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Abstract. Many information-theoretic secure protocols are known for
general secure multi-party computation, in the honest majority setting,
and in the dishonest majority setting with preprocessing. All known pro-
tocols that are efficient in the circuit size of the evaluated function follow
the same “gate-by-gate” design pattern: we work through an arithmetic
(boolean) circuit on secret-shared inputs, such that after we process a
gate, the output of the gate is represented as a random secret sharing
among the players. This approach usually allows non-interactive process-
ing of addition gates but requires communication for every multiplication
gate. Thus, while information-theoretic secure protocols are very efficient
in terms of computational work, they (seem to) require more communi-
cation and more rounds than computationally secure protocols. Whether
this is inherent is an open and probably very hard problem. However, in
this work we show that it is indeed inherent for protocols that follow the
“gate-by-gate” design pattern. We present the following results:
– In the honest majority setting, as well as for dishonest majority with

preprocessing, any gate-by-gate protocol must communicate Ω(n)
bits for every multiplication gate, where n is the number of players.

– In the honest majority setting, we show that one cannot obtain a
bound that also grows with the field size. Moreover, for a constant
number of players, amortizing over several multiplication gates does
not allow us to save on the computational work, and – in a restricted
setting – we show that this also holds for communication.

All our lower bounds are met up to a constant factor by known protocols
that follow the typical gate-by-gate paradigm. Our results imply that a
fundamentally new approach must be found in order to improve the
communication complexity of known protocols, such as BGW, GMW,
SPDZ etc.
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1 Introduction

Secure Multi-Party Computation (MPC) allows n players to compute an agreed
function on privately held inputs, such that the desired result is correctly com-
puted and is the only new information released. This should hold, even if t out
of n players have been actively or passively corrupted by an adversary.

If point-to-point secure channels between players are assumed, any function
can be computed with unconditional (perfect) security, against a passive adver-
sary if n ≥ 2t + 1 and against an active adversary if n ≥ 3t + 1 [BOGW88,
CCD88]. If we assume a broadcast channel and accept a small error probability,
n ≥ 2t+ 1 is sufficient to get active security[RBO89].

The protocols behind these results require a number of communication rounds
that is proportional to the depth of an (arithmetic) circuit computing the func-
tion. Moreover, the communication complexity is proportional to the size of
the circuit. Whether we can have constant round protocols and/or communica-
tion complexity much smaller than the size of the circuit and still be efficient
(polynomial-time) in the circuit size of the function is a long-standing open prob-
lem. Note that this is indeed possible if one makes computational assumptions.
Note also that if we give up on being efficient in the circuit size, then there
are unconditionally secure and constant round protocols for any function [IK00]
(which will, however, be very inefficient in general with respect to the compu-
tation). Moreover, there are works that apply to special classes of circuits (e.g.,
constant-depth circuits [BI05]) or protocols that require exponential amount of
computation [BFKR90, NN01] and exponential storage complexity [IKM+13].

The above issues are not only of theoretical interest: the methods we typically
use in information-theoretic secure protocols tend to be computationally much
more efficient than the cryptographic machinery we need for computational se-
curity. So unconditionally secure protocols are very attractive from a practical
point of view, except for the fact that they seem to require a lot of interaction.

The Gate-by-gate Design Pattern. The fact that existing information-
theoretic secure protocols (which are efficient in the circuit size of the function)
have large round and communication complexity is a natural consequence of
the fact that all such protocols follow the same typical “gate-by-gate” design
pattern: Initially all inputs are secret-shared among the players. Then, for each
gate in the circuit, where both its inputs have been secret-shared, we execute a
subprotocol that produces the output from the gate in a secret-shared form. The
protocol maintains as an invariant that for all gates that have been processed
so far, the secret-sharing of the output value is of the same form used for the
inputs (so we can continue processing gates) and is appropriately randomised
such that one could open this sharing while revealing only that output value. As
a result, it is secure to reveal/open the final outputs from the circuit.

For all known constructions which are efficient in the circuit size of the func-
tion, it is the case that multiplication gates require communication to be pro-
cessed (while addition/linear gates usually do not). The number of rounds is at



least the (multiplicative) depth of the circuit, and the communication complex-
ity is Ω(ns) for a circuit of size s (the size being measured as the number of
multiplication gates) in the worst case for t < n/3 and t < n/2 see the results
of [DN07, BTH08] and [BSFO12, GIP+14, GIP15], respectively. Note that pro-
tocols that tolerate a sub-optimal number of corrupted parties (e.g., t < 0.49n)
and are based on packed secret-sharing techniques can reduce the amortised cost
of multiplications if they can be parallelised [DIK+08, IPS09, DIK10, GIP15].
These techniques do not apply to all circuits, in particular not to “tall and
skinny” circuits whose multiplicative depth is comparable to their size. In addi-
tion, they can at best save an O(n) factor in communication and computational
work.

The situation is essentially the same for recent protocols that are designed
for dishonest majority in the preprocessing model [DPSZ12, NNOB12] (except
that amortization based on packed secret-sharing does not apply here due to the
dishonest majority setting).

1.1 Contributions

In this paper, we ask a very natural question for unconditionally secure protocols
which, to the best of our knowledge, has not been studied in detail before:

Is it really inherent that the typical gate-by-gate approach to secure compu-
tation requires communication for each multiplication operation?

Our Model. To avoid misunderstandings, let us be more precise about the
model we assume: we consider synchronous protocols that are semi-honest and
statistically secure against static corruption of at most t of the n players. We
assume that point-to-point secure channels are available, and protocols are al-
lowed to have dynamic communication patterns (in a certain sense we make
precise later), i.e., it is not fixed a priori whether a protocol sends a message in
a given time slot. Moreover, there is no bound on the computational complexity
of protocols, in particular arbitrary secret sharing schemes are allowed. A gate-
by-gate protocol is a protocol that evaluates an arithmetic circuit and for every
multiplication gate, it calls a certain type of subprotocol we call a Multiplication
Gate Protocol (MGP). We define MGPs precisely later, but they basically take
as input random shares of two values a, b from a field and output random shares
of c = ab. Neither the MGP nor the involved secret sharing schemes have to
be the same for all gates. We do not even assume that the same secret sharing
scheme is used for the inputs and outputs of an MGP, we only require that the
reconstruction threshold for the output sharing is at most 2t for honest majority
and at most n for dishonest majority.

An ordered gate-by-gate protocol must call the MGP’s in an order corre-
sponding to the order in which one would visit the gates when evaluating the
circuit, whereas this is not required in general. Thus the gate-by-gate notion is
somewhat more general than what one might intuitively expect and certainly



includes much more than, say the standard BGW protocol – which, of course,
makes our negative results stronger.

Note that if multiplications did not require communication, it would imme-
diately follow (for semi-honest security) that we would have an unconditionally
secure two-round protocol for computing any function. But as mentioned above
this is not a priori impossible: it follows, for instance, from [IK00, IKM+13],
that if less than a third of the players are corrupted, there is indeed such a two-
round protocol (which, however, requires super polynomial computational work
in general).

Honest Majority Setting. For honest majority protocols it is relatively easy
to show that multiplications do require communication: we argue in the paper
that any MGP secure against t corruptions requires that at least 2t+ 1 players
communicate. For protocols with dynamic communication pattern this bound
holds in expectation. It turns out that a protocol beating this bound would imply
an unconditionally secure two-party protocol computing a multiplication, which
is well known to be impossible. This implies that the communication complexity
of any gate-by-gate protocol for honest majority must be proportional to n · s
where s is the circuit size and that the round complexity of an ordered gate-by-
gate protocol must be at least proportional to the multiplicative depth of the
circuit. This matches the best protocols we know for general Boolean circuits up
to a constant factor. For arithmetic circuits over large fields one might wonder
whether the communication must grow with the field size. However, this cannot
be shown via a general bound on MGPs: we give an example secret sharing
scheme allowing for an MGP with communication complexity independent of
the field size.

A gate-by-gate protocol is not allowed to amortise over several multiplications
that can be done in parallel. This is anyway not possible in general, for instance
if we evaluate a “tall and skinny” circuit forcing us to do multiplications sequen-
tially. But for more benign circuits, amortization is indeed an option. However,
we show that in a restricted setting, MGPs doing k multiplication gates in par-
allel must have communication that grows linearly with k. We also show (in full
generality) that amortization can save at most an O(n) factor in the computa-
tional work, matching what we can get from known techniques based on packed
secret-sharing. This proof technique for this bound is quite interesting: We base
it on a lower bound by Winkler and Wullschleger [WW10] on the amount of
preprocessed data one needs for (statistically) secure two-party computation of
certain functions. We find it somewhat surprising that an information theoretic
bound on the size of data translates to a bound on local computation.

Dishonest Majority Setting with Preproccesing. The argument used for
the honest majority case breaks down if we consider protocols in the preprocess-
ing model (where correlated randomness is considered): here it is indeed possible
to compute multiplications with unconditional security, even if t = n−1 of the n
players are corrupt. Nevertheless, we show similar results for this setting: here,



any MGP secure against t = n − 1 corruptions must have all n players com-
municate. This implies that, also in this setting, any gate-by-gate protocol has
communication complexity Ω(n · s). Note that existing constructions [DPSZ12]
meet the resulting bound for gate-by-gate protocols up to a constant factor.

