
Universal Constructions and Robust Combiners
for Indistinguishability Obfuscation and

Witness Encryption

Prabhanjan Ananth1?, Aayush Jain1??, Moni Naor2? ? ?, Amit Sahai1†, and
Eylon Yogev2

1 Center for Encrypted Functionalities and Department of Computer Science, UCLA.
Email: {prabhanjan,aayush,sahai}@cs.ucla.edu

2 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
Email: {moni.naor,eylon.yogev}@weizmann.ac.il

Abstract. Over the last few years a new breed of cryptographic prim-
itives has arisen: on one hand they have previously unimagined utility
and on the other hand they are not based on simple to state and tried
out assumptions. With the on-going study of these primitives, we are left
with several different candidate constructions each based on a different,
not easy to express, mathematical assumptions, where some even turn
out to be insecure.
A combiner for a cryptographic primitive takes several candidate con-
structions of the primitive and outputs one construction that is as good
as any of the input constructions. Furthermore, this combiner must be
efficient: the resulting construction should remain polynomial-time even
when combining polynomially many candidate. Combiners are especially
important for a primitive where there are several competing construc-
tions whose security is hard to evaluate, as is the case for indistinguisha-
bility obfuscation (IO) and witness encryption (WE).
One place where the need for combiners appears is in design of a universal
construction, where one wishes to find “one construction to rule them

? Partially supported by grant #360584 from the Simons Foundation. Partially sup-
ported by grants under Amit Sahai.

?? Supported by grants under Amit Sahai.
? ? ? Research supported in part by grants from the Israel Science Foundation grant no.

1255/12, BSF and from the I-CORE Program of the Planning and Budgeting Com-
mittee and the Israel Science Foundation (grant no. 4/11). Moni Naor is the incum-
bent of the Judith Kleeman Professorial Chair.

† University of California Los Angeles and Center for Encrypted Functionalities. Re-
search supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Fac-
ulty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through the ARL
under Contract W911NF-15-C-0205. The views expressed are those of the author
and do not reflect the official policy or position of the Department of Defense, the
National Science Foundation, or the U.S. Government.

all”: an explicit construction that is secure if any construction of the
primitive exists.

In a recent paper, Goldwasser and Kalai posed as a challenge finding
universal constructions for indistinguishability obfuscation and witness
encryption. In this work we resolve this issue: we construct universal
schemes for IO, and for witness encryption, and also resolve the exis-
tence of combiners for these primitives along the way. For IO, our uni-
versal construction and combiners can be built based on either assuming
DDH, or assuming LWE, with security against subexponential adver-
saries. For witness encryption, we need only one-way functions secure
against polynomial time adversaries.

1 Introduction

We live in a golden, but dangerous, age for cryptography. New primitives are
proposed along with candidate constructions that achieve things that were pre-
viously in the realm of science fiction. Two such notable examples are indistin-
guishability obfuscation3 (IO), and witness encryption4 (WE). However, at the
same time, we are seeing a steady stream of new attacks on assumptions that
are underlie, or at least are closely related to, these new candidates. With this
proliferation of constructions and assumptions comes the question: how do we
evaluate these various assumptions, which constructions do we choose and how
do we actually use them?

What is better: one candidate construction of indistinguishability obfuscation
(IO) or two such candidate constructions? What about a polynomial-sized family
of candidates? The usual approach should be “the more the merrier”, but how
do we use these several candidates to actually obfuscate? The relevant notion is
that of a combiner: it takes several candidates for a primitive and produces one
instance of the primitive so that if any of the original ones is a secure construction
then the result is a secure primitive. Furthermore, this combiner must be efficient:
the resulting construction should remain polynomial-time. Another issue is what
do we assume about the insecure constructions. Are they at least correct, i.e.
do they maintain the functionality, or can they be arbitrarily faulty? We are
interested in a combiner that adds very little complexity to the basic underlying
schemes and assumes as little as possible regarding the insecure schemes, i.e. they
may be completely dysfunctional. Furthermore, we would like the assumptions
underlying our combiner to be as minimal and standard as possible.

One candidate to rule them all (theoretically speaking). In fact, we can
even go further: A closely related issue to the existence of combiners is that

3 Indistinguishability obfuscation is the ability to scramble a program so that it is
not possible to decide what was the source code out of two semantically equivalent
options.

4 Witness encryption is a method for encrypting a message relative to a string x and
language L so that anyone with a witness w that x ∈ L can decrypt but if x 6∈ L
then no information about the message is leaked.

of a universal construction of a primitive: a concrete construction of the primi-
tive that is secure if any secure construction exists. In the context of candidate
constructions, a universal IO candidate would change the game considerably be-
tween attacker and defender: Currently, each IO candidate is based on specific
mathematical techniques, and a cryptanalysis of each candidate can be done by
finding specific weaknesses in the underlying mathematics. With a universal IO
candidate, the only way to give a cryptanalysis of this candidate would be to
prove that no secure IO scheme exists. To the best of our knowledge, no plausible
approaches have been proposed for obtaining such a proof. Thus, a universal IO
scheme would vastly raise the bar on what an attacker must do.

Furthermore, intriguingly, we note that IO exists if P=NP. In contrast to
other objects in cryptography, IO by itself does not imply hardness. This raises
the possibility of a future non-constructive existence proof for IO, even without
needing to resolve P vs NP. If we have a universal IO scheme, then any such
non-constructive proof would be made explicit: the universal IO scheme would
be guaranteed to be secure.

Indeed, in a recent opinion paper regarding assumptions Goldwasser and
Kalai [19] wrote:

We pose the open problem of finding a universal instantiations for other
generic assumptions, in particular for IO obfuscation, witness encryp-
tion, or 2-message delegation for NP.

In this work we resolve two out of those three primitives, namely IO and witness
encryption, for security against subexponential adversaries for IO, and polyno-
mial adversaries for witness encryption. Our universal constructions also resolve
the existence of combiners for these primitives along the way. For IO, our uni-
versal construction and combiners can be built based on either assuming DDH,
or assuming LWE, with security against subexponential adversaries. For witness
encryption, we need only one-way functions secure against polynomial adver-
saries.

Robust IO Combiners. We construct both (standard) combiners and robust
combiners. A (standard) combiner handles only security: the promise is that
all given candidates are correct, but only one is promised to be secure. These
combiners are useful when different schemes are based on different hardness
assumptions, but they all have a proof of correctness. The resulting combined
scheme will be correct and as secure as all the underlying assumptions.

A robust combiner handles the case where security and correctness are both
promised only for a single candidate. We only know of constructing universal
schemes from robust combiners and in particular, (standard) combiners does not
suffice.

The status of IO schemes or – are we dead yet? The state of the art of IO
is in flux. There is a steady stream of proposals for constructions and a similar
stream of attacks on various aspects of the constructions. In order to clarify
the state of the art in the full version [2] we provide a detailed explanation of
the constructions, the attacks and what implications they have (a summary is

provided in Figure 13 of the full version). As of now (June 2016) there is no
argument or attack known that implies that all iO schemes or primitives used
by them are broken.

Brief history of combiners and universal cryptographic primitives. The
notion of a combiner and its connection to universal construction were formal-
ized by Harnik [21] (see also Herzberg [22,23]). An early instance of a combiner
for encryption is that of Asmuth and Blakely [8]. A famous example of a uni-
versal construction (and the source of the name) is that of one-functions due to
Levin [27] (for details see Goldreich [17, §2.4.1]).

Related Work. Concurrent to our work, Fischlin et al. [13], building upon [24],
also studied the notion of robust obfuscation combiners. The security notions
considered in their work also deal with virtual black box obfuscation and virtual
gray box obfuscation, that are not dealt with in our work. However, they achieve
a much weaker result: they can only combine a constant number of candidates
and furthermore, they assume that a majority of the candidates are correct.
Thus, their combiners are not useful to obtaining any implication to universal
indistinguishability obfuscation.

1.1 Our Results

Our first result is a construction of an IO combiner. We give two separate con-
structions, one using LWE, and other using DDH. Thus, we can build IO com-
biners from two quite different assumptions.

Theorem 1 (Informal). Under the hardness of Learning with Errors (LWE)
and IO secure against sub-exponential adversaries, there exist an IO combiner.

Theorem 2 (Informal). Under the hardness of Decisional Diffie-Hellman (DDH)
and IO secure against sub-exponential adversaries, there exist an IO combiner.

We show how to adapt the LWE-based IO combiner to obtain a universal IO
scheme.

Theorem 3 (Informal). Under the hardness of Learning with Errors (LWE)
against sub-exponential adversaries and the existence of IO secure against sub-
exponential adversaries, there exists a universal IO scheme.

For witness encryption, we have similar results, under assumptions widely
believed to be weaker. We prove the following theorem.

Theorem 4 (Informal). If one-way functions exist, then there exist a secure
witness encryption combiner.

Again, we extend this and get a universal witness encryption scheme.

Theorem 5 (Informal). If one-way functions and witness encryption exist,
then there is a universal witness encryption scheme.

Theorem 5 assumes the existence of one-way functions. Notice that if P = NP
then WE exist, however, one-way functions do not. Thus, in most cryptographic
application one-way functions are used as an additional assumption. Neverthe-
less, we can make a stronger statement: If there exist any hard-on-average lan-
guage in NP then there is a universal WE scheme. In [25] it was shown that
the existence of witness encryption and a hard-on-average language in NP im-
plies the existence of one-way functions. By combing this with Levin’s universal
one-way function [27] we obtain our result.

In full version, we present the constructions of universal secret sharing for
NP and universal witness PRFs. Both these constructions assume only one-way
functions.

