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Abstract. Most leakage-resilient cryptographic constructions aim at
limiting the information adversaries can obtain about secret keys. In the
case of asymmetric algorithms, this is usually obtained by secret sharing
(aka masking) the key, which is made easy by their algebraic proper-
ties. In the case of symmetric algorithms, it is rather key evolution that
is exploited. While more efficient, the scope of this second solution is
limited to stateful primitives that easily allow for key evolution such as
stream ciphers. Unfortunately, it seems generally hard to avoid the need
of (at least one) execution of a stateless primitive, both for encryption
and authentication protocols. As a result, fresh re-keying has emerged as
an alternative solution, in which a block cipher that is hard to protect
against side-channel attacks is re-keyed with a stateless function that is
easy to mask. While previous proposals in this direction were all based on
heuristic arguments, we propose two new constructions that, for the first
time, allow a more formal treatment of fresh re-keying. More precisely,
we reduce the security of our re-keying schemes to two building blocks
that can be of independent interest. The first one is an assumption of
Learning Parity with Leakage, which leverages the noise that is available
in side-channel measurements. The second one is based on the Learning
With Rounding assumption, which can be seen as an alternative solution
for low-noise implementations. Both constructions are efficient and easy
to mask, since they are key homomorphic or almost key homomorphic.

1 Introduction

Side-channel attacks are an important concern for the security of cryptographic
implementations. Since their apparition in the late 1990s, a large body of work
has investigated solutions to prevent them efficiently, e.g. based on algorith-
mic and protocol ingredients. Masking (i.e., data randomization) and shuffling
(i.e., operation randomization) are well studied representatives of the first cate-
gory [41]. Leakage-resilient cryptography [29] is a popular representative of the
second one. Interestingly, it has been shown recently that these approaches are
complementary. Namely, leakage-resilient cryptography brings strong (concrete)
security guarantees for stateful primitives such as stream ciphers (where key evo-
lution prevents attacks taking advantage of multiple leakages per key). However,



these stateful primitives generally require to be initialized with some fresh data,
for example new session keys [52].1 In practice, this initialization typically in-
volves a stateless primitive such as a Pseudo Random Function (PRF), for which
leakage-resilience is significantly less effective, since nothing prevents the adver-
sary to repeat measurements for the same plaintext and key in this case [10].
Hence, the state-of-the-art in leakage-resilient symmetric cryptography is torn
between two contradicting observations. On the one hand, leakage-resilient PRFs
(and encryption schemes) such as [57, 24, 58, 1] cannot be used for this initial-
ization.2 On the other hand, it seems that the execution of at least one stateless
primitive (e.g., a PRF or a block cipher) is strictly needed for the deployment of
leakage-resilient (symmetric) encryption and MACs [51]. This leaves the efficient
protection of such stateless primitives with algorithmic countermeasures such as
masking and shuffling as an important research goal.

In particular, masking appears as a promising solutions for this purpose,
since it benefits from a good theoretical understanding [21, 37, 53, 26, 27]. Un-
fortunately, the secure masking of a block cipher like the AES also comes with
significant drawbacks, especially when the number of shares increases (i.e., for so
called higher-order masking schemes). First, it implies implementation overheads
that are quadratic in the number of shares [33] (although some optimizations
are possible for low number of shares, especially in hardware, e.g. [12]). Second,
it has large randomness requirements (since the masked execution of non-linear
operations at high-orders requires frequent refreshings of the shares). Third and
probably most importantly, it assumes that the leakages of all these shares are in-
dependent, a condition that is frequently contradicted both in software (because
of transition-based leakages [22, 6]) and hardware implementations (because of
so-called glitches [42, 43]. Besides, standard algorithmic countermeasures able
to deal with such independence issues usually imply additional implementation
constraints, sometimes reflected by performance losses (e.g., the threshold im-
plementations in [50, 13] prevent glitches by increasing the number of shares).

Quite naturally, an extreme solution to this problem is to take advantage
of asymmetric cryptographic primitives, for which algebraic properties usually
make the masking countermeasure much easier to implement, as suggested for El
Gamal encryption [38] and pairing-based MACs [44]. While these solutions may
indeed lead to better efficiency vs. security tradeoffs than the direct protection
of a block cipher with masking in the long term, they still imply significant
performance overheads that may not be affordable for low-cost devices, and can
only be amortized for quite high-order masking schemes.

Taking these challenges into account, an appealing intermediate path called
fresh re-keying has been initiated by industrial and academic research [30, 46].
As illustrated in Figure 1, its main idea is to exploit a good “separation of du-
ties” between a re-keying function GenSK and a block cipher or tweakable block

1 Note that using the key-evolution approach for the session key derivation (i.e. com-
puting session key Ki as an “evolved” session key Ki−1) is often impractical, since
it requires synchronization between the sender and the receiver.

2 Excepted if combined with additional heuristic assumptions such as in [47].
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Fig. 1. Fresh re-keying and its leakage requirements.

cipher [40].3 That is, the function GenSK , which is used to generate the fresh
session keys sk, needs to resist Differential Power Analysis attacks (DPA), i.e.
attacks exploiting multiple measurements per key. By contrast, the (possibly
tweakable) block cipher only needs to resist Simple Power Analysis (SPA) at-
tacks, i.e. attacks exploiting a single measurement per key (or DPA attacks with
limited trace count if the key refreshing is amortized). Quite naturally, this so-
lution is useless in case GenSK is also a (tweakable) block cipher (since it would
then be equally difficult to protect with masking). So previous fresh re-keying
schemes additionally came with heuristic arguments justifying that this function
does not need to be cryptographically strong, and only has to fulfill a limited set
of properties (e.g., good diffusion). On top of this, they suggested to exploit key
homomorphic GenSK ’s, so that their masked implementation is (much) simpli-
fied. Taking advantage of key homomorphism indeed reduces the computational
overheads and randomness requirements of masking to the minimum (i.e., the
refreshing of the secret master key and the computation of the key homomorphic
for each share). Besides, it also allows avoiding issues related to the independent
leakage assumption, since we can then compute GenSK on each share indepen-
dently. A polynomial multiplication in (e.g., a ring) was finally proposed as a
possible instance for such functions [30, 46].

Yet, and while conceptually elegant, Figure 1 also suggests the important
caveat of existing fresh re-keying schemes. Namely, between the re-keying func-
tion GenSK that can be well protected against DPA thanks to masking, and
the underlying (tweakable) block cipher that has to be secure against SPA (e.g.,
thanks to shuffling), one has to re-combine the shares to produce a fresh session
key sk: an operation of which the leakage was essentially left out of the analy-
sis so far. More precisely, the only (informal) guidelines were that it should be
difficult to precisely extract hard information (e.g., bits) about sk, in order to
avoid the algebraic attacks outlined in [45]. Recent results from Belaid et al. and

3 As discussed in [23], using a tweakable block cipher allows obtaining beyond birthday
security for this fresh re-keying scheme, while a standard block cipher only provides
birthday security. Whether one or the other option is chosen will be essentially
equivalent for the discussions in this paper.
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Guo and Johansson then made it clear that a small noise may not be sufficient
to secure GenSK against leakage on sk [9, 11, 35].

Our contribution. Based on this state-of-the-art, we initiate the first formal
study of fresh re-keying functions that are at the same time easy to mask
(since key homomorphic or almost key homomorphic [18]) and cryptographi-
cally strong. To this end, we propose new security models using the ideal/real
world paradigm and show that our instantiations described below can be proven
secure under reasonable assumptions. Informally, our security guarantees state
that even given continuous leakage (for instance, probing leakage or noisy leak-
age), the adversary will not be able to attack the re-keying function any better
than an adversary that just obtains uniformly random session keys. We prove
the security of two different instantiations of a re-keying function in this model
(making different assumptions on the type of leakage as outlined below).

On the one hand, we start from the observation that in the context of re-
keying, the function GenSK ’s output is in fact never given to the adversary
completely. Instead, the adversary learns only some partial leakage information
about GenSK . Taking advantage of this observation, we first introduce a new
assumption of Learning Parity with Leakage (LPL), of which the main difference
with the standard Learning Parity with Noise (LPN) problem is that it relies
on additive Gaussian (rather than Bernoulli) noise [32, 15, 14]. Note that we
use the name Learning Parity with Leakage (and not with Gaussian noise) to
reflect the fact that the amount of noise can be much larger than in the stan-
dard LPN assumption (since in a re-keying scheme, the authorized parties only
deal with noise-free information). Then, we show that our new LPL assumption
can be reduced to the standard LPN assumption. Finally, we instantiate a re-
keying scheme based on LPL that is trivial to mask (since key homomorphic)
and provide the actual noise values required to reach different security levels
against adversaries targeting the re-combination step of the fresh key sk in Fig-
ure 1. Conceptually, the main advantage of this construction is that it exploits
the noise that is naturally available in side-channel leakages. However, our study
also suggests that this physical noise may have to be increased by design to reach
high security levels – see Section 6 for a discussion.