To obtain the result, we exploit again the lower bound by Winkler and
Wullschleger, but in a different way. In a nutshell, we show that constructions
beating our bound would imply a protocol that is too good to be true according
to [WW10].

The result holds exactly as stated above assuming that the target secret-
sharing scheme that the protocol outputs shares in is of a certain type that in-
cludes the simple additive secret-sharing scheme (which is also used in [DPSZ12],
[NNOB12]). If we put no restrictions on the target scheme, the results get a bit
more complicated. Essentially what we show is the following: suppose we replace
the multiplication gate by a more general gate that does some computation on a
fixed number of inputs, such as the inner product of two vectors. Then we show
that once the computation done by the gate gets large enough (in a certain sense
we define in the paper), again a protocol handling such a gate must communicate
a lot. It is the target secret-sharing scheme that determines how “large” the gate
needs to be, see more details within.

Comparison to Related Work. There is a lot of prior work on lower bounding
communication in interactive protocols, see for instance [Kus92, FY92, CK93,
FKN94, KM97, KR94, BSPV99, GR03] (see [DPP14] for an overview of these
results). They typically provide lower bounds for very specific functions such as
modular addition, and are not applicable to our situation. Probably the most
relevant previous work is [DPP14]. Their model does not match ours, as they
consider three parties where only two have input and only the third party gets
output. Hence we cannot use their results directly, but it is instructive to consider
their techniques as it shows why our problem is more tricky than it may seem at
first. One important idea used in [DPP14] is to make a “cut”, i.e., one considers
a (small) subset C of the parties and then argue that either the communication
between C and the rest of the world must be large enough to determine their
inputs, since otherwise other players could not compute the output; or that C
must receive information of sufficient size to be able to compute its own outputs.

It turns out that these ideas are not sufficient for us: recall that we start
from a situation where players already have shares of the input values a, b. Now,
if C is large enough to be qualified in the input secret sharing scheme, then C
already has information enough to determine a, b (and for some secret sharing
schemes even the shares of all players). So C can in principle compute correct
shares of c = ab by itself without communicating with anyone. On the other
hand, if C is unqualified, then the complement of C is typically qualified, and
therefore does not need information from C to compute output. But one might
think that C needs to receive information to determine its output, in particular,
the output shares must be properly coordinated to form a consistent sharing of
c. Remember, however, that players already have properly coordinated shares of



the inputs, and they might be able to use those to form a correct output sharing
while communicating less. Indeed, this is what happens for addition gates, where
there is no communication, players just add their shares locally.

It follows that the idea of a cut is not enough, one must exploit in some non-
trivial way that we are handling a multiplication gate, which is exactly what we
do. It is possible that one could use the fact that we do multiplication together
with the concept of residual information which was also used in [DPP14], to get
better bounds than we achieve here, but this remains a speculation.

Note that our model does not count communication needed to construct the
shares that are input, nor does it count any communication needed to reconstruct
results from the output shares. This does count in the standard model and makes
lower bounds easier to prove. For instance, in [DNOR15] lower bounds were
recently proved on the message complexity of computing a large class of functions
securely, primarily by showing that a significant number of messages must be sent
before the input are uniquely determined. In fact, if we included a secret sharing
phase before the multiplication protocol and a reconstruction phase after it, these
would entail so much communication that the bounds obtained from existing
results would leave nothing to explain why the privacy preserving multiplication
step is communication intensive.

It is also easy to see that one cannot get bounds in our model based only on
correctness, for instance by methods from communication complexity. If parties
have shares in a and b, no communication is needed to produce some set of cor-
rect shares in ab: one can simply consider the shares in a and b together as a
(redundant) sharing of ab. Indeed this satisfies all our demands to a multiplica-
tion gate protocol except privacy: the output threshold is the same and we can
correctly reconstruct ab, but privacy is of course violated because reconstruction
would tell us more than ab. So, our bounds arguably require privacy.

2 Preliminaries

Notation. We say that a function ε is negligible if ∀c ∃ σc ∈ N such that if
σ ≥ σc then ε(σ) < σ−c. We write [n] to denote the set {1, 2, ..., n}. More-
over, calligraphic letters denote sets. The complement of a set A is denoted
by A. The distribution of a random variable X over X is denoted by PX .
Given the distribution PXY over X × Y, the marginal distribution is denoted
by PX(x) :=

∑
y∈Y PXY (x, y). A conditional distribution PX|Y (x, y) over X ×Y

defines for every y ∈ Y a distribution PX|Y=y. The statistical distance between
two distributions PX and P ′X over the domain X is defined as the maximum,
over all (inefficient) distinguishers D : X → {0, 1}, of the distinguishing advan-
tage SD(PX , P

′
X) =

∣∣Pr[D(X) = 1]−Pr[D(X ′) = 1]
∣∣. The conditional Shannon

entropy of X given Y is defined as H(X|Y ) := −
∑
x,y PXY (x, y) logPX|Y (x, y)

where all logarithms are binary and the mutual information of X and Y as
I(X;Y ) = H(X)−H(X|Y ). We also use h(p) = −p log p− (1− p) log(1− p) for
the binary entropy function. Furthermore, we denote by Πf an n-party protocol

for a function f and by ΠA,B
f a two-party protocol between parties A and B.



Protocols. We consider protocols involving n parties, denoted by the set P =
{P1, . . . ,Pn}. The parties communicate over synchronous, point-to-point secure
channels. We consider non-reactive secure computation tasks, defined by a de-
terministic or randomized functionality f : X1 × . . .×Xn → Z1 × . . .×Zn. The
functionality specifies a mapping from n inputs to n outputs the parties want
to compute. The functionality can be fully specified by a conditional probabil-
ity distribution PZ1···Zn|X1···Xn

, where Xi is a random variable over Xi, Zi is
a random variable over Zi, and for all inputs (x1, . . . , xn) we have a probabil-
ity function PZ1···Zn|X1···Xn=(x1,...,xn) and PZ1···Zn|X1···Xn=(x1,...,xn)(z1, . . . , zn) is
the probability that the output is (z1, . . . , zn) when the input is (x1, . . . , xn). Vice
versa, we can consider any conditional probability distribution PZ1···Zn|X1···Xn

as a specification of a probabilistic functionality. In the following we will freely
switch between the terminology of probabilistic functionalities and conditional
probability distributions.

We consider stand-alone security as well as static and passive corruptions
of t out of n parties for some t ≤ n. This means that a set of t parties are
announced to be corrupted before the protocol is executed, and the corrupted
parties still follow the protocol but might pool their views of the protocol to
learn more than they should. We consider statistical correctness and statistical
security. We allow simulators to be inefficient. Except that we do not consider
computational security, the above model choices are the possible weakest ones,
which just makes our impossibility proofs stronger.

The Security Parameter. The security is measured in a security parameter
σ and we require that the ”insecurity” goes to 0 as σ grows. We do not allow n
to grow with σ, i.e., we require that the protocol can be made arbitrarily secure
when run among a fixed set of parties by just increasing σ. The literature some-
times consider protocol which only become secure when run among a sufficiently
large number of parties. We do not cover such protocols.

Communication Model. We assume that each pair of parties are connected
by a secure communication channel, which only leaks to the adversary the length
of each message sent1. We consider protocols proceeding in synchronous rounds.
Following [DPP14] we assume that in each round each pair of parties (Pi,Pj)
will specify a prefix free code Mi,j ⊂ {0, 1}∗ and then Pi will send a message
m ∈ Mi,j . The codes might be dynamically chosen, but we require that the
parties agree on the codes. If the length of a sent message does not match the
length specified by the receiver, the receiver will terminate with an error symbol
⊥ as output, which will make it count as a violation of correctness.

Let ε denote the empty string and let E = {ε}. If Mi,j = E, then we say that
Pi sends no message to Pj in that round, i.e., we use the empty string to denote
the lack of a message. Notice that if Mi,j 6= E, then ε 6∈ Mi,j as Mi,j must be
prefix free. Therefore, at the point where Pj specifies the code Mi,j for a given

1 This is a standard way to model secure communication by an ideal functionality
since any implementation using crypto would leak the message length.



round, Pj already knows whether or not Pi will send a message in that round.
We in particular say that Pj anticipates a message from Pi when Mi,j 6= E. We
will only be interested in counting the number of messages sent, not their size.
When the protocol is correct, the number of messages sent is obviously equal to
the number of messages anticipated.

Definition 1 (Anticipated message complexity). We say that the expected
message complexity of a party is the expected number of times a non-empty
message is sent or anticipated by the party. The expected message complexity of
a protocol is simply the sum of the expected message complexity of the parties,
divided by 2. We divide by 2 to avoid counting a transmitted message twice. The
expectation is taken over the randomness of the players and maximised over all
inputs.