2 Techniques

We present the technical challenges and describe how we overcome them.

2.1 Universal Obfuscation

A natural starting point is to revisit the construction of universal one-way func-
tions [27] – constructions of other known universal cryptographic primitives [21]
have the same flavor. An explicit function f is said to be a universal one-way
function if the mere existence of any one-way function implies that f is one-way.

The universal one-way function funiv on input x = y1|| . . . ||y`, where |x| = `2,
executes as follows5:

1. Interpret the integer i ∈ {1, . . . , `} as a Turing machine Mi. This interpre-
tation is quite standard in the computational complexity literature6.

2. Output M1(y1)|| · · · ||M`(y`).

To argue security, we exploit the fact that there exists a secure one-way function
represented by Turing machine Mowf . Let `0 be an integer that can be interpreted
as Mowf . We argue that it is hard to invert Mowf(x), where x has length at least
`20 and is drawn uniformly at random. To see why, notice that in Step 1, Mowf

will be included in the enumeration. From the security of Mowf it follows that
it is hard to invert Mowf(y`0), where y`0 is the `th0 block of x. This translates to
the un-invertibility of funiv(x). This proves that funiv is one-way7.

Let us try to emulate the same approach to obtain universal indistinguisha-
bility obfuscation. On input circuit C, first enumerate the Turing machines
M1, . . . ,M`, where ` here is the size of the circuit C. We interpret Mi’s as
indistinguishability obfuscators. It is not clear how to implement the second

5 If x can not be expressed of this form then suitably truncate x till it is of this form.
6 This fact was used to prove the famous Gödel’s incompleteness theorem [16].
7 Note that the definition of one-way function only requires un-invertibility to hold for

sufficiently long inputs. This requirement is satisfied by funiv as its un-invertibility
holds for inputs of lengths greater than `20.

step in the context of obfuscation – unlike one-way functions we cannot näıvely
break the circuit into blocks and individually obfuscate each block. We need a
mechanism to jointly obfuscate a circuit using multiple obfuscators M1, . . . ,M`

such that the security of the joint obfuscation is guaranteed as long as one of
the obfuscators is secure. This is where indistinguishability obfuscation combin-
ers come in. Designing combiners for indistinguishability obfuscation involves a
whole new set of challenges and we deal with them in a separate section (Sec-
tion 2.2). For now, we assume we have such combiners at our disposal.

Warmup Attempt. Using combiners for IO, we propose the following approach
to achieve universal obfuscation. The universal obfuscator IOuniv on input circuit
C executes the following steps:

1. Interpret the integer i ∈ {1, . . . , `} as a Turing machine Mi.
2. Obfuscate C by applying the IO combiner on the machines M1, . . . ,M`.

Output the result C of the IO combiner.

Unlike the case of one-way functions, in addition to security we need to argue
correctness of the above scheme. An obfuscator Mi is said to be correct if the
obfuscated circuit Mi(C) is equivalent to C (or agrees on most inputs) and this
should be true for every circuit C. This in turn depends on the correctness of
obfuscators M1, . . . ,M`. But we don’t have any guarantee on the correctness of
M1, . . . ,M`.

Test-and-Discard. We handle this by first checking for every i whether the
obfuscator Mi is correct. This is infeasible in general. However, we test the
correctness of Mi only on the particular circuit obfuscated by Mi during the ex-
ecution of the universal obfuscation. In more detail, suppose we execute IOuniv

on circuit C and during the execution of the IO combiner, let [C]i (derived from
C) be the circuit that we obfuscate using machine Mi. Then we test whether
Mi([C]i) agrees with Mi on significant fraction of inputs. This can be done by
picking inputs at random and testing whether both circuits (obfuscated and un-
obfuscated) agree on these inputs. If Mi fails the test, it is discarded. If it passes
the test, then Mi cannot be used directly since Mi([C]i) could agree with [C]i on
(1− 1/poly)-fraction of inputs and yet it could pass the test with non-negligible
probability. So we need to reduce the error probability of Mi([C]i) to negligible
before it is ready to be used.

Correctness Amplification. A first thought would be to use the recent work
that shows an elegant correctness amplification for IO by Bitansky and Vaikun-
tanathan [6]. In particular, they show how to transform an obfuscator that is
correct on at least (1/2 + 1/poly)-fraction of inputs into one that is correct on
all inputs. At first glance this seems to be “just what the doctor ordered”, there
is, however, one catch here: their transformation is guaranteed to work if the
obfuscator is correct for every circuit C on at least (1/2 + 1/poly)-fraction of
inputs. However, we are only ensured that it is approximately correct on only
one circuit! Nonetheless we show how to realize correctness amplification with

respect to a single circuit and ensure that Mi([C]i) does not agree with [C]i on
only negligible fraction of inputs. Once we perform the error amplification, the
obfuscator Mi will be used in the IO combiner. In the end, the result of the IO
combiner will be an obfuscated circuit C; the correctness guarantees of Mi([C]i),
for every i, translate to the corresponding correctness guarantee of C.

Handling Selective Abort Obfuscators. We now move on to security. For
two equivalent circuits C0, C1, we need to argue that their obfuscations are
computationally indistinguishable. To do this, we need to rely on the security
of IO combiner. The security of IO combiner requires that as long as one of
the machines Mi is a secure obfuscator8 then the joint obfuscation of C0 using
M1, . . . ,M` is indistinguishable from the joint obfuscation of C1 using the same
candidates. The fact that same candidates are used is crucial here since the final
obfuscated circuit could potentially reveal the description of the obfuscators
combined.

However, there is no such guarantee offered in our case! Recall that we have
a ‘test-and-discard’ phase where we potentially throw out some obfuscators. It
might be the case that a particular candidate Mmal is correct only on circuits
derived from C0 but fails on circuits derived from C1. We call such obfusca-
tors selective abort obfuscators. Clearly, selective abort obfuscators can lead to
a complete break of security. In fact, if there are ` obfuscators used then poten-
tially ` − 1 of them could be of selective abort type. To protect against these
adversarial obfuscators we ensure that the distribution of the ` derived circuits
is computationally independent from the circuit to obfuscate.

Issue of runtime. While the above ideas ensure correctness and security, we
haven’t yet shown that our scheme is efficient. In fact it could potentially be the
case our scheme never halts on some inputs9. This could happen since we have
no a priori knowledge on the runtime of the obfuscators considered. We propose
a näive solution to this problem: we assume the knowledge of an upper bound
on the runtime of the actually secure obfuscator. In some sense, the assumption
of time bound might be inherent – without this we are required to predict a
bound on the runtime of a Turing machine and we know in general this is an
undecidable problem.

2.2 Combiners for Indistinguishability Obfuscation

We now focus our attention on constructing an IO combiner. Recall, in the
setting of IO combiner we are given multiple IO candidates10 with all of them

8 Just as in the case of one-way functions, for sufficiently large circuits C, one of the
enumerated machines will be a secure obfuscator.

9 This is not a problem for the case of one-way functions because of a well established
result that given any one-way function that runs in arbitrary polynomial time we
can transform it into a different one-way function that takes quadratic time.

10 IO candidates are just indistinguishability obfuscation schemes. The scheme of [3] is
an example of an IO candidate, scheme of [30] is another example and so on.

satisfying correctness but with only one of them being secure. We then need to
combine all of them to produce a joint obfuscator that is secure.

This scenario is reminiscent of a concept we are quite familiar with: Secure
Multi-Party Computation (MPC). In the secure multi-party computation set-
ting, there are multiple parties with individual inputs and the goal of all these
parties is to jointly compute a functionality. The privacy requirement states that
the inputs of the honest parties are hidden other than what can be leaked by
the output.

Indeed, MPC provides a natural template to solve the problem of building
an IO combiner: Let Π1, . . . ,Πn be the IO candidates and let C be the circuit
to be obfuscated.

- Secret share the circuit C into n shares s1, . . . , sn.
- Take any n-party MPC protocol for the functionality F that can tolerate

all-but-one malicious adversaries [18]. The n-input functionality F takes as
input ((s1, x1), (s2, x2), . . . , (sn, xn)); reconstructs C from the shares and
outputs C(x) only if x = x1 = · · · = xn.

- Obfuscate the “code” (or algorithmic description) of the ith party using Πi.
- The joint obfuscation of all the parties is the final obfuscated circuit!

To evaluate on an input x, perform the MPC protocol on the obfuscated parties
with (si, x) being the input of the ith party.

Could the above approach lead to a secure IO combiner? The hope is that
the security of MPC can be used to argue that one of the shares (corresponding
to the honest party) is hidden which then translates to the hiding of C.

However, we face some fundamental challenges in our attempt to realize the
above template, and in particular we will not be able to just invoke general
solutions like [18], and we will need to leverage more specialized cryptographic
objects.

Challenge #1: Single-Input versus Multi-Inputs security. Recall that in
the context of MPC, we argue the security only for a particular set of inputs (one
for every party) in one session. In particular, a fresh session needs to be executed
to compute the functionality on a different set of inputs. However, obfuscation
is re-usable – it enables multiple evaluations of the obfuscated circuit. The ob-
fuscated circuit should hide the original circuit independent of the number of
times the obfuscated circuit is evaluated. On the other hand, take the classical
Yao’s garbled circuits [32], used in two party secure computation, for example.
Suppose we are provided with the ability to evaluate the garbled circuit on two
different inputs then the security completely breaks down.