On the other hand, we consider the complementary context of small embed-
ded devices with too limited noise for the previous LPL problem to be hard. In
this case, we take advantage of the recently introduced Learning with Round-
ing (LWR) assumption [7], and describe a re-keying that is perfectly suitable
for a low-noise environment. In order to make it most efficient, we instantiate
it with computations in Zq with q = 2b, and a rounding function that can be
simply implemented by dropping bits. This allows us to directly take advantage
of standard arithmetic operators available in most computing platforms (e.g.,
recent ARM devices perform 32-bit multiplications in one cycle), without any
additional hassle due to complex reductions. We then show that this re-keying
function based on the LWR assumption can be efficiently masked thanks to an
additional error correction step, which makes it almost key homomorphic. We
finally provide parameters to instantiate it for various security levels, including
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very aggressive choice of parameters for which the security is not proven (or at
least it is not based on the standard assumptions). Conceptually, the main ad-
vantage of this construction is that it ensures stronger cryptographic properties
(i.e., computational indistinguishability from uniform) and therefore may be of
interest beyond the re-keying scenario considered here.

As a result, we obtain two cryptographic constructions that can be used
for fresh re-keying in both low-noise and high-noise contexts, for which masked
implementations have minimum overheads and randomness requirements, and
can easily fulfill the independent leakage assumption.

Besides the formal modeling and the security proofs of our constructions,
we also present preliminary implementation results for our re-keying functions.
Concretely, we report in Section 6 on implementations of our re-keying function
on a 32-bit ARM and an 8-bit Atmel device. We give a comparison with masked
AES implementations and show that for certain choices of the parameters (and
under reasonable noise assumptions for the LPL-based construction) , we can
achieve improved efficiency.

Related works. Our two re-keying constructions are naturally connected to
previous cryptographic primitives based on LPN and LWR, such as LAPIN [36]
and SPRING [8]. Interestingly, when it comes to their resistance against side-
channel attacks, these new constructions also bring a neat solution to the main
drawbacks of LAPIN and SPRING. Namely, for LAPIN, it remained that the
generation and protection of the Bernoulli noise was challenging [31]. But when
relying on the LPL assumption, we gain the advantage that this noise does not
have to be generated (since it corresponds to the leakage noise that anyway has
to be available on chip for the masking of F to be effective – see again [21, 37,
53, 26, 27]). As for SPRING, the main challenge was to deal with the masking
of the (non–linear) rounding operation [19]. But as described in Section 5, this
masking is made easier with our re-keying function based on LWR.

A similar technique to our reduction from LPL to LPN was used in [11], who
also analyze physical noise used as a countermeasure to leakage in the context
of finite field multiplication and attack this by deriving LPN instances.

2 Preliminaries

Notations. We denote scalars u, v by small italic single characters. Vectors u, r,k
are denoted by small bold letters. Matrices R,T are denote by capital bold
letters. We use capital letters R,U to denote scalars if we want to emphasize
that we treat them as random variables and argue about probabilities.

Standard Assumptions. Our constructions will be based on the Learning Par-
ity with Noise (LPN) assumption and the Offset Learning with Uniform Noise
assumption. To analyse these, we recall some relevant standard assumptions:

Definition 1 (LPN). Let 0 < τ < 1
2 be fixed and n ∈ N. For (unknown) k ∈ Zn2 ,

the LPNn,τ sample distribution is is given by

DLPN,n,τ := (r, `) for r ∈ Zn2 uniform, e← Bτ , ` := 〈r,k〉+ e mod 2,
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where Bτ denotes a Bernoulli distribution with Pr[e = 1] = τ,Pr[e = 0] = 1− τ .
Given query access to DLPN,n,τ for uniformly random k, the search LPNn,τ -

problem asks to find k. The decision LPNn,τ -problem asks to distinguish an oracle
for DLPN,τ for uniformly random k from an oracle that outputs uniformly ran-
dom values from Zn2 × Z2. The search/decision LPNn,τ -Assumption asserts that
these problems are infeasible for PPT algorithms. (n, τ are given functions of
the security parameter).

Definition 2 (LWE [54]). Let Φ be some efficiently sampleable noise distribu-
tion on Z, n ∈ N and q > 0 (often, but not necessarily prime). For (unknown)
k ∈ Znq , the LWEn,Φ sample distribution is given by

DLWE,n,q,Φ := (r, `) for r ∈ Znq uniform, e← Φ, ` := 〈r,k〉+ e mod q.

Given query access to DLWE,n,q,Φ for uniformly random k ∈ Znq , the search
LWEn,q,Φ-problem asks to find k. The decision LWEn,q,Φ-problem asks to dis-
tinguish an oracle for DLWE,q,Φ for uniformly random k from an oracle that
outputs uniformly random values from Znq × Zq. The search/decision LWEn,q,Φ-
Assumption asserts that these problems are infeasible for PPT algorithms.

Usually, Φ is taken to be a discrete Gaussian, i.e. a probability distribution

whose density PrE←Φ[E = x] is proportional to exp
(
−x

2

2s

)
. In this case, one

usually takes s as a paramter of the scheme rather than Φ. Note that LPN is an
important special case of LWE with q = 2 and Φ a Bernoulli distribution.

Definition 3 (LWU [25, 48]). Another important special case is when the er-
ror distribution Φ is uniform from some interval, say {0, . . . , B− 1}. In this pa-
per, we call it the Learning with Uniform Noise distribution/problem/assumption
LWUn,q,B. Note that only the length of the interval matters in this case, as the
adversary can add a constant shift itself.

Definition 4 (LWR [7]). The Learning with Rounding (LWR) distribution/ prob-
lem/assumption is often seen as a deterministic variant of LWE, where instead
of adding some random noise e← Φ to perturb 〈r,k〉, we round 〈r,k〉.

More precisely, for appropriately chosen integers p < q, the rounding function
b·cp : Zq → Zp is bxcp := bxpq c, where x ∈ Zq is represented as x ∈ {0, . . . , q−1}.
When applying b·cp to a vector in Znq , we apply it component-wise.

For (unknown) k ∈ Znq , the LWRn,q,p sample distribution is given by

DLWR,n,q,p := (r, `) for r ∈ Znq uniform and ` = b〈r,k〉cp.

Again, given query access to DLWR,n,q,p for uniformly random k ∈ Znq , the
search LWRn,q,p-problem asks to find k. The decision problem asks to distin-
guish DLWR,n,q,p for uniformly random k from an oracle that outputs samples
(r, bucp) for r ∈ Znq , u ∈ Zq uniform. Note that bucp is not uniform in Zp un-
less p | q. The search/decision LWRn,q,p-Assumption asserts that the problem is
infeasible for PPT algorithms.
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3 General framework

3.1 Re-keying schemes

A re-keying scheme RK is a cryptographic primitive which generates session keys
sk from a secret key msk and some public randomness R. More precisely, RK =
(Gen,GenSK ,CorSK ,D) consists of the following three PPT algorithms and an
efficiently samplable distribution D from which the randomness is sampled:

Gen(1λ): Outputs a secret key msk and d shares thereof that we denote with
(msk)d.

GenSK ((msk)d,R): Outputs a session key sk, new shares (msk′)d and poten-
tially correction information v.

CorSK (msk,R, v): Outputs a session key sk.

Concretely, GenSK will be run by the chip to protect while CorSK will be run
by the other party. RK is called correct iff for (msk, (msk)d) ← Gen(1λ), R ←
D, (sk, (msk′)d, v) ← GenSK ((msk)d,R), we have that CorSK (msk,R, v) = sk
holds with overwhelming probability. Further, we require that (msk′)d and (msk)d
follow the same distribution, conditioned on msk.

One may think of (msk′)d and (msk)d as some form of encoding that protects
against side-channel attacks.4 The correction information v may be needed in
some constructions since the session key when computed from (msk)d by GenSK
may be different when computed from msk by CorSK .

For the security definition of a re-keying scheme, we define three interactive
PPT algorithms Real , Ideal and Sim. An adversary A will interact with them
during a polynomially bounded amount of sessions (see Figure 2).

We denote this process with AReal((msk)d)(1λ) when A interacts with Real and

A(SimIdealc ,Idealc)(1λ) when A interacts with Sim and Ideal . In the latter case,
(SimIdealc , Idealc) is the concatenation of their outputs. During each session A
receives the following output from Real , Ideal and Sim:

Real((msk)d): Takes (msk)d from the input and sample R ← D. Then, run
(sk, (msk′)d, v) ← GenSK ((msk)d,R). It outputs (R, sk, v) to A. Further, it
has additional, model specific inputs/outputs, e.g. probes which are leaked.
It then overwrites (msk)d := (msk′)d to be used in the next session.

Idealc(1
λ): outputs in each session (R, v, sk) for uniform random sk, indepen-

dent v and R← D. Its random tape is c.
Sim(1λ) : simulates model specific outputs while accessing the outputs of Idealc.