The reason for insisting on a prefix free code for this slightly technical notion
is to avoid a problem we would have if we allowed the communication pattern
to vary arbitrarily: consider a setting where Pj wants to send a bit b to Pi. If
b = 0 it sends no message to Pi or say the empty string. If b = 1 it sends 0
to Pi. If b is uniformly random, then in half the cases Pj sends a message of
length 0 and in half the cases it sends a message of length 1. This means that
a more liberal way of counting the communication complexity would say that
the expected communication complexity is 1

2 . This would allow to exchange 1
bit of information with an expected 1

2 bits of communication. This does not
seem quite reasonable. The prefix-free model avoids this while still allowing the
protocol to have a dynamic communication pattern. Note that since we want to
prove impossibility it is stronger to allow protocols with dynamic rather than
fixed communication patterns.

Protocols with Preprocessing. We will also consider protocols for the pre-
processing model. In the preprocessing model, the specification of a protocol also
includes a joint distribution PR1···Rn over R1× . . .×Rn, where the Ri’s are finite
randomness domains. This distribution is used for sampling correlated random
inputs (r1, . . . , rn)← PR1···Rn

received by the parties before the execution of the
protocol. Therefore, the preprocessing is independent of the inputs. The actions
of a party Pi in a given round may in this case depend on the private random
input ri received by Pi from the distribution PR1···Rn and on its input xi and
the messages received in previous rounds. In addition, the action might depend
on the statistical security paramenter σ which is given as input to all parties
along with xi and ri. Using the standard terminology of secure computation,
the preprocessing model can be thought of as a hybrid model where the parties
have one-time access to an ideal randomized functionality P (with no inputs)
providing them with correlated, private random inputs ri.

Security Definition. A protocol securely implements an ideal functionality
with an error of ε, if the entire view of each corrupted player can be simulated
with an error of at most ε in an ideal setting, where the players only have black-
box access to the ideal functionality. Formally, consider Definition 2 below.



Definition 2. Let Π be a protocol for the PR1···Rn
-preprocessing model. Let

PZ1···Zn|X1···Xn
be an n-party functionality. Let Adv be a randomized algorithm,

which chooses to corrupt a set A ⊆ {1, . . . , n} of at most t ∈ N parties. Let
x = (x1, . . . , xn) ∈ X1× . . .×Xn be an input. Let PatternΠ(σ,x) denote the com-
munication pattern in a random run of the protocol Π, i.e., the list of the length
of the messages exchanged between all pairs of parties in all rounds, on input
x and with security parameter σ. Define ViewΠAdv(σ,x) to be the PatternΠ(σ,x)
concatenated with the view of the parties Pi for i ∈ A in the same random run
of the protocol Π. Let OutputΠA(σ,x) be just the inputs and outputs of the honest
parties Pi for i 6∈ A in the same random run of the protocol Π. Let

ExecΠAdv(σ,x) = (ViewΠAdv(σ,x),OutputΠA(σ,x)) .

Let S be a randomized function called the simulator. Sample z according to
PZ1···Zn|X1···Xn

(x). Give input {(xi, zi)}i∈A to S. Let S({(xi, zi)}i∈A) denote the
random variable describing the output of S. Let

SimS(σ,x) =
(
S({(xi, zi)}i∈A), {(xi, zi)}i 6∈A

)
.

The protocol is ε-semi-honest secure with threshold t if there exist S such that
for all x and all A with |A| ≤ t it holds that

SD(ExecΠAdv(σ,x),SimS(σ,x)) ≤ ε(σ) .

The protocol is statistically semi-honest secure with threshold t if it is ε-semi-
honest secure for a negligible ε.

Secret-Sharing. A (t+1)-out-of-n secret-sharing scheme takes as input a secret
s from some input domain and outputs n shares, with the property that it is
possible to efficiently reconstruct s from every subset of t+ 1 shares, but every
subset of at most t shares reveals nothing about the secret s. The value t is called
the privacy threshold of the scheme.

A secret-sharing scheme consists of two algorithms: the first algorithm, called
the sharing algorithm Share, takes as input the secret s and the parameters t
and n, and outputs n shares. The second algorithm, called the recovery algorithm
Recover, takes as input t + 1 shares and outputs a value s. It is required that
the reconstruction of shares generated from a value s produces the same value
s. Formally, consider the above definition.

Definition 3 (Secret-sharing). Let F be a finite field and let n, t ∈ N. A pair
of algorithms Snt = (Share,Recover) where Share is randomized and Recover is
deterministic are said to be a secret-sharing scheme if for every n, t ∈ N, the
following conditions hold.

Reconstruction: For any set T ⊆ {1, . . . , n} such that |T | > t and for any
s ∈ F it holds that

Pr[Recover(ShareT (s, n, t)) = s] = 1

where ShareT is the restriction of the outputs of Share to the elements in T .



Privacy: For any set T ⊆ {1, . . . , n} such that |T | ≤ t and for any s, s′ ∈ F it
holds that

ShareT (s, n, t) ≡ ShareT (s′, n, t)

where we use ≡ to denote that two random variables have the same distri-
bution.

Additive Secret-Sharing. In an additive secret-sharing scheme, n parties hold
shares the sum of which yields the desired secret. By setting all but a single share
to be a random field element, we ensure that any subset of n− 1 parties cannot
recover the initial secret.

Definition 4 (Additive secret-sharing). Let F be a finite field and let n ∈ N.
Consider the secret-sharing scheme An = (Share,Recover) defined below.

– The algorithm Share on input (s, n) performs the following:
1. Generate (s1, . . . , sn−1) uniformly at random from F and define sn =

s−
∑n−1
i=1 si.

2. Output (s1, . . . , sn) where si is the share of the i-th party.
– The recovery algorithm Recover on input (s1, · · · , sn), outputs

∑n
i=1 si.

It is easy to show that the distribution of any n − 1 of the shares is the
uniform one on Fn−1 and hence independent of s.

Secret-sharing Notation. In the sequel for a value s ∈ F we denote by
[s]S

n
t a random sharing of s for the secret-sharing scheme Snt . That is, [s]S

n
t ←

Share(s, n, t) where [s]S
n
t = (s1, . . . , sn). Similarly, we denote by [s]A

n

a random
additive sharing of s secret shared among n parties.

Primitives. In the sequel we consider the following two-party functionalities
which naturally extend to the multi-party setting.

Definition 5 (Multiplication MULT functionality). Let F be a finite field.
Consider two parties A and B. We define the two-party functionality MULT(a, b)
which on input a ∈ F from party A and b ∈ F from party B outputs MULT(a, b) =
a · b to both parties.

Definition 6 (Inner Product IPκ functionality). Let F be a finite field and
let κ ≥ 1. Consider two parties A and B. We define the two-party functionality
IPκ(a, b) which on input a ∈ Fκ from party A and b ∈ Fκ from party B outputs
IPκ(a, b) =

∑κ
i=1 aibi to both parties.

3 Secure Computation in the Plain Model

We first investigate the honest majority scenario. As explained in the introduc-
tion, we will consider protocols that compute arithmetic circuits over some field



securely using secret-sharing. All known protocols of this type handle multipli-
cation gates by running a subprotocol that takes as input shares in the two
inputs a and b to the gate and output shares of the product ab, such that the
output shares contain only information about ab (and no side information on
a nor b). Accordingly, we define below a multiplication gate protocol (MGP) to
be an interactive protocol for n players that does exactly this, and then show a
lower bound on the communication required for such a protocol.

Definition 7 (Multiplication Gate Protocol ΠMULT). Let F be a finite

field and let n ∈ N. Let Snt and Ŝnt′ be two secret-sharing schemes as per Defi-
nition 3. A protocol ΠMULT is an n-party Multiplication Gate Protocol (MGP)

with thresholds t, t′, input sharing-scheme Snt and output sharing-scheme Ŝnt′ if
it satisfies the following properties:

Correctness: In the interactive protocol ΠMULT, players start from sets of
shares [a]S

n
t ← Share(a, n, t) and [b]S

n
t ← Share(b, n, t). Each player out-

puts a share such that these together form a set of shares [ab]Ŝ
n
t′ . Moreover,

t′ < 2t.
t-privacy: If the protocol is run on randomly sampled shares [a]S

n
t and [b]S

n
t ,

then the only new information the output shares can reveal to the adversary
is ab. We capture this by requiring that for any adversary corrupting a player
subset A of size at most t, there exists a simulator SA which when given the

input shares of the parties in A (denoted by [a]
Sn
t

A , [b]
Sn
t

A ) and the product ab,

will simulate the honest parties’ output shares (denoted by [ab]
Ŝn
t′

A ) and the
view of the parties in A with statistically indistinguishable distribution.
Formally, for any adversary ADV corrupting a player set A with |A| ≤ t
there exist SA such that for randomly sampled shares [a]S

n
t ← Share(a, n, t)

and [b]S
n
t ← Share(b, n, t), it holds that

SD

((
ViewΠMULT

ADV (σ, [a]S
n
t , [b]S

n
t )), [ab]

Ŝn
t′

A

)
, SA(σ, [a]

Sn
t

A , [b]
Sn
t

A , ab)

)
≤ ε(σ),

(1)
where σ is a security parameter and where, in the underlying random ex-
periment, probabilities are taken over the choice of input shares as well as
random coins of the protocol and simulator.