Challenge #2: Power of the Adversary. Suppose we start with an arbitrary
multi-round MPC protocol. In the world of IO combiners, this corresponds to
executing a candidate multiple times during the evaluation of a single input.
While the party in the MPC protocol can maintain state in between executions,
a candidate does not have the same luxury since it is stateless. This enables

the adversarial evaluator to launch so called resetting attacks: during the eval-
uation of the IO combiner on a single input x, a secure candidate could first
be executed on transcripts consistent with x and later executed on transcripts
consistent with a different input x′. Since, the secure candidate cannot maintain
state, it is possible that it cannot recognize such a malicious execution. We need
to devise additional mechanisms to prevent such attacks.

Challenge #3: Virtual Black Box Obfuscation versus IO. The above two
challenges exist even if we had started off with virtual black box (VBB) obfusca-
tion. Dealing with indistinguishability obfuscation as opposed to VBB presents
us with fresh challenges. Indeed, in MPC, we take for granted that an honest
party hides its input from the adversary. However, if we obfuscate the parties
using IO, it is not clear whether the relevant input – the share of C – is hidden at
all. Arguing this requires importing IO-friendly tools (for instance, [31]) studied
in the recent literature and making it compatible with the tools of MPC that
we want to use.

We will see next how to address the above challenges.

Our Approach We present two different approaches to construct IO combin-
ers. The first solution, in addition to existence of IO, assumes the hardness of
Decisional Diffie Hellman. The second solution assumes additionally the hard-
ness of learning with errors. Common to both these solutions is a technique of [9]
that we’ll call the partition-programming technique. We give a brief overview of
this technique below.

Partition-Programming Technique: Consider a randomized algorithm P (·, ·) that
takes as input secret sk, public instance x ∈ {0, 1}λ and produces a distribution
Dx. Suppose there exists a simulator Sim that on input x outputs a distribution
D∗x such that the distributions Dx and D∗x are statistically close.

Let us say we are given obfuscation of P (sk, ·) (sk is hardwired in the pro-
gram), we show how to use the partition-programming technique to remove the
secret sk. We proceed in 2λ hybrids: In the ith hybrid, we have a hybrid ob-
fuscated program that on input x, executes P (sk, x) if x ≤ i but otherwise it
executes Sim(x). Now, the indistinguishability of ith hybrid and (i + 1)th hy-
brid can be argued directly from the security of IO: here we are using the fact
that the simulated distribution and the real distribution are statistically close.
In the (2λ+1)th hybrid, we have a program that only uses Sim, on every input,
to generate the output distribution. Thus, we have removed the secret sk from
the program.

This technique will come in handy when we address Challenge #1. We will
see below how this technique will be used in both the solutions.

DDH-Based Solution. We begin by tackling Challenge #2. We noted that
using interactive MPC solutions are bound to result in resetting attacks. Hence,

we restrict our attention to non-interactive solutions. We need to determine
our communication pattern between the candidates. In particular, we consider
the “line” communication pattern: Suppose there are n candidates Π1, . . . ,Πn

and let C be the circuit to be obfuscated. For this discussion, we use the same
notation Πi to also refer to the circuit obfuscated by the candidate Πi. The
first obfuscated circuit Π1 produces an output that will be input to Π2 and so
on. In the end, Πn will receive the input from Πn−1 and the output of Πn will
determine the final output.

Lets examine how to achieve a solution in the above communication model,
by first considering a näıve approach: Π1 has hardwired into it an encryption
Enc(pk,C) of circuit C to be obfuscated. It receives an input x, it performs a
part of the computation and sends the result to the next candidate Π2 who
performs another part of the computation, sends it to Π3 and so on. In the
end, the last candidate Πn has the secret key sk to decrypt the output. This
is clearly insecure because if both Π1 and Πn are broken then using sk and
Enc(pk,C) we can recover the circuit C. This suggests the use of a re-encryption
scheme. A re-encryption scheme is associated with public keys pk1, . . . , pkn+1

and corresponding re-encryption keys rk1→2, . . . , rkn→(n+1). The first candidate

Π1 will have hardwired into it Enc(pk1, C) and the ith candidate has hardwired
into it the re-encryption key rki→i+1. Thus, the ith candidate performs part of
the computation, re-encrypts with respect to pki+1 using its re-encryption key
rki→i+1. We provide the secret key skn+1, corresponding to public key pkn+1, as
part of the obfuscated circuit. Using this, the evaluator can decrypt the output
and produce the answer. Intuitively, as long as one candidate hides one secret
key, the circuit C should be safe.

The natural next step is to figure out how to implement the “computation”
itself: one direction would be to consider re-encryption schemes that are homo-
morphic with respect to arbitrary computations. However, we currently do not
know of the existence of such schemes based on DDH (for LWE-based solutions,
see below). We note that [1] faced similar hurdles while designing DDH-based
multi-server delegation schemes. They employed the use of re-randomizable gar-
bled circuits to implement the “computation” aspect of the above approach. A
re-randomizable garbling scheme is a garbling scheme which is accompanied by
a re-randomization algorithm that takes as input garbled circuit-input wire keys
pair (GC, wx) and outputs (GCr, wrx).

Following along the lines of the approach of [1], we propose the following
solution template:

1. First we compute the garbled circuit-wire keys pair (GC1, w1) of circuit C
corresponding to the re-randomizable garbled circuits scheme. Here, w1 com-
prises of keys associated to bits 0 and 1 with respect to every position. Π1

has hardwired into it, Enc(pk1, (GC
1, w1)).

2. Π1 takes as input x and produces Enc(pk2, (GC
2, w2

x)), where (GC2, w2
x) is

obtained by first re-randomizing (GC1, w1) and then choosing the wire keys
corresponding to x. This process is enabled using the re-encryption key
rk1→2. In addition, we require that the re-encryption process allows for ho-

momorphic operations – in particular, it should allow for homomorphism of
re-randomization operation of the garbling schemes.

3. The ith candidate takes as input Enc(pki, (GC
i, wix)); homomorphically re-

randomizes the garbled circuit while simultaneously re-encrypting the ci-
phertext to obtain Enc(pki+1, (GC

i+1, wi+1
x)).

4. In the end, the nth candidate Πn outputs Enc(pkn+1, (GC
n+1, wn+1

x)). Us-
ing the secret key skn, we can decrypt the output (GCn+1, wn+1

x). We then
evaluate the garbled circuit GCn+1 using the wire keys wn+1

x to recover the
output.

We employ a specific re-randomizable garbled circuits by [15] and homomor-
phic re-encryption scheme by [7], where both these primitives can be based on
DDH. The above template does not immediately work since an adversarial eval-
uator could feed in incorrect inputs to the secure candidate. While [1] used
non-interactive zero knowledge proofs (NIZKs) to resolve this issue, we need to
employ “IO-friendly” proofs such as statistically-sound NIZKs [31,5]. Refer to
full version [2] for the formal construction.

Security: To argue security, we need to rely on the security of re-encryption
schemes in addition to the security guarantees of the other schemes. The se-
curity property of a re-encryption scheme states that given re-encryption keys
{rki→i+1}i∈[n]\{rki→i+1} and a secret key skn+1, it is computationally hard to
distinguish Enc(pk1,m0) from Enc(pk1,m1).

To argue the security of universal obfuscator, we have to get rid of the re-
encryption key corresponding to the secure candidate – indeed, in the case of [1]
the re-encryption key corresponding to the honest party is removed in the secu-
rity proof. In our scenario, however, this can only be implemented if we hardwire
all possible outputs inside the code of the secure candidate. Clearly, this is not
possible since there are exponentially many outputs. This is where we will use
the partition-programming technique to remove the re-encryption key. To apply
the technique, we argue that the re-encrypted ciphertexts are statistically close
to freshly generated ciphertexts (which will be our simulated distribution) and
this property holds for the particular instantiation of [7] we are considering.

LWE-Based Solution. We give an alternate construction based on the learning
with errors (LWE) assumption. One potential approach is to take the above solu-
tion and replace the DDH-based primitives with LWE-based primitives. Namely,
we replace re-randomizable garbled circuits and re-encryption schemes with fully
homomorphic encryption schemes. While we believe this is a viable approach, it
turns out we can give an arguably more elegant solution by using the notion of
multi-key fully homomorphic encryption [28,10,29]. A multi-key FHE allows for
generating individual public key-secret key pairs {pki, ski} such that they can
be later combined to obtain a joint public key pk. To be more precise, given a
ciphertext with respect to pki, there is an “Expand” operation that transforms
it into a ciphertext with respect to a joint public key pk. Once this done, the re-
sulting ciphertext can be homomorphically evaluated just like any FHE scheme.

The resulting ciphertexts can then be individually decrypted using ski’s to ob-
tain partial decryptions. Finally, there is a mechanism to combine the partial
decryptions to obtain the final output.

Before we outline the solution below, we first fix the communication model.
We consider a “star” interaction network: suppose there are n candidates
Π1, . . . ,Πn. Each candidate Πi is executed on the same input x. The joint out-
puts of all these candidates are then combined to obtain the final output. We
propose the solution template based on multi-key FHE below.

1. We first secret share C into different shares s1, . . . , sn.
2. Generate public key-secret key pairs {pki, ski} for all i ∈ [n]. Encrypt si

with respect to pki to obtain the ciphertext CTi.

3. “Expand” every ciphertext CTi into another ciphertext ĈTi with respect to
the joint public key pk which is a function of (pk1, . . . , pkn).

4. Every candidate Πi has hardwired into it the secret key ski and ciphertext

ĈTi. It takes as input x and first homomorphically evaluates the universal

circuit Ux on ĈTi to obtain an encryption of C(x), namely ĈT
C(x)
i , with

respect to pk. Finally, using ski it outputs the partial decryption of ĈT
C(x)
i .

