
Secure Protocol Transformations

Yuval Ishai1, Eyal Kushilevitz1, Manoj Prabhakaran2, Amit Sahai3, and
Ching-Hua Yu2

1 Technion, Haifa, Israel, and University of California, Los Angeles.
{yuvali,eyalk}@cs.technion.il

2 University of Illinois, Urbana-Champaign. {mmp,cyu17}@cs.illinois.edu
3 University of California, Los Angeles. sahai@cs.ucla.edu

Abstract. In the rich literature of secure multi-party computation (MPC), sev-
eral important results rely on “protocol transformations,” whereby protocols from
one model of MPC are transformed to protocols from another model. Motivated
by the goal of simplifying and unifying results in the area of MPC, we formal-
ize a general notion of black-box protocol transformations that captures previous
transformations from the literature as special cases, and present several new trans-
formations. We motivate our study of protocol transformations by presenting the
following applications.

– Simplifying feasibility results:

• Easily rederive a result in Goldreich’s book (2004), on MPC with full secu-
rity in the presence of an honest majority, from an earlier result in the book,
on MPC that offers “security with abort.”

• Rederive the classical result of Rabin and Ben-Or (1989) by applying a
transformation to the simpler protocols of Ben-Or et al. or Chaum et al.
(1988).

– Efficiency improvements:

• The first “constant-rate” MPC protocol for a constant number of parties that
offers full information-theoretic security with an optimal threshold, improv-
ing over the protocol of Rabin and Ben-Or;

• A fully secure MPC protocol with optimal threshold that improves over
a previous protocol of Ben-Sasson et al. (2012) in the case of “deep and
narrow” computations;

• A fully secure MPC protocol with near-optimal threshold that improves
over a previous protocol of Damgård et al. (2010) by improving the de-
pendence on the security parameter from linear to polylogarithmic;

• An efficient new transformation from passive-secure two-party computa-
tion in the OT-hybrid and OLE-hybrid model to zero-knowledge proofs,
improving over a recent similar transformation of Hazay and Venkitasubra-
maniam (2016) for the case of static zero-knowledge, which is restricted to
the OT-hybrid model and requires a large number of commitments.

Finally, we prove the impossibility of two simple types of black-box protocol
transformations, including an unconditional variant of a previous negative result
of Rosulek (2012) that relied on the existence of one-way functions.

1 Introduction

Secure multi-party computation (MPC) is one of the central topics around which
modern cryptography has been shaped. Research in MPC has led to major inno-
vations in cryptography, including effective definitional approaches (e.g., simulation-
based security [16,15]), powerful and vastly applicable algorithmic techniques
(starting with secret-sharing [28] and garbling schemes [30]), sharp impossi-
bility results (e.g., [8]) and even several cryptographic concepts ahead of their
time (like fully-homomorphic encryption [29]). Significantly, in recent years,
some of these results have started moving from theory to practice, spurring sig-
nificant further theoretical and engineering effort to optimize their performance
and usability.

Over 35 years of active research, MPC has grown into a rich and complex
topic, with many incomparable flavors and numerous protocols and techniques.
Indeed, just cataloguing the state of the art results is a non-trivial research
project in itself, as exemplified by the recent work of Perry et al. [25], which
proposes classifying the existing protocols using 22 dimensions.

This diversity of models and questions forms a wide spectrum of possible
tradeoffs between functionality, security, and efficiency, which partially explains
the massive amount of research in the area. But this diversity also poses the risk
of misdirected research efforts. For instance, if a new technique is introduced
in order to obtain an efficiency improvement in one model, it is not clear a-
priori to which other models the same technique may apply; and even when the
same technique directly applies to other models, one typically needs to manually
modify protocols and their analysis to ensure it.

While developing and maintaining a systematic database like the one in [25]
is certainly helpful, we propose a complementary approach to taming the com-
plex landscape of MPC protocols. Our approach is to relate the various flavors
of MPC problems to each other by means of general protocol transformations.
More concretely, our work studies the following high level question:

To what extent can results in one MPC model be “automatically” trans-
formed to other models?

This question is motivated by the following goals.

– Simplicity. The current proofs of the main feasibility results in the area of
MPC are quite involved, and results for different models share few common
ingredients. We would like to obtain a simpler and more modular joint deriva-
tion of different feasibility results from the 1980s [31,15,2,6,26,24], which
were originally proved using very different techniques.

2

– Efficiency. Despite a lot of progress on the efficiency of MPC, there are still
significant gaps between the efficiency of the best known protocols in dif-
ferent models. For instance, viewing the number of parties n as a constant,
n-party protocols that offer full-security (with guaranteed output delivery)
against t < n/2 malicious parties [26,9] are asymptotically less efficient
compared to similar protocols with security against t < n/3 parties [2], or
even to protocols that offer “security with abort” against t < n malicious
parties [21].

A classical example of a general protocol transformation is the well known
“GMW compiler,” [15], which transforms any MPC protocol that offers security
against passive corruptions into one that offers security against active corrup-
tions, with the help of zero-knowledge proofs. Considering that this transforma-
tion has been behind several subsequent feasibility results, one may legitimately
consider that the GMW transformation is as important as – if not more impor-
tant than – the GMW protocol itself is, as an object of study. More recent ex-
amples include the IKOS transformation using “MPC-in-the-head” [19] and the
IPS transformation that combines player-virtualization with “watchlists” [21].
Common to all these techniques is the idea that they generically transform any
set of protocols that are secure for some (“easier”) flavors of MPC into a proto-
col that is secure for another (“harder”) flavor.

While these previous results demonstrate the plausibility of general MPC
protocol transformations in some interesting cases, they are still far from cov-
ering the space of all desirable transformations between different MPC models
and leave open several natural questions.

In this work, we initiate a systematic study of such MPC protocol transfor-
mations. We define a framework to formalize these transformations, and present
a few positive and negative results. We are interested in obtaining conceptually
simpler alternative proofs for known feasibility results by means of new trans-
formations, as well as in obtaining new results. We now discuss the goals of this
research in more detail.

The main theoretical motivation for studying protocol transformations is
that they highlight the essential new challenges presented in a harder flavor
of MPC compared to an easier flavor. For instance, the GMW-transformation
distilled out verifying claims in zero-knowledge as the essential challenge in
moving from semi-honest security to security against active corruption. As an-
other example, in this work, we present a new transformation, that can recover
the classical feasibility result of Rabin and Ben-Or [26] regarding security with
guaranteed output delivery with an honest majority, from two simpler feasibility
results (both of which were solved in [2,6]): (i) security against passive corrup-
tion with an honest majority and (ii) security with guaranteed output delivery

3

but only with an arbitrarily large fraction of honest parties. We identify achiev-
ing an intermediate security notion – security with partially identifiable abort –
as the key challenge in this transformation.

As noted above, another important motivation behind studying protocol trans-
formations is the possibility of efficiency improvements. On the face of it, pro-
tocol transformations are not ideal for obtaining efficient protocols, as one can
hope to obtain extra efficiency by engineering fine details of the protocols as ap-
plicable to the specific flavor of MPC. While that may indeed be true, a protocol
transformation can leverage advances in one flavor of MPC to obtain efficiency
improvements in another flavor. As it turns out, this lets us obtain several new
asymptotic efficiency results based on a single new transformation. Considering
that efficiency of MPC is a well-studied area, obtaining several new result at
once illustrates the power of such transformations.

There are other practical and theoretical motivations that led to this work,
which we mention below.

– From a pragmatic point of view, understanding the connections across
flavors of MPC will help in modular implementations of protocols. Indeed, the
implementation of a transformation from one flavor to another would tend to
be significantly simpler than an entire protocol in the latter flavor, specified and
implemented from scratch.

– Roles of important techniques can often be encapsulated as transforma-
tions among appropriate intermediate security notions (e.g., “player elimina-
tion” can be encapsulated as implementing a transformation from “identifiable-
abort-security” to full-security). In the absence of such abstraction, these tech-
niques remain enmeshed within more complex protocols, and may not benefit
from research focus that a transformation can attract.

– More generally, transformations are important in reducing duplicated re-
search effort. For instance, if a new technique is introduced in order to obtain
an efficiency improvement in one model, it is not clear a priori to which other
models the same technique may apply; and even when the same technique di-
rectly applies to other models, one typically needs to manually modify protocols
and their analysis to ensure it. On the other hand, if generic transformations are
available across models, techniques can be easily adapted across models.

– Finally, a theoretical framework is necessary to understand the limitations
of protocol transformations, via formal impossibility theorems. Indeed, without
a rigorous notion of “black-box” transformations, it is not clear how to rule
out the possibility of a “transformation” which simply discards the protocol it
is given and builds one from scratch. This is especially the case for uncondi-
tional security, where the standard notions of black-box use of computational

4

assumptions are not helpful in differentiating a legitimate transformation from
one which builds its own (unconditionally secure) protocol from scratch.