Note that we do not require the input and output sharing schemes to be the
same, we only require that the output threshold is not too large (t′ < 2t).
Known MPG’s actually have t′ = t to allow continued computation, we want to
be more generous to make our lower bound stronger. Note also that we do not
require the simulators to be efficient.

Recall that we use the term gate-by-gate protocol to refer to any protocol
that computes an arithmetic circuit securely by invoking an MGP for each
multiplication gate in the circuit such that the sets of shares that are input are
randomly chosen. We leave unspecified what happens with addition gates as this
is irrelevant for the bounds we show. An ordered gate-by-gate protocol invokes



MGP’s for multiplication gates in an order corresponding to the order in which
one would visit the gates when evaluating the circuit.

In the following we show that any MGP in a gate-by-gate protocol must
communicate for every multiplication gate in the honest majority setting even
if only semi-honest security is required. The technique of our proof is as follows.
We build an information-theoretic two-party computation protocol utilizing an
n-party MGP by emulating multiple parties (in the head) and then use the
impossibility result on the existence of an information-theoretic two-party com-
putation protocol to show a contradiction.

Theorem 1. There exists no MGP ΠMULT as per Definition 7 with thresholds
t, t′, and with expected anticipated message complexity ≤ 2t.

Proof. Suppose for contradiction that there exists an MGP ΠMULT with ex-
pected anticipated communication complexity at most 2t. We first show a proof
in the simpler case where the communication pattern is fixed. This means that
at most 2t parties are communicating, i.e., they send or receive messages and
the set of parties that communicate is known and fixed. For simplicity of expo-
sition, suppose that these parties are P1, . . . ,P2t. We are going to use ΠMULT

to construct a two-party unconditionally secure protocol ΠA,B
MULT which securely

computes the MULT function between parties A,B as per Definition 5.
In particular, given two parties A and B, with inputs a, b ∈ F, respectively,

involved in the ΠA,B
MULT protocol, we are going to let A emulate the first t parties

that communicate and B emulate the other t parties, say Pt+1, . . . ,P2t. The
protocol ΠA,B

MULT proceeds as follows:

Protocol ΠA,B
MULT(σ, a, b)

Input Phase:
1. Parties A,B secret share their inputs a, b using the secret-sharing scheme

Snt . More specifically, A computes [a]S
n
t ← Share(a, n, t) and B computes

[b]S
n
t ← Share(b, n, t).

2. Party A sends the input shares (at+1, . . . , a2t) to party B and Party B
sends the input shares (b1, . . . , bt) to party A.

Evaluation Phase:
1. Parties A,B invoke the protocol ΠMULT(σ, a1, . . . an, b1, . . . bn). The em-

ulation of ΠMULT yields a set of shares [c]Ŝ
n
t′ and outputs (c1, . . . , ct) to

party A and (ct+1, . . . , c2t) to party B.
Output Phase:
2. Party A sends the output shares (c1, . . . , ct) to party B and Party B

sends the output shares (ct+1, . . . , c2t) to party A.
3. Each party given 2t > t′ shares of c recovers the output c = a · b

We now show that the above protocol is correct and secure. Correctness
follows immediately from t′ < 2t - as then 2t shares are enough to reconstruct.
The protocol is secure (private) due to the t-privacy property of ΠMULT. More
precisely, if party A is corrupted, we need to simulate his view of the protocol



given a and the product ab. We do this as follows: Let A be the set of parties A

emulates in the MGP. We now compute [a]S
n
t ← Share(a, n, t) and sample [b]

Sn
t

A
which can be done by the privacy property of Snt . We then run the simulator SA
guaranteed by the t-privacy property to get SA(σ, [a]

Sn
t

A , [b]
Sn
t

A , ab). Note that this
output includes A’s view of the MGP as well as all output shares.

The simulator now outputs [a]S
n
t , [b]

Sn
t

A and SA(σ, [a]
Sn
t

A , [b]
Sn
t

A , ab). This is

statistically indistinguishable from A’s view of ΠA,B
MULT(σ, a, b) by the privacy

property of Snt and equation (1). A similar simulator for B’s view is easy to
construct.

However, the above leads to a contradiction since it is well known [BGW88,
CCD88] that it is impossible to realize passively secure two-party multiplica-

tion (such as the ΠA,B
MULT protocol) in the information theoretic setting (even if

inefficient simulators are allowed). Therefore, the theorem follows.
We now address the case where the communication pattern might be dy-

namic. We say that a party communicated if it sent a non-empty message or if
it anticipated a non-empty message. So by definition, the expected number of
communicating parties is ≤ 2t. Since the observed value is an integer, there is
some non-zero, constant probability p such that the observed value of the num-
ber of communication parties is at most 2t. We can therefore pick a subset C of
the parties of size 2t such that it happens with probability at least p/

(
n
2t

)
that

only the parties in C communicate. Since we can increase the security parameter
σ independently of n, the number p/

(
n
2t

)
is a positive constant (in σ). We can

then modify ΠA,B
MULT(a, b) such that B runs t parties in C and A runs the other t

parties. The protocol runs as ΠA,B
MULT(a, b) except that if it A or B observe that

a party in C anticipates a non-empty message from a party outside C, then the
execution is terminated. In case the protocol terminates, the two parties just try
again. Since p/

(
n
2t

)
is a positive constant this succeeds in an expected constant

number of tries. Notice that when the protocol succeeds, all parties in C received
all the messages they would have received in a run of ΠA,B

MULT(a, b) where all the
parties were active, as parties only receive the messages they anticipate. Hence
the parties in C have correct outputs (except with negligible probability). For
the same reason the output of the parties simulated by A and B will be cor-
rect. Hence A and B can reconstruct the output from the 2t shares. We can
also argue that the protocol is private: We will simulate A’s (or B)’s view by
running the simulator SA (where again A is the set of parties emulated by A)
repeatedly until a view is produced where no party in C anticipates a message
from outside of C. Note that SA simulates the view of an adversary corrupting
A, and this view includes the communication pattern from which it is evident
who anticipates messages. ut

The above theorem immediately implies:

Corollary 1. Any gate-by-gate protocol that is secure against t = Θ(n) corrup-
tions must communicate Ω(n · |C|) bits where |C| is the size of the circuit C to
compute, and moreover, an ordered gate-by-gate protocol must have a number of
rounds that is proportional to the (multiplicative) depth of C.



Jumping ahead, we note that the arguments for this conclusion break down
completely when we consider secure computation in the preprocessing model
with dishonest majority since in such a model it is no longer true that two-party
unconditionally secure multiplication is impossible: just a single preprocessed
multiplication triple will be enough to compute a multiplication. We return to
this issue in the next section.

A bound that grows with the field size? It is natural to ask if we can get a lower
bound on the complexity of an MPG that grows with the field size? after all,
existing MGPs do need to send more bits for larger fields. However, the answer
is no, as the following example shows: for a ∈ F, define za to be 0 if a = 0
and 1 otherwise. Then we represent an element a ∈ F as a pair (za, `a) where
`a is randomly chosen if a = 0 and otherwise `a = logg(a), where g is a fixed
generator of the multiplicative group F∗. Let u = |F∗|. Observe that now we
have (zab, `ab) = (za · zb, (`a + `b) mod u).

We now construct a secret sharing scheme: given a secret a ∈ F, we first
compute (za, `a) and then share za using, e.g., Shamir’s scheme and share `a
additively modulo u. An MGP for this scheme can use a standard protocol to
compute shares in za · zb and local addition to get shares in (`a + `b) mod u.
Clearly, the communication complexity of this MGP does not depend on |F|.

Of course, the secret sharing scheme we defined is not efficient (at least
not in all fields) because one needs to take discrete logs. This is not formally a
problem since we did not make any assumptions on the efficiency of secret sharing
schemes. But we can in fact get a more satisfactory solution by replacing the
additive sharing of the discrete log with black-box sharing directly over the group
F∗ [CF02]. This is doable in polynomial time, will cost a factor that is logarithmic
in the number of players, but since black-box secret-sharing is homomorphic over
the group operation, the resulting MGP still has communication independent of
|F|.

Amortized Multiplication Gate Protocols. There is one clear possibility
for circumventing the bounds we just argued for gate-by-gate protocols, namely:
what if the circuit structure allows us to do, say k multiplications in parallel?
Perhaps this can be done more efficiently than k separate multiplications? Of
course, this will not help for a worst case circuit whose depth is comparable to
its size. But in fact, for “nicer” circuits, we know that such optimizations are
possible, based on so-called packed secret-sharing. The catch, however, is that
apart from loosing in resilience this only works if there is a gap of size Θ(k)
between the privacy and reconstruction thresholds of the secret-sharing scheme
used, so the number of players must grow with k.

One may ask if this is inherent, i.e., can we save on the communication
needed for many multiplication gates in parallel, only by increasing the number
of players? While we believe this is true, we were not able to show it in full
generality. But we were able to do so for computational complexity, as detailed
below. Furthermore, for a restricted setting we explain below and a fixed number
of players, we could show that the communication must grow linearly with k.