A re-keying scheme is called secure iff for any PPT A:∣∣∣Pr
[
AReal((msk)d)(1λ) = 1

]
− Pr

[
A(SimIdealc ,Idealc)(1λ) = 1

]∣∣∣ ≤ negl(λ),

4 For the reader familiar with side-channel resistant implementations (msk)d denotes
a masking of msk and (msk′)d denotes a refreshing of the shares of the masking.
Indeed, in all our constructions, (msk)d will be d uniformly chosen values mski with∑

i mski = msk. While we call (msk)d “shares” in the definition to match our later
notation more closely, (msk)d could in principle be anything.
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A Real A Sim

≈c

IdealR, v, sk R, v, sk

R, v, sk

Fig. 2. An adversary A breaking the security of a re-keying scheme distinguishes the
following cases: A interacts with Real or he interacts with Sim and Ideal . The ses-
sion key is sk, the randomness for the session key generation R and some correction
information v. Additionally A sees some model specific leakage.

where the probability is taken over the random tape of A, Real , Sim, c and
(msk, (msk)d) ← Gen(1λ). It is easy to see that session keys sk need to be
indistinguishable from uniform chosen keys to fulfill this security notion. This
needs to hold even given the model specific leakage. The next two sections will
describe two different leakage models that we consider in this work.

3.2 The leakage model for re-keying schemes

For the two different instantiations that we present in Section 4 and Section 5
we propose two different leakage models. The leakage model specifies what addi-
tional information the adversary can obtain in the real world. In the ideal world
the leakage then has to be simulated in a consistent way by the simulator Sim.

Re-keying schemes in the t-probing model. An important model to analyze the
security of side-channel countermeasures is a security proof in the t-probing
model [37]. In the t-probing model, the adversary is allowed to learn up to t-
intermediate values of the computation of GenSK , i.e. of the generation of the
session key. Notice that the definition of an intermediate value typically depends
on the underlying scheme and its implementation. Our schemes are naturally de-
scribed using group operations and internal values are group elements, notably
elements from Zp for p being a power of 2 (this includes the case of bits with
p = 2). This means that the adversary A specifies a set of t probes P, where
|P| ≤ t and the adversary obtains back from Real((msk)d) the intermediate val-
ues V = {vwi}, where wi ∈ P and vwi is the value carried on the intermediate
result labeled with wi. Hence, if the computation was carried out over Zp, then
the adversary obtains a set V with t elements, where each value in V corre-
sponds to one of the intermediate values produced during the computation of
GenSK . To show security of the re-keying function in the t-probing model, we
need to construct an efficient simulator Sim that can simulate the replies of the
adversary’s probes Vi without probing access (i.e. from the values Sim obtains
in the ideal world).
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Re-keying schemes in the t-noisy probing model. For our first re-keying scheme,
we will show security in a weaker model than the standard t-probing model.
We will assume that each of the t-probes is perturbed with additive Gaussian
noise. This is a common assumption in works on side-channel analysis and can
for instance be guaranteed using a physical noise generator [34]. For simplicity
we assume that all intermediate values are in Z2 and for a probe on a wire that
carries the bit b ∈ Z2 = {0, 1} the adversary learns b + e, where e corresponds
to noise from a continuous Gaussian distribution. It is important to note that
the addition of the noise is a normal addition in the reals. The above can be
generalized but for ease of exposition we stick to these simplifications in the rest
of the paper. Using this terminology, in the t-noisy probing model the adversary
A specifies a set of t probes P, but instead of obtaining the exact values of
the intermediate wires, he obtains a noisy version of them. That is, the set of
replies V is V = {vwi + ei}. Since the adversary only sees a noisy version of the
intermediate values, the t-noisy probing model offers a weaker security guarantee
than the t-probing model. Trivially, the leakage obtained in the t-noisy probing
model can be simulated by t-probing leakage.

Security against continuous (noisy) probes. In the above two section we consid-
ered an adversary that can specify a set of probes and obtains the corresponding
intermediate values. In the continuous probing model, this notion is extended by
letting the adversary specify for each execution adaptively a new set of probes
P. More precisely, during the execution in the real world at the beginning of the
i-th session, the adversary specifies adaptively a set of probes Pi, and obtains
the (noisy) intermediate values V i that correspond to the wires specified in Pi.
Notice that the choice of Pi can depend on all information that the adversary A
has seen previously, i.e. on {(V j , skj ,Rj , vj)}j∈[i−1]. Observe that the continuous
probing model is significantly stronger than the one-shot (noisy) probing model
as the adversary obtains significantly more information that he can exploit in
breaking the scheme.

3.3 Masking schemes

Masking schemes are a method to achieve security in the t-probing model (and
hence also in the t-noisy-probing model since this model is weaker). In a masking
scheme, each sensitive intermediate variable is split into d shares such that know-
ing only (d− 1) shares does not reveal information about the sensitive variable.
Consider for instance the Boolean maskings scheme [37] where a sensitive vari-
able k is represented by d random shares k1, . . . , kd such that k =

∑
i ki. Clearly,

knowing only d− 1 arbitrary shares does not allow to recover the secret value k.
The main difficulty in designing secure masking schemes is in computing with
shared variables in a secure way. To this end one needs to design masked oper-
ations. In traditional masking schemes one typically designs masked algorithms
for the basic operations of the underlying group (e.g., for addition and multi-
plication). While linear operations can be masked very efficiently, masking the
non-linear operations, e.g., the multiplication, is significantly more costly. For

9



instance, a masked multiplication in the Boolean masking scheme results into
an overhead of O(d2) for each masked multiplication used in the computation.

We will apply masking schemes to protect the re-keying function against t-
(noisy) probing attacks. To obtain better efficiency when executed in the masked
domain, we design in the next sections cryptographically strong re-keying func-
tions that are almost linear. Concretely, for our construction GenSK is divided
into d sub-computations where each sub-computation only takes as input one
share mski of (msk)d (this is the linear part of the re-keying function GenSK ).
Only at the very end of the computation the outputs of this linear part are re-
combined to obtain the final session key. We emphasize that by following this
approach our construction also obtains strong glitch resistance – unlike normal
masked implementations. Glitches can occur in hardware implementations due to
synchronization problems. Since in our construction the sub-computations only
depend on individual shares, glitches are prevented as we do not use operations
that access multiple shares jointly.

Masking in the continuous leakage model. To guarantee security of a masked
implementation in the continuous leakage model, the secret shares used in the
computation and in particular the shares of the key need to be refreshed fre-
quently. Such a refreshing is typically done by a probabilistic Refresh algorithm.
In our case, the refreshing is part of the GenSK algorithm and takes as input
the shared master secret key (msk)d and produces a refreshed master secret key
(msk′)d. The correctness requirement of the refreshing algorithm says that both
(msk)d and (msk′)d correspond to the same master secret key msk. If the un-
derlying masking scheme is the Boolean masking scheme then this means that∑
imski =

∑
imsk′i. Further, we require that the the distribution of (msk′) is

uniform among all possible such sharings of msk. Besides correctness, the re-
freshing algorithm also shall guarantee that side-channel information (i.e., the
(noisy) probes) from different executions of the re-keying functions cannot be
combined in an exploitable way. Informally, the refreshing schemes Refresh is said
to be secure in the t-probing model against continuous attacks, if the leakage
for probe sets Pj can be simulated without knowledge of the master secret key.
Typically, the simulation is statistically indistinguishable from the continuous
real execution of the Refresh algorithm.

To prove the security of our construction, we will need a secure instantiation
of a refreshing algorithm. Several variants have been proposed in the literature
with varying efficiency [4, 26, 37]. Since the focus of this work is not on designing
secure refreshing schemes, we mainly ignore them for the rest of this paper. The
following lemma can be proven about the Refresh from [26].

Lemma 1. For any set of probes P with cardinality t, there exists a PPT sim-
ulator S and a set I of cardinality t such that for any k ∈ K and k1, . . . , kd,
k′1, . . . , k

′
d chosen uniformly at random subject to the constraint that k :=

∑
i ki =∑

i k
′
i we have:

(P(k′ ← Refresh(k)),kI ,k
′
I) ≡ (S(P,kI ,k′I),kI ,k

′
I) ,
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where in the above “≡” denotes the statistical equivalence and for a vector k and
a set I ⊆ [d] the vector kI is the vector k restricted to the positions in I.

The refreshing algorithm from Lemma 1 has complexity O(d2) (where the hid-
den constant in the O-notation are small). Recently, an improved refreshing
algorithm based on expander graphs was proposed which has complexity O(d)
[4]. We notice that while asymptotically better, the hidden constants in O(d) are
much larger and hence are of less practical relevance. In our applications, the
keys and all shares are vectors k, ki ∈ Znp for some n and the sharing of each of
the n coordinates can be done independently. Consequently, we assume that if
we probe only a total of t individual coordinates of some ki’s, then there exists a
subset J ⊂ {1, . . . , n} of coordinates with |J | ≤ t, such that the above Lemma 1
holds when restricted to coordinates from J .