A Motivating Example. As an illustration of the use of protocol transforma-
tions in simplifying the landscape of MPC protocols, we consider two protocol
schemes from Goldreich’s book [14, Chapter 7]. The first one obtains (stand-
alone) security-with-abort against arbitrary number of corruptions by an active,
probabilistic polynomial time (PPT) adversary4 (under standard cryptographic
assumptions), for general function evaluation, in a model with broadcast chan-
nels only. The second one obtains full-security (i.e., guaranteed output delivery)
in the same setting, but restricting the adversary to corrupt less than half the
parties. Both these protocol schemes are obtained using the GMW transforma-
tion. However, the latter feasibility result does not take advantage of the former,
but instead uses verifiable secret-sharing (VSS) and several other techniques to
achieve full-security, while retaining certain elements from the previous con-
struction.

We point out that in fact, one could avoid the duplicated effort by giving
a protocol transformation from the former flavor to the latter flavor of MPC.
For this, we abstract out a slightly stronger security guarantee provided by the
first protocol: while it allows an adversary to abort the protocol after learning
its own input, aborting always leads to identification of at least one party that
is corrupted by the adversary. This notion of security is often referred to as
security with identifiable-abort [20]. In Section 4.1, we show that one can easily
transform such a protocol into a protocol with full-security.

Security Augmentation and Efficiency Leveraging. Typically, an MPC proto-
col transformation falls into one of two broad (informally defined) classes: se-
curity augmentation and efficiency leveraging. Security augmentation refers to
building MPC protocols with strong security guarantees by transforming MPC
protocols with weaker security guarantees. The IPS compiler [21] is an instance
of security augmentation. Efficiency leveraging, on the other hand, aims to im-
prove the efficiency of MPC protocols, without necessarily increasing their se-
curity guarantee. In such a transformation, the original (inefficient) protocol will
typically be used on a “small” sub-computation task, in combination with other
cheaper (but less secure) protocols applied to the original “large” computation
task. The goal of the sub-computation task is usually to ensure that the strong
attacks on the final protocol has the effect of weak attacks on an execution of the
cheaper, less secure protocol. An instance of efficiency leveraging is given by
Bracha’s transformation [4], in which the strength of the security guarantee cor-

4 One may consider static or adaptive corruption here. By default, we shall consider adaptive
adversaries in all constructions in this paper.

5

responds to the corruption-threshold (i.e., what fraction of parties are corrupted)
that can be tolerated.

1.1 Our Contributions

Framework. Firstly, we formalize the notion of a Black-Box Transformation
(BBT) from protocol schemes satisfying some security (or efficiency) require-
ments to a protocol scheme satisfying some other requirements.5 Towards this,
we formalize notions like protocol schemes (which map functionalities to pro-
tocols) and security definitions (which are just sets of pairs of functionalities
and protocols), all in a fairly abstract fashion. A BBT itself is modeled using
a circuit that describes a protocol’s structure as a program built from various
components.

The framework is general enough to cast all of the above mentioned trans-
formation (GMW, Bracha, IKOS and IPS) as instances of BBT.

We remark that we treat security notions highly abstractly, and do not im-
pose any conditions on how security is proven. However, in all our positive
results and examples, security definitions use a simulation paradigm, and one
could define a “fully” blackbox transformation by requiring that the simulator
of the protcol resulting from the transformation be constructed in a black-box
manner from the simulators of the given protocols. For the sake of simplicity,
and to keep the focus on the structure of the constructions rather than on the
proofs of security, we do not formally include this restriction in our definition
of BBT. We also point out that this strengthens our impossibility results.

New Transformations and Consequences. We present a new transformation
which can be used to obtain known and new results about (information-theoretically)
secure MPC for general function evaluation, with guaranteed output delivery,
given an honest-majority and a broadcast channel. Our transformation yields
such an MPC scheme starting from two protocol schemes – one achieving full-
security, but for a lower threshold (βn corruption threshold, for some β > 0)
and one achieving semi-honest security under honest-majority (Corollary 1).
(See the next section for an overview of the transformation, and the various in-
termediate transformations that lead to it.) From this transformation we obtain
the following results:

5 The term “Black-Box” refers to the fact that (the next-message function of) the resulting pro-
tocol uses (the next-message function of) all the constituent protocols and the functionality
itself as oracles; however, note that the constituent protocols themselves may depend on their
functionalities in a non-black-box manner.

6

1. We readily obtain the result of Rabin and Ben-Or [26] as a consequence
of the earlier work of Ben-Or et al. and Chaum et al. [2,6], via the above
transformation.

2. We obtain the first “constant-rate” MPC protocol scheme with guaranteed
output delivery against corruption of less than n/2 parties, provided the num-
ber of parties is constant (Corollary 2). That is, the total communication in
this protocol is at most cn|C|, where C is the circuit representation of the
function, and cn is a constant independent of the security parameter and C
but dependent only on the number of parties. This result is obtained – fol-
lowing the lead of [21]6 – by applying our transformation to the scheme of
[11] (combined with a secret-sharing scheme due to [7]) and the semi-honest
secure scheme of [2].

3. Next, we present an efficiency leveraging transformation, which is designed
to improve the efficiency of a protocol scheme with full-security, by com-
bining it with a (cheaper) protocol which achieves security-with-abort (The-
orem 8). By applying this transformation to the above protocol with full-
security and an efficient protocol with security-with-abort from [13], we ob-
tain a “scalable” MPC protocol with full-security and optimal corruption-
threshold – i.e., tolerating corruption of less than n/2 parties (Corollary 3).7

For an arguably natural class of functions (namely, sequential computations,
where the size of a circuit implementing the function is comparable to its
depth), this is the first scalable protocol with full-security and optimal thresh-
old (complementing a result of [3], which obtains similar efficiency for cir-
cuits which are of relatively low depth).

4. We present an efficient new transformation from two-party protocols in the
OT-hybrid or OLE-hybrid model that offer security against passive corrup-
tions to zero-knowledge proofs in the commitment-hybrid model, improving
over a recent similar transformation of Hazay and Venkitasubramaniam [17]
for the case of static zero-knowledge. (We note that the IKOS transformation
for protocols in such hybrid models requires at least 3 parties.) The trans-
formation from [17] cannot be applied in the OLE-hybrid model, and when
applied to natural protocols in the OT-hybrid model such as the GMW pro-
tocol, it requires several separate commitments for each gate in the circuit.
Our transformation for the OLE-hybrid model can be applied towards effi-
cient zero-knowledge proofs for arithmetic circuits and in both hybrids our
transformation requires just a constant number of commitments overall (for

6 In [21], these two protocol schemes were combined to obtain a similar constant-rate protocol,
but in the oblivious-transfer (OT) hybrid model and with security-with-abort.

7 Here the term “scalable” denotes that for evaluating large circuits C, the communication com-
plexity per party scales as Õ(|C|) (up to polylog multiplicative factors and polynomial additive
terms of the security parameter and the number of partiesh).

7

a constant soundness error). This transformation may have relevance to the
recent line of work on practical zero-knowledge proofs initiated in [23]. In
contrast to [17], we do not consider here the goal of adaptive zero-knowledge
in the plain model.

5. Our final application considers the problem of relaxing the corruption thresh-
old from the optimal n/2 to n(1/2 − ε), for any constant ε > 0. In this case,
we obtain a highly scalable protocol in which the total communication for
evaluating a circuit C is Õ(|C|), ignoring additive terms that depend on the
number of parties, but not the size of the circuit (Corollary 4). This improves
over a result of [12].8

For this, we apply Bracha’s transformation [4] to one of the above protocols.
Specifically, we use Bracha’s transformation to combine an outer protocol
that has a relatively low corruption threshold but is highly scalable with re-
spect to communication and computation (in our case the one from [12]),
and an inner protocol with optimal threshold (in our case, the one from item
2 above), to obtain a protocol with a near-optimal threshold.

Impossibility Results. One may ask if security against active corruption can
solely be based on security against semi-honest adversaries. Such questions can
be formalized as questions about the existence of a BBT. We present two im-
possibility results:

1. We consider the question of functionally-black-box protocol schemes, in-
troduced by Rosulek [27]. (This is a special case of protocol transforma-
tions where no protocol scheme is provided to the transformation.) Rosulek
demonstrated a two-party functionality family for which there is no func-
tionally black-box protocol, assuming the existence of one-way functions.
We present an unconditional version of this result (Theorem 1).

2. We show a functionality family – namely, zero-knowledge proof functional-
ities – for which there is no BBT from semi-honest security to security (with
abort) against active adversaries (Theorem 2).

We remark that the proof of our second result breaks down if we expanded
the family of functionalities from ZK functionalities to all efficient functional-
ities. We leave it as an important open problem to prove broader impossibility
results for general computation (in which the family considered is the family of
all functionalities).

8 In [12], in the absence of broadcast channels, the near-optimal threshold of n(1
3
− ε) was con-

sidered. We can extend our result to this setting by implementing broadcast channels among a
constant number of parties, with a constant factor blow-up in communication.

