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Abstract. A memory-hard function (MHF) f is equipped with a space
cost σ and time cost τ parameter such that repeatedly computing fσ,τ
on an application specific integrated circuit (ASIC) is not economically
advantageous relative to a general purpose computer. Technically we
would like that any (generalized) circuit for evaluating an iMHF fσ,τ has
area × time (AT) complexity at Θ(σ2 ∗ τ). A data-independent MHF
(iMHF) has the added property that it can be computed with almost
optimal memory and time complexity by an algorithm which accesses
memory in a pattern independent of the input value. Such functions can
be specified by fixing a directed acyclic graph (DAG) G on n = Θ(σ ∗ τ)
nodes representing its computation graph.
In this work we develop new tools for analyzing iMHFs. First we define
and motivate a new complexity measure capturing the amount of en-
ergy (i.e. electricity) required to compute a function. We argue that, in
practice, this measure is at least as important as the more traditional
AT-complexity. Next we describe an algorithm A for repeatedly evalu-
ating an iMHF based on an arbitrary DAG G. We upperbound both its
energy and AT complexities per instance evaluated in terms of a certain
combinatorial property of G.
Next we instantiate our attack for several general classes of DAGs which
include those underlying many of the most important iMHF candidates
in the literature. In particular, we obtain the following results which
hold for all choices of parameters σ and τ (and thread-count) such that
n = σ ∗ τ .
– The Catena-Dragonfly function of [FLW13] has AT and energy com-

plexities O(n1.67).
– The Catena-Butterfly function of [FLW13] has complexities isO(n1.67).
– The Double-Buffer and the Linear functions of [CGBS16] both have

complexities in O(n1.67).
– The Argon2i function of [BDK15] (winner of the Password Hashing

Competition [PHC]) has complexities O(n7/4 log(n)).
– The Single-Buffer function of [CGBS16] has complexitiesO(n7/4 log(n)).
– Any iMHF can be computed by an algorithm with complexities
O(n2/ log1−ε(n)) for all ε > 0. In particular when τ = 1 this shows
that the goal of constructing an iMHF with AT-complexity Θ(σ2∗τ)
is unachievable.

Along the way we prove a lemma upper-bounding the depth-robustness
of any DAG which may prove to be of independent interest.



1 Introduction

Moderately hard to compute functions have proven to be useful security prim-
itives. In this work we focus on “memory-hard functions” (MHF) introduced
in [Per09]. These aim to serve as password hashing algorithms for storing pass-
words in a login system, as Key Derivation Functions (also called “key stretch-
ing” functions) for password-based cryptography and for building Proof-of-Effort
protocols (in particular for use in cryptocurrencies such as Litecoin [Cha11], [Bil13]
and others). In each case the main security property we would like to achieve for
the MHF is that brute-force attacks (i.e. evaluating the MHF on many inputs)
using an application-specific integrated circuit (ASIC) should not be economi-
cally viable.

1.1 Memory-Hard Functions and Their Complexity

We interpret this intuitive goal in two ways. Either the cost of building the ASIC
should be prohibitively expensive (in terms of say USD) or the cost of running
the ASIC should be prohibitively expensive. In fact, given that the former is
a one-time cost which can be amortized over the life-time of the device while
the later is a recurring cost, it may often be the case that the later is the most
interesting goal to achieve.

The cost of building a circuit is often approximated by its AT-complexity
[Tho79,BL13,BK15,AS15]; that is the product of the area of the chip and the
time it takes the chip to produce the output. In this work we consider MHFs
built as modes of operation over an underlying compression function H. Thus,
we measure time in units of tocks; namely the time it takes to evaluate one
instance of H from start to finish.3. We measure area in units of “memory-
area” (MAr); namely the area required to store one output of H (called a block).
Finally we parametrize our AT-complexity notion ATR with the core-memory
area ratio [BK15] R > 0, a positive real denoting the number of MAr required
to implement one copy of H.4

To estimate the cost of running the chip we will use a new notion which
we call the “energy-complexity” or E-complexity of the circuit. Intuitively, it
approximates the energy (say in kilo-Watt-hours) used in an execution of the
chip. More precisely the unit of measure for E-complexity is a “memory-Watt-
tock”(MWt) – the number of kWh it takes to store one block for one tock. We
also parametrize the complexity notion ER̄ with the core-memory energy ratio,
a positive real R̄ > 0 which is the number of MWt required to evaluate one
instance of H.