4 Fresh re-keying with physical noise

In this section, we instantiate the abstract re-keying scheme described above
in an environment where sufficient physical noise is available. Our construction
exploits the physical noise available in side-channel measurements in a construc-
tive manner: the computation of the re-keying function is tailored in such a
way that if the adversary obtains t-noisy probing leakage, he will not be able
to break the re-keying scheme. While we believe that exploiting physical noise
in a constructive way (i.e., for designing new cryptographic primitives) is an
interesting conceptual contribution by itself, it also leads to potential efficiency
improvements as we show in the implementation section (cfr. Section 6).

To show security of our re-keying scheme, we introduce a new learning as-
sumption that we call the Learning Parity with Leakage (LPL) assumption. The
LPL assumption says that inner product with physical noise cannot be distin-
guished from uniform samples. The main technical step is to show that the
LPL assumption can be reduced to the classical LPN assumption (this is shown
in Section 4.1). Notice that the most important difference between these two
assumptions is that in LPL we add additive Gaussian noise (and no modular
reduction is carried out), while in LPN the noise comes from the binomial dis-
tribution (and a modular reduction is carried out).

Of course, the requirement that the physical noise follows a Gaussian dis-
tribution is a strong assumption, and may not be perfectly fulfilled in practice:
physical noise indeed originates from a variety of sources (transistor noise, mea-
surement noise, noise engines added by the cryptographic designers, . . . ). Yet,
it has been observed in many practical settings that this assumption holds to
a good extent [41]. More importantly, it is the starting point of most of the
(e.g. template and regression-based) attacks that are usually considered in side-
channel security evaluations [20, 56]. Besides, it has been shown recently how to
verify empirically that deviations from this Gaussian assumption do not signifi-
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cantly impact the security level of an implementation [28], which can therefore
be done for our primitives as well.5

Our re-keying function. We present our proposed LPN-based re-keying scheme
Πnoisy = (Gen,GenSK ,CorSK ,D), which will be proven secure when sufficient
physical noise is available in the leakage measurements. Let n be the length of
the master secret key, m < n be the length of the session keys and d the number
of shares used for the masking scheme. The distribution D from which the fresh
randomness is sampled is defined as drawing uniformly at random R← Zm×n2 .
Let H : Zm2 → Zm2 be a hash function (modeled as a random oracle, see discussion
below) and assume we have some secure refresh algorithm Refresh that satisfies
the property of Lemma 1. Our re-keying function is then defined as follows:

Gen(1λ): Samples msk← Zn2 .
It creates d shares (msk)d = msk1, . . . ,mskd such that

∑
mski = msk.

GenSK ((msk)d,R): A probabilistic algorithm working as follows:
1. Compute ui = R ·mski
2. Compute u =

∑
i ui iteratively as ((. . . (u1 + u2) + u3) + . . .) + ud.

Notice that other ways of computing this sum are possible, but will make
the analysis more involved.

3. The session key is computed as sk = H(u).
4. Finally refresh the shares (msk′)d ← Refresh((msk)d).
5. Output (R,u).

CorSK (msk,R): Output H(R ·msk).

From the above description it is clear that the additional value v (the cor-
rection term) is not used in this construction. It will be used in our construction
from Section 5. Moreover, the reader may notice that the re-keying function is
linear (except for the application of H at the end). The security against side-
channel attacks comes from the fact that the adversary in the t-noisy probing
model only obtains noisy intermediate values.

On the use of the Random Oracle. Our construction outputs sk = H(u) as
the session key rather than u = R · msk. The use of the random oracle H is
only for simplifying and unifying the security analysis. In particular, in case the
preliminary session key u is used directly in an accompanied block cipher – as is
the typical application of a re-keying scheme – then the additional hash function
execution is not needed. We notice that in such a case the analysis would (at
least) require that the block-cipher is secure against related key attacks. One
way to enforce this (and obtain a security proof) is to model the block cipher as
an ideal cipher in the analysis. Finally, we want to mention that of course the

5 Note that if significant deviations from the Gaussian assumptions were observed, it
would not imply that our following constructions are directly broken – just that the
parameters of our reductions below, and hence the parameters of our construction,
will have to be changed, cfr. Remark 1 below.
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adversary can learn noisy probes of the preliminary session key u – however, in
any applications of the re-keying function one has to make sure that these values
are never seen directly by the adversary (i.e., without the noise).

Allowed Probes. In the t-(noisy) probing model, we allow the adversary to select
probes from the following intermediate values: individual bits of mski or msk′i,
internal values of the computation of the ui = Rmski, internal wires of Refresh or
H (unless in the ROM) and individual bits of any

∑k
i=1 ui (as specified above).

The adversary is not allowed to obtain multiple noisy probes from the same
value during a single session. This assumption is the same as made in all works
on the noisy leakage model [21, 53, 26]. Finally, we assume that the adversary
never probes R and sk as these values he obtains for free anyway.

4.1 Security of our Construction based on Physical Noise

In this section, we prove the security of our construction under the LPL (Learn-
ing Parity with Leakage) assumption. To this end, we will first formally define
our new assumption, and show that it can be reduced to the classical LPN as-
sumption. We then generalize LPL to an assumption that also models leakage
from intermediate values from the computation of the session key and show
that this change in the assumption does not affect the reduction by much. The
LPL assumption with noisy probes then allow us to prove the security of our
construction in the above specified model. So to summarize we show:

LPN is hard =⇒ LPL is hard =⇒ Πnoisy is secure.

Learning Parity with Leakage (LPL). We now give a formal definition of the
LPL assumption, in which we model the physical noise distribution with a con-

tinuous Gaussian distribution Φs with density function Φs(x) := 1√
2πs

exp(− x2

2s2 )

and standard deviation s. First, the LPLn,s sample distribution for secret k ∈ Zn2
is defined as

DLPL := (r, ` = 〈r,k〉+ e) for r← Zn2 , e← Φs,

where 〈r,k〉 ∈ {0, 1} is computed over Z2 and 〈r,k〉+ e is taken over the reals.
Similarly, we define a distribution DUniformL that outputs (r, `), where r ← Zn2
and ` = u+ e ∈ R with u← {0, 1} is a uniform bit and e← Φs.

The LPLn,s-search problem asks to find the secret, uniform k, given query
access to DLPL.6 The decision problem asks to distinguish LPLn,s from DUniformL.
The search/decision LPL-Assumption is the assumption that these problems are
hard for PPT adversaries.

6 We assume that for any value in R, the adversary A receives an arbitrarily precise but
polynomial representation. In particular A chooses how values in R are represented.
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Security proof for LPL. We now show that LPL is at least as hard as LPN
for appropriate choices of parameters. For this, we first show that LPL is actu-
ally equivalent to a variant of LPN, where the error probability τ is per-sample
random and known. Formally, for a (sampleable) distribution Ψ on [0, 12 ], the
LPNn,Ψ sample distribution for uniform secret k is given by

DLPN,Ψ := (r, 〈r,k〉+ e, τ) for r← Zn2 , τ ← Ψ, e← Bτ .

Given query access to the sample distributions for fixed, random k, the search
LPNn,Ψ -problem ask to find k and the decision LPNn,Ψ -problem asks to dis-
tinguish DLPN,Ψ from DUniform,Ψ , where DUniform,Ψ outputs samples (r, `, τ) with
τ ← Ψ and (r, `)← Zn+1

2 .

Lemma 2. The search resp. decision LPLn,s-problem is equivalent to the search
resp. decision LPNn,Ψ -problem via a tight, sample-preserving reduction.

Here, the distribution for Ψ is given by sampling Ũ ← {0, 1}, Ẽ ← Φs, L̃ = U+E,

R̃>1 := exp
( |L− 1

2 |
s2

)
and outputting τ̃ =

(
R̃>1 + 1

)−1
.

A full proof is given in the extended (ePrint) version of this work. Here, we only
give an intuition and explain the distribution of Ψ .

The key idea is to set Ψ in such a way that the amount of information learned
about 〈r,k〉 from a single LPN sample is the same as the amount of information
learned about 〈r,k〉 from a single LPL sample. To this end, we consider a quantity
called RBayes, defined below, that measures exactly the amount of information
learned about 〈r,k〉. We then compute this value for both the LPN case and for
the LPL case. In the LPN case, RBayes is a function of τ . In the LPL-case, RBayes

is a function of `LPL, where (r, `LPL) is the output from LPL. Equating the values
of RBayes will give us the involved definition of Ψ given above.

In fact, the proof given in the extended version of this work uses this value
RBayes to transform LPL samples into LPN samples and vice versa via the cor-
respondence `LPL ↔ RBayes ↔ τ .

Intuitively, giving an LPN sample (r, `) = (r, u+ e) for u := 〈r,k〉 , e← Bτ with
r 6= 0 is (information-theoretically) equivalent to giving out (r, P0, P1), where
Pi = PrΩ [u = i | ` is observed]. Since P0 + P1 = 1, we consider the fraction
R = P0

P1
instead, which uniquely determines P0, P1. The probability space Ω for

the definition of Pi takes u ∈ Z2 uniform for simplicity. For a general “prior”
distribution Pr[u = 0] of u, Bayes’ rule gives

Pr[u = 0 | ` is observed]

Pr[u = 1 | ` is observed]
= RBayes ·

Pr[u = 0]

Pr[u = 1]
(1)

for the random variable RBayes, defined as a function of ` via

RBayes =
Q0

Q1
∈ [0,∞], Qi = Pr

E←Bτ ,L=E+u
[L = ` | u = i].