8

1.2 Technical Overview

Black-Box Transformations. We make precise a notion of a black-box trans-
formation among protocol schemes. Given a functionality f , a black-box trans-
formation can define new functionalities (which are syntactically just programs)
that access f in a black-box manner. Then, it can invoke a given protocol scheme
on any such functionality, to obtain a protocol (which is, again, a program). The
transformation can repeat these steps of defining new functionalities in terms of
programs it already has, and of invoking given protocol schemes on such func-
tionalities any number of times. At the end, it outputs one of the programs as its
protocol.

We point out that the “protocol step” (invoking a protocol scheme on a func-
tionality) is not limited to using the functionality as a black-box. However, it is a
black-box step in the sense that the transformation can be instantiated with any
protocol scheme with the requisite security guarantees.

Example: IPS Transformation. An example of a black-box transformation
(that we shall build on later) is the IPS transformation [21]. We shall graphi-
cally represent a transformation using a circuit diagram like the one in Figure 1.

T IPS
0 Λβ-full T IPS

1 Λsh/OT T IPS
2

f fout πout fin πin/OT πIPS/OT

Fig. 1: Black-Box Transformation in the IPS compiler

Here, each rectangular node (labeled T IPS
0 , T IPS

1 and T IPS
2) outputs a pro-

gram which makes black-box access to one or more programs input to that node.
T IPS
0 converts an n-party functionality f into a functionality fout involving n

“clients” and N “servers”. T IPS
1 defines fin to be an n-party functionality in

which the trusted party carries out the program of a server in the protocol πout.
The bulk of the compiler is part of the transformation T IPS

2 , which combines the
programs of two protocols πout and πin in a black-box way to define the final
protocol.

The diagram also shows two other nodes, labeled Λβ-full and Λsh/OT, each of
which take as input a functionality (fout and fin resp.) and produces a protocol
(πout and πin resp.). The labels on the nodes indicate the security guarantees
required of these protocols (security against active corruption of strictly less
than a β > 0 fraction of the parties, and security against semi-honest corruption,
in the OT hybrid model resp.). [21] show that irrespective of what protocol

9

From To Theorem Notes
idα-security, t < αn full,

t < αn
Theorem 3,
Theorem 4

Using player-elimination. Theorem 4 relies
on a non-blackbox decomposition of the
function, and yields efficiency close to the
non-abort-case efficiency of the given proto-
col.

(sh-security, t < αn) and
(full-security, t < βn)

idα,
t < αn

Theorem 5,
Theorem 6

An honest-majority version of the IPS trans-
formation. Any β > 0 suffices. Theorem 6
saves a factor of n using an expander graph-
based watchlist scheme.

(sh-security, t < αn) and
(full-security, t < βn)

full,
t < αn

Corollary 1 Combining the above two.

(abort-secure π1, t < αn)
and (idα-secure π2, t < αn)

idα,
t < αn

Theorem 7 Efficiency Leveraging: resulting protocol al-
most as efficient as π1 when there is no
abort.9

(abort-secure π1, t < αn)
and (full-secure π2, t < αn)

full,
t < αn

Theorem 8 Efficiency Leveraging: resulting protocol is
almost as efficient as π1. From Theorem 7
and Theorem 4. Relies on a non-blackbox
decomposition of the function.

Table 1: A summary of the main black-box transformations in this paper. The first column lists
the type of the protocol scheme(s) given, and the second column lists the type of protocol scheme
obtained. t stands for the number of parties that can be corrupted. idα-security denotes partially-
identifiable-abort security, in which, in the event of an abort, a set of parties, at least α fraction
of which are corrupt, is identified by all honest parties. sh-security stands for security against
semi-honest corruption, abort and full-security stand for security against active corruption, with
the latter having guaranteed output delivery.

schemes are used to define the protocols produced by these nodes, as long as
those schemes meet the required security conditions, the resulting protocol will
be a protocol for f with security against active corruption of any number of
parties.

New Transformations. We present several new transformations, some of which
are summarized in Table 1. In particular, we show how to transform a low-
threshold fully-secure protocol scheme and a high/optimal-threshold semi-honest
secure protocol scheme to a high/optimal-threshold protocol with full-security
(presented as Corollary 1). The main step is to achieve a weaker notion of se-
curity (called “security with partially-identifiable-abort”) against the same high

9 Note that a naïve protocol which runs π1 first and in the event of an abort, runs π2 for the same
functionality does not work. If π1 aborting is considered as an abort event, then it gives the
same efficiency guarantee, but is not an idα-secure scheme, because if π2 completes without
an abort, the protocol fails to identify an α-corrupt set. If π1 aborting is not considered an
abort event, the protocol fails to meet the efficiency guarantee.

10

fraction of corruption. Then, we show how a protocol with partially-identifiable-
abort security can be transformed to one with full-security.

The second of these two transformations turns out to be easy, using “Error-
Correcting Secret-Sharing” or ECSS (also known as robust secret-sharing) [5],
which can be realized easily using ordinary Secret-Sharing and one-time mes-
sage authentication codes (MAC) (see the full version). Partially-identifiable-
abort-security allows us to perform, in case of an abort, a player elimination
process, so that an honest majority is maintained. By carrying this out not on
the original function, but on a function which accepts ECSS-shared inputs and
produces ECSS-shared outputs, we show how to obtain full-security. The more
challenging transformations is obtaining partially-identifiable-abort-security in
the first place, as discussed below.

Obtaining Partially-Identifiable-Abort Security. This transformation is based
on the IPS transformation [21] which, however, was not designed for the setting
with an honest majority. Hence, it relied on an OT-hybrid model, and could ob-
tain only “security with abort.” We modify this transformation in a couple of
ways to obtain partially-identifiable-abort security in the honest-majority set-
ting, in the plain model (with a broadcast channel). There are two major modi-
fications we introduce, summarized below.

Watchlist Channels in the Plain Model. An important aspect of the IPS trans-
formation is a collection of “watchlist channels” used by each party to mon-
itor secretly chosen instances of a semi-honest secure inner protocol. In the
IPS transformation, Rabin OT is used to implement the watchlist channel. In-
stead, we rely on a weaker variant, ÕT, which we can directly implement in
the honest-majority setting (without even broadcast channels), using Shamir’s
secret-sharing. ÕT allows an adversary to selectively cause aborts when there is
no erasure. The reason this suffices for building a watchlist channel is that this
functionality will be applied to random inputs, and when an abort occurs, we
can safely identify a pair of inconsistent parties – at least one of which is cor-
rupt – by having all parties reveal their views in the protocol (over a broadcast
channel).10

Obtaining Partially-Identifiable Abort Instead of Abort. In the original IPS trans-
formation, even if the outer protocol has security with guaranteed output deliv-
ery, the final protocol offers only security with abort (without any identification
of the corrupt parties). This is due to the fact that when a party detects an in-
consistency, it simply aborts the protocol. In the setting with honest majority, we
show how to modify the IPS transformation, so as to obtain partially-identifiable
10 When no abort occurs, the adversary can indeed learn some information (i.e., that an erasure

occurred), but this can happen only in a small number of instances before an abort occurs.

11

abort, such that a set of two parties can be identified of which at least one is
guaranteed to be corrupt.

Consider when Pi detects an inconsistency in the messages reported over
a watchlist channel that it has access to, in an inner protocol session. In this
case, Pi cannot exactly identify the source of inconsistency, but only localize it
to a pair of parties Pi1 , Pi2 , one of which is corrupt. However, since Pi itself
could be a corrupt party, at this point the honest parties can agree on one of
(Pi, Pi1 , Pi2) being corrupt. But being able to identify a set in which only 1/3
fraction is guaranteed to be corrupt falls below our required guarantee of 1 out
of 2 being corrupt.

To further localize corruption, we require all the parties to broadcast their
views in the inner-protocol session in which an inconsistency was detected, as
they had earlier communicated over the watchlist channel to Pi. If an inconsis-
tency is detected among the broadcast views, then all parties can identify a pair
(Pi1 , Pi2) which are inconsistent with each other. On the other hand, if all the
views that are broadcast are consistent with each other, then, if Pi had indeed
observed an inconsistency earlier, it can point out one party Pi1 which reported
a view over the watchlist channel different from the one it reported over the
broadcast channel. Then Pi is required to broadcast this party’s identity, and all
parties agree on the pair (Pi, Pi1).

To see that this transformation retains security, note that by causing an abort,
the adversary can cause at most one server’s computation to be revealed over the
broadcast channel. This corresponds to the adversary corrupting one extra server
in the outer protocol. Since the choice of parameters in the IPS compiler leaves
a comfortable margin for the number of server corruptions, this does not affect
the overall security.

Efficiency Improvements. When considering a non-constant number of parties,
there are a couple of major sources of inefficiency in the transformation above,
which we can address.

Firstly, in the transformation from partially-identifiable-abort security to full
security, the protocol could be restarted Θ(n) times. To avoid this overhead, we
require the function to be given in the form of a composition of Θ(n) functions
(for instance, a layered circuit with Θ(n) layers), each one of approximately
the same size complexity. Then, one can restrict the duplicated effort for each
restart to correspond to a single component, and can ensure that overall O(n)
restarts can only about double the cost.

