tim

e
(s
ec
.)

O1 vs. C3 vs. C4

O1

C3

C4

213 214 215 216 217 218 219 220

0

2

4

6

Input size

O
ut
pu

t
bl
oa

t
ra
tio

O1 vs. C3 vs. C4

O1

C3

C4

Fig. 9: Overhead of 3-out-of-4 combiner (time and output bloat ration).

of the various programs (from 6, 637 bytes to 1, 052, 336 bytes) given as input
to the obfuscators. Note that the results may depend heavily on the specific
input programs such that we cannot expect perfectly monotonic behavior in
the graphs. Also, as mentioned before, many practical obfuscators come with
techniques for code size reduction such that the output bloat ratio can be—and
often is—smaller than 1. Next, we compare these figures to the results of the
suggested combiners, first to the cascade combiners in Figure 8 and then to the
3-out-of-4 combiners in Figure 9.

In summary, the proposed obfuscation combiners do not add significant run
time overhead compared to a single obfuscator. The factor is roughly propor-
tional to the number of invoked instances, with some gains presumably due to
the intermediate code optimization. Due to the advanced compression techniques
the code size of our cascaded combiners is in the same order as the individual
obfuscators. For the 3-out-of-4 combiner we of course get an increased output
size because of the tripling for each majority step, potentially also hampering
some code reductions.

7.2 Security Evaluation

Due to the unclear situation about security properties of practical obfuscators we
have proven robustness of our combiners with respect to the common theoretical
notions of obfuscation in the literature. There are approaches to define metrics
for practical obfuscators, though. A first approach is by Collberg at al. [20] who
define notions for potency (the incomprehensibility of the transformed program
for humans), resilience (the hardness of undoing the transformation through the
joint effort of engineers and deobfuscation techniques), and cost (the overhead
caused by the obfuscator). The measure of quality of an obfuscator is then given
by a vector of these three metrics.

While the notion of cost in [20] even distinguishes the full range between ex-
ponential and constant overhead in execution resources, the metrics for potency
and resilience in [20] are less rigorous. They are accompanied by suitable soft-
ware complexity measures such as program length or cyclomatic complexity [42].
Anckaert et al. [5] later used software complexity measures, too, for establishing
a benchmarking system for obfuscators for binary executables.

While it is beyond the scope of our work here, it may be interesting to
benchmark our obfuscation combiners according to the metrics in [5]. Note that
their metrics focus on resilience and somewhat neglect the overhead. Since our
combiners in principle increase the software complexity at the cost of incurring
additional steps, one should expect that combinations of benchmarked obfusca-
tors yield better values in this regard.

8 Conclusion

Our positive results about combiners, and also our lower bounds, indicate how
to proceed both in theory and practice. If you only have two available candidates
then the best solution appears to be the sequential composition O2(O1(·)), if one
can somehow guarantee that the inner obfuscator provides functional correctness.
For three candidates (out of which at least two are sound) then our 2-out-of-3
detecting combiner should be the primary choice. To ensure correct output, our
3-out-of-4 combiner provides a secure solution.

Acknowledgments

We are grateful to Christian Collberg for his feedback and encouragement. Marc
Fischlin is supported by the Heisenberg grant Fi 940/3-2 and the SPP 1736
grant Fi 940/5-1 of the German Research Foundation (DFG). Amir Herzberg is
support by the Israeli Ministry of Science and Technology.

References
1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs ob-

fuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013),
http://eprint.iacr.org/2013/689

http://eprint.iacr.org/2013/689

2. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal obfuscation and
witness encryption: Boosting correctness and combining security (2016), http:
//eprint.iacr.org/2016/281

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (Aug 2015)

4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation with constant size
overhead. IACR Cryptology ePrint Archive, Report 2015/1023 (2015), http://
eprint.iacr.org/2015/1023

5. Anckaert, B., Madou, M., Sutter, B.D., Bus, B.D., Bosschere, K.D., Preneel, B.:
Program obfuscation: a quantitative approach. In: Proceedings of the 3th ACM
Workshop on Quality of Protection, QoP 2007, Alexandria, VA, USA, October 29,
2007. pp. 15–20. ACM (2007)

6. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
New mathematical tools, and the case of evasive circuits. In: Advances in Cryp-
tology - EUROCRYPT 2016. Lecture Notes in Computer Science, vol. 9666, pp.
764–791. Springer (2016)

7. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (May 2014)

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

9. Bin Noon, H.: Pyobf. https://github.com/hodbn/pyobf (2016)
10. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-

tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (Aug 2010)

11. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC.
pp. 439–448. ACM Press (Jun 2015)

12. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from approxi-
mate to exact, http://eprint.iacr.org/2015/704

13. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. pp. 171–190. IEEE
Computer Society (2015)

14. Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision re-
sistant hash functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
570–583. Springer, Heidelberg (Aug 2006)

15. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (Feb 2014)

16. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (Aug 1997)

17. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: Servedio, R.A., Rubinfeld,
R. (eds.) 47th ACM STOC. pp. 429–437. ACM Press (Jun 2015)

18. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: EUROCRYPT 2015, Part I. LNCS, vol. 9056. Springer,
Heidelberg (Apr 2015)

http://eprint.iacr.org/2016/281
http://eprint.iacr.org/2016/281
http://eprint.iacr.org/2015/1023
http://eprint.iacr.org/2015/1023
https://github.com/hodbn/pyobf
http://eprint.iacr.org/2015/704

19. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation–
tools for software protection. IEEETSE: IEEE Transactions on Software Engineer-
ing 28 (2002)

20. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical Report #148, Department of Computer Science, The University
of Auckland, New Zealand (1997)

21. Coron, J.S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part I. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (Aug 2015)

22. Coron, J.S., Lee, M., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multilin-
ear maps. Cryptology ePrint Archive, Report 2015/1037 (2015), http://eprint.
iacr.org/2015/1037

23. Coron, J.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate fixes of
multilinear maps over the integers. Cryptology ePrint Archive, Report 2014/975
(2014), http://eprint.iacr.org/2014/975

24. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (Feb 2005)

25. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant
hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–
243. Springer, Heidelberg (Aug 2007)

26. Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg
(Mar 2008)

27. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash
functions. Journal of Cryptology 27(3), 397–428 (Jul 2014)

28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013)

29. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (Aug 2014)

30. Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnerabilities
of multilinear maps. Cryptology ePrint Archive, Report 2016/390 (2016), http:
//eprint.iacr.org/2016/390

31. Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: Cryptan-
alyzing multilinear maps without encodings of zero. Cryptology ePrint Archive,
Report 2014/929 (2014), http://eprint.iacr.org/2014/929

32. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation from
the multilinear subgroup elimination assumption (2015)

33. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: 46th FOCS. pp. 553–562. IEEE Computer Society Press (Oct 2005)

34. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for
oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (May 2005)

35. Herzberg, A.: Folklore, practice and theory of robust combiners. Cryptology ePrint
Archive, Report 2002/135 (2002), http://eprint.iacr.org/2002/135

36. Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) CT-
RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (Feb 2005)

http://eprint.iacr.org/2015/1037
http://eprint.iacr.org/2015/1037
http://eprint.iacr.org/2014/975
http://eprint.iacr.org/2016/390
http://eprint.iacr.org/2016/390
http://eprint.iacr.org/2014/929
http://eprint.iacr.org/2002/135

37. Herzberg, A.: Folklore, practice and theory of robust combiners. Journal of Com-
puter Security 17(2), 159–189 (2009)

38. Herzberg, A., Shulman, H.: Robust combiners for software hardening. In: Trust and
Trustworthy Computing, Third International Conference, TRUST 2010, Berlin,
Germany, June 21-23, 2010. Proceedings. Lecture Notes in Computer Science, vol.
6101, pp. 282–289. Springer (2010)

39. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal samplers. Cryptology ePrint Archive, Report 2014/507
(2014), http://eprint.iacr.org/2014/507

40. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th
ACM STOC. pp. 419–428. ACM Press (Jun 2015)

41. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Advances in Cryptology - EUROCRYPT 2016. Lecture Notes in Com-
puter Science, vol. 9665, pp. 28–57. Springer (2016)

42. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 2(4), 308–320
(1976)

43. Meier, R., Przydatek, B.: On robust combiners for private information retrieval
and other primitives. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
555–569. Springer, Heidelberg (Aug 2006)

44. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-
fer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404–418. Springer,
Heidelberg (Feb 2007)

45. Mennink, B., Preneel, B.: Breaking and fixing cryptophia’s short combiner. In:
Gritzalis, D., Kiayias, A., Askoxylakis, I.G. (eds.) CANS 14. LNCS, vol. 8813, pp.
50–63. Springer, Heidelberg (Oct 2014)

46. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. Cryptology ePrint
Archive, Report 2016/147, http://eprint.iacr.org/2016/147

47. Mittelbach, A.: Cryptophia’s short combiner for collision-resistant hash functions.
In: Jacobson Jr., M.J., Locasto, M.E., Mohassel, P., Safavi-Naini, R. (eds.) ACNS
13. LNCS, vol. 7954, pp. 136–153. Springer, Heidelberg (Jun 2013)

48. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (Aug 2014)

49. Pietrzak, K.: Non-trivial black-box combiners for collision-resistant hash-functions
don’t exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 23–33.
Springer, Heidelberg (May 2007)

50. Pietrzak, K.: Compression from collisions, or why CRHF combiners have a long out-
put. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 413–432. Springer,
Heidelberg (Aug 2008)

http://eprint.iacr.org/2014/507
http://eprint.iacr.org/2016/147

	Obfuscation Combiners