To see why this is an interesting measure for achieving our stated security goal
consider the case of password hashing. (The case for KDFs follows essentially the
same reasoning.) Suppose an attacker manages to pilfer the credentials file from
a login-server and now executes an off-line brute-force attack A implemented
in an ASIC with core-memory energy ratio R̄ using ER̄(A) MWt per password

3 I.e. without considering pipelining and other such amortized optimizations.
4 This allows our analysis to be applied regardless of the particular VLSI technology

employed and the particular implementation of H used when constructing the ASIC.



guess. We model the monetary income from such an attack as being proportional
to the number of password guesses made which we denote by #eval.5 Conversely,
we model the running cost as being proportional to the electricity consumed by
the ASIC while executing the attack, namely its ER̄-complexity times #eval.
The attacker can always increase income (i.e. increase #eval) simply by adding
more implementations of A to the ASIC or running the ASIC for more time.
Therefore, the attack is profitable (in this model) if and only if the USD cost c
of one MWt and the income i per password guess are such that i > c ∗ ER̄(A).
Thus we can use ER̄(A) as a key indicator for which ranges of (c, i) an attack is
economically viable.

Quality of an Attack. A candidate MHF F is specified via an algorithm which
evaluates it. (E.g. [Per09,FLW13,BDK15].) We refer to this algorithm as the
näıve algorithm N for F and it is understood to be the algorithm used by the
honest party. N is intended to be an algorithm that can be evaluated efficiently
on typical (i.e. general purpose) computer architectures — where we may not
be able to evaluate H multiple times in parallel. As usual, we are interested in
what advantage an adversarial evaluation algorithm can have over the honest
party. Therefore, one measure of the quality of a given algorithm A for evaluating
(multiple instances of) an MHF F is to compare its complexity to that of N .
In particular for given core-memory ratios R and R̄ the AT -quality and energy-
quality of A are given by

AT-qualityR(A) =
ATR(N )

ATR(A)
and E-qualityR̄(A) =

ER̄(N )

ER̄(A)
.

Here, ATR(A) (resp. ER̄(A)) measures the amortized AT complexity (resp.
amortized energy complexity).6 That is ATR(A) is smallest ATR complexity of
a chip implementing A divided by #inst(A) — the number of instances of F
computed in an execution of A. We consider A an “attack” if either one of
these quality measures is greater than 1. (However we remark that all attacks in
this work have both qualities simultaneously tending towards infinity as #inst
grows.)

Data-Independent and Ideal MHFs. An data-independent memory-hard function
(iMHF) is a function f for which the associated näıve algorithm N , on input x,
computes f(x) using a memory access pattern that is independent of x. These
take on special importance in applications where the MHF is to be evaluated on
secret input in an (at least somewhat) hostile environment. This is because (in
contrast to their siblings data-dependent MHFs) it is much easier to implement
an iMHF in such a way that it avoids information leakage via certain side-channel
attacks such as Timing attacks. In these attacks, the variation in the time taken

5 Intuitively, the more passwords guesses made the higher the expected number of
password (equivalents) recovered by the adversary which can then be monetized.

6 Generally, unless explicitly specified otherwise, we are only interested in the amor-
tized AT and energy complexities per instance of the MHF computed.



to perform certain operations is used to deduce information about the inputs
upon which the MHF is being evaluated. Similar attacks have in the past been
mounted by local adversarial processes [BM06], adversarial virtual machines in
a cloud environment [RTSS09] or even completely remotely [Ber,ASK07]. There-
fore, in the context of both KDFs and password hashing data-independence is a
desirable property. All MHFs considered in this work are of this form.

In general, an iMHF f can be described via a fixed DAG G representing
its computation graph. Each node represents an intermediary value, which is
computed via some deterministic round function, using the values represented
by the parent nodes in G (e.g. via a single call to H). The source node of G
represents the input x while f(x), the output of the computation, is the value
represented by the sink node.

Let f be an iMHF given by some DAG G of size n with constant in-degree.
There exists a trivial algorithm triv which can always compute f with AT and
energy complexities Θ(n2).7 Given a constant c > 1 we consider f to be a c-ideal
iMHF if, when we take the näıve algorithm to be triv, there exist no attack A on
f with better quality than c (i.e. ∀A E-qualityR̄(A) ≤ c and AT-qualityR(A) ≤ c).
A primary goal of research in this field is to find an ideal iMHF.8

1.2 MHF Candidates

Due to the growing interest in MHFs there are a number of candidate functions.
For example in the recently completed Password Hashing Competition [PHC]
most entrants claimed some form of memory-hardness. The goal of the PHC was
to select a winning algorithm to act as a new standard for password hashing.