First, we can trivially extend Definition 3 to cover schemes in which the secret
is a vector a = (a1, . . . , ak) of field elements instead of a single value. A further
extension covers ramp schemes in which there are two thresholds: the privacy
threshold t which is defined as in Definition 3 and a reconstruction threshold
r > t, where any set of size at least r can reconstruct the secret. Such a scheme
is denoted by Snt,r. Note that the shares in this case may be shorter than the
secret, perhaps even a single field element per player. We can now define a simple
extension of the multiplication gate protocol concept:

Definition 8 (k-Multiplication Gate Protocol ΠMULTk). Let F be a finite field

and let n ∈ N. Let Snt,r and Ŝnt,r be two ramp sharing schemes defined over F, for

sharing vectors in Fk. ΠMULTk is said to be a k-Multiplication Gate Protocol
(k-MGP) with thresholds t, r, input sharing scheme Snt,r and output sharing

scheme Ŝnt,r if it satisfies the following properties:

Correctness: In the interactive protocol ΠMULTk , players start from sets of
shares [a]S

n
t,r and [b]S

n
t,r . Each player outputs a share such that these together

form a set of shares [a ∗ b]Ŝ
n
t,r , where a ∗ b is the coordinatewise product of

a and b.
t-privacy: If the protocol is run on randomly sampled shares [a]S

n
t and [b]S

n
t ,

then the only new information the output shares can reveal to the adversary
is a∗b. We capture this by requiring that for any adversary corrupting player
subset A of size at most t, there exists a simulator SA which when given the

input shares of the parties in A (denoted by [a]
Sn
t

A , [b]
Sn
t

A ) and the product ab,

will simulate the honest parties’ output shares (denoted by [a ∗ b]
Ŝn
t′

A ) and the
view of the parties in A with statistically indistinguishable distribution.
Formally, for any adversary ADV corrupting player set A with |A| ≤ t there
exist SA such that for randomly sampled shares [a]S

n
t ← Share(a, n, t) and

[b]S
n
t ← Share(b, n, t), it holds that
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t )), [a ∗ b]
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A

)
, SA(σ, [a]

Sn
t

A , [b]
Sn
t

A ,a∗b)

)
≤ ε(σ),

(2)
where σ is a security parameter and where, in the underlying random ex-
periment, probabilities are taken over the choice of input shares as well as
random coins of the protocol and simulator.

Before giving our result on k-MGPs we note that for any interactive protocol,
it is always possible to represent the total computation done by the players as
an arithmetic circuit over a finite field (arithmetic circuits can emulate Boolean
circuit which can in turn emulate Turing machines). We can encode messages
as field elements and represent sending of messages by wires between the parts
of the circuit representing sender and receiver. For a protocol Π, we refer to an
algorithm outputting such a circuit as an arithmetic representation of Π. Note
that such a representation is not in general unique, but once we have chosen
one, it makes sense to talk about, e.g., the number of multiplications done by a
player in Π.



Theorem 2. Let t < r ≤ n ∈ N. Also let P = {P1, . . . ,Pn} be a set of parties.
Assume that the k-MGP ΠMULTk defined over F has thresholds t, r. Then for any
arithmetic representation of ΠMULTk (over any finite field) and for each subset
S ⊂ P of size n− 2t, the total number of multiplications done by players in S is
Ω(k)

Proof. Suppose for contradiction that there exists a k-MGP ΠMULTk in which
the total number of multiplications done by players in S is o(k). Assume for
notational convenience that S = {P2t+1, . . . ,Pn}. We are going to use it to con-

struct a two-party unconditionally secure protocol ΠA,B
MULT in the preprocessing

model which securely computes k multiplications as follows. We let u← PU de-
note the correlated randomness we will use in ΠA,B

MULT. Given two parties A and

B involved in the ΠA,B
MULT protocol, the idea is to use the assumed k-MGP where

A emulates t players and B emulates another t players. In addition, parties A,B
together emulate the rest of the parties in S. This can be done using the prepro-
cessed data u: we consider the parties in S as a reactive functionality fS which
can be implemented using an existing protocol in the preprocessing model. One
example of such a protocol is the SPDZ protocol [DPSZ12] denoted by ΠSPDZ

fS
2 which uses additive-secret sharing. Therefore, protocol ΠA,B

MULT proceeds as
follows:

Protocol ΠA,B
MULT({ai}i∈[k], {bi}i∈[k], u):

Input Phase:
1. ∀i ∈ [k], parties A,B secret share their inputs ai, bi using the ramp shar-

ing scheme Snt,r. So A computes [a]S
n
t,r ← Share((a), n, t) and B com-

putes [b]S
n
t,r ← Share((b), n, t). For simplicity of exposition, we denote

by (ā1, . . . , ān), (b̄1, . . . , b̄n) the shares of [a]S
n
t,r and [b]S

n
t,r , respectively.

2. Party A sends the input shares (ā1, . . . , āt) to party B and Party B sends
the input shares (b̄t, . . . , b̄2t) to party A.

3. Additively secret share the inputs (ā2t+1, . . . , ān, b̄2t+1, . . . , b̄n) of the
parties in S between A and B using the additive secret-sharing A2 and
obtain the shares ([ā2t+1]A

2

, . . . , [ān]A
2

, [b̄2t+1]A
2

, . . . , [b̄n]A
2

). For the
following phase, as we mentioned above, we will think of the compu-
tation done by the parties in S as a reactive functionality fS which is
implemented using the protocol ΠSPDZ

fS
in the preprocessing model.

Evaluation Phase:
Parties A,B invoke the protocol ΠMULTk([a]S

n
t,r , [b]S

n
t,r ) in which A,B

emulate t parties each, and they together emulate the rest, n− 2t play-
ers, using the preprocessed data u invoking protocol ΠSPDZ

fS
. To this

end, note that ΠSPDZ
fS

represents data by additive secret-sharing. Values

(ā2t+1, . . . , ān, b̄2t+1, . . . , b̄n) of the parties in S were already additively
shared, so they can be used directly as input to ΠSPDZ

fS
.

2 We do passive security here, so a simpler variant of SPDZ will suffice, without
authentication codes on the shared values.



Now, the emulation of ΠMULTk is augmented with the protocol ΠSPDZ
fS

as follows: when a party in S would do a local operation, we do the
same operation in ΠSPDZ

fS
. When a party outside S sends a message

to a party in S an additive secret-sharing of that message is formed
between A and B. When a party in S sends a message to a party outside
S the corresponding additive secret-sharing is reconstructed towards A
or B, depending on who emulates the receiver. In the end, we will obtain
additive sharings between A and B of the outputs of parties in S, namely
([c̄2t+1]A

2

, . . . , [c̄n]A
2

).

Output Phase:
1. A sends the output shares (c̄1, . . . , c̄t) to B, B sends the output shares

(c̄t+1, . . . , c̄2t) to A computed by ΠMULTk , and A and B exchange their

additive shares ([c̄2t+1]A
2

, . . . , [c̄n]A
2

) in order to recover (c̄2t+1, . . . , c̄n).
2. Now both A and B have n ≥ r shares of the output and can recover the

result a ∗ b.

We now show that the above protocol is correct and secure. Correctness
follows immediately from the correctness of ΠMULTk and ΠSPDZ

fS
. We argue

that the protocol is secure (private) due to the security of ΠSPDZ
fS

and the t-
privacy property of the MGPΠMULTk (see equation (1)). For the case where A is
corrupted, we first observe that by using the simulator for the ΠSPDZ

fS
protocol,

we can argue that the view of A in the real protocol is statistically close to the
one obtained by replacing players in S by the ideal functionality fS .

We can then make a simulator for corrupt A in the fS -hybrid model, as
follows: The shares received by A in the input phase can be simulated by the
privacy property of the input sharing scheme, and the rest of the view can be
simulated by invoking the simulator SA of the protocol ΠMULTk guaranteed by

Definition 7, on input [a]
Sn
t

A , [b]
Sn
t

A ,a ∗ b. Note that SA is in charge of simulating
fS . It can therefore define the responses of fS such that they are consistent with
the view generated by SA.3

We therefore conclude from equation (2) that SA generates a view that is
statistically indistinguishable from the real view of an adversary corrupting A.
A similar argument holds for B.

Now note that the preprocessed data required by the protocolΠSPDZ
fP

amount
to a constant number of field elements for each multiplication done. This means
that our 2-party protocol needs o(k) preprocessed field elements by assumption
on ΠMULTk . However, this leads to a contradiction since by results in [WW10],
it is impossible for two parties to compute k multiplications with statistical se-
curity using preprocessed data of size o(k) field elements. ut

What this theorem shows is, for instance, that if we want each player to do
only a constant number of local multiplications in a k-MGP, then n needs to be
Ω(k). Since this is precisely what protocols based on packed sharing can achieve

3 Note that ΠSPDZ
fS reveals the structure of the circuit for fS . This is secure as we

assume that the parties in S are represented as known arithmetic circuits.