Secondly, in the IPS compiler, every party can potentially watch every inner
protocol session. This requires that all the communication in each inner-protocol
session is sent out (encrypted with one-time pads) to all the n parties. To avoid
this overhead, we can use an expander graph to define which parties may watch

12

the execution of which servers. Specifically, we can use an expander graph be-
tween the set of parties and the set of servers in the outer protocol, in which
the degree of each server is a constant, but any subset of n/2 parties has in its
neighborhood (i.e., will potentially watch) almost all of the servers. Thus, the
communication in each inner-protocol session (corresponding to the servers in
the outer protocol) is sent out to only a constant number of parties.

Efficiency Leveraging: Transformations for Improving Efficiency. We present
a new instance of efficiency leveraging, in which an MPC protocol scheme with
full-security is “extended” by leveraging the efficiency of cheaper MPC proto-
cols which only offer security with abort. Specifically, we show how to combine
a protocol which guarantees only security with abort given an honest majority
(e.g., from [13]) and a protocol with full-security given honest majority (like the
one we constructed above) to obtain one which approaches the efficiency of the
former protocol while enjoying full-security like the latter.

The basic idea is simple. We can obtain a protocol with 1/2-identifiable-
abort security as follows: given a functionality, we will run a protocol with
security-with-abort to compute it; if the protocol terminates without aborting
(as confirmed with the help of broadcast messages), then our protocol termi-
nates successfully. If it aborts, then we run an (inefficient) MPC protocol with
full-security for a functionality which accepts the views in the first protocol and
detects a pair of parties with conflicting views, at least one of which is corrupt
(if no conflict is detected, then a party who aborted in the first place can be
identified as a corrupt party, since, as part of the security guarantees, we shall
require zero probability for abort if all parties run honestly). To make this idea
work, we need to ensure that the inefficient MPC is called only on a small piece
of computation. With appropriate parameters for decomposition of the function,
this indeed gives new asymptotic results (for relatively “narrow” circuits).

Negative Results. We prove two negative results. Firstly, we show that there
is a function family F such that there is no “functionally blackbox” protocol
scheme [27] for F (even for semi-honest security). The family F consists of
boolean functions of the form fα, where α ∈ {0, 1}k and fα(x, y) = 1 if and
only if x⊕ y = α.

Our second negative result shows a function family G such that semi-honest
secure protocol schemes for G cannot be converted in a blackbox manner to
protocols with active security (with abort). We choose G to be the family of
zero-knowledge proofs for a class of relations. Then, there is a semi-honest
secure protocol for G which only accesses the given functionality f ∈ G in
a blackbox manner. Hence, a blackbox transformation from semi-honest secure
protocol schemes to schemes with active security translates to a functionally
blackbox protocol scheme for G with active security.

13

To complete the proof, we show how to define G (assuming the existence
of a pseudorandom function) such that there is no active secure, functionally
blackbox protocol scheme for G.

1.3 Organization of the Paper

The rest of the paper is organized as follows (with some of the details deferred to
the full version). Section 2 includes several basic definitions of the framework,
and Section 3 defines the notion of a blackbox transformation. In Section 4, we
give some simple transformations, including a new transformation that improves
on a recent result by [17]. Section 5 presents two impossibility results regarding
blackbox transformations. Section 6 through Section 8 present several transfor-
mations, which are summarized in Table 1. Section 9 presents the results we
obtain by applying these transformations to protocol schemes in the literature.

2 Preliminaries

The basic objects in our framework are protocols. Technically, a protocol is
specified by a single program (say, Turing Machine) for the “next-message func-
tion” of all the parties in the protocol (formally defined in the full version). We
shall write Π to denote the set of all protocols.

A functionality is technically just a special instance of a protocol, involving
a trusted party. We often abuse our notation and refer to the trusted party’s pro-
gram as the functionality. We shall often refer to a functionality family F , which
is simply a set of functionalities, i.e., F ⊆ Π . We denote the family of all prob-
abilistic polynomial time computable secure function evaluation functionalities
by F∗ (represented by circuits).

We use a synchronous model of communication (with rushing adversaries),
so that all parties in a protocol proceed in a round-by-round fashion. Note that
this is applicable to ideal functionalities too. However, typically we are not in-
terested in the exact number of rounds in the ideal functionality, as long as it
finishes within a polynomial number of rounds.

2.1 Security Definitions

Technically, a security definition for a functionality family F is formalized as a
relationΛ ⊆ F×Π . The intention is that (f, π) ∈ Λ iff π is a secure protocol for
f . For a security notion named secure, the corresponding relation will typically
be written as Λsecure.

14

ΛFsecure

(f, π) s.t. f ∈ F and π meets the definition secure (for a polynomial-round
version of f). If F = F∗, the family of all probabilistic polynomial time func-
tion evaluation functionalities, we simply write Λsecure.

α-secure
secure, restricted to corruption
of strictly less than α fraction of
the parties.

secure/F
protocol is in the F-hybrid model.
e.g., secure/BC denotes proto-
cols using broadcast channels.

sa
standalone security (default is UC
security). ppt

adversary is PPT (default is un-
bounded adversary).

sh
semi-honest adversary.

full
active adversary (with guaranteed
output delivery).

abort
adversary may learn its output and
then decide which honest parties
get their outputs and which do
not.

idθ
same as abort, but on abort, hon-
est parties agree on a non-empty
set of parties, at least a θ fraction
of which is corrupt. We shall ab-
breviate α-idα as α-id.

Table 2: Terminology used for guarantees from protocols.

In Table 2 we name some of the main security definitions considered in our
results. For instance, ΛFα-full/BC includes all pairs (f, π) such that f is a func-
tionality in the family F , and π is a UC-secure protocol with guaranteed output
delivery (within a polynomial number of rounds), against computationally un-
bounded adversaries who may adaptively corrupt strictly less than α fraction
of the parties, and BC means that the protocol uses a broadcast channel. In all
our security notions, for simplicity of our transformations, we require that an
honest party aborts the protocol only if there is no possible honest execution
of the protocol that is consistent with its view. We also define a security notion
generalizing the notion of security with identifiable abort:

Security with θ-Identifiable Abort. Given a functionality f , we define a func-
tionality f 〈idθ〉 to formalize the notion of security with θ-identifiable abort. As
defined in the full version, we require the functionalities to be in a normal form,
involving a computation phase and an output delivery phase.
f 〈idθ〉 internally runs f and interacts with Adv as follows.

1. Accept the inputs from all parties (including honest parties and parties corrupted by Adv) and
forward to f . (If there is no input from Pi, substitute it with a dummy input.) Set the output
vector as set by f .

2. If Adv sends getoutput, then send the corrupted parties’ outputs to Adv.

3. If Adv sends (corrupt, T) s.t. T is a subset of parties in which at least a θ fraction are corrupt,
then change the output of all honest parties to be (corrupt, T).

4. Output phase: Deliver the (current) output to all parties.

15

2.2 Protocol Schemes

A protocol scheme maps a functionality to a protocol (with a desired security
property).

Definition 1 (Λ-scheme). P : F → Π is said to be a Λ-scheme if F is a
functionality family such thatΛ ⊆ F∗×Π , and for every f ∈ F , (f,P(f)) ∈ Λ.

For example, the semi-honest BGW-protocol scheme is a ΛFα-sh-scheme where
F is the family of all circuit-evaluation functionalities and α = 1

2 . Typical pro-
tocol schemes are uniform, in that there is a Turing Machine which, on input a
standardized description of f , for f ∈ F , outputs the code of P(f).

Complexity Notation. To discuss asymptotic efficiency guarantees of proto-
col schemes, we augment the notation for security definitions to include proto-
cols’ communication (and sometimes, computational) cost. Typically, a proto-
col’s complexity is measured as a function of some complexity measure of the
functionality f that it is realizing, as well as the number of parties n and the
security parameter k of the protocol execution. For each functionality family,
we shall require a cost measure size : F → Z+, that maps f ∈ F to a positive
integer. We stress that a functionality f denotes a specific implementation (of a
trusted party in a protocol), and so there can be different f ∈ F which are all
functionally equivalent, but with differing values of size(f).

To capture the typical efficiency guarantees in the literature, we define a
p -ΛFsecure scheme as a ΛFsecure scheme P such that for any f ∈ F , P(f) is a
protocol whose communication cost (for n parties, and security parameter k) is

O(p(n, k) · size(f) + poly(n, k)). (1)

For typical functionality families F , a functionality f ∈ F is represented as a
circuit Cf , and size(f) is the size of Cf . The function p(n, k) reflects the mul-
tiplicative overhead of secure computation, on top of the size of the (insecure)
computation.