We have R = RBayes and the definition of RBayes does not depend on how u is
chosen and completely captures what can be learned (in addition to any prior
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knowledge) from a given LPN sample about u via Eq. (1). For LPN, we easily
compute RBayes = 1−τ

τ for ` = 0 and RBayes = τ
1−τ for ` = 1. In the case ` = 0,

this means that τ = (RBayes + 1)−1. For ` = 1 we have 1− τ = (RBayes + 1)−1.

Similarly, an individual LPL sample (r, `LPL) = (r, u+ eLPL) for continuous error
eLPL ← Φs provides statistical information about u and we can define RBayes

analogously. A simple computation yields RBayes = Φs(`LPL)
Φs(`LPL−1) = exp

(
− `LPL−

1
2

s2

)
.

The distribution of Ψ is constructed such that RBayes follows the same distri-
bution in both the LPNn,Ψ and the LPLn,s case. Indeed, in the definition of Ψ ,

we mimic the distribution of RBayes by sampling Ũ , Ẽ and defining R̃Bayes,>1

in a similar way to RBayes. Taking the absolute value in R̃Bayes corresponds to
normalizing τ into 1− τ , if τ would otherwise be larger than 1

2 . The latter can
be done by replacing `LPN by 1− `LPN in LPN.

Note that this information-theoretic argument does not show how to effi-
ciently transform LPNn,Ψ -samples into LPLn,s-samples and vice versa. This is
done in the full reductionist proof in the extended version of this work.

Next, we reduce standard LPN with fixed noise rate τ ′ to LPNn,Ψ with varying
noise rate τ ← Ψ . Clearly, if τ ≥ τ ′, this is very easy by just adding additional
noise. If τ < τ ′, the reduction fails, but any single sample with small noise rate
can reveal at most 1 bit of information about k. Hence, we need to bound the
number of such outliers. Consequently, we have the following theorem:

Theorem 1. Consider s > 0 and 0 < τ ′ < 1
2 . Then, provided s is sufficiently

large, the LPLn,s problem is at least as hard as the LPNn,τ ′ problem.
More precisely, if LPNn−X,τ ′ is (t, ε,Q)-secure, then LPLn,s is (t′, ε′, Q′) secure
with Q = Q′ − X, t ≈ t′, ε ≈ ε′.7 Here, X is a random variable measuring the
loss of dimension. X follows a Bernoulli distribution on Q tries with success
probability p, where p = Prτ←Ψ [τ < τ ′] and where Ψ is defined as in Lemma 2.

Let 0 < ∆n be a (small) real number measuring the acceptable loss of dimen-
sion. Then by setting s such that

s ln
(1− τ ′

τ ′

)
> Fc−1

(∆n
2Q

)
+

1

2s
, (2)

where Fc(x) = 1− 1√
2π

∫ x
−∞ exp(− t

2

2 )dt is the complementary cdf of the normal

distribution, we can ensure E[X] = pQ < ∆n.

Proof. See the extended version of this work..

To make the above theorem useful, we ask for ∆n ≤ 1. In this case, X is
approximately Poisson distributed with parameter ∆n. By making ∆n negligibly
small, we can have X = 0 with overwhelming probability. For setting parameters,

we consider ∆n = 1 acceptable, which gives s = O
(√

logQ/ log
(
1−τ
τ

))
.

7 Note that here the (known) dimension of the LPN secret is random as well. If X > n,
the problem is considered trivial.
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Remark 1. We observe that in Lemma 2, we showed that LPLn,s-samples (r, `)
provide the more information about 〈r,k〉, the further away ` is from 1

2 . This is
due to the superexponential decay of the Gaussian error function, which means
that very large values of ` > 1 are extremely more likely to have come from
〈r,k〉 = 1 than to have come from 〈r,k〉 = 0. Since we see a usually very large
number Q of samples, it is the most extreme outliers for ` that determine the
noise level τ ′ (and hence security) of LPN via the correspondence of Thm. 1.
In particular, we care about outliers that appear with probability Q−1. Note
that this means that our reduction is sensitive to the behavior of the distribu-
tion tail of the physical noise, for which the assumption that this is Gaussian is
much harder to verify. For example, a faster asymptotic decay than quadratic-
exponential would hurt our reduction in terms of parameters, while a slower de-
cay would lead to better parameters. Ideally, one would want a single-exponential
decay rate. Also, since an adversary might choose to ignore all samples except
for the outliers, there are actually attacks corresponding to the parameter loss
of our reduction, provided the attacks do not use many samples.

LPL with Leakage of Intermediate Values To adequately model the fact
that the adversary may probe intermediate values, we consider a variant LPLn,s,d
of the LPL-problem, which is tailored to our particular application. Note that
this variant models a situation where the adversary is able to probe all 〈r,mski〉
and also all partial sums

∑k
i=1 〈r,mski〉 for k ≥ 2, without being restricted to t

probes. We do not model probes on mski’s, internal values of R ·mski or internal
wires of Refresh here. The latter will be justified in Lemma 4, which shows that
these probes do not help the adversary much, provided their number is restricted
(the restriction on the number of probes only appears there). We now define the
LPLn,s,d distribution:

For secret k ∈ Zn2 , d ≥ 2, the LPLn,s,d sample distribution is given as follows:

1. First, sample r ∈ Zn2 .
2. Set u = 〈r,k〉 mod 2 and share u into d uniform values ui ∈ Z2 conditioned

on u =
∑d
i=1 ui mod 2.

3. For any 2 ≤ k ≤ d, we define u′k as the partial sum u′k =
∑k
i=1 ui.

4. Sample independent noise ek for 1 ≤ k ≤ d and e′k for 2 ≤ k ≤ d, where each
ek, e

′
k independently follows Φs.

5. Output r and all u′k + e′k and all uk + ek.

Given query access to LPLn,s,d for unknown, uniform k ∈ Zn2 , the correspond-
ing LPLn,s,d search problem is to find k. The decision problem ask to distinguish
LPLn,s,d for secret, uniform k from a distribution where u is chosen uniformly
in the second step above. The decision/search LPLn,s,d-Assumption asserts that
these problems are intractable for PPT algorithms.

Note that in the definition above, we split u into shares rather than k as
in our scheme Πnoisy. Due due to linearity, this is equivalent, provided R ← D
selected in Πnoisy is full-rank.
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Lemma 3. Let d ≥ 2. Then the LPLn,
√
2s,d-search problem is at least as hard

as the search-LPLn,s problem. More precisely, if search-LPLn,s is (t, ε)-hard with
q samples, then LPLn,

√
2s,d is (t′, ε′)-hard with q samples, where t ≈ t′, ε ≈ ε′.

Proof. Note that if the adversary knows all shares ui for 1 ≤ i < d (which
contain no information about k) except for the last, then the only useful data
are ud + ed and u′d + e′d. With the given data, ud can be computed from u′d
and vice versa. Having two independent noisy samples for the same value ud is
equivalent to reducing the noise by a factor

√
2. See the extended version of this

work for details.

Remark 2. The above shows that we only lose at worst a factor of
√

2 in the
noise rate due to the probes for intermediate values. We remark that this is
an upper bound on the parameter loss and is not matched by real attacks: the
reduction assumes that the ui for 1 ≤ i < d are known in clear (without the
noise), which in reality is not the case. In fact, the more precise parameter loss
is determined by the tail distribution of the RBayes value for LPLn,s,d, defined as
in the proof of Lemma 2. Unfortunately, this distribution is difficult to compute.

We now give an intuition why the parameter loss of
√

2 is an exaggeration.
The security level of LPLn,s and LPLn,s,d is essentially determined by outliers
in those leakages (cfr. Rmk. 1). If we assume in favor of the adversary that we
know all ui but ud, ud−1, then we know all intermediate values except for u′d−1
and u = u′d. We are interested in what can be learned about the latter.

The leakages with noise rate s for ud−1 and u′d−1 are as good a single leakage

for u′d−1 with noise rate s/
√

2 by an argument similar to Lemma 3. For the
leakage of ud, we get a noise rate of s, which gives us some information about
u′d = ud + u′d−1. However, by taking the sum, the amount of information (mea-
sured by some R′d,Bayes defined as in the proof of Lemma 2) that we learn about
u′d from the set of all leakages excluding that of u′d is limited. Indeed, it can be
at most as large as what we can learn about (the worse of) ud and u′d−1.

What we learn about u′d from all leakages is then determined by R′Bayes

and what we learn from the leakage of u′d directly. Since it is extremely more
unlikely that the leakage of u′d−1 and ud are both outliers than that the single
measurement for u′d is an outlier, the tail distribution for the information learned
is mostly determined by the leakage of u′d alone. Consequently, we expect to lose
almost no security at all by revealing intermediate values. For that reason, we
do not include the

√
2-factor in our concrete parameters.