(see, e.g., [DIK+08]), the bound in the theorem is in this sense tight. What the
theorem also says is that every subset of size n−2t needs to work hard, so in the
case where we tolerate a maximal number of corruptions, i.e., n = 2t+ 1, we see
that a gate by gate protocol in this case must have computational complexity
Ω(n|C|), for any circuit of size |C|, not only for “tall and skinny” circuits as we
had before.

A restricted result on communication complexity. Our final result on honest
majority concerns k-MGPs that are regular by which we mean, first that the
output shares they produce follow the same distribution that is also produced
by the Share algorithm of the output secret sharing scheme. This is a rather
natural condition that is satisfied by all known k-MGP’s. Second, we will assume
that the input and output schemes are the same, have r = t+ 1 (thus excluding
packed sharing), and is ideal, i.e., each share is a single field element. This is
satisfied by Shamir’s scheme, for instance. The ideal assumption can be replaced
by much weaker conditions requiring various symmetry properties, but we stick
with the simpler case for brevity.

Theorem 3. A regular k-MGP has (expected) Ω(k) communication complexity.

Proof. The message pattern and -lengths in the k-MGP must not depend on the
inputs a1, ..., ak, b1, ..., bk, so we are done if we show the bound for some fixed
distribution of inputs. We choose the uniform distribution, and we write A1, A2

etc. for the corresponding random variables. Now consider any subset A of t
players and another player P . Let U denote the joint view of players in A before
we do the k-MGP and U ′ denote the view after. V, V ′ denote the corresponding
views of P . Finally, CA, CP denote the messages sent and received by A and P
during the k-MGP. Note that I(U ;V ) = 0: We have not sent any messages yet,
and furthermore, even given the t shares of A in some ai, since ai is uniform in
F and the scheme is ideal, the share of P is uniform in F as well. Also, without
loss of generality, we can set U ′ = (U,CA) and V ′ = (V,CP ).

However, since the Ci = AiBi are not uniform, we do have common informa-
tion after the protocol. We see this as follows: since 0 times any value is 0, the
value 0 is more likely for ci than others. So H(Ci) ≤ log q − ε for some constant
ε > 0 that depends on |F| = q. Furthermore, given the vector of shares SA of
A in Ci, there is a 1-1 correspondence between possible values of Ci and values
of the share Sp of P . This means that H(Sp|SA) ≤ log |F| − ε. On the other
hand, H(Sp) = log q because the scheme is ideal, so therefore I(SA;SP ) ≥ ε.
This applies to every Ci, so we have that I(U ′;V ′) ≥ kε. We can now compute



as follows, using a standard chain rule for mutual information:

εk ≤ I((U,CA); (V,CP ))

= I(U ; (V,CP )) + I(CA; (V,CP )|U)

≤ I(U ; (V,CP )) +H(CA)

= I(U ;V ) + I(U ;CP |V ) +H(CA)

≤ I(U ;V ) +H(CP ) +H(CA)

= H(CP ) +H(CA).

So indeed, the expected size of the communication grows linearly with k.

4 Secure Computation in the Preprocessing Model

It is well known that all functions can be computed with unconditional security in
the setting where n−1 of the n players may be corrupted, and where the players
are given correlated randomness, also known as preprocessed data, that does not
have to depend on the function to be computed, nor on the inputs. Winkler and
Wullschleger [WW10] proved lower bounds on the the amount of preprocessed
data needed to compute certain functions with statistical security where the
bound depends on certain combinatorial properties of the target function.

All existing protocols in the preprocessing model that are efficient in the
circuit size of the function, work according to the gate-by-gate approach we
encountered in the previous section. We can define (ordered) gate-by-gate pro-
tocols and MGPs exactly as for the honest majority setting, with two exceptions:
MGPs are allowed to consume preprocessed data, and the output threshold t′

must equal the input threshold t. This is because we typically have t = n − 1
in this setting, and then it does not make sense to consider t′ > t, then even all
players cannot reconstruct the output,

As before, we want to show that multiplication gate protocols require a cer-
tain amount of communication, but as mentioned before, we can no longer base
ourselves on impossibility of unconditionally secure multiplication for two par-
ties, since this is in fact possible in the preprocessing model. Instead, the contra-
diction will come from the known lower bounds on the size of the preprocessed
data needed to compute certain functions.

4.1 Protocols based on Additive Secret-Sharing

We start by showing that any gate-by-gate protocol must communicate for every
multiplication gate when the underlying secret sharing scheme is the additive
one. We show that an MGP that does not communicate enough implied a pro-
tocol that contradicts the lower bound by Winkler and Wullschleger [WW10] on
the the amount of preprocessed data needed to compute certain functions with
statistical security.



Theorem 4. Consider the preprocessing model where n−1 of the n players may
be passively corrupted. In this setting, there exists no MGP ΠMULT with expected
anticipated communication complexity ≤ n − 1 and with additive secret-sharing
An as output sharing scheme.

Proof. Suppose for contradiction that there exists an MGP ΠMULT (with pre-
processed data u← PU ) which contradicts the claim of the theorem. Similar to
Theorem 1 we will first assume a fixed communication pattern. Assume for no-
tational convenience that only the parties P1, . . . ,Pn−1 communicate. Given two
parties A and B, we are going to construct a two-party protocol ΠA,B

MULT which
on input a, b ∈ F from A,B, respectively, securely computes ab. The idea is for
A to emulate the n − 1 players who communicate in ΠMULT while B emulates
the last player. In particular, protocol ΠA,B

MULT proceeds as follows:

Protocol ΠA,B
MULT

Input Phase:
1. Parties A,B secret share their inputs a, b using the input secret-sharing

scheme An ofΠMULT. More specifically,A computes [a]A
n ← Share(a, n, n−

1) and B computes [b]A
n ← Share(b, n, n− 1).

2. Party A sends the input share an to party B and Party B sends the
input shares (b1, .., bn−1) to party A.

Evaluation Phase:
1. Parties A,B invoke the MGP ΠMULT as per Definition 7 in the prepro-

cessing model where A emulates the n−1 players who communicate, and
we assume these are the first n− 1 players. This means that this phase
involves no communication between A and B, but it may consume some
preprocessed data u. The execution of ΠMULT yields a sharing of [c]A

n

and outputs (c1, ..., cn−1) to party A and cn to party B.

Output Phase:
1. A sends

∑n−1
i=1 ci to B and B sends cn to A. The parties add the received

values to recover the output c = a · b.

Correctness of this protocol follows immediately. The protocol can be argued to
be secure(private). In particular, the simulator S for ΠA,B

MULT proceeds as follows.
The preprocessing data to be used by the corrupted party can be simulated with
the correct distribution without any knowledge of the inputs. In the input phase,
the corrupted party receives only an unqualified set of shares whose distribution
can be simulated perfectly. There is no communication to be simulated in the
evaluation phase. In the output phase, it is the case that whenever the protocol
computes the correct result, then the share received from the honest party is
trivial to simulate because it is determined from the corrupted party’s own share
and the result ab. Hence, the only source of error is the negligible probability
that the output is wrong in the real execution, so it follows that

SD(Exec
ΠA,B

MULT

Adv (σ, (a, b)),SimS(σ, (a, b))) ≤ ε(σ).



However, we can say even more: Let u← PU be the preprocessed data that is
consumed during the protocol (ΠMULT uses preprocessed data). We now define

a new protocol ΠA,B
MULTk that will compute k independent multiplications (do

not confuse this protocol with the amortized and honest majority protocol in
Definition 8). It does this by running k instances of ΠA,B

MULT, using the same
preprocessed data u for all instances.

Normally, it is of course not secure to reuse preprocessed data, but in this
particular case it works because the communication in ΠA,B

MULT is independent of

u, and so is the simulation. More precisely, ΠA,B
MULTk is clearly correct because

each instance of ΠA,B
MULT runs with correctly distributed preprocessed data. It is

also private: we can simulate by first simulating the corrupted party’s part of u
and then running k instances of the rest of S’s code. Again, the only source of
error is the case where the real protocol computes an incorrect result, but the
probability of this happening for any of the k instances is at most a factor k
larger than for a single instance, by a union bound, and so is still negligible.

However, this leads to a contradiction with the result of [WW10]: they showed
that the amount of preprocessed data needed for a secure multiplication is at
least some non-zero number of bits w. It also follows from [WW10] that if we
want k multiplications on independently chosen inputs this requires kw bits. So
if we consider a k large enough that kw is larger than the size of u, we have a
contradiction and the theorem follows.

We now generalise to dynamic communication patterns. As in the proof of
Theorem 1 we can find a party Pi such that with some constant positive proba-
bility p the party Pi does not send a message and no party anticipates a message
from Pi. Assume without loss of generality that this is party Pn. Assume first
that p is negligibly close to 1. In that case the parties can apply the above pro-
tocol unmodified. Consider then the case where p is not negligibly close to 1.
We also have that p is not negligibly close to 0. Hence there is a non-negligible
probability that Pn sends a message and a non-negligible probability that Pn
does not send a message. The decision of Pn to communicate or not can depend
only on four values:

– Its share an of a.

– Its share bn of b.

– Its share un of the correlated randomness.

– Its private randomness, call it rn.