Often, protocol schemes which offer a smaller value for p(n, k) incur addi-
tive costs. To denote protocol schemes with such complexities, we use a more
detailed notation: (p, q, r;D) -ΛFsecure schemes are ΛFsecure schemes P such that
for all f ∈ F , the communication cost of P(f) is O(p(n, k) · size(f) +
poly(n, k) · D(f)), its computation cost is O(q(n, k) · size(f) + poly(n, k) ·
D(f)), and its randomness cost isO(r(n, k) ·size(f)+poly(n, k) ·D(f)). Here
D is a secondary cost measure – typically the depth of the circuit Cf – which
is often much smaller than size(f). We omit D to indicate that D(f) is a con-
stant and omit q and/or r to leave them as unspecified poly(n, k) functions. We

16

omit F if it equals F∗, the family of all probabilistic polynomial time function
evaluation functionalities.

For functionality families using circuit representation, a traditional choice
for D is depth: depth(f) denotes the depth of the circuit Cf representing f .
We shall find it useful to define another function width, defined as follows. For
any topological sorting of the gates in the circuit, define a sorted-cut as a parti-
tion of the gates into two sets so that all the gates in one part appear before any
gate in the other part, in the topologically sorted order; the max-sorted-cut for
a sort order is the maximum number of wires crossing a sorted-cut. width(f)
is the value of the max-sorted-cut of Cf minimized over all topological sorts
of Cf . (Alternately, we could require the topological sort to be part of the cir-
cuit specification. In this case, an appropriate model of computation would be
a linear bijection straight-line program [1], and width would correspond to the
number of “registers” in the program.)

For protocol schemes providing partially-identifiable security, likeα-id-schemes,
we sometimes want to distinguish the cost of an execution without an abort event
and that with an abort event (and identification): a 〈γ, δ〉 -Λα-id scheme denotes
a Λα-id scheme P such that the communication cost of P(f) is O(γ(n, k) ·
size(f)+poly(n, k)) without abort events andO(δ(n, k)·size(f)+poly(n, k))
with abort.

Finally, we write (p, q, r;D)~ΛFsecure instead of (p, q, r;D) -ΛFsecure and so
on, if we intend to use Õ(·) instead of O(·) in the above costs.11 The notation is
summarized in Table 3.

(p, q, r;D) -Λsecure Λsecure scheme P s.t. the communication cost of P(f) is
O(p(n, k) · size(f) + poly(n, k) · D(f)), the computation cost is
O(q(n, k) · size(f) + poly(n, k) · D(f)) and randomness cost is
O(r(n, k) · size(f) + poly(n, k) · D(f)).

(p, q;D) -Λsecure (p, q, r;D) -Λsecure, where r(n, k) is poly(n, k).

(p, q) -Λsecure (p, q;D) -Λsecure, where D(f) is a constant

(p;D) -Λsecure (p, q;D) -Λsecure, where q(f) is poly(n, k)

p -Λsecure (p, q;D) -Λsecure, where D(f) is a constant and q(f) is poly(n, k)

〈γ, δ〉 -Λα-id Λsecure scheme P s.t. the communication cost of P(f) is
O(γ(n, k) · size(f) + poly(n, k)) without abort events and
O(δ(n, k) · size(f) + poly(n, k)) with abort.

(params)~Λsecure Similar to (params) -Λsecure scheme, but with Õ(·) instead of O(·).
Table 3: Additional notation for protocol schemes (for n parties, and security parameter k).

11 Õ(h) denotes O(h · polylogh).

17

2.3 Error-Correcting Secret-Sharing

Some of our transformations rely on a simple variant of secret-sharing that has
been referred to as robust secret-sharing or as honest-dealer VSS [26,10,5]. To
clarify the nature of this primitive, we shall call it Error-Correcting Secret-
Sharing (ECSS), and define it formally below.

Definition 2 (Error-Correcting Secret Sharing). A pair of algorithms (share,
reconstruct) is said to be an (n, t)-Error-Correcting Secret Sharing (ECSS)
scheme over a message spaceM if the following hold:

1. Secrecy: For all s ∈M andNc ⊆ [n], |Nc| < t, the distribution of {σi}i∈Nc
is independent of s, where (σ1, ..., σn)← share(s).

2. Reconstruction from upto t erroneous shares: For all s ∈ M, and all
(σ1, ..., σn) and (σ′1, ..., σ

′
n) such that Pr[(σ1, ..., σn)← share(s)] > 0 and

|{i | σ′i = σi}| ≥ n− t, it holds that reconstruct(σ′1, ..., σ
′
n) = s.

3 Defining Black-Box Transformations

In this section, we present our framework of black-box transformations, which
operates on protocol schemes (Definition 1). More specifically, a black-box
transformation defines a Λ-scheme in terms of Λ′-schemes, for one or more
other security notions Λ′. We present our definition in two parts – first the syn-
tax of a transformation, followed by its security requirements.

Definition 3 (Black-Box Transformation (BBT): Syntax). A BBT for a func-
tionality family F is defined as a circuit C with

– a single input wire taking a functionality f ∈ F ,
– a single output wire outputting a protocol π ∈ Π ,
– one or more black-box nodes labeled with oracle TMs T1, · · · , Ts,
– one or more protocol nodes labeled with relations Λ1, · · · , Λt where Λi ⊆
Fi ×Π for some functionality family Fi.

For a black-box node labeled with Ti we require that the number of oracles
accessed by Ti is equal to the number of input wires to that node. For a protocol
node, we require that there is only one input wire.

Given such a circuit C and protocol schemes P1, · · · ,Pt such that each Pi
is a Λi-scheme, we define CP1,...,Pt(f) ∈ Π as follows. We shall set the value
on each wire in C to be a protocol in Π (possibly a functionality), starting with
the input wire and ending with the output wire, which is taken as the value

18

CP1,...,Pt(f). First, set the value on the input wire to be f . Then, for any black-
box node with all its input wires’ values already set to values π1, · · · , πd, set
its output wire’s value to T π1,··· ,πdi , where Ti is the label on the node. For any
protocol node with its input wire’s value set to π, set its output wire’s value to
Pi(π), where i is the index of the protocol node in C (if Pi(π) is undefined,
then CP1,...,Pt(f) is undefined).

Definition 4 (Black-Box Transformation (BBT)). We say that a BBT C, for a
functionality family F , is a BBT from {Λ1, · · · , Λt} to Λ, if C has t protocol
nodes labeled with (Λ1, · · · , Λt) and, for all f ∈ F and all (P1, · · · ,Pt) such
that each Pi is a Λi-scheme, we have (f, CP1,...,Pt(f)) ∈ Λ.

4 Examples of Black-Box Transformations

In the full version, we illustrate how several important constructions from the
literature are in fact BBTs from simpler security notions or simpler function
families, to more demanding ones. This list includes Bracha’s compiler [4]
(from high-threshold (and low-efficiency) security and low-threshold (and high-
efficiency) security to a high-threshold (and high-efficiency) security), the IKOS
compiler [19] (from semi-honest secure MPC and and honest-majority secure
MPC to active security for Zero-Knowledge proofs) and the IPS compiler [21]
(as above, but for arbitrary MPC). The GMW compiler [15] could also be
viewed as a BBT (from semi-honest security and active security specialized
to zero-knowledge functionality, to active security).

It is helpful to visualize these transformations using “circuit diagrams.” An
example of the IPS transformation was given in Figure 1. Similar diagrams for
the other examples mentioned above are given in the full version.

Below we discuss two new simple BBTs, which yield much simpler alter-
natives to more complex constructions in the literature.
Improving Over [17]. Very recently, Hazay and Venkitasubramaniam [17], pre-
sented an IKOS-like transformation that starts from any (semi-honest) two-party
protocol in the OT-hybrid model and gives a zero-knowledge proof system in
the commitment-hybrid model. We present a different transformation that has
several advantages over [17]: our transformation may start with a two-party
protocol in the OLE-hybrid model,12 whereas the one from [17] seems inher-
ently restricted to the OT-hybrid model. Perhaps more importantly, to achieve
12 OLE stands for Oblivious Linear function Evaluation. It is a generalization of Oblivious Trans-

fer where a sender has (a, b) in a field F and the receiver has x ∈ F. At the end of the protocol,
the receiver will learn ax+ b while the sender learns nothing. OLE-based protocols are useful
for arithmetic computation. Such protocols are obtained in [22] by generalizing the OT-based
GMW protocol [15].

19

a constant level of soundness our transformation uses only a constant number
of commitments (to long strings), compared to the protocol in [17] that uses
as many commitments as the number of OT calls. For the simplest case of the
GMW protocol applied to a boolean circuit of size s, our protocol requires only
6 commitments whose total length is O(|C|) whereas the protocol from [17] re-
quires O(|C|) separate bit-commitments. These features of our transformation
make it appealing for the design of practical ZK protocols based on OT-hybrid
and OLE-hybrid protocols such as GMW.

Our transformation, as well as the IKOS transformation on which it is based,
are presented in the full version. At a high-level, we give a simple BBT from
a 2-party semi-honest MPC protocol scheme in the OLE-hybrid model to a 3-
party 1-private MPC protocol scheme in the plain model; this transformation is
then readily composed with the IKOS transformation (which can be applied to
a 1-private protocol) to obtain our full transformation.