Catena. To the best of our knowledge the earliest candidate iMHF is the PHC fi-
nalist Catena [FLW13]. It received special recognition for its agile framework and
its resistance to side-channel attacks. In [FLW13] the authors proposed two dif-
ferent DAGs giving rise two two separate functions. The first, called Catena Bit
Reversal, is based on an λ-layered graph BRGnλ with n nodes. The second is called
Catena Double Butterfly and is based on a different O

(
λ log n

)
-layered graph

DBGnλ. The Catena designers recommended choosing λ ∈ {1, 2, 3, 4} [FLW13].

Argon2. One of the most important MHF candidates is Argon2 [BDK15]. No-
tably, it is the winner of the Password Hashing Competition [PHC]. Argon2 is
equipped with a data-dependent mode of operation and an independent mode
which is called Argon2i. Argon2i is recommended for password hashing.

Balloon Hashing Most recently, three new candidate iMHFs are proposed in [CGBS16].
These are called the Single-Buffer (SB), Double-Buffer and Linear constructions
respectively and are jointly referred to as the Balloon Hashing constructions. The
authors provide strong evidence for the memory-hardness of all three candidates
albeit assuming the absence of parallelism.

7 Simply compute each intermediary value in topological order, one value at a time,
storing all results in memory until the computation is complete.

8 Hopefully one permuting as simple as possible an explicit description and näıve
implementation and as lightweight as possible round-function.



In general iMHF candidates are equipped with a space-cost parameter σ (in
which the memory required per evaluation is intended to scale) and a time-
cost parameter τ (in which the time required for an evaluation is intended to
scale). Additionally, Argon2i, the Double-Buffer and the Linear functions are also
equipped with a parallelism parameter φ the property that the näıve algorithm
can make efficient use of (up to) φ concurrent threads. Viewing these functions
as DAGs gives rise to a graph on n = σ ∗ τ nodes with depth n/φ. The hope is
that for all settings of (σ, τ, φ) the AT and energy complexity lie in Θ(σ2 ∗ τ/φ).

1.3 Our Contributions

In this work we introduce and motivate the notion of (amortized) energy com-
plexity. Next we give a generic evaluation algorithm PGenPeb for data-independent
iMHFs based on arbitrary DAG G. We analyze PGenPeb’s energy and AT com-
plexities in terms of a combinatorial property of G. In particular, we obtain an
attack against any iMHF for which G is not depth-robust. Informally, a DAG G
is not depth-robust if there is a relatively small set S of nodes such that after
removing S from G the resulting graph (denoted G − S) has low depth (i.e.
contains only short paths).

We instantiate the attack for various classes of DAGs. In particular, we ex-
hibit a “depth-reducing” node set S for the Argon2i DAG, both types of Catena
DAGs and all three Balloon Hashing DAGs. For example, for any parameters
(σ, τ, φ = 1) with n = σ ∗ τ we obtain an attack on both Catena, the Double-
Buffer and the Linear iMHFs with quality Ω

(
n1/3

)
. Similarly we demonstrate

an attack on Argon2i and the Single-Buffer iMHF with quality Ω
(
n1/4

lnn

)
.9

In fact we demonstrate that no DAG with constant indegree is sufficiently
depth-robust to completely resist the attack. More precisely, we show that any
iMHF is at best c-ideal for c = Ω

(
log1−ε n

)
and any ε > 0. In particular this

means that ideal iMHFs, as described above, do not exist.

General Attack on Non-Depth Robust DAGs. We first present in Section 3,
a generic evaluation algorithm GenPeb which takes as inputs a node subset S.
Because G is not depth-robust there exists a small set S of nodes such that
d = depth(G − S) is relatively small. The basic idea behind our attack is to
divide computation steps into two phases: balloon phases and light phases. Each
light phase lasts roughly g � d time steps. During light phases we discard
most of the values that we have computed from memory keeping only values
corresponding to nodes in S, the highest node i whose value has been computed
and the parents of the nodes whose values we plan to compute in the next g time
steps. As the name suggests, light phases are cheap. Our memory usage is low
during these light phases and we will compute one instance of the round function

9 For the cases when φ > 1 PGenPeb maintains the same complexities but the result-
ing quality decreases somewhat as the complexity of the näıve algorithm improves
for Argon2i, the Double-Buffer and the Linear functions. In other words quality de-
creases not because memory-hardness increases but because the honest algorithm
becomes more efficient.