5. The different partial decryptions output by the candidates are later combined
to obtain the final output.

Security: We rely on the semantic security of the MFHE scheme to argue the
security of the obfuscator. The security notion of multi-key FHE intuitively
guarantees that the semantic security on ciphertext CTi can be argued as long
as the adversary never gets the secret key ski for some i ∈ [n]. A näıve approach
is to remove the secret key ski from the secure candidate Πi. A similar issue that
we encountered in the case of DDH-based solution arises here as well – we need
to hardwire exponentially many outputs. Here comes partition-programming
technique to the rescue! We show how to use this technique to remove ski after
which we can argue the semantic security of MFHE, and thus the security of the
obfuscator. To apply this technique, we need an alternate simulated distribution
that simulates the partial decryption keys. We use the scheme of [29] who define
such a simulatability property where the simulated distribution is statistically
close to the real distribution. Refer to Section 4 for the formal construction.

The above LWE-based construction, unlike the DDH-based construction,
satisfies some additional properties that are used to design a special type of IO
combiner (we call this decomposable IO combiner in Section 3.1) which will
then be used to construct universal indistinguishability obfuscation.

Robust IO Combiners. The description above details how to construct a
(standard) IO combiner, that is, one that assumes all candidates are correct.
The construction on a robust combiner is similar to the construction of the
universal IO scheme. We discard candidates that are not approximately correct
and boost the correctness of those that are. The difference between a universal

scheme and a robust combiner is that in a robust combiner we are given n
arbitrary candidates whereas in a universal scheme we construct the candidates
by enumerating over TMs in a lexicographic order.

2.3 Universal Witness Encryption

We have discussed the construction of an IO combiner, and how to use the
combiner to achieve a universal construction of IO. We describe our construction
of a universal witness encryption (WE) scheme. We show that a universal WE
scheme exists on the sole assumption of the existence of a one-way function.
First, we construct a WE combiner. This is achieved similarly to combiners for
public-key encryption [21], using secret sharing. To encrypt a message m one
secret shares the message to n shares such that all of them are needed to recover
the message. Then, he encrypts each share using a different candidate. If at least
one of the candidate schemes is secure then at least one share is unrecoverable
and the message remains hidden.

The main challenge constructing a universal WE scheme is handling correct-
ness. In the universal IO construction we had two main steps. The first was to
test whether a candidate is approximately correct. This step was accomplished
easily by sampling the obfuscated circuit on random inputs and verifying its
correctness. Notice that although we cannot verify that the candidate is approx-
imately correct for all circuits, we can verify that it is correct for the circuit in
hand. The second step was to boost the correctness to achieve (almost) perfect
security. This was obtained by suitably adapting the transformation described
by Bitansky and Vaikuntanathan [6] to work in our setting where we only have
a correctness guarantee for a single circuit.

The techniques used for the universal IO scheme seem not to apply for WE.
Consider a language L with a relation R and a candidate scheme Π. To test
correctness on an input x and a message m, one needs to encrypt the message and
decrypt the resulting ciphertext. However, decryption requires a valid witness
for x, where it might be NP-hard to find one! Testing, therefore, is limited to
instances where it is easy to find a witness, a regime where witness encryption is
trivial. Moreover, even given an approximate candidate, the boosting techniques
used for the universal IO scheme do not apply for witness encryption.

Witness Injection. We describe a transformation that modifies any WE candi-
date scheme to be “testable” and also show how to boost the correctness of such
testable schemes. Our first technique is to inject a “fake” witness for any x such
that it will be easy to find this witness, for a party which has a trapdoor and
computationally hard without the trapdoor (this is as in Feige and Shamir [12]).
Moreover, this transformation will be indistinguishable for the (computationally
bounded) candidate scheme.

Denote (x,w) ∈ R for an instance x with a valid witness w. Let PRG be
a length doubling pseudorandom generator. For any string z, we augment the
language L and define Lz with the relation Rz such that

(x,w) ∈ Rz ⇐⇒ (x,w) ∈ R ∨ PRG(w) = z.

Notice that if we choose z = PRG(s) for a random seed s, then Lz is the trivial
language of all strings. Whereas, if z is chosen uniformly at random then with
high probability Lz is equivalent to L, and these two cases are indistinguishable
for anyone not holding the seed. This step enables us to test a candidate for some
specific instance x: We choose z ← PRG(s), encrypt relatively to Lz, decrypt
using the “fake” witness s and verify the output. After testing, we replace z
with a random string (outside the range of the PRG) to get back the original
language L. The problem is that this guarantees correctness only on our specific
witness. The decryption algorithm, however, might refuse to cooperate for any
other witness the user chooses to use.

Witness Protection Program. The next step is to apply what we call a witness-
worst-case transformation. That is, a scheme that works on all witnesses with
the same probability. Our main tool is a non-interactive zero knowledge (NIZK)
proof system with statistical soundness. Suppose (P, V) is such a NIZK scheme
with a common random string σ. Then we further augment the language Lz to
Lz,σ with relation Rz,σ such that:

(x, π) ∈ Rz,σ ⇐⇒ V (σ, x, π) = 1.

If (x,w) ∈ R is a valid instance witness pair for L, then the corresponding witness
for Lz,σ will be π ← P (σ, x, w). That is, executing the transformed scheme on
x,w relative to the language L translate to executing the original scheme on
x, π relative to the language Lz,σ for a randomly chosen z. Finally, to boost
the success probability we apply a standard “BPP amplification”; encrypt many
times and take the majority.

The result is roughly the following algorithm. We take any scheme and apply
our witness-worst-case transformation for z ← PRG(s). Afterwards, we can test
it on a fake witness while we are assured that it will work the same for any
other witness. Then, if the scheme passes all tests, we replace z with a random
string, and boost the correctness such that it will work for any witness with all
but negligible probability. Finally, we apply the WE combiner to get a universal
scheme. For the exact details see Section 2.3.

Relying on One-Way Functions. The description above of a universal witness en-
cryption scheme used NIZK proof system as a building block, where we promised
using only one-way functions. These proofs are not known to be implied by one-
way functions and moreover no universal NIZK scheme is known (and this is an
interesting open problem!). However, standard interactive zero knowledge can
be constructed for any language in NP for one-way functions and moreover there
exist a universal one-way function [27]. Of course, we cannot use an interactive
protocol, but, taking a closer look we observe that we can simulate a protocol
between a verifier and a prover before the actual witness is given. That is, we
can simulate a zero-knowledge protocol that might have many rounds, however,
only the final round depends on the witness itself. Such protocols are known as
pre-process non-interactive zero-knowledge protocols and where studied in [11,26]
where they proved how to construct them based on way-one functions.

For the final scheme, we will run the pre-process protocol to get two private
states σV and σP for the verifier and the prover respectively, just before the final
round. The modified language will be Lz,σV with relation Rz,σV , where

(x, π) ∈ Rz,σV ⇐⇒ V (σV , x, π) = 1.

We will publish σP as part of the encryption so that a user, given witness w can
produce the corresponding final round of the proof π ← P (σP , x, w). Notice that
the given the state of the prover, σP , the proof π is not zero-knowledge. However,
since the decryption algorithm of the scheme does not get the state of the prover
(only the state of the verifier) then from his perspective it is zero-knowledge.

3 Indistinguishability Obfuscation (IO) Combiners

Suppose we have many indistinguishability obfuscation (IO) schemes, also re-
ferred to as IO candidates). We are additionally guaranteed that one of the
candidates is secure. No guarantee is placed on the rest of the candidates and
they could all be potentially broken. Indistinguishability obfuscation combiners
provides a mechanism of combining all these candidates into a single monolithic
IO scheme that is secure. We emphasize that the only guarantee we are provided
is that one of the candidates is secure and in particular, it is unknown exactly
which of the candidates is secure.

We give a thorough formal treatment of the concept of IO combiners next.
We start by providing the syntax of an obfuscation scheme and then present the
definitions of a (secure) IO candidate. Then, in Section 3.1 we finally present
the definition of IO combiner.

Syntax of Obfuscation Scheme. An obfuscation scheme associated to a class of
circuits C = {Cλ}λ∈N consists of two PPT algorithms (Obf,Eval) defined below.

– Obfuscate, C ← Obf(1λ, C): It takes as input security parameter λ, a
circuit C ∈ Cλ and outputs an obfuscation of C, C.

– Evaluation, y ← Eval
(
C, x

)
: This is a deterministic algorithm. It takes as

input an obfuscation C, input x ∈ {0, 1}λ and outputs y.

Throughout this work, we will only be concerned with uniform Obf algorithms.
That is, Obf and Eval are represented as Turing machines (or equivalently uni-
form circuits).

µ-Correct IO candidate. We define the notion of an IO candidate below.
The following definition of obfuscation scheme incorporates only the correct-
ness and polynomial slowdown properties of an indistinguishability obfuscation
scheme [4,20,14].

Definition 1 (µ-Correct IO candidate). An obfuscation scheme Π =
(Obf,Eval) is an µ-correct IO candidate for a class of circuits C = {Cλ}λ∈N,
with every C ∈ Cλ has size poly(λ), if it satisfies the following properties:

– Correctness: For every C : {0, 1}λ → {0, 1} ∈ Cλ, x ∈ {0, 1}λ it holds that:

Pr
[
Eval

(
Obf(1λ, C), x

)
= C(x)

]
≥ µ(λ),

over the random coins of Obf.