4.1 A Pedagogical Application

One of the results from Goldreich’s textbook [14] can be simplified using a
BBT. In [14], two separate protocols forΛabort-ppt-sa-id (i.e., security-with-identifiable-
abort) and Λ1/2−full-ppt-sa (i.e., security with guaranteed output delivery, with an
honest majority) are presented, with the latter relying on VSS. Below, we give
a BBT from Λabort-ppt-sa-id to Λ1/2−full-ppt-sa, that uses ECSS (see Section 2.3)
instead of VSS.

To evaluate an n-party function f , each party shares its input using an
dn/2e-out-of-n error-correcting secret-sharing (ECSS) scheme (see Section 2.3),
and sends the resulting shares to the n parties. We remark that an ECSS is much
simpler than, say, a VSS protocol, and can be constructed readily by adding
message authentication code (MAC) tags to the shares of any threshold secret
sharing scheme (such as Shamir’s scheme). Then, the parties use a protocol
π from the protocol scheme with security-with-identifiable-abort to evaluate a
function f ′, which takes shares as its inputs, reconstructs them to get inputs for
f , evaluates f and reshares the outputs among all parties, again using ECSS. If
the shares given as inputs have fewer than n/2 errors, f ′ can error-correct and
recover the original input being shared; otherwise it defines the reconstructed
value to be a default value (this corresponds to the shares not being generated
correctly in the first place). If the protocol π for f ′ does not abort, then all the
parties are expected to redistribute the shares they received from π, so that each
party gets all the shares of its output; due to the error-correcting property, and
since the adversary can corrupt less than n/2 of the shares received by each
honest party, every honest party will be able to correctly recover its output. On
the other hand, if the protocol π aborts, due to the identifiable-abort security

20

guarantee, all honest parties will agree on the identity of one corrupt party. Note
that at this point, even though the adversary may learn its outputs from π (i.e.,
outputs of f ′), these carry no information and can be efficiently simulated (by
a simulator running the protocol with arbitrary inputs for the honest parties).
Hence, the parties can simply eliminate the identified party (and still retain hon-
est majority), and restart the entire protocol on a smaller functionality in which
the eliminated party’s input is replaced by a default value. This process must
eventually terminate, after at most dn/2e attempts, guaranteeing output for all
honest parties.

An ad-hoc use of the above “player elimination” technique was made in
several previous MPC protocols (see, e.g., [18] and references therein). In con-
trast, our use of this technique yields a completely general transformation from
a weaker flavor of MPC to a stronger one.

5 Impossibility of Black-Box Transformations

In this section, we present some impossibility results for BBT. Before proceed-
ing, we emphasize that in the definition of BBT, we do not require the security
proofs to be black-box in any form. In particular, the simulators used to define
security can arbitrarily depend on the functionality in a non-black-box manner.
As such, the impossibility results on BBT are of a rather strong nature.

Our first impossibility results relates to an interesting special case of a BBT,
namely, BBT from ∅ to Λ. This corresponds to the notion of a functionally-
black-box protocol introduced by Rosulek [27], wherein there is an oracle TM
such that for all f ∈ F , T f is a secure protocol (according to Λ) for f . Rosulek
demontrated a two-party functionality family for which there is no functionally
black-box protocol, assuming the existence of one-way functions. We present an
unconditional version of this result.

Theorem 1. There exists a two-party functionality family F such that there is
no BBT from ∅ to ΛFsh. In particular, there is no BBT from ∅ to ΛF

∗

sh .

The detailed proof is given in the full version. Here we sketch the main ideas
of the proof.
Proof sketch: The family F we shall use to prove the theorem consists of
boolean functions of the form fα, α ∈ {0, 1}k, where fα(x, y) = 1 if and
only if x⊕y = α. To show that there can be no secure protocol for fα, in which
the two parties access the function only in a blackbox manner, we consider the
following experiment. Pick x, y, α uniformly and independently at random, and
run the protocol for fα with inputs x, y. Then we argue that the probability for
both of the following events should be negligible:

21

(A) Either party queries their oracle with (p, q) such that p⊕ q = α.
(B) Either party queries their oracle with (p, q) such that p⊕ q = x⊕ y.

The probability of event A is negligible since α is chosen uniformly at random,
and the parties make only a polynomial number of queries. The reason for the
probability of event B being negligible is the security of the protocol: in an ideal
world, since x ⊕ y 6= α, a corrupt party (simulator), even given α, can learn
only a negligible amount of information about the other party’s input. Now, we
consider a “coupled” experiment in which instead of α, we pick α∗ = x ⊕ y,
and run the same protocol but now for fα∗ . It can be argued that for the random
tapes in the protocol for which events (A) and (B) does not occur in the first case,
they will not occur in the second run too. Thus with high probability, both the
executions produce the same output, violating the correctness of the protocol. �

Also, we consider the question of showing impossibility of BBT from semi-
honest security to active security. We present such a result conditioned on the
existence of one-way functions.

Theorem 2. Assuming the existence of one-way functions, there exists a two-
party functionality family G such that there is no BBT from {ΛGsh} to ΛGabort.

We present the intuition behind the proof below, and defer the detailed proof to
the full version. Proof sketch: We will let G to be the family of zero-knowledge
proofs for a class of relations. Then, there is a semi-honest secure protcol for G
which only access the given functionality f ∈ G in a blackbox manner. Hence, a
blackbox transform from semi-honest secure protocol schemes to schemes with
active security translates to a functionally blackbox protocol scheme for G with
active security. To show that this does not exist, we assume the existence of a
pseudorandom function F and define G as follows. The relations associated with
G are Rs = {(x,w) | Fs(w) = x}, where Fs denotes F with seed s.

To show that there can be no ZK protocol for this relation in which the par-
ties only have blackbox access to an oracle for the relationRs (but the simulator
may depend on s), we consider a cheating prover as follows. When given (x,w)
and access to Rs, it uses a wrapper around Rs to turn it into relation which ac-
cepts (x,w) (and does not accept (x′, w) for x′ 6= x), but otherwise behaves like
Rs. Then the cheating prover runs the honest prover with access to the modified
oracle. Using the ZK property we can argue that an honest verifier, when given a
random x, cannot detect the difference between interacting with the real prover
and the cheating prover. Thus, if the protocol is complete, the cheating prover
will be able to break soundness. �

22

6 A BBT from Partially-Identifiable-Abort to Full Security

We present a simple black-box transformation from partially-identifiable abort
security (formalized using Λα-id below) to full security. This will be an impor-
tant ingredient in our applications in Section 9. First, we present a simple but
general version of this transformation (which suffices for feasibility results); in
Theorem 4, we shall present a more efficient variant.

Theorem 3. For any 0 ≤ α ≤ 1/2, there exists a BBT fromΛα-id/BC toΛα-full/BC.
Specifically, there is a BBT from p -Λα-id/BC to (np;D) -Λα-full/BC, where D(f)
is the input plus output size of f .

Our tools behind this construction are relatively simple. In particular, we do
not use verifiable secret-sharing (VSS), but instead use the much simpler prim-
itive Error-Correcting Secret-Sharing (ECSS) (see Section 2.3), which can be
realized easily using ordinary Secret-Sharing and one-time message authentica-
tion codes (MAC).

Here we give a high level overview of the construction, with a complete
description defered to the full version. The idea behind this BBT is that if we
have a protocol which either completes the computation or identifies a set of
parties such that at least α fraction of which are corrupt, then, in the event of
an abort, we can remove the identified set of parties from active computation
and restart the computation. Note that this preserves the corruption threshold of
α (i.e., strictly less than α fraction remains corrupt) among the set of “active”
parties.

For this idea to work, we need to keep the outputs secret-shared (so that by
aborting, the adversary does not learn any useful information, even though it
receives its outputs from the computation), and after the computation finishes,
guarantee reconstruction. Further, we need to use secret-sharing to let all the
parties deliver their inputs to the set of active parties. All this will be achieved
using ECSS in a straightforward manner, for α ≤ 1/2.

A More Efficient Variant. In the above BBT, we restarted the entire computa-
tion in the event of an abort. To avoid this, we rely on having access to a “layered
representation” of the function. Formally, consider a parametrized functionality
f̂ , parametrized by an index i ∈ {1, · · · , d}, such that f = f̂ [d] ◦ ... ◦ f̂ [1],
such that size(f̂ [i]) = O(size(f)/d), for all i. We define widthd(f) to be the
smallest number w such that there exists a decomposition of f into d layers,
each of size O(size(f)/d), such that the number of output wires from any layer
is at most w. We shall typically take d to be a polynomial d(n, k). Note that
width(f) defined in Section 2.2 is an upper-bound on widthd(f) for all d.