The above definition only models probes on the computation of u =
∑
i ui

in our re-keying scheme. It does not include probes for bits of shares mski,msk′i
of the master key, probes for internal values of Rmski’s or probes for interval
wires of Refresh. The following lemma shows that this is indeed adequate, as
these additional possibilities do not help the adversary anyway.

Lemma 4. Consider our re-keying scheme Πnoisy with parameters n, d,m. As-
sume n −m > λ + d, where λ is the security parameter. Let 2t < d. Model H
as a random oracle. Assume Πnoisy is secure in the continuous t-noisy probing
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model with Gaussian noise s, where the adversary is only allowed to probe bits
of the inner products ui = R · mski or of partial sums u′k =

∑k
i=1 ui thereof

for k ≥ 2. Then Πnoisy is secure in the continuous t-noisy probing model with
Gaussian noise

√
t+ 1s, but without the latter restriction, i.e. when we also al-

low probes on bits of master key shares mski, msk′i, on bits of internal values of
the computation of ui = Rmski or probes on internal wires of Refresh.

Proof. By assumption, we are given some simulator Sim that simulates answers
to bits of ui = R · mski and to bits of partial sums

∑k
i=1 ui thereof. We need

to show that we can extend Sim to a simulator Sim ′ that also simulates probes
on bits of mski’s,msk′i’s and on internal wires of Refresh and the computations
of ui = Rmski.

Our simulator Sim ′ will use Sim for the probes to ui or
∑k
i=0 ui. To simulate

other probes, Sim ′ will fix appropriate bits of some mski’s or msk′j ’s and use these

to simulate the missing queries (conditioned on ui and
∑k
i=0 ui). Let Mi,j resp.

M ′i,j be the jth bit of mski resp. msk′i. For a query to the jth bit of mski or

msk′i, we fix the value of Mi,j resp. M ′i,j . For t′ probes on internal wires of
Refresh, we can fix some t′ × t′ submatrix of both M and M ′ by the properties
of Refresh guaranteed by Lemma 1, which allows us to perfectly simulate the
desired probes. Further, some bits of Mi,j might already be fixed from probes
(on the then-called M ′) from the previous session. Since the number of probes
per session is limited by t, all the fixed bits are contained in 2t× 2t submatrices
MI,J ,M

′
I,J for I ⊂ {1, . . . , d}, J ⊂ {1, . . . , n}. Since |I| < d, there exists a share

on which nothing is fixed. Consequently, the real value of the bits that we fixed
to uniform are uniform, and independent from msk. Since n − m > λ + d, we
have that the rows of R, together with the unit vectors corresponding to J are
linearly independent with overwhelming probability. Due to that, the fixed bits
are independent from both msk and the ui’s. It follows that the simulation of
the probes on M,M ′ and Refresh can be done perfectly, independent from Sim.

What remains is the probes on intermediate values of the computation of ui =
Rmski. Assume that the individual output bits are computed independently as
scalar products 〈Rj ,mski〉 where Rj is the j-th row of R. Then for a natural
implementation, intermediate values correspond to inner products 〈w,mski〉,
where w is obtained from some row of R by zeroing bits. Now, we fix the inner
products 〈w,mski〉 to a uniformly random value and use that to simulate the
probes. (They are completely analogous to coordinates of mski). The only thing
that may go wrong is that some w are linearly dependent to previously fixed
coordinates of mski, where individually fixed bits of Mi,j correspond to a unit
vector for w. In this case, we need to set the 〈w,mski〉 according to the linear
combination. If this linear combination involves w, we need to use ui, which we
do not know. Essentially, in this situation, the adversary is probing the same
unknown value c times with independent Gaussian noise, which is equivalent to
probing once with a noise width reduced by a factor

√
c.

Formally, we show in the extended version of this work that we can still
simulate the probe responses. ut
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Theorem 2. Consider our re-keying scheme Πnoisy with parameters n, d,m.
Assume n −m − d > λ, 2t < d and n

m = Θ(1). Model H as a random oracle.
Then Πnoisy is secure in the continuous t-noisy probing model with Gaussian
noise Φ√t+1s under the Search-LPLn,s,d-Assumption.

Clearly, using Lemma 3 together with Thm. 1, Thm. 2 proves our re-keying
scheme Πnoisy secure under LPN.

Proof. See the extended version of this work..

4.2 Concrete parameters

In the previous section we proved our proposed scheme Πnoisy secure under the
LPN assumption. We target our physical noise s such that the LPLn,s-assumption
holds. Note that, as we argued in Rmk. 1, we expect the reduction in Thm. 1
relating LPLn,s and LPNn,τ ′ to be matched by actual attacks, hence we really
need these parameters. By contrast, the loss in the reduction of Thm. 2 is due to
technical reasons and we do not expect there to be matching attacks. We argued
in Rmk. 2 why the

√
2 loss factor for intermediate values that we obtained in

Lemma 3 is far from tight. For the
√
t+ 1-factor from Lemma 4, one can actually

show that it is not there if one uses a binary tree to carry out the computation
of the sum in Πnoisy. Intuitively, it is better for the adversary to probe values
as late in the computation as possible, as the best the adversary can hope is
to learn some 〈r,msk〉, which is computed at the end. The

√
t+ 1-factor came

from probes on internal values at the start of the computation. Unfortunately,
we cannot prove Lemma 3 with our methods for a binary tree. The argument
from Rmk. 2 becomes more complicated, but essentially still holds, which is why
we ignore that

√
t+ 1 factor as well.

Hence, we believe that setting parameters such that the LPLn,s-Problem be-
comes hard is sufficient for our scheme to be secure.

We follow the proposal of Bogos, Tramèr and Vaudenay [17] of parameter
choices (n, τ ′) for ε := 2−80-hard LPN. We can then use the relationship between
the number of samples Q, the Gaussian width s and the Bernoulli noise τ ′

to determine s via. Thm. 1. Concretely, for Q = 280 and ∆n = 1, we have
Fc−1

(
∆n
2Q

)
≈ 10.2846, which allows us to relate s and τ ′.

Dimension (n) 1280 640 512 448 384 256

LPN noise (τ ′) 0.05 0.125 0.25 0.325 0.4 0.45

LPL noise (s) for Q = 280 ≈ 3.52 ≈ 5.31 ≈ 9.37 ≈ 14.1 ≈ 25.4 ≈ 51.3

LPL noise (s) for Q = 240 ≈ 2.46 ≈ 3.70 ≈ 6.52 ≈ 9.79 ≈ 17.6 ≈ 35.6

Table 1. Standard deviations required for LPL with 80-bit hardness based on LPN with
parameter τ . We assume a bound Q on the number of LPL-samples the adversary may
see. To obtain these parameters, we numerically solved a (slightly) better Equation
given in the extended version of this work rather than Eq. (2) from Thm. 1 with
∆n = 1.

Note that in the context of side-channel analysis, a further reduction of the
data complexity parameter could be considered. A choice of Q = 240 would
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already imply the capture of ≈ 240 leakage traces, which corresponds to weeks of
measurements with current acquisition hardware [49]. Since Fc−1

(
∆n
2Q

)
≈ 7.1436,

this reduces the require noise level by a factor of approximately 10.28
7.14 ≈ 1.43.

Altogether, this approach leads to the choice of parameters given in Table 1.
Note also that the 80-bit security level of Table 1 corresponds to security

against side-channel attacks. Of course, it remains that if no leakage is provided
to the adversary, then the security of the re-keying scheme directly relates to the
key size of the underlying (tweakable) block cipher.

5 Fresh re-keying without physical noise

For settings where no physical noise is given, or when it is not sufficient to achieve
the desired security level, we now give an alternative solution for a fresh re-
keying scheme, based on a variant of Learning with Rounding (LWR) assumption
that we call Offset Learning with Rounding (OLWR). We will show in Thm. 3
below that for an unbounded amount of samples (OLWR) is at least as hard
as Learning with uniform Errors (LWU). Before providing our OLWR-based re-
keying schemeΠLWR, we recall our rounding function and the OLWR assumption.
For appropriately chosen integers p < q, the rounding function b·cp : Zq → Zp is
bxcp := bxpq c, where x ∈ Zq is represented as x ∈ {0, . . . , q− 1}. When applying

b·cp to a vector in Znq , we apply it component-wise. OLWR samples for dimension
n and secret k← Znq and an adversarialy chosen offset o ∈ Znq , which is freshly
(and adaptively) chosen for each sample, follow the distribution

DOLWR,n,q,p(o) := (r, b〈r,k + o〉cp | r← Znq ).

As usual, given query access to DOLWR,n,q,p for uniform k, the search OLWRn,q,p
problem asks to find k. The search problem asks to distinguish this distribution
from the uniform distribution DUniform. Note that the uniform distribution does
not depend on the input o. The search/decision OLWRn,q,p Assumption asserts
that this is infeasible for PPT algorithms.