– Polynomial Slowdown: For every C : {0, 1}λ → {0, 1} ∈ Cλ, we have the
running time of Obf on input (1λ, C) to be poly(|C|, λ). Similarly, we have
the running time of Eval on input (C, x) is poly(|C|, λ).

Note that an identity function I is a valid IO candidate. We make use of this
fact later on.

Remark 1. We say that Π is an IO candidate if it is a µ-correct IO candidate
with µ = 1.

µ-Correct ε-Secure IO candidate. If any IO candidate additionally satisfies the
following (informal) security property then we define it to be a secure IO candi-
date: for every pair of circuits C0 and C1 that are equivalent we have obfuscations
of C0 and C1 to be indistinguishable by any PPT adversary.

Definition 2 (µ-Correct ε-Secure IO candidate). An obfuscation scheme
Π = (Obf,Eval) for a class of circuits C = {Cλ}λ∈N is a µ-correct ε-secure IO
candidate if it satisfies the following conditions:

– Π is a µ-correct IO candidate with respect to C,
– Security. For every PPT adversary A, for every sufficiently large λ ∈ N, for

every C0, C1 ∈ Cλ with C0(x) = C1(x) for every x ∈ {0, 1}λ and |C0| = |C1|,
we have:∣∣∣Pr[0← A(Obf(1λ, C0), C0, C1

)]
−Pr

[
0← A

(
Obf(1λ, C1), C0, C1

)]∣∣∣ ≤ ε(λ)

We remarked earlier that identity function is an IO candidate. However, note
that the identity function is not a secure IO candidate.

Remark 2. We say that Π is a secure IO candidate if it is a µ-correct ε-secure
IO candidate with µ = 1 and ε(λ) = negl(λ), for some negligible function negl.

In the literature [14,31], a secure IO candidate is simply referred to as an indis-
tinguishability obfuscation scheme.

We have the necessary ingredients to define an IO combiner.

3.1 Definition of IO Combiner

We present the formal definition of IO combiner below. First, we provide the
syntax of the IO combiner. Later we present the properties associated with an
IO combiner.

There are two PPT algorithms associated with an IO combiner, namely,
CombObf and CombEval. Procedure CombObf takes as input circuit C along

with the description of multiple IO candidates11 and outputs an obfuscation
of C. Procedure CombEval takes as input the obfuscated circuit, input x, the
description of the candidates and outputs the evaluation of the obfuscated circuit
on input x.

Syntax of IO Combiner. We define an IO combiner Πcomb =
(CombObf,CombEval) for a class of circuits C = {Cλ}λ∈N.

– Combiner of Obfuscate algorithms, C ← CombObf(1λ, C,Π1, . . . ,Πn):
It takes as input security parameter λ, a circuit C ∈ C, description of IO
candidates {Πi}i∈[n] and outputs an obfuscated circuit C.

– Combiner of Evaluation algorithms, y ← CombEval(C, x,Π1, . . . ,Πn):
It takes as input obfuscated circuit C, input x, descriptions of IO candidates
{Πi}i∈[n] and outputs y.

We define the properties associated to any IO combiner. There are three main
properties – correctness, polynomial slowdown, and security. The correctness
and the polynomial slowdown properties are defined on the same lines as the
corresponding properties of the IO candidates.

The intuitive security notion of IO combiner says the following: suppose
one of the candidates is a secure IO candidate then the output of obfuscator
(CombObf) of the IO combiner on C0 is computationally indistinguishable from
the output of the obfuscator on C1, where C0 and C1 are equivalent circuits.

Definition 3 ((µ′, µ)-correct (ε′, ε)-secure IO combiner). Consider a cir-
cuit class C = {Cλ}λ∈N. We say that Πcomb = (CombObf,CombEval) is a (µ′, µ)-
correct (ε′, ε)-secure IO combiner if the following conditions are satisfied:
Let Π1, . . . ,Πn be n µ-correct IO candidates for P/poly, where µ is a function
of µ′ and ε is a function of ε′.

– Correctness. Let C ∈ Cλ∈N and x ∈ {0, 1}λ. Consider the following process:
(a) C ← CombObf(1λ, C,Π1, . . . ,Πn), (b) y ← CombEval(C, x,Π1, . . . ,Πn).
Then, Pr[y = C(x)] ≥ µ′(λ) over the randomness of CombObf.

– Polynomial Slowdown. For every C : {0, 1}λ → {0, 1} ∈ Cλ, we have
the running time of CombObf on input (1λ, C,Π1, . . . ,Πn) to be at most
poly(|C|+n+λ). Similarly, we have the running time of CombEval on input
(C, x,Π1, . . . ,Πn) to be at most poly(|C|+ n+ λ).

– Security. Let Πi be ε-secure for some i ∈ [n]. For every PPT adversary A,
for every sufficiently large λ ∈ N, for every C0, C1 ∈ Cλ with C0(x) = C1(x)
for every x ∈ {0, 1}λ and |C0| = |C1|, we have:∣∣∣Pr[0← A(C0, C0, C1, Π1, . . . ,Πn

)]
− Pr

[
0← A

(
C1, C0, C1, Π1, . . . ,Πn

)]∣∣∣
≤ ε′(λ),

11 The description of an IO candidate includes the description of the obfuscation and
the evaluation algorithms.

where Cb ← CombObf(1λ, Cb, Π1, . . . ,Πn) for b ∈ {0, 1}.

Some remarks are in order.

Remark 3. We say that Πcomb is an IO combiner if it is a (µ′, µ)-correct (ε′, ε)-
secure IO combiner, where (a) µ′ = 1, (b) µ = 1, (c) ε′ = negl′ and, (d) ε = negl
with negl and negl′ being negligible functions.

4 Constructions of IO Combiners

We propose constructions of combiners for indistinguishability obfuscation. Here
we present a construction based on the learning with errors assumption. In full
version [2], we also present a construction based on the decisional Diffie Hell-
man assumption. We present the formal construction below. For an informal
explanation of the construction, we refer the reader to Introduction.

Construction. Consider a circuit class C. We use a threshold multi-key FHE
scheme TMFHE = (Setup,KeyGen,Enc,Expand,FHEEval,Dec,PartDec,FinDec).
We additionally use a puncturable PRF family F .

We construct an IO combiner Πcomb = Πcomb[Π1, . . . ,Πn] for C below.

CombObf(1λ, C,Π1, . . . ,Πn): It takes as input security parameter λ, circuit
C ∈ Cλ, description of candidates {Πi = (Πi.Obf, Πi,Eval)}i∈[n] and does the
following.

1. Initialization of TMFHE parameters:

- Execute the setup of the threshold multi-key FHE scheme, params ←
Setup(1λ, 1d), where d = poly(λ, |C|) 12. Execute {(ski, pki) ← KeyGen
(params)}i∈[n].

- Sample n random strings {Si}i∈[n] of size | C | such that
⊕

i∈[n] Si = C.

- For all i ∈ [n], encrypt the string Si using pki, CTi ← Enc(pki, Si).

- For every i ∈ [n], generate the expanded ciphertext under pki by execut-

ing ĈTi ← Expand((pk1, . . . , pkn), i,CTi).

2. Obfuscating Circuits using IO candidates:

- For every i ∈ [n], sample puncturable PRF keys Ki $←− {0, 1}λ.

- For every i ∈ [n], construct circuit Gi =

Gi

[
Ki, ski, {pki}i∈[n], {ĈTi}i∈[n]

]
∈ Ci as described in Figure 1.

- Generate Gi ← Πi.Obf(1
λ, Gi).

12 Looking ahead, we set d to be the size of C as against its depth so that a PPT
adversary will not be able to distinguish obfuscations of two functionally equiva-
lent circuits C0 and C1 with the same size but potentially different depths by just
measuring the size of params.

Output the obfuscation C =
(
G1, . . . , Gn

)
.

CombEval(C, x,Π1, . . . ,Πn): On input an obfuscation C, an input x, descrip-
tions of candidates {Πi}i∈[n] evaluate the obfuscations on input x to obtain

pi ← Πi.Eval(Gi, x) for all i ∈ [n]. Execute the final decryption algorithm,
y ← FinDec(p1, . . . , pn). Output y.

Gi
[
Ki, ski, {pki}i∈[n], {ĈTi}i∈[n]

]
Hardwired values: PRF key Ki, TMFHE partial decryption key ski, TMFHE pub-
lic keys {pki}i∈[n], TMFHE expanded ciphertext {ĈTi}i∈[n].

Input: x ∈ {0, 1}λ.

- Perform ĈTout ← FHEEval
(
params, Ux(·), ĈT1, . . . , ĈTn

)
, where Ux(·) is a univer-

sal circuit that takes as input n strings S1, .., Sn and first computes
⊕

j∈[n] Sj = C

where C ∈ Cλ and outputs C(x).
- Generate randomness ri ← PRFKi(x).

- Execute the partial decryption algorithm, pi ← PartDec
(
ĈTout, pk1,

. . . , pkn, i, ski; ri
)

- Output pi.

Fig. 1: Circuit Gi

5 Universal Obfuscation

We introduce the notion of universal obfuscation. We define a pair of Turing
machines Πuniv.Obf and Πuniv.Eval to be a universal obfuscation if the existence
of a secure IO candidate implies that (Πuniv.Obf, Πuniv.Eval) is also a secure
IO candidate. Constructing a universal obfuscation scheme means that we can
turn the mere existence of a secure IO candidate into an explicit construction.
Formally, we have the following definition:

Definition 4 ((T, ε)-Universal Obfuscation). We say that a pair of Turing
machines Πuniv = (Πuniv.Obf, Πuniv.Eval) is a universal obfuscation, parame-
terized by T and ε, if there exists an ε-secure indistinguishability obfuscator for
P/poly with time function T then Πuniv is an indistinguishability obfuscator for
P/poly with time function poly(T).