23

Since decomposing f into f̂ is not a black-box operation, we require a “pro-
tocol scheme” that carries out this decomposition. For this we define a Λlayer[d]

scheme to be one which maps f to a parametrized function f̂ such that

f = f̂ [d] ◦ · · · ◦ f̂ [1],

and ∀i ∈ [d], size(f̂ [i]) = O(size(f)/d) and the number of bits output by
f̂ [i] ≤ widthd(f).

Then, as shown in the full version, we obtain the following efficiency im-
provement over Theorem 3.

Theorem 4. For any 0 < α ≤ 1/2, there exists a BBT from {Λlayer[d], 〈γ, δ〉 -Λα-id}
to (γ;D) -Λα-full, where d(n, k) = n · δ(n,k)γ(n,k) and D(f) = widthd(f).

7 A BBT From {Λα-sh, Λβ-full} to Λα-id

Our goal in this section is to obtain a BBT that increases the corruption threshold
of a fully secure protocol, by combining it with a semi-honest protocol which
has the higher threshold. Given Theorem 3, it suffices to obtain a protocol with
partially-identifiable-abort against the higher corruption threshold. Formally, we
shall prove the following theorem, which is interesting when β < α

Theorem 5. For any 0 < α, β ≤ 1/2, there exists a BBT from {Λα-sh, Λβ-full} to
Λα-id/BC.

This BBT (detailed in the full version) resembles the IPS compiler, but
achieves 1/2-identification in case of abort, and also avoids the use of OT in
watchlists. For this, it replaces T IPS

2 in IPS (see Figure 1) with a black-box trans-
formation T2. Figure 2 compares T IPS

2 and T2. T IPS
2 consists of a “core” com-

piler IPScore, which produces a protocol in a “watchlist-channel hybrid” model
(also using OT if it is needed by the inner protocol). Separately, a watchlist-
channel functionality W was realized using a protocol wIPS in the OT-hybrid
model. Finally, the former was composed with the latter to obtain a protocol in
the OT-hybrid model.

In T2, firstly the OT used in the watchlist protocol is replaced with a func-
tionality ÕT, which is then implemented by a protocol πÕT in the honest-majority
setting; further this watchlist protocol is modified in a simple manner to achieve
1/2-identification. The functionality of the resulting protocol is captured byW∗.
Next,the protocol generated by IPScore is modified to facilitate 1/2-identification
(even if given the watchlist functionalityW∗ instead ofW), following the out-
line sketched in Section 1.2 (see paragraph Obtaining Partially-Identifiable-
Abort Security). The final protocol is obtained by composing this protocol with
the watchlist protocol forW∗.

24

IPScore

ComposeIPSWL

πsh/OT

πβ-full π/W,OT

wIPS/OT πabort/OT

IPScore Tid

IPSWL Compose

TOT

Compose T ∗id

πα-sh

πβ-full π/W π∗/W∗

wIPS/ÕT

πÕT/BC

w/BC w∗/BC πα-id/BC

Fig. 2: T IPS
2 and T2. The shaded region shows the new components in T2. Note that T2 retains

IPScore and IPSWL from T IPS
2 as it is.

7.1 Using a Sparse Watchlist

The BBT in Theorem 5 is in fact a BBT from {(pin, qin, rin) -Λα-sh, (pout, qout) -Λβ-full}
to p -Λα-id/BC, where p = n2 · (pin + rin) · (qout + n · pout). But by exploiting
the honest majority guarantee which was absent in the setting of [21], we can
state the following version.

Theorem 6. For any 0 < α, β ≤ 1/2, and polynomials pin, qin, rin, pout, qout,
there exists a BBT from {(pin, qin, rin) -Λα-sh, (pout, qout) -Λβ-full} to p -Λα-id/BC,
where p = n · (pin + rin) · (qout + n · pout).

The above result saves a factor of n compared to the previous transforma-
tion. The efficiency improvement comes from a sparser watchlist mechanism
(using an expander graph to define which parties may watch the execution of
which servers) in the BBT from (Λβ-full, Λα-sh) to Λα-id/BC. We present the de-
tails in the full version.

8 Efficiency Leveraging

Bracha’s transformation is a classical example of efficiency leveraging. It was
originally proposed in the context of byzantine agreement [4], and later applied
to MPC protocols (see, e.g., [12]). Below, we record a version of this result that
is sufficient for our applications.

25

Proposition 1 (Bracha’s Transformation [4]). Let 0 < ε, β ≤ α ≤ 1/2, and
let p′(n, k) = cn be independent of k. Then, for each secure ∈ {sh,abort, full}
and any function D, there exists a BBT from {(p, q;D) -ΛFβ-secure, p′ -Λα-secure}
to (p′′;D) -ΛF(α−ε)-secure, where p′′(n, k) = p(n, k) + q(n, k).

In this section, we present a new instance of efficiency leveraging for full-
security: a simple BBT from {Λα-abort, Λα-full} to Λα-full, in which the resulting
protocol’s efficiency is comparable to that of the protocol in Λα-abort.

First we present a efficiency leveraging transformation for Λα-id which can
then be combined with Theorem 4 to obtain efficiency leveraging for Λα-full. In
our efficiency leveraging transformation for Λα-id the efficiency of the result-
ing protocol, when there is no abort event, is comparable to that of a cheaper
Λα-abort protocol. Formally, we have the following theorem.

Theorem 7. For any 0 ≤ α ≤ 1/2, and functions p, q, p′ ∈ poly(n, k), there
exists a BBT from {(p, q) -Λα-abort, p

′ -Λα-id} to 〈γ, δ〉 -Λα-id, where γ = p and
δ = p′ · (p+ q).

(p, q) -Λα-abort T1 〈γ, δ〉 -Λα-id T2

f πabort f∗ πid π

Fig. 3: Black-Box Transformation from {(p, q) -Λα-abort, p
′ -Λα-id} to 〈γ, δ〉 -Λα-id, where γ =

p and δ = p′ · (p+ q).

The protocol scheme claimed in Theorem 7 is shown in Figure 3. The first
node is a protocol node of p -Λα-abort, which converts a functionality f into a
protocol πabort.

The second node is a black-box node T1, which converts the protocol πabort
to an (n-party) functionality f∗, in which the trusted party takes the view of
each party in an execution of πabort as the input, carries out the execution of
πabort, and identifies a set of two parties which have inconsistent views, if it
exists.13 When there is none, it outputs ∅. The third node Λα-id compiles f∗ into
a protocol πid.

Finally, a black-box node T2 combines πabort and πid together and trans-
forms them into a protocol π, which works as follows: initially the parties exe-
cute πabort on the given input, and on finishing this execution successfully, each
13 Recall that the view of a party involves its initial input, the randomness, and all the received

messages.

26

party broadcasts “done.” If all parties broadcast “done,” then each party outputs
the output from the execution of πabort and terminates. If not, they execute πid
with their views in the execution of πabort as input. If this latter execution itself
aborts, πid identifies a set of parties S at least an α fraction of which is corrupt
(where α ≤ 1/2). otherwise (i.e., if πid finishes without an abort event), then all
parties agree on the output of f∗, namely a set S of two parties at least one of
which is corrupt, or the emptyset ∅; if the output is ∅, the parties set S to be
the singleton set consisting of the lexicographically smallest party who did not
broadcast “done” after the execution of πabort. In all cases, if πabort resulted in
an abort, the honest parties agree on a set of parties S of which at least an α
fraction is corrupt.

We verify that the complexity of π is as claimed in the theorem. When
there is no abort event, the communication cost is essentially the same as that
of πabort, namely p(n, k); otherwise, there is an additional the cost from πid,
which is Õ(p(n, k) + p′(n, k) · size(f∗)), where size(f∗) = Õ((p(n, k) +
q(n, k)) · size(f)). Hence the whole scheme is in 〈γ, δ〉 -Λα-id with γ = p and
δ′ = p′ · (p+ q).

Combining Theorem 7 with Theorem 4 we get the following result. Here we
state it as efficiency leveraging for full-security; however, the result holds as a
BBT from {Λlayer[d], (p, q) -Λα-abort, p

′ -Λα-id} as well.

Theorem 8. For all 0 ≤ α ≤ 1/2, and for all functions p, q, p′ ∈ poly(n, k),
there exists a BBT from {Λlayer[d], (p, q) -Λα-abort, p

′ -Λα-full} to (p;D) -Λα-full,

where d = n·p′·(p+q)
p and D(f) = widthd(f).

9 Applications

In Section 4.1, we already saw a pedagogical application of BBT, in simplifying
the exposition of security with guaranteed output delivery (with computation-
ally bounded adversaries). In this section, we give several interesting examples
regarding how to use the BBTs in the previous sections for deriving both feasi-
bility and efficiency results.

◦ Rabin-Ben Or without honest-majority VSS. As our first example, we re-
produce the classic feasibility result of Rabin and Ben-Or [26] for fully secure
MPC for corruption against t < n/2 parties. The core new tool developed in this
paper (and used in subsequent results in this regime of corruption) was Verifi-
able Secret-Sharing (VSS) that is secure against corruption of t < n/2 parties.
Interestingly, our construction by-passes the need for an explicit VSS protocol
for this corruption regime, instead showing that one can directly use fully secure

27

MPC from prior work [2,6]. Our construction is based on the following direct
corollary of Theorem 5 and Theorem 3.