We can define similar offset variants OLWU,OLWE etc. of LWU, LWE etc.
where the adversary is allowed to add an (adaptively chosen) offset to k.

For Learning with Errors (LWE) or Learning with Uniform Noise (LWU) it is
easy to see that their offset variants are still as hard as LWE, LWU respectively.
An adversary can simply compute samples with an arbitrary offset itself using
the linearity of LWE and LWU. Since LWR is not linear this does not work for
LWR. The reduction given in [7] from LWE to LWR also works from offset LWE to
OLWR. Unfortunately it does not work for the parameters proposed in this work.
Assuming the hardness of LWU for an unbounded amount of samples, OLWR will
be also hard, as we show in the following theorem. A similar statement for their
non-offset variants using similar techniques was shown by Bogdanov et. al. [16].

Theorem 3 (Relationship between LWU,OLWU and OLWR).

(a) For both the search and decision variants, LWUn,q,B and OLWUn,q,B are
equivalent via a tight, sample-preserving reduction.
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(b) Assume p | q. Then hardness of search resp. decision LWUn,q,B implies hard-
ness of search resp. decision OLWRn,q,p, where B = q

p .
More precisely, if we can solve the search resp. decision OLWRn,q,p-problem
with advantage ε in time T , using Q samples, then we can solve the search
resp. decision LWUn,q,B problem with advantage ε′ = ε in expected time
T +O(QB) using an expected Q′ = QB samples.

Proof. (a) follows immediately by linearity, as the offset o just adds 〈R,o〉, which
is known. For (b), we show that we can transform OLWUn,q,B-samples for secret
k into OLWRn,q,p samples for the same unknown secret k. By (a), this implies
the claim.

To this end, suppose our reduction has to produce a (simulated) OLWRn,q,p
sample with offset o. Then we repeatedly query (r, `OLWU) ← OLWUn,q,B(o)
until `OLWU + 1 is divisble by B. We then output (r, b`OLWUcp).

To analyse the output distribution, recall that `OLWU = 〈r,k + o〉 + e for
0 ≤ e < B. It follows that 〈r,k + o〉 ∈ {`OLWU, `OLWU − 1, . . . , `OLWU − B + 1}.
The condition that `OLWU + 1 is divisble by B is equivalent that all possible
values for 〈r,k + o〉 map to the same value under b.cp.

Furthermore, note that the probability to reject an OLWUn,q,B sample is
always 1

B , independent from r,k,o, as it can be viewed as a condition on e ←
{0, . . . , B − 1} alone. It follows that we output the correct distribution. ut

Unfortunately Theorem 3 does not work the ring version Ring-OLWR of
OLWR. In this paper we choose parameter for Ring-OLWR such that ring LWR
and ring LWU would be hard, even though there is no reduction to Ring-OLWR
known for a polynomial modulus and their decisional variant which we will use.

5.1 Offset LWR-based Re-Keying

Our proposed re-keying scheme ΠLWR based on OLWRn,q,p is defined as follows:
The session keys are in Zmp′ for p′ | p and the distribution D for R is the uniform

distribution over Zm×nq .

Gen(1λ): Samples msk ← Znq . Create d shares (msk)d := msk1, . . . ,mskd such

that msk =
∑d
i=1 mski, uniformly among all possibilities. Output msk and

(msk)d.
GenSK ((msk)d,R): For each of the shares mski, compute ski := bR ·mskicp.

Then set sk :=
⌊∑d

i=1 ski
⌋
p′

. Define the error correction information as

v :=
∑d
i=1 ski mod p/p′. Finally, use a secure refresh operation Refresh as

in Lemma 1 to refresh the shares (msk′)d ← Refresh((msk)d). Output sk,
(msk′)d and v.

CorSK (msk,R, v): Computes y := bR ·mskcp and z := y+(v−y mod p/p′) mod
p. Output bzcp′ .

Theorem 4. Let n, q, p, p′, d ∈ N such that q > p > p′, p/p′ > d and p′ | p,
p | q. Then the OLWRn,q,p-based re-keying scheme is correct.
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Proof. First notice for p/p′ > d that the error term

e :=

t∑
i=1

bR ·mskicp − bR ·mskcp

is bounded in each component by: 0 ≤ |e| ≤ p/p′ − 1. This follows directly from
the fact that a value strictly smaller than 1 is rounded away per round operation,
and msk =

∑
imski, which implies R ·msk =

∑
i R ·mski. Next, p′ | p guarantees

that any potential error component corresponds to a uniquely determined coset
mod p/p′. Hence, we further have:

v − y mod p/p′ : = (
∑
i

bR ·mskicp mod p/p′)− (bR ·mskcp mod p/p′) mod p/p′

= (b〈R ·msk〉cp + e mod p/p′)− (bR ·mskcp mod p/p′) mod p/p′

= e.

Therefore, we have:

z′ : = y + (v − y mod p/p′) mod p = R ·msk + e mod p

=
∑
i

bR ·mskicp mod p = sk.

ut

Theorem 5. For moduli p, q ∈ N with p | q and dimension n ∈ N, the proposed
re-keying scheme ΠLWR is secure under the OLWRn,q,p assumption in the 2t < d
probing model.

Proof. We assume that GenSK just outputs
∑d
i=1 bR ·mskicp which is equiva-

lent to outputting sk =
⌊∑d

i=1 bR ·mskicp
⌋
p′

and v =
∑d
i=1 bR ·mskicp mod p/p′.

Therefore Ideal will simply output R, sk′ where sk′ ← Zmp . Sim simulates t probes
as follows:

– Let mski denote the shares at the beginning of the session for i ∈ [d]. Sim
receives t probe requests and forwards the probes which affect the refresh
procedure to the simulator for the refresh procedure. This simulator will
w.l.o.g. respond with the d − 1 input shares mski of the refresh procedure
and the probes which were targeted within the refreshing procedure. The
output shares of the refresh procedure are not accessed by Sim during this
session, but the next session after the probes were made.

– Sim computes for the d− 1 shares ski := bR ·mskicp. Let mskj be the share
that is missing and that has not been directly targeted by any probe request.
Sim defines skj = sk′−

∑
i 6=j ski. Since all ski are known, Sim can answer any

probe request on any the intermediate values which arise when computing∑d
i=1 bR ·mskicp.

22



Now we show the following statement using a reduction to OLWR: for the
given simulator Sim, for any PPT A with

|Pr[AReal(msk)(1λ) = 1]− Pr[A(SimIdealc ,Idealc)(1λ) = 1]| = ε,

there is an algorithm D distinguishing OLWR with probability ε from uniform.
During each session, A requests t probes to D . It calls the simulator of the

refresh scheme and receives d − 1 shares mski, but not mskj as it has been the
case for Sim. Note that A has already sent all probe requests for the shares
mski at the beginning of this and the previous session. Therefore D can identify
a index j of a share mskj which will never be requested by A. D requests a
sample (R, `) for offset −

∑
i 6=j mski and has to decide in the end whether all

of the samples (R, `) that D collects over the sessions are OLWR or uniformly
distributed. D defines skj = ` and computes ski = bR ·mskicp for all i 6= j. Now
D can similar to Sim respond to all the probe requests using ski. D computes
the session key sk and v simply by computing

∑d
i=1 ski. Afterwards he outputs(

R,
∑d
i=1 ski

)
to finish the current session. After finishing all sessions D outputs

the output bit of A.
Let us assume that the samples R, ` are OLWR distributed. The offset is

−
∑
i 6=j mski such that ` :=

⌊
R(msk −

∑
i6=j mski)

⌋
p

=
⌊
R · mskj

⌋
p
. Hence D

successfully simulates Real .
If that (R, `) is uniform, then D simulates the output of Ideal by outputting(

R, `+
∑
i 6=j ski

)
. This is clearly uniformly random for uniform `. Further skj := `

used by D is the same as Sim would have computed: skj = sk′ −
∑
i 6=j ski =

`+
∑
i6=j ski−

∑
i 6=j ski = `. All other ski are derived from the d−1 outputs of the

simulator of the key refreshing and hence have the same distribution. Therefore
D simulates Ideal and Sim perfectly. ut

We emphasize that the presented results directly translate to the ring setting
with Ring-OLWR. The reason for this is that the error correction of ΠLWR, the
rounding b·cp, and the addition in the ring are carried out component-wise which
is sufficient for both correctness and security.

5.2 Concrete parameters

Historically, LWR has always been understood as a deterministic variant of LWE
where the noise is rounded away applying the rounding function b·cp to a LWE
sample. This technique was used by Banerjee, Peikert and Rosen to reduce LWE
to LWR [7]. Unfortunately their reduction only holds for a superpolynomial mod-
ulus q. This was improved by Alwen et al. [3] by using lossy pseudorandom
samples. They achieve a reduction for a polynomial modulus q but with the
drawback of a polynomially bounded amount of samples.