5.1 Construction of (T, ε)-Universal Obfuscation

We proceed to construct a (T, ε)-universal obfuscation. The core building block
in our construction is a decomposable IO combiner – this is a specific type of IO
combiner that satisfies additional properties (explained below).

Main Ingredient: Decomposable IO Combiner. A decomposable IO combiner is
a type of IO combiner, where the obfuscate algorithm has a specific structure.
In particular, the obfuscate algorithm takes as input circuit C to be obfuscated,
the description of the candidates Π1, . . . ,Πn and executes in two main steps.
In the first step, circuit C is preprocessed into n circuits [C]1, . . . , [C]n. In the
second step, each individual circuit [C]i is obfuscated using the candidate Πi.
The concatenation of the resulting obfuscated circuits is the final output.

In addition to the standard properties of IO combiner, we require that the
decomposable IO combiner satisfies two more properties: Circuit-Specific Cor-
rectness and Decomposable Security. The formal description is given below.

Definition 5 (Decomposable IO Combiner). A (ε′, ε)-secure IO combiner
Πcomb = (Πcomb.Obf, Πcomb.Eval) of (Π1, . . . ,Πn) for a class of circuits C =
{Cλ} is said to be (ε′, ε)-secure (η′, η)-decomposable IO combiner if there
exists a PPT algorithm Preproc such that the following holds: Πcomb.Obf on input
(1λ, C ∈ Cλ, Π1, . . . ,Πn) executes the steps:

(a) (Preprocessing step) C = ([C]1, . . . , [C]n, aux)← Preproc(1λ, 1n, C),

(b) (Candidate Obfuscation step) for all i ∈ [n], [C]i ← Πi.Obf(1
λ, [C]i),

(c) Outputs C =
(

[C]1, . . . , [C]n, aux
)

.

Additionally, we require the following properties to hold:

– (η′, η)-Circuit-Specific Correctness. Consider a circuit C ∈ Cλ. Let
([C]1, . . . , [C]n, aux) ← Preproc(1λ, 1n, C). Let for all i ∈ [n], [C]i ←
Πi.Obf(1

λ, [C]i). Denote C = ([C]1, . . . , [C]n).

If for all i ∈ [n], Pr
x

$←−{0,1}λ

[
[C]i(x) = [C]i(x)

]
≥ η(λ) then

Pr
x

$←−{0,1}λ

[
C(x) = C(x)

]
≥ η′(λ).

– Decomposable Security: For every C0, C1 ∈ Cλ such that |C0| = |C1|, for
every i ∈ [n], we have:{{

[C]
0
i

}
i6=i,
i∈[n]

}
≈c

{{
[C]

1
i

}
i 6=i,
i∈[n]

}
,

where [C]
b
i ← Preproc(1λ, 1n, Cb ∈ Cλ) for b ∈ {0, 1}.

We claim that the construction of IO Combiner in Section 4 is already a decom-
posable IO combiner. To show this, we first note that the obfuscator Πuniv.Obf
in the construction in Section 4 can be decomposed in a preprocessing step and
candidate obfuscation step: the preprocessing step comprises of all the steps till
the generation of circuits {Gi}i∈[n] (Figure 1). The output of the preprocessing
step is (G1, . . . , Gn).

Furthermore, the circuit-specific correctness property was already proved in
[2]. More specifically, we showed the aforementioned construction satisfies (1 −
nµ, 1− µ)-circuit specific correctness property. All is remaining is to show that
the construction satisfies decomposable security. We prove the following theorem.
The proof can be found in [2].

Theorem 6. The construction presented in Section 4 is a (negl, ε)-secure (1− 1
λ ,

1− 1
λ2)-decomposable IO combiner, where the number of candidates is λ.

Step I: Construction of Approx. Correct (T, ε)-Universal Obfuscation.
We construct a universal obfuscation scheme Πuniv = (Obf,Eval) for a class of
circuits C below. Our scheme will be approximately correct. The main ingredient
is a decomposable IO combiner (Definition 5) Πcomb = (Πcomb.Obf, Πcomb.Eval)
for C. But first, we establish some notation.

Notation. Let S be the class of all possible Turing machines. It is well known
result [16] that there is a one-to-one correspondence between S2 and N given
by φ : N → S2. Furthermore, there is a fixed polynomial f such that the time
to compute φ(j) is at most ≤ f(j), for every j ∈ N.

Πuniv.Obf(1
λ, C): It takes as input security parameter λ, circuit C ∈ Cλ and

executes the following steps:

1. Let φ(i) = (Πi.Obf, Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi =
(Πi.Obf, Πi.Eval).

2. Preprocessing phase of Decomposable IO combiner. First compute
the preprocessing step, ([C]1, . . . , [C]n, aux)← Preproc(1λ, 1n, C) (n = λ).

3. Eliminating Candidates with Large Runtimes. For all i ∈ [λ], execute
Πi.Obf(1

λ, [C]i) for at most t = T
(
λ,
∣∣[C]i

∣∣) number of steps. For every

i ∈ [λ], if the computation of Πi.Obf
(
1λ, [C]i

)
does not abort within t

number of time steps re-assign Πi.Obf = I and Πi.Eval = UTM , where I is
an identity TM13 and UTM is a universal TM14.

At the end of this step, the execution of Πi.Obf(1
λ, [C]i) takes time at most

T
(
λ,
∣∣[C]i

∣∣).
13 An identity TM on input C outputs C.
14 A universal TM on input circuit-input pair (C, x) outputs C(x).

4. Eliminates Candidates with Imperfect Correctness. For all i ∈ [λ],
execute Πi.Obf(1

λ, [C]i) for at most t = T (λ,
∣∣[C]i

∣∣) number of steps. Denote

[C]i to be the result of computation. Denote ` to be the input length of [C]i.

For every i ∈ [n], sample λ3 points x1,i, . . . , xλ3,i
$←− {0, 1}`. Check if the

following condition holds:

λ3∧
j=1

(
[C]i(xj,i) = Πi.Eval

(
[C]i, xj,i

))
= 1 (1)

If for any i ∈ [λ] the above condition does not hold, re-assign Πi.Obf = I
and Πi.Eval = UTM . At the end of this step, every candidate satisfies the
above condition.

5. Candidate Obfuscation Phase of Decomposable IO combiner. For
all i ∈ [λ], execute Πi.Obf

(
1λ, [C]i

)
for at most t = T (λ,

∣∣[C]i
∣∣) number of

steps. Denote [C]i to be the result of computation.

6. Output C =
(

(Π1, . . . ,Πλ), ([C]1, . . . , [C]λ, aux)
)

.

Πuniv.Eval(C, x): On input the obfuscated circuit C and input x, do the follow-

ing. First parse C as
(

(Π1, . . . ,Πλ), Ccomb = ([C]1, . . . , [C]λ, aux)
)

. Compute

y ← Πcomb.Eval
(
Ccomb, x,Π1, . . . ,Πλ

)
. Output y.

Theorem 7. Assuming that Πcomb is a (negl, ε)-secure
(
1− 1

λ , 1−
1
λ2

)
-

decomposable IO combiner, the above scheme Πuniv is a (T, ε)-universal obfusca-
tion that is

(
1− 1

λ

)
-correct.

Proof. We first remark about the running time of the obfuscator and the eval-
uator algorithms. First, we consider Πuniv.Obf. The running time of first step
(Bullet 1) is λf(λ) = poly(λ) (where f was defined earlier in the proof). The
running time of each of the rest of the steps is poly(λ, t, |C|). Plugging in the fact
that t = T (λ, poly(λ, |C|)), we have that the total running time of all the steps
to be poly(T (λ, |C|))15. We move on to Πuniv.Eval. Here, the running time is gov-
erned by the running time of the Πcomb.Eval algorithm which is poly(T (λ, |C|)).
And hence, the running time of Πuniv.Eval is again poly(T (λ, |C|)).

Correctness. Consider the following lemma.

Lemma 1. Πuniv is a
(
1− 1

λ

)
-correct IO candidate.

Proof. Consider a circuit C ∈ Cλ. We prove the following claim. For all i ∈ [n],
let ([C]1, . . . , [C]n, aux)← Preproc(1λ, 1n, C) with n = λ. Also, let {Πi}i∈[n] be

15 Observe that here we used two facts of the time function: (a) T (λ, |C|) ≥ |C| + λ
and, (b) T (λ,poly(|C|)) = poly′(T (λ, |C|)).

the description of the candidates at the end of Bullet 3. Note that some of the
candidates could be re-assigned in Bullets 2 and 3. Let [C]i ← Πi.Obf(1

λ, [C]i).
We prove the following claim in full version [2].

Claim 8. Let i ∈ [n] be such that

Pr
x

$←−{0,1}λ

[
[C]i(x) = Πi.Eval([C]i, x)

]
≤ 1− 1

λ2

Then, the ith candidate Πi satisfies Condition (1) (Bullet 4) with negligible
probability (over the random coins of xj,i).

The above claim proves that at the end of Bullet 4, with overwhelming proba-
bility the following holds for every i ∈ [n]:

Pr
x

$←−{0,1}λ

[
[C]i(x) = Πi.Eval([C]i, x)

]
≥ 1− 1

λ2

We now apply the circuit-specific completeness property of the (1− 1
λ , 1−

1
λ2)-

decomposable IO combiner Πcomb which ensures that the following holds:

Pr
x

$←−{0,1}λ

[
C(x) = Πcomb.Eval(C, x)

]
≥ 1− 1

λ

where C = ([C]1, . . . , [C]n, aux). Note that C is the output of Πuniv.Obf.
Also, the output of Πuniv.Eval on input (C, x) is dictated by the result of
Πcomb.Eval(C, x).