Corollary 1. For any 0 < α, β ≤ 1/2, there exists a BBT from {Λα-sh, Λβ-full}
to Λα-full/BC.

To obtain the result of [26] we simply apply Corollary 1 to the protocols in [2,6].

◦ Constant-Rate MPC with Full-Security for Small Number of Parties. Our
first quantitative result is a “constant-rate” honest-majority MPC protocol with
guaranteed output delivery, when the number of parties involved is constant.
That is, as the size of the function grows, the communication complexity of the
protocol grows linearly at a rate that is independent of the security parameter.
For MPC of large circuits, against the optimal corruption threshold n/2, this
gives an amortized complexity of O(1) per gate, compared to O(k) per gate in
the previously best result from [3].

Corollary 2. There exists a p -Λ1/2-full/BC-scheme, where p(n, k) = cn is inde-
pendent of k.

This result is obtained as a corollary of Theorem 614 and Theorem 3. First
we obtain a p -Λ1/2-id/BC scheme by applying the BBT from Theorem 6 to the
Λ1/2-sh-scheme from [2] and the constant rate Λβ-full-scheme (for some β >
0) that is obtained by instantiating the protocol scheme from [11] using the
constant-rate ramp scheme of [7]. (The same “outer protocol” was used in [21]
to obtain a constant-rate Λabort/OT-scheme.) Then by further applying the BBT
fromTheorem 3, we obtain the p -Λ1/2-full/BC protocol as claimed.

◦ Scalable MPC with Full-Security, Optimal Threshold. Our next result is
a “scalable” honest-majority MPC protocol with guaranteed output delivery.
We define the function class Farith of functions represented as arithmetic cir-
cuits over a field F such that log |F| > k. For f ∈ Farith, size(f) refers to
log |F| · |Cf |, where |Cf | is the number of gates in the circuit Cf representing
f . Equivalently, size(f) measures the number of binary wires in the circuit Cf ;
similarly width(f) measures the width of Cf in bits.

Corollary 3. There exists a (p;D) -ΛFarith
1
2

-full/BC
-scheme, where p(n, k) = n and

D = width(f).

14 The construction leading to Theorem 5 also suffices here. We point to Theorem 6 only because
it makes the parameters explicit; the optimization in Section 7.1 is not important for this result.

28

That is, for MPC of large arithmetic circuits over a large field, with security
against the optimal corruption threshold n/2, we get an amortized communica-
tion cost of O(n) bits per binary wire in the circuit. This result is obtained as a
corollary of Theorem 7 and Theorem 4, by applying the BBTs to the ΛFarith

1/2-abort-
scheme from [13] and the p -Λ1/2-id-scheme from Corollary 2. Note that we have
used width(f) as an upper-bound on widthd(f) over all d.

Our result complements a similar result of Ben-Sasson et al. [3] in which
the secondary complexity measure is depth, instead of width. We remark that a
natural regime for scalable MPC involves long sequential computations (carried
out by a small or moderate number of parties), so that a circuit for the computa-
tion would be deep and narrow. In such a regime, the above result, which yields
a cost of O(n · size(f) + poly(n, k)), compares favorably to the protocols of
[3] which yield a cost of Ω̃(n · size(f) + n2 · depth(f) + poly(n, k)).

◦ Highly Scalable MPC with Full-Security, Near Optimal Threshold. Our
final application considers the problem of relaxing the corruption threshold from
the optimal α = 1/2 to α = 1/2− ε, for any constant ε.

Corollary 4. For every ε > 0, there exists a (pε;D) -Λ
(1
2
−ε)-full/BC-scheme,

where pε(n, k) = cε is independent of n and k and D(f) = depth(f).

This generalizes a result in [12], which obtained a similar result (without
using a broadcast channel) for the threshold 1

3 − ε. We obtain this result by
applying Proposition 1 (Bracha’s efficiency leveraging transformation) to our
cn -Λ 1

2
-full/BC scheme from Corollary 2 and the (c1, c2;depth) -Λβ-full scheme

from [12] (for, say, β = 1/6 and c1, c2 being constants), with α = 1/2.

References

1. M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of regis-
ters. SIAM Journal on Computing, 21(1):54–58, 1992.

2. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. 20th STOC, pages 1–10. ACM,
1988.

3. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In Proc. 32th CRYPTO, pages 663–680. Springer,
2012.

4. G. Bracha. An o(log n) expected rounds randomized byzantine generals protocol. J. ACM,
34(4):910–920, 1987.

5. A. Cevallos, S. Fehr, R. Ostrovsky, and Y. Rabani. Unconditionally-secure robust secret
sharing with compact shares. In Proc. 31th EUROCRYPT, pages 195–208. Springer, 2012.

6. D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols. In
Proc. 20th STOC, pages 11–19. ACM, 1988.

7. H. Chen and R. Cramer. Algebraic geometric secret sharing schemes and secure multi-party
computations over small fields. In CRYPTO, pages 521–536. Springer, 2006.

29

8. R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In STOC, pages 364–369. ACM, 1986.

9. R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty com-
putations secure against an adaptive adversary. In EUROCRYPT ’99, pages 311–326, 1999.

10. R. Cramer, I. Damgård, and S. Fehr. On the cost of reconstructing a secret, or VSS with
optimal reconstruction phase. In Proc. 21th CRYPTO, pages 503–523. Springer, 2001.

11. I. Damgård and Y. Ishai. Scalable secure multiparty computation. In Proc. 26th CRYPTO,
pages 501–520. Springer, 2006.

12. I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation and the
computational overhead of cryptography. In Proc. 29th EUROCRYPT, pages 445–465.
Springer, 2010.

13. D. Genkin, Y. Ishai, M. M. Prabhakaran, A. Sahai, and E. Tromer. Circuits resilient to
additive attacks with applications to secure multiparty computation. In The Proceedings of
the 46th Annual Symposium on the Theory of Computing (STOC), 2014.

14. O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University
Press, 2004.

15. O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM, editor,
Proc. 19th STOC, pages 218–229. ACM, 1987. See [14, Chap. 7] for more details.

16. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-
systems. In Proc. 17th STOC, pages 291–304. ACM, 1985.

17. C. Hazay and M. Venkitasubramaniam. On the power of secure two-party compu-
tation. Cryptology ePrint Archive, Report 2016/074, http://eprint.iacr.org/
2016/074, 2016. To appear in Proc. Crypto 2016.

18. M. Hirt and J. B. Nielsen. Upper bounds on the communication complexity of optimally
resilient cryptographic multiparty computation. In Advances in Cryptology - ASIACRYPT
2005, 11th International Conference on the Theory and Application of Cryptology and In-
formation Security, Chennai, India, December 4-8, 2005, Proceedings, pages 79–99, 2005.

19. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty
computation. In STOC, pages 21–30. ACM, 2007.

20. Y. Ishai, R. Ostrovsky, and V. Zikas. Secure multi-party computation with identifiable abort.
In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, pages 369–386, 2014.

21. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer -
efficiently. In CRYPTO, pages 572–591. Springer, 2008.

22. Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no honest
majority. In O. Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science,
pages 294–314. Springer, 2009.

23. M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using garbled circuits: how to
prove non-algebraic statements efficiently. In 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 955–
966, 2013.

24. J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31. ACM, 1988.
25. J. Perry, D. Gupta, J. Feigenbaum, and R. N. Wright. Systematizing secure computation for

research and decision support. In Proc. 9th SCN, pages 380–397. Springer, 2014.
26. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest

majority. In Proc. 21st STOC, pages 73–85. ACM, 1989.
27. M. Rosulek. Must you know the code of f to securely compute f? In Proc. 32th CRYPTO.

Springer, 2012.
28. A. Shamir. How to share a secret. Communications of the ACM, 22(11), Nov. 1979.
29. A. Shamir, R. L. Rivest, and L. M. Adleman. Mental poker. Technical Report LCS/TR-125,

Massachusetts Institute of Technology, April 1979.
30. A. C. Yao. Protocols for secure computation. In Proc. 23rd FOCS, pages 160–164. IEEE,

1982.
31. A. C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pages 162–167.

IEEE, 1986.

30

http://eprint.iacr.org/2016/074
http://eprint.iacr.org/2016/074

	Secure Protocol Transformations
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Security Definitions
	2.2 Protocol Schemes
	2.3 Error-Correcting Secret-Sharing

	3 Defining Black-Box Transformations
	4 Examples of Black-Box Transformations
	4.1 A Pedagogical Application

	5 Impossibility of Black-Box Transformations
	6 A BBT from Partially-Identifiable-Abort to Full Security
	7 A BBT From {-sh,-full } to -id
	7.1 Using a Sparse Watchlist

	8 Efficiency Leveraging
	9 Applications