Because of these issues, the previous PRF construction by Banerjee et al.
(called SPRING) [8] is based on parameters which are not obtained by choosing
parameters for a hard instance of LWE and using one of the known reductions
to LWR to get appropriate parameters for LWR. Interestingly, and despite their
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choice of parameters is not based on LWE, it seems that the best way to solve
LWR for such a choice of parameters is still to exploit algorithms designed to solve
LWE. We follow a similar approach, but using a different choice of parameters.
Banerjee et al. propose two parameter choices for Ring-LWR, namely for n = 128
and p = 2 they choose either q = 257 or q = 514. For our application p = 2
is not sufficient, since we need p/p′ = dlog(d)e to correct errors in our rekeying
scheme ΠLWR and p > p′. This means that for masking with up to 4 shares, we
need at least p ≥ 4.

Table 2 shows our choices of parameters for LWR, LWU and Ring-LWR,
Ring-LWU which we will also use to instantiate OLWR and Ring-OLWR. The
absolute noise level log q− log p is large compared with modulus q. Furthermore,
our secret msk is picked uniformly from Znq . Together, this will rule out the BKW
algorithm and its variants [14, 39]. The same holds for the algorithm of Arora
and Ge [5]. Besides, for comparably small dimensions n, good lattice reductions
exist, but since the noise is large, shortest vector sieving requires to find a vector
of very small norm which seems to be hard. The size of n is compensated by the
large noise to modulus ratio. Such a LWR or OLWR instance can also be seen as
a hidden number problem.

Assumption Dimension n Modulus log q Modulus log p

LWR,LWU 128 16 4

LWR,LWU 128 32 10

Ring-LWR, Ring-LWU 128 16 2

Ring-LWR, Ring-LWU 128 32 3

Table 2. 128-bit security parameters for our re-keying scheme ΠLWR. For the ring
version we use a irreducible polynomial f ∈ Zq[X]/f with deg = n. log q − log p
corresponds to the absolute noise level. The uniform noise for LWU is bounded by q/p.
All our moduli are powers of two, which will guarantee that the output of the rounding
function b·cp is uniform in Zp for a uniform input in Zq.

For other concrete parameters, Albrecht, Player and Scott survey how al-
gorithms for solving LWE perform and give estimated running times [2]. These
estimates on the running times affirm our choice of parameters. In the LWR set-
ting, the LWE standard deviation corresponds roughly to q

p . As for Ring-LWR, we
choose the parameters more conservatively, since for our ring over Z216 or Z232 ,
it is likely that the ring product R msk of secret msk and public sample vector
R lies within an ideal of the ring. This might leak some information about the
noise vector and the product might not depend on all the bits of msk.

Note finally that we chose a 128-bit security level which seem most relevant
for general purpose applications. Reducing the security level to 80 could be ac-
ceptable for low-cost applications of ΠLWR. A simple (and conservative) solution
for this purpose would be to reduce n from 128 to 80. By contrast, reducing the
security parameters further (e.g., down to 40 bits) is not possible as in Sec-
tion 4.2. Indeed, there is no guarantee that the attacks against our construction
would require large data complexity (which is the only quantity that can be
reasonably reduced in the context of side-channel attacks).
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6 Implementation results

In order to confirm the efficiency of our constructions, we implemented them
on a 32-bit ARM7 device and on an 8-bit Atmel AVR device, for the standard
parameters that we would select for concrete applications. For the LPL-based re-
keying, we choose n = 512 and for the wPRF-based re-keying we choose n = 128,
q = 232, p = 210 and p′ ranging from 4 to 16 depending on the number of shares
considered for masking. We then compared our implementation results with the
ones obtained for the AES in [33], where higher-order masked implementations
are evaluated on an Atmel AVR device. For illustration, we further extrapolated
the cycle counts of the masked AES on the ARM7 device as 4 times lower than
for the Atmel ones (since moving from an 8-bit to a 32-bit architecture). Note
that in all cases, we refreshed the master key with a simple (linear) refreshing
algorithm based on the addition of a vector of shares summing to zero, and we
assumed a cost of 10 clock cycles to generate each byte of fresh randomness. This
is consistent with the approach used in earlier re-keying papers [30, 46]. More
generally, and as for our selection of security parameters, such implementations
correspond to the best tradeoff between security against state-of-the-art attacks
and efficiency, that we suggest for further concrete investigation.

These performance evaluations are reported in Figure 3 from which we can
extract a number of interesting observations. First, and as expected, the cycle
counts of our new constructions scale linearly in the number of shares, with
small discontinuities for the wPRF-based re-keying (corresonding to the addi-
tion of one bit for error correction, each time dlog(d)e increases). Second, the
performances of the LPL-based re-keying and wPRF-based re-keying are similar
on a 32-bit ARM device (where the multiplication is easy both in Z2 and Zq).
They more significantly differ in the Atmel AVR case, because inner product
operations in Z2 only involve simple (AND and XOR) operations, and directly
lead to efficient implementations on this platform. By contrast, the wPRF-based
re-keying on the Atmel device implies additional overheads for the 32-bit multi-
plication based on 8-bit operations (which takes approximately 40 clock cycles).
Third, comparisons with the AES shows that (as expected as well), the interest
of our new constructions increases with the number of shares (hence security
level). In this respect, it is important to note that a masked software implemen-
tations of the AES protected with Boolean masking will generally suffer from
independence issues, e.g. the recombination of the shares due to transition-based
leakages [22]. Since our (almost) key homomorphic conctructions do not suffer
from this risk (because we can manipulate the shares independently), compar-
isons with this curve are overly conservative. As a quite optimistic comparison
point, we can observe the cost of the “glitch-free” software implementations pro-
posed in [55] which is already higher than the one of our primitives for 2 shares.8

Alternatively, one can also use the simple reduction in [6] and double the number
of shares of the masking scheme to obtain similar security, which also makes our

8 Note that this curve is linear which corresponds to the amortized complexity of the
best “packed secret sharing” at each order.
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masked re-keying schemes more efficient than the corresponding masked AES
with 3 shares. Quite naturally, these comparisons are only informal. Yet, they
illustrate the good implementation properties of fresh-rekeying. In this respect,
the simplicity of the implementations, and limited constraints regarding the need
of independent leakages, are certainly two important advantages.

(a) ARM. (b) Atmel AVR.
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Fig. 3. Performance comparisons on ARM and Atmel AVR devices assuming 10 clock
cycles per random byte. LPL-based re-keying , wPRF-based re-keying: , AES
Boolean masking: , AES glitch-free masking: . Dashed ARM curves are ex-
trapolated by scaling down the corresponding Atmel AVR performances by 4.

Finally, a key difference between the LPL- and wPRF-based re-keying is
that the latter one offers significantly stronger guarantees (since it is secure
even in front of noise-free leakages), which explains its lower performances. By
contrast, the LPL-based re-keying implementations have to include noise in the
adversary’s measurements. Hence, we end this section with a brief discussion of
the noise levels required for secure LPL implementations, and how to generate
them. For this purpose, a conservative estimate is to assume that this noise will
be generated thanks to additive algorithmic noise. Typically, this could imply
implementing a parasitic Linear Feedback Shift Register (LFSR) in parallel to
the inner product computations to which we have to add noise. Since the noise
variance corresponding to 1 bit equals 0.25, we typically need an LFSR of size
N = d4 × σ2e to reach our estimated security levels.9 For illustration, some
numbers are given in Table 3, where we can see a tradeoff between the cost of
computing the inner products and the cost of generating the noise. So already

9 This assumes that the computation of every bit requires a similar amount of energy,
which is usually observed in practice [56], and certainly holds to a good extent when
considering blocks of bits as we do. The proposed values should anyway only be
taken as an indication that generating the required amount of noise is feasible with
existing hardware. Besides, note that for such an “algorithmic” noise generated by
LFSR, the Gaussian distribution is ensured by design which avoids any risk related
to faster decreasing tails.
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for these estimates, we see that the n = 640 and n = 512 instances should
allow efficient implementations. Yet and importantly, in case more efficient noise
engines are embedded on chip (based on supply noise, clock jitter, shuffling, . . . ),
these figures can only become more positive for our re-keying, and the same holds
if some parallelism is considered for the inner product computations (in which
case the cost of noise generation will be amortized).

Dimension (n) 1280 640 512 448 384 256

Bits of additive noise (Q = 280) 49 112 361 807 2601 10744

Bits of additive noise (Q = 240) 24 55 177 384 1272 5269

Table 3. Concrete parameters for noise generation.

So overall, LPL-based re-keying is conceptually interesting since it leverages
the intrinsic noise that is anyway present in side-channel measurements. But the
noise levels that we require to reach high security levels are admittedly larger
than these intrinsic noise levels. So it leads to interesting design challenges re-
garding the tradeoff between the cost of noise generation vs. the cost of inner
product computations. By contrast, wPRF-based re-keying is more conservative,
since based on a stronger cryptographic primitive that requires less assumptions,
at the cost of reasonable performance overheads. The combination of these so-
lutions therefore brings an interesting toolbox to cryptographic engineers, for
secure and efficient cryptographic implementations in software and hardware.
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