(e.g. call to H) during each time step. During a Balloon Phase we quickly restore
all of the discarded values to memory so that we can complete the next light
phase. Unlike light phases, the balloon phases are more expensive because we are
storing up to O(n) values in memory and because we will often make multiple
calls to the round function in parallel. However, the key observation is that we
will not incur these higher cost in too many time steps. In particular, because
the graph G − S has small depth d � g and we never discard values for nodes
in S the Balloon Phase can be completed very quickly (i.e., in at most d � g
times steps) by making parallel calls to the round function.

While for any non-depth-robust graph the GenPeb algorithm has good energy
complexity, obtaining an evaluation algorithm with low AT-complexity requires a
bit more work. Notice that during a light phase most of the memory capacity and
round function implementations needed for a balloon phase are no longer being
used. Moreover light phases run for significantly more time than the balloon
phases. These observations give rise to the low AT-complexity parallel algorithm
PGenPeb which evaluates g/d instances of the iMHF concurrently such that
at any given time only a single instance is in a balloon phase while all other
instances are in light phases. Intuitively this results in more efficient use of
available hardware while technically we get that the energy complexity of the
algorithm is approximately equal to the AT complexity (Theorem 3).

Stacked Sandwich Graphs. In Section 4 we focus on two classes of DAGs called
(strict) stacked sandwich graphs. Informally, a DAG G is a λ-stacked sandwich
DAG if the nodes can be partitioned into λ+1 layers such that, with the possible
exception of node i, all of the parents of node i + 1 are from previous layers.
These classes include the DAGs implicit to both Catena iMHFs as well as the
Double-Buffer and Linear iMHFs. We prove that no λ-stacked sandwich graph
is depth-robust (Lemma 1). For any t > 1 there is a set S of n/t nodes such that
depth(G− S) ≤ (λ+ 1)t.

(n, δ, w)-Random Graphs. In Section 5 we turn to a class of random graphs
called (n, δ, w)-random DAGs. We remark that the graphs implicit to Argon2i
and the Single-Buffer iMHF (for a randomly chosen salt) fall into this category of
random DAGs. We show (in Lemma 4) that, with high probability, by removing
just a few nodes these graphs can be transformed into stacked sandwich graphs
and are thus not depth-robust.

Attack on any iMHF. In Section 6 we prove that no DAG with constant indegree
is sufficiently depth-robust to resist at least some form of attack (Theorem 8).
In our proof, we rely on a result due to Valiant [Val77] which states that for
any DAG G with m edges and depth d there is a set S of m/ log d edges s.t. by
deleting them we obtain a graph of depth at most d/2 (see Lemma 6). Given

ε > 0 we can repeatedly apply this result obtain a set S of o
(

δn
log1−ε n

)
nodes

s.t depth(G− S) ≤ n
log2 n

. Thus if we let the näıve algorithm be (any algorithm

complexity comparable to) triv then we have a generic attack A with quality
AT-qualityR(A) = Ω

(
δ−1 log1−ε n

)
and ER̄(A) = Ω

(
δ−1 log1−ε n

)
.



Exact Security Analysis. Finally we present exact bounds for the energy and
AT complexities of all of our attacks. Our analysis demonstrate that our attacks
have high quality for practical values of n and R̄ — not just as n → ∞. For
example setting n = 218 we already have an attack A against Argon2i with
AT-qualityR(A), E-qualityR̄(A) > 1 — using a realistic value R̄ = 3, 000. In
general, E-qualityR̄(A) will increase as n increases or as R̄ decreases.

1.4 Related Work

The intuitive goal of constructing functions for which VLSI implementations are
prohibitively expensive was first laid out by Percival in [Per09]. This property
was formalized by asking that evaluating such a function on a PRAM requires
large ST-complexity. In particular evaluation algorithms with low amortized
complexity such as those in this work were not considered. Percival also in-
troduced the first, and currently most widely deployed, candidate MHF called
scrypt. A full proof of security under a strong security definition remains a
central open problem in the area. However recently significant progress has been
made in this direction in [ACK+16]. It is interesting to note though that despite
scrypt being data-dependent the (conditional) lower bound in [ACK+16] still
does not exceed the upper-bound of Section 6 on the best possible quality of an
iMHF.