Thus, we have

Pr
x

$←−{0,1}λ

[
C(x) = Πuniv.Eval(C, x)

]
≥ 1− 1

λ
,

where C ← Πuniv.Obf(1
λ, C).

Security. We prove the following lemma.

Lemma 2. Πuniv is a (negl)-secure IO candidate.

Proof. Recall that the universal obfuscator proceeds in two phases. In the first
phase, it chooses the “correct” candidates and then in the second phase, it com-
bines all these candidates to produce the obfuscated circuit. At first glance, it
should seem that as long as we ensure that one of the “correct” candidates is
secure then the security of IO combiner should hold, and thus the security of
universal obfuscator will follow. To make this more precise, lets say C0 and C1

are two equivalent circuits. Let
−→
Π0 = Π0

1 , . . . ,Π
0
n0

and
−→
Π1 = Π1

1 , . . . ,Π
1
n1

be the
“correct” candidates chosen with respect to C0 and C1 respectively. Now, assum-

ing that
−→
Π0 and

−→
Π1 have at least one secure candidate; the hope is that we can

then invoke the security of IO combiner to argue computational indistinguisha-
bility of obfuscation of C0 and C1. This does not work because the security of

IO combiner dictates that
−→
Π0 =

−→
Π1. Indeed obfuscation of C0 (resp., C1) could

potentially reveal
−→
Π0 (resp.,

−→
Π1) at which point no security holds. While we can-

not argue that
−→
Π0 =

−→
Π1, because of the selective abort obfuscators described in

Introduction, we can still show that
−→
Π0 ≈c

−→
Π1. Arguing the indistinguishability

of the candidates then helps us invoke the security of IO combiner and then the
proof of the theorem follows. Arguing the indistinguishability of candidates is
performed by invoking the decomposable security property of the underlying IO
combiner. We present the key lemmas here. Completed proof can be found in
the full version [2].

Formal details. We first introduce some notation. Consider a circuit C ∈ Cλ.
Let ((Π1, . . . ,Πλ), ([C]1, . . . , [C]λ), aux) be the output of Πuniv.Obf(1

λ, C). Note
that many of the candidates (Π1, . . . ,Πλ) could potentially be re-assigned during
the execution of Πuniv.Obf. This re-assignment is a function of the circuit C
that is obfuscated and the random coins of the algorithm. Hence, we can define
a distribution DistC,λ,i, parameterized by C, λ, i ∈ [n], on {0, 1}λ such that

x
$←− DistC,λ,i defines which of the candidates gets re-assigned. That is, the ith

bit xi = 1 indicates that Πi will remain unchanged and xi = 0 indicates that Πi

is re-assigned. Furthermore, xi is always 1.
In more detail, we define the sampling algorithm of distribution Distλ,C,i

as follows: denote by Π ′1, . . . ,Π
′
λ the set of candidates enumerated in Bullet 1

and let Πi be an IO candidate that is always correct. Note that the description
of these candidates are independent of the circuit C and they only depend on
the security parameter λ. At the end of Bullet 4, denote the candidates to be
(Π1, . . . ,Πλ). We then assign x to be such that the ith bit of x, namely, xi = 1
if Π ′i = Πi else xi = 0 if Π ′i 6= Πi. Output x. Note that xi = 1 since Πi is always
correct.

The formal description of the sampling algorithm of Distλ,C,i is given next.

Sampler of Distλ,C,i:

– Let φ(i) = (Πi.Obf, Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi =
(Πi.Obf, Πi.Eval).

– First compute the preprocessing step, ([C]1, . . . , [C]n, aux) ←
Preproc(1λ, 1n, C). Here, n = λ. Maintain another copy of the set of
candidates - for every i ∈ [λ], set Π ′i = Πi.

– For all i ∈ [λ], execute Πi.Obf(1
λ, [C]i) for at most t = T

(
λ,
∣∣[C]i

∣∣) number

of steps. For every i ∈ [λ], if the computation of Πi.Obf
(
1λ, [C]i

)
does not

abort within t number of time steps re-assign Πi.Obf = I and Πi.Eval =
UTM , where I is an identity TM and UTM is a universal TM.

– For all i ∈ [λ], executeΠi.Obf(1
λ, [C]i) for at most t = T (λ,

∣∣[C]i
∣∣) number of

steps. Denote [C]i to be the result of computation. Denote ` to be the input

length of [C]i. For every i ∈ [n], sample λ3 points x1,i, . . . , xλ3,i
$←− {0, 1}`.

Check if the following condition holds:

λ3∧
j=1

(
[C]i(xj,i) = Πi.Eval

(
[C]i, xj,i

))
= 1 (2)

If for any i ∈ [λ] the above condition does not hold, re-assign Πi.Obf = I
and Πi.Eval = UTM .

– Construct a string x ∈ {0, 1}λ such that the ith bit xi is generated as:

xi =

{
1, if Πi = Π ′i
0, otherwise

– Output x.

Remark 4. For every x in the support of Distλ,C,i we have xi = 1 (ith bit of x)
since the ith candidate is always correct.

We prove the following useful sub-lemma. For every two circuits C0, C1 we claim
that the outputs of the corresponding distributions Distλ,C0,i and Distλ,C1,i are
computationally indistinguishable. Here, i corresponds to the candidate that is
always correct. The proof can be found in [2].

SubLemma 1 (Candidate Indistinguishability Lemma) For large
enough security parameter λ, any two circuits C0, C1 ∈ Cλ, i ∈ [n] we have

{x $←− Distλ,C0,i} ≈c {x
$←− Distλ,C1,i}, where ith candidate (respresented by φ(i))

is always correct, assuming that Πcomb satisfies decomposable security property.

We now proceed to prove the main lemma. Recall that we are assured the
existence of a secure IO candidate that is always correct. Let i ∈ Z>0 be such
that φ(i) represents the secure candidate. Let λ ≥ i. Consider two equivalent
circuits C0, C1 ∈ Cλ. That is, |C0| = |C1| and for every x ∈ {0, 1}λ we have
C0(x) = C1(x). Our goal is to show that Πuniv.Obf(1

λ, C0) ≈c Πuniv.Obf(1
λ, C1).

We define the following experiment. The following experiment, parameter-
ized by (C0, C1), is same as Πuniv.Obf(1

λ, C0) except that the decision to choose
which of the candidates to obfuscate the derived circuits {[C]i} is made solely
based on the circuit C1.

ExptObf(1λ, C0, C1, i):

- Let φ(i) = (Πi.Obf, Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi =
(Πi.Obf, Πi.Eval).

- Compute the preprocessing step, ([C]1, . . . , [C]n, aux)← Preproc(1λ, 1n, C0)
with n = λ.

- Sample x from Distλ,C1,i, where i ∈ [λ]. That is, x is sampled from the
distribution Dist parameterized by (λ,C1, i).

- For every i ∈ [λ] and xi = 0, re-assign Πi.Obf = I and Πi.Eval = UTM .
- Execute [C]i ← Πi.Obf(1

λ, [C]i) for at most T (λ, |[C]i|) number of steps.

- Output C = ([C]1, . . . , [C]λ).

Consider the following claims.

Claim 9. The distributions D0 =
{
ExptObf

(
1λ, Cb, Cb, i

)}
and D1 =

{Πuniv.Obf
(
1λ, Cb

)
} are identical, for b ∈ {0, 1}.

The proof of the above claim follows directly from the description of Distλ,C,i.

Claim 10. The distributions D0 =
{
ExptObf

(
1λ, Cb, C0, i

)}
and D1 ={

ExptObf(1λ, Cb, C1, i)
}

are computationally indistinguishable for b ∈ {0, 1}.

The proof of the above claim follows from the Candidate Indistinguishability
Lemma (Lemma 1).

Claim 11. The distributions D0 =
{
ExptObf

(
1λ, C0, Cb, i

)}
and D1 ={

ExptObf(1λ, C1, Cb, i)
}

are computationally indistinguishable for b ∈ {0, 1}.

We rely on the security (third bullet in Definition 3) of decomposable IO com-
biner to prove this claim. That is, the output of the IO combiner on two equiv-
alent circuits are computationally indistinguishable. The proof can be found in
the full version [2].

From Claims 9, 10, 11, it follows that Πuniv.Obf(1
λ, C0) ≈c Πuniv.Obf(1

λ, C1).
In more detail,

Πuniv(1
λ, C0) ≡ ExptObf

(
1λ, C0, C0, i

)
(from Claim 9)

≈c ExptObf
(
1λ, C0, C1, i

)
(from Claim 10)

≈c ExptObf
(
1λ, C1, C1, i

)
(from Claim 11)

≡ Πuniv(1
λ, C1)(from Claim 9)

We have demonstrated that Πuniv satisfies both the correctness and security
properties. This proves the theorem.

Step II: Approx. Correct to Exact (T, ε)-Universal Obfuscation. In Step
I, we showed how to construct a universal obfuscator that is

(
1− 1

λ

)
correct.

That is, for sufficiently large security parameter λ ∈ N, every circuit C ∈ Cλ, it
holds that:

Pr
x

$←−{0,1}λ

[
Πuniv.C(x) = Eval(C, x) : C ← Πuniv.Obf(1

λ, C)
]
≥ 1− 1

λ

We now apply the transformation of BV [6] to obtain a universal obfuscator that
is exact (with overwhelming probability). In particular, we apply their transfor-
mation that is based on sub-exponential LWE assumption.