This means that there exist a function %(an, bn, un, rn) ∈ {0, 1} such that Pn
communicates iff %(an, bn, un, rn) = 1. Observe that the decision can in fact
not depend more than negligibly on an and bn. If it did, this would leak in-
formation on these shares to the parties P1, . . . ,Pn−1 which already know all
the other shares. This would in turn leak information on a or b to the parties
P1, . . . ,Pn−1, which would contradict the simulatability property of the protocol.
We can therefore without loss of generality assume that there exist a function
%(un, rn) ∈ {0, 1} such that Pn communicates iff %(un, rn) = 1.



Assume that with non-negligible probability over the choice of the un received
by Pn it happens that the function %(un, rn) depends non-negligibly on rn, i.e.,
for a uniform rn it happens with non-negligible probability that %(un, rn) = 0
and it also happens with non-negligible probability that %(un, rn) = 1. Since rn is
independent of the view of the parties P1, . . . ,Pn−1, as it is the private random-
ness of Pn, it follows that the probability that one of the other parties anticipate
a message from Pn is independent of whether %(un, rn) = 0 or %(un, rn) = 1.
Hence it either happens with non-negligible probability that %(un, rn) = 0 and
yet one of the other parties anticipate a message from Pn or it happens with
non-negligible probability that %(un, rn) = 1 and yet none of the other parties
anticipate a message from Pn. Both events contradict the correctness of the
protocol. We can therefore without loss of generality assume that there exist a
function %(un) ∈ {0, 1} such that Pn communicates iff %(un) = 1. By assumption
we have that p is non-zero, so there exist some un such that %(un) = 0. We can
therefore condition the execution on the event %(un) = 0. Let PU be the distri-
bution from which u is sampled. Consider then the random variable PU ′ which
is distributed as PU under the condition that %(un) = 0. We claim that if we
run ΠMULT with PU ′ instead of PU then the protocol is still secure. Assuming
that this claim is true, A and B can apply the above protocol, but simply use
(ΠMULT, PU ′) instead of (ΠMULT, PU ).

What remains is therefore only to argue that (ΠMULT, PU ′) is secure. To
simulate the protocol, run the simulator S′A for (ΠMULT, PU ) until it outputs a
simulated execution where Pn did not communicate. Let E be the event that
Pn does not communicate. Since it can be checked from just inspecting the view
of the real execution of (ΠMULT, PU ) (or the simulation) whether E occurred, it
follows that E occurs with the same probability in the real execution and the
simulation (or at least probabilities which are negligible close) or we could use
the occurrence of E to distinguish. Since E happens with a positive constant
probability it then also follows that the real execution conditioned on E and the
simulation condition on E are indistinguishable, or we could apply a distinguisher
for the conditioned distributions when E occurs and otherwise make a random
guess to distinguish the real execution of (ΠMULT, PU ) from its simulation. This
shows that S′A simulates (ΠMULT, PU ′). ut

A generalisation. We note that Theorem 3 easily extends to any output secret
sharing scheme with the following property: Given shares c1, ..., cn of c, there is
a function φ such that one can reconstruct c from c1, ..., cn−1, φ(cn) and given c
and c1, ..., cn−1 one can simulate φ(cn) with statistically close distribution. The
proof is the same as above except that in the output phase, B sends φ(cn) to A,
who computes c and sends it to B.

Theorem 3 shows, for instance, that the SPDZ protocol [DPSZ12] has opti-
mal communication for the class of gate-by-gate protocols using additive secret-
sharing: it sends O(n) messages for each multiplication gate, and of course one
needs to send Ω(n) messages if all n players are to communicate, as mandated
in the theorem. Note also that in the dishonest majority setting, the privacy
threshold of the secret-sharing scheme used has to be n− 1, so we cannot have



a gap between the reconstruction and privacy thresholds, and so amortisation
tricks based on packed secret-sharing cannot be applied. We therefore do not
consider any lower bounds for amortised MGP’s.

4.2 Protocols based on any Secret-Sharing Scheme

Note that if we consider an MGP whose output sharing scheme is not the addi-
tive scheme, the protocol ΠA,B

MULT in the proof of Theorem 4 may not work. This
is because it is no longer clear that given your own share of the product and
the result, the other party’s share is determined. In particular, the distribution
of the other share may depend on the preprocessed data we consume and so
if we just send that share in the clear, it is not obvious that we can reuse the
preprocessing.

The solution is to not send shares in the clear, but have the parties securely
compute the output from their shares. This can be done using an existing general
protocol for secure computation in the preprocessing model. This will mean
that we can indeed reuse preprocessed data consumed by the MGP protocol
itself. However, we now consume new preprocessed data for every instance of
the reconstruction protocol since this protocol requires communication. It turns
out that if we use a variant of the MGP that computes, not just one product, but
an inner product of long enough vectors, we can still obtain a contradiction. This
works because we can show that computing the inner product of long vectors
requires lots of preprocessed data. On the other hand, the inner product itself
is just one field element, therefore the cost of reconstructing such a small result
is not significant.

In order to obtain the above result and give more details, we proceed by
proving some auxiliary results with lower bounds on the amount of preprocessed
data needed for a secure evaluation of a function f .

Lower bounds for secure function evaluation in the preprocessing
model. In this section we will give lower bounds for secure implementations
of functions f : X × Y → Z in the PU , PV -preprocessing model, which for sim-
plicity of exposition we refer to as PUf ,Vf

, that outputs correlated randomness
for the semi-honest setting. In particular, we are in the setting where the parties
A,B have access to a functionality that gives a random variable Uf to A and Vf
to B with some guaranteed joint distribution PUf ,Vf

of Uf , Vf . Given this, the
parties compute securely a function f : X × Y → Z where A holds x ∈ X , and
B holds y ∈ Y. This function should have no redundant inputs for party A 4 :

∀x, x′ ∈ X (x 6= x′ → ∃y ∈ Y : f(x, y) 6= f(x′, y)) (3)

The authors of [WW10] obtained Theorem 5 that gives a lower bound on
the conditional entropy of PUf ,Vf

. Their bound applies for input distributions X

4 Party A must enter all the information about X into the protocol. An example of
a function that satisfies this property is the inner product IP.



and Y which are independent and uniformly distributed. This implies worst case
communication complexity. Our bound in Theorem 6 also applies to independent
and uniform distributions.

Theorem 5. Let f : X × Y → Z be a function that satisfies property (3).
Assume there exists a protocol having access to PUf ,Vf

which is an ε-secure
implementation of f in the semi-honest model with t = 1 corruptions. Then

H(Uf |Vf ) ≥ max
y

H(X|f(X, y))− (3|Y| − 2)(ε log |Z|+ h(ε))− ε log |X | − h(ε).

Our general result will only apply to functions where the output lives in a
ring Z. As it will become apparent, for the next theorem we require the following
property for a function f : X × Y → Z:

∀x, x′ ∈ X (x 6= x′ → ∃y1, y2 ∈ Y : f(x, y1)−f(x, y2) 6= f(x′, y1)−f(x′, y2)) (4)

Note that the bound in Theorem 5 still applies for functions f that satisfy
properties (3) and (4).

In the following we explore the lower bounds on the amount of preprocessed
data with respect to composition of functions. In Theorem 6 we prove a lower
bound on the conditional entropy of PUh,Vh

for a function h which is a linear
combination of two functions f and g. Our bound also applies to compositions of
k functions where k is an arbitrary number. Basically, we show that the amount
of preprocessed data you need to compute the sum of f and g is the sum of
what you need to compute f and g separately, as long as f and g are applied to
distinct and independent inputs. We clearly need this assumption, as otherwise
the theorem is clearly false, just think of applying f = g on the same inputs.

Theorem 6. Let f : X × Y → Zf , g : Z ×W → Zg be functions that satisfy
properties (3) and (4). Assume that Zf = Zg. Let h be a linear combination of f
and g, namely: ∀x ∈ X , y ∈ Y, z ∈ Z, w ∈ W, h(x, z, y, w) := αf(x, y)+βg(z, w)
for some α, β 6= 0. If there exists a protocol that securely implements the function
h with access to PUh,Vh

, then it holds that

H(Uh|Vh) ≥ max
y

H(X|f(X, y)) + max
w

H(Z|g(Z,w)) .

Furthermore, the function h will have the following property:

∀x 6= x′ ∈ X , z 6= z′ ∈ Z ∃y1, y2 ∈ Y, w1, w2 ∈ W :

h(x, z, y1, w1)− h(x, z, y2, w2) 6= h(x′, z′, y1, w1)− h(x′, z′, y2, w2) (5)

Proof. We start by proving that the function h has this property:

∀x, x′ ∈ X , z, z′ ∈ Z((x, z) 6= (x′, z′)→
∃y ∈ Y, w ∈ W : h(x, z, y, w) 6= h(x′, z′, y, w) (6)

By assumption we consider the following two properties on the function g:

∀z 6= z′ ∈ Z ∃w ∈ W : g(z, w) 6= g(z′, w) (7)



∀z 6= z′ ∈ Z ∃w1, w2 ∈ W : g(z, w1)− g(z, w2) 6= g(z′, w1)− g(z′, w2) (8)

and properties (3) and (4).
In order to prove properties (6) and (5) for the function h we proceed as

follows:

Case 1. x = x′, z 6= z′:
Suppose that ∃y such that f(x′, y) = f(x′, y). By assumption ∃w ∈ W :
g(z, w) 6= g(z′, w). Therefore, it follows that f(x′, y) − f(x, y) 6= g(z, w) −
g(z′, w) and property (6) holds.