That is, for every C ∈ Cλ, x ∈ {0, 1}λ, with high probability it holds that:

Pr
[
Πuniv.C(x) = Eval(C, x) : C ← Πuniv.Obf(1

λ, C)
]

= 1

We state the formal theorem below.

Theorem 12. Assuming learning with errors secure against adversaries run-

ning in time 2n
ε′

and (1 − 1/λ)-correct (T, ε)-universal obfuscation, we have a
(T, ε) -universal obfuscation that is exact (with overwhelming probability).

Combining Step I and II =⇒ Main Result. Combining both the above
steps and instantiating the decomposable IO combiner (Theorem 6) we get the
following result:

Theorem 13. Assuming LWE secure against adversaries running in time 2n
ε′

,
there exists a (T, ε)-Universal Obfuscation with ε′ being a function of ε.

6 Witness Encryption Combiners

6.1 Definition of WE Combiner

We present the formal definition of a WE combiner below. The definition is
similar to the definition of IO combiners. The task of the WE combiner is to
take n candidates that are correct (in terms of encryption and decryption), and
yield a scheme which is as secure as any one of the candidate schemes.

For a scheme Π we say that it is a correct WE candidate if it satisfies that
correctness requirement and we say that a candidate is secure if it satisfies the
security requirement (definitions found in the full version). We say that it is
correct and secure if it satisfies both the requirements.

There are two PPT algorithms associated with an WE combiner, namely,
CombEnc and CombDec. Procedure CombEnc takes as input an instance x, a
message m along with the description of multiple WE candidates and outputs
a ciphertext. Procedure CombDec takes as input the ciphertext, a witness w,
the description of the candidates and outputs the original message. Since the
execution times of the candidates could potentially differ, we require the algo-
rithms CombEnc and CombDec in addition to their usual inputs also take a time
function T as input. T dictates an upper bound on the time required to execute
all the candidates.

Syntax of WE Combiner. We define an WE combiner Πcomb = (CombEnc,
CombDec) for a language L.

– Combiner of encryption algorithms, CT ← CombEnc(1λ, x,m,Π1, . . . ,
Πn, T): It takes as input security parameter λ, an instance x, a message
m, description of WE candidates {Πi}i∈[n], time function T and outputs a
ciphertext.

– Combiner of decryption algorithms, y ← CombDec(CT, w,Π1, . . . ,Πn,
T): It takes as input a ciphertext CT, a witness for the instance x, descrip-
tions of WE candidates {Πi}i∈[n], time function T and outputs y.

We define the properties associated with a WE combiner scheme. There are two
properties – correctness and security. We only consider the scenario where all
the candidate WE schemes are (almost) perfectly correct but only one of them
is secure.

Definition 6 (Secure WE combiner). Let Π1, . . . ,Πn be n (almost) perfectly
correct WE candidates for NP (that is all the schemes are correct, however all
of them need not be secure). We say that Πcomb = (CombEnc,CombDec) is a
secure WE combiner if the following conditions are satisfied:

– Correctness. Consider the following process: (a) CT← CombEnc(1λ, x,m,
Π1, . . . ,Πn, T), (b) y ← CombDec(CT, w,Π1, . . . ,Πn, T).
Then, Pr[y = m] ≥ 1− negl(λ) over the randomness of CombEnc.

– Security: If for some i ∈ [n] candidate Πi is secure then, for any PPT ad-
versary A and any polynomial p(·), there exists a negligible function negl(·),
such that for any λ ∈ N, any x /∈ L and any two equal-length messages m1

and m2 such that |x|, |m1| ≤ p(λ), we have that

|Pr[A(CombEnc(1λ, x,m1, Π1, . . . ,Πn, T) = 1]−
Pr[A(CombEnc(1λ, x,m2, Π1, . . . ,Πn, T)) = 1]| ≤ negl(λ).

Henceforth, we set the time function to be an a priori fixed polynomial. In our
constructions presented next, we drop the parameter T which is input to the
above algorithms.

6.2 Construction of WE Combiner

We give a construction of a WE combiner. Formally, we prove the following
theorem.

Theorem 14. If one-way functions exist, then there exists a secure WE com-
biner.

The construction is given below. As described in Section 2.3, the main ingredient
of the construction is a (perfectly) secure secret sharing scheme.

CombEnc(1λ, x,m,Π1, . . . ,Πn): It takes as input security parameter λ, instance
x, message m, description of candidates {Πi = (Πi.Enc, Πi.Dec)}i∈[n] and does
the following.

1. Secret share the message. Choose n random strings r1, . . . , rn ∈ {0, 1}|m|
such that r1 ⊕ . . .⊕ rn = m.

2. Encrypt shares using candidates. For i ∈ [n], encrypt ri using candidate
Πi: yi ← Πi.Enc(x, ri).

3. Output (y1, . . . , yn).

CombDec(1λ,y, w,Π1, . . . ,Πn): On input y = (y1, . . . , yn), an input x with
witness w, descriptions of candidates {Πi}i∈[n] run the decryption candidates to

obtain ri ← Πi.Dec(1
λ, yi, w) for all i ∈ [n]. Compute m ← r1 ⊕ . . . ⊕ rn and

output m.

Correctness: The correctness follows immediately from the scheme. For any
x ∈ L using the witness w we will get all ri for i ∈ [n] and from them we
compute the correct message m = r1 ⊕ . . .⊕ rn.

Security: To prove security, assume that x /∈ L and let i∗ ∈ [n] be such that
candidate Πi∗ is secure. Let m0,m1 be any two messages. Consider the following
sequence of hybrids. Let H0, parameterized by (r1, . . . , rn), be a distribution on
the encryptions of m0. That is, H0 is a distribution over (y1, . . . , yn) where
yi ← Πi.Enc(x, ri) where ri are random strings such that r1 ⊕ . . . ⊕ rn = m0.
Then we define H1, again parameterized by (r1, . . . , rn), to be a distribution
on encryptions of the message m0 ⊕m1 ⊕ ri. That is, H0 is a distribution over
yi∗ ← Πi∗ .Enc(1

λ, x, r′) where r′ = m0 ⊕m1 ⊕ ri. From the security of Πi∗ we
have that H0 ≈ H1. Notice that

r1 ⊕ . . .⊕ ri∗−1 ⊕ r′ ⊕ ri∗+1 . . .⊕ rn = m0 ⊕m1 ⊕m0 = m1.

Moreover, the distribution of r1, . . . , ri∗−1, r
′, ri∗+1, . . . , rn and the distribution

r1, . . . , rn such that r1⊕ . . .⊕rn = m1 are identical. Therefore, if we define H2 to
be the distribution on the honest encryptions of the message m1 (i.e., performed
according to the scheme), we get that H1 ≡ H2. Thus we have that H0 ≈ H2

which proves the security of the above scheme.

Acknowledgements. We thank Yuval Ishai for helpful discussions and for
bringing to our notice the problem of universal obfuscation. We additionally
thank Abhishek Jain and Ilan Komargodsky for useful discussions.

References

1. Ananth, P., Chandran, N., Goyal, V., Kanukurthi, B., Ostrovsky, R.: Achieving
privacy in verifiable computation with multiple servers–without fhe and without
pre-processing. In: PKC (2014)

2. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal obfuscation and
witness encryption: Boosting correctness and combining security. IACR Cryptology
ePrint Archive (2016)

3. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: EUROCRYPT (2014)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: CRYPTO (2001)

5. Bitansky, N., Paneth, O.: Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: TCC, pp. 401–427. Springer (2015)

6. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: From approx-
imate to exact. In: TCC (2016)

7. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: EUROCRYPT (1998)

8. C.A. Asmuth, G.B.: An efficient algorithm for constructing a cryptosystem which
is harder to break than two other cryptosystems. Computers and Mathematics
with Applications (1981)

9. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: TCC (2015)

10. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: CRYPTO (2015)

11. De-Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge with pre-
processing. In: CRYPTO (1988)

12. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC (1990)

13. Fischlin, M., Herzberg, A., Noon, H.B., Shulman, H.: Obfuscation combiners (2016)
14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate

indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

15. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable yao circuits. In: CRYPTO (2010)

16. Gödel, K.: Über formal unentscheidbare sätze der principia mathematica und ver-
wandter systeme i. Monatshefte für mathematik und physik (1931)

17. Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press (2001)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
(1987)

19. Goldwasser, S., Kalai, Y.T.: Cryptographic assumptions: A position paper. In:
TCC (2016)

20. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: TCC (2007)
21. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for

oblivious transfer and other primitives. In: EUROCRYPT (2005)
22. Herzberg, A.: On tolerant cryptographic constructions. In: CT-RSA (2005)
23. Herzberg, A.: Folklore, practice and theory of robust combiners. Journal of Com-

puter Security (2009)
24. Herzberg, A., Shulman, H.: Robust combiners for software hardening. In: TRUST

2010 (2010)
25. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way

functions and (im)perfect obfuscation. In: FOCS (2014)
26. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.

In: CRYPTO (1990)
27. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica

(1987)
28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation

on the cloud via multikey fully homomorphic encryption. In: STOC (2012)
29. Mukherjee, P., Wichs, D.: Two round MPC from LWE via multi-key FHE. In:

EUROCRYPT (2016)
30. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-

secure multilinear encodings. In: CRYPTO (2014)
31. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable en-

cryption, and more. In: STOC (2014)
32. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS

(1986)

	Universal Constructions and Robust Combiners for Indistinguishability Obfuscation and Witness Encryption