Case 2. x 6= x′, z = z′:
Suppose that ∃w such that g(z′, w) = g(z′, w). By assumption ∃y ∈ Y :
f(x, y) 6= g(x′, y). It follows that f(x′, y) − f(x, y) 6= g(z, w) − g(z′, w) and
property (6) holds.

Case 3. x 6= x′, z 6= z′:
Let c = f(x′, y)− f(x, y) for some y ∈ Y. By assumption ∃w1, w2 ∈ W such
that c1 = g(z, w1)−g(z′, w1) and c2 = g(z, w2)−g(z′, w2) such that c1 6= c2.
Without loss of generality, assume that c 6= c1 then f(x′, y) − f(x, y) 6=
g(z, w1)− g(z′, w1) and property (5) follows.

Since the function h satisfy property (6) it also has property (3) and hence we
get from Theorem 5 that

H(Uh|Vh) ≥ max
y,w

H(X,Z|h(X,Z, y, w)) .

We then get that:

H(Uh|Vh) ≥ max
y,w

H(X,Z|αf(X, y) + βg(Z,w)) (9)

≥ max
y,w

H(X,Z|f(X, y), g(Z,w)) (10)

≥ max
y

H(X|f(X, y)) + max
w

H(Z|g(Z,w)) (11)

Inequality (11) follows from the independence of X,Z. This proves the theorem.
ut

Remark 1. The above theorem also applies to multiplicative relations ruling out
the cases where g(z, w) = 0 and f(x, y) = 0.

Exploiting Theorem 6 we prove a lower bound for the inner product function
IPk as per Definition 6.

Lemma 1. Let κ ≥ 1 and let f : X × Y → Z be a multiplication function as
per Definition 5. If there exist a protocol ΠIPk

which securely implements the
inner product function IPk with error probability ε in the semi-honest model and
having access to PUIPk

VIPk
then

H(UIPk
|VIPk

) ≥ k ·max
y

H(X|f(X, y)) (12)



Proof. Since the function f satisfies properties (3) and (4), a straightforward
application of Theorem 6 for k = 2 yields H(UIP2

|VIP2
) ≥ 2 ·max

y
H(X|f(X, y)).

However it is easy to see that the proof of Theorem 6 extends to addition of k
functions for any k, so the lemma follows in the same way from this more general
result. ut

Utilising Theorem 6 in the following we prove that any function whose “pre-
processing complexity” is large enough requires lots of communication. What
“large enough” means here is determined by the output secret-sharing scheme
used in the protocol, in a sense we make precise below. In the following, when f
is a function with two inputs and one output, we will speak about a protocol for
computing shares of an f -output, denoted by Πf−output. This is essentially the
same as an MGP except that we replace multiplication by f . So the protocol
takes as input shares of x1 and x2 and computes shares of f(x1, x2) as output.
Note that the inputs x1, x2 may be vectors of field elements, whereas we will by
default assume that the output is a single field element.

In the sequel, for simplicity of exposition let Lf denote a lower bound on
the amount of preprocessed data needed for a secure implementation of f in the
preprocessing model and let Uf denote an upper bound.

Reconstruction Protocol Πrec. Let Snt be the secret-sharing scheme as per
Definition 3 and let f ′Sn

t
be the reconstruction function of Snt . Then, we can se-

curely implement the function f ′Sn
t

in the preprocessing model via the protocol

ΠSPDZ yielding the protocol Πrec.
5. It follows that Πrec demands communi-

cation and that its complexity depends only on the underlying secret-sharing
scheme Snt . In this case we obtain an upper bound Urec on the amount of pre-
processed data consumed by Πrec.

Theorem 7. Consider the preprocessing model where t of the n players may
be passively corrupted. Let Πrec be a secure output reconstruction protocol with
access to PUrec,Vrec for the secret-sharing scheme Ŝnt . Let f be a function with
two inputs and one field element as output such that Urec < Lf . There exists no
passively secure n-player protocol Πf−output with expected anticipated commu-

nication complexity ≤ t for computing shares of an f -output with Ŝnt as output
secret-sharing scheme.

Proof. We start by assuming a fixed communication pattern. Suppose for con-
tradiction that there exists a protocol Πf where at most t players communicate.
Assume that it is the t first parties. Given two parties A and B, we are going
to construct a two-party protocol ΠA,B

f which on input a, b from A,B, respec-
tively, securely computes f(a, b). The idea is to execute the Πf−output protocol
in which A emulates the t players who communicate while B emulates the rest
of the parties but we are interest just for one additional party, say Pt+1. In
particular, protocol ΠA,B

f (a, b) proceeds as follows:

5 Note that any protocol in the preprocessing model can be used.



Protocol ΠA,B
f (a, b):

Input Phase:
1. Parties A,B secret share their inputs a, b using the secret-sharing scheme

Snt . More specifically, A computes [a]S
n
t ← Share(a, n, t) and B computes

[b]S
n
t ← Share(b, n, t).

2. Party A sends the input share (at+1, . . . , an) to party B and Party B
sends the input shares (b1, . . . , bt) to party A.

Evaluation Phase:
1. Parties A,B invoke the protocol Πf−output where A emulates the t

players who communicate, and we assume these are the first t play-
ers. This means that this phase involves no communication between A
and B, but it may consume some preprocessed data. The execution of
Πf−output yields a sharing of [c]S

n
t and outputs (c1, ..., ct) to party A and

(ct+1, . . . , cn) to party B.

Output Phase:
1. Both parties locally invoke protocol ΠRec with access to PUrec,Vrec

which

on input [c]Ŝ
n
t outputs the result f(a, b).

Correctness of the protocol follows immediately from the correctness ofΠf−output
and ΠRec. The protocol can be argued to be secure(private). More specifically,

the simulator SA of ΠA,B
f proceeds as follows. In the input phase, the parties

receive only an unqualified set of shares whose distribution can be simulated per-
fectly. There is no communication to be simulated in the evaluation phase. In the
output phase, simulation is guaranteed by the invocations of the sub-simulator
of the secure protocol ΠRec. Hence, it follows that

SD(Exec
ΠA,B

f

Adv (σ, (a, b)),SimSA(σ, (a, b))) ≤ ε(σ).

We can claim the following: Note that the communication in ΠA,B
f is actu-

ally independent of the preprocessed data needed in order to securely compute
f . Therefore, while reusing the same preprocessed data for each invocation of
Πf−output, we could have executed ` instances of ΠA,B

f on independent inputs
without affecting correctness since the simulation is independent of the prepro-
cessed data. However, since protocol ΠRec is interactive its preprocessed data
must be refreshed for each of the ` executions of ΠRec. This means that the
amount of preprocessed data needed in order to compute ` instances of f is
Uf + ` · Urec. So if we consider an ` large enough such that ` · Lf > Uf + ` · Urec,
we have a contradiction and the theorem follows.

The generalization to dynamic communication patterns follows along the
lines of the proof of Theorem 4: there we split the players in a maximal unquali-
fied set (n− 1 players) and the rest (1 player). Here we do the same except that
the maximal unqualified set has t players and n − t remain. We then argue ex-
actly as in the proof of Theorem 4 that decisions to send/receive cannot depend
on private randomness or shares, and therefore we can build a new protocol that
can be used in our construction of a 2-party protocol.

ut



Given a function f with one output and a non-zero lower bound, we can add
it to itself on distinct inputs a sufficient number of times in order to satisfy the
condition in the above theorem. An example of a function f is the inner product
function IPk which is the composition of k MULT functions. In Lemma 1 we
obtained a lower bound LIPk on the amount of preprocessed data consumed by
a protocol that securely implements the function IPk. Now, if k is large enough
to satisfy the condition Urec < LIPk

, then it holds that ` · Urec + LMULT < ` · LIPk

for large enough ` leading to a contradiction with Theorem 7.

5 Conclusions

We have shown that any information-theoretic secure protocol that follows the
typical gate-by-gate design pattern must communicate for every multiplication
gate, even if only semi-honest security is required, for both honest majority and
dishonest majority with preprocessing where the target secret sharing scheme is
an additive one. We have also shown similar results for any target secret sharing
scheme in the dishonest majority setting. This highlights a reason why, even with
preprocessing, all known protocols which are efficient in the circuit size |C| of the
evaluated function require Ω(n|C|) communication and Ω(dC) rounds where dC
is the depth of C. Our result implies that a fundamental new approach must be
found in order to construct protocols with reduced communication complexity
that beat the complexities of BGW, GMW, SPDZ etc. Of course, it is also
possible that our bounds hold for any protocol efficient in the circuit size of the
function, and this is the main problem we leave open. Another open problem is
to find unrestricted bounds on MGPs for parallel multiplications.
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