Catena. In [FLW13] the authors of Catena restricted their analysis of its security
to a sequential setting. That is they restrict an adversary to only being able to
evaluate one instance of the underlying function H at a time. In this setting and
for the case when λ = 1 the results of [LT82] show that, in a simplified compu-
tational model, BRGn1 has ST-complexity Ω

(
n2
)
. Here ST-complexity denotes

the product of the space and time required by any algorithm which evaluates
Catena Bit Reversal. The intuition being that large ST-complexity implies large
AT-complexity of any implementation in a custom chip.

Argon2. Argon2 [BDK15] was the winner of the Password Hashing Competi-
tion [PHC]. Argon2 is equipped with a data-dependent mode of operation and
an independent mode which is called Argon2i. The authors recommend using Ar-
gon2i for password hashing due to its resistance to side channel attacks [BDK15].
Our attacks only apply to Argon2i, the data independent mode. Recently, Gibbs
et al. [CGBS16] gave an attack on Argon2i which reduces the cost of computing
Argon2i by a factor of 4.

Balloon Hashing. In [CGBS16] the authors also proposed three iMHFs which re-
sist their attack on Argon2i. These are called Single-Buffer (SB), Double-Buffer
and Linear and collectively referred to as the Balloon Hashing iMHFs.10 Our at-
tacks reduce the cost of computing both Argon2i and SB by a factor of Ω̃

(
n1/4

)
.

10 Gibbs et al. [CGBS16] use “Balloon Hashing” as a title for their iMHF however this
similarity with the balloon phase in our evaluation algorithm is a slightly unfortunate
coincidence.



A Provably Secure MHF. Currently, the only candidate MHF equipped with a
full proof of security is the one in [AS15]. There, the authors show an iMHF F
for which the energy-complexity of the required storage alone (i.e. disregarding
the cost of evaluating the round function) is within a polylogarithmic factor in
n of the energy-complexity of the trivial algorithm triv. Moreover triv uses only
a single instance of H (i.e. it is sequential) which implies that, roughly speaking,
any evaluation algorithm for F can have E-quality = O(polylog(n)). The results
in Section 6 show that this is optimal for any iMHF up to the exponent in the
polylogarithmic factor.

Attacking MHFs. The Catena Dragonfly iMHF has been attacked previously [BK15,AS15].
In particular, [AS15] demonstrated an attack on Catena Dragonfly BRGnλ=1

which has energy quality E-quality = O
(√
n
)
. The attack from [BK15] has

slightly worse quality O
(
n1/5

)
, but it applies even for Dragonfly variants in

which λ > 1. At a high level the ideas behind both of these attacks is to di-
vide memory into segments, store the leading block in each segment and then
recompute the remaining blocks as needed. These attacks only work because the
underlying Catena Dragonfly DAG BRGnλ allows for quick re-computation of the
remaining blocks. In this work we observe that this key idea can be generalized to
attack any non depth-robust iMHF. In particular, our techniques can be used to
attack other iMHFs like Catena Butterfly, Argon2i [BDK15] and SB [CGBS16].
In fact, our attacks can be extended to any iMHF because no DAG is sufficiently
depth-robust to resist at least some form of attack.

Memory-Bound Functions. An important precursor to memory-hard functions
are memory-bound functions. First introduced in [ABMW05] here the complexity
measure of interest is the number of cache misses required to evaluate the func-
tion. On the highest level the motivation is the same as that of memory-hard
functions; namely to build moderately hard functions which are more equally
hard across different computational devices (compared to the rather unbalanced
notion of plain computational complexity). In particular it was observed that
while computational speeds may vary greatly between different devices the same
is not as true for memory latency speeds [DGN03]. In contrast memory-hard
functions aim to achieve egalitarian hardness by making the cost of custom
hardware prohibitively large [Per09]. The first provably secure memory-bound
function was (implicitly) given in [DGN03] where it was used to construct a pro-
tocol for fighting SPAM email. The construction was later improved in [DNW05]
which was also the first result in cryptography to make use of a version of the
pebbling model of computation; a technique later adapted in [AS15].

Password Storage. Recent high-profile security breaches (e.g., RockYou, Sony,
LinkedIN, Ashley Madison 11) highlight the importance of proper password stor-
age practices like salting [Ale04] and key stretching [MT79]12. However, hash it-
eration, the technique used by password hash functions like PBKDF2 [Kal00] and

11 See http://www.privacyrights.org/data-breach/ (Retrieved 9/1/2015).
12 Users routinely select lower entropy password [Bon12], which are especially vulnera-

ble to an offline attacker when the underling password hash function is inexpensive to
compute. Furthermore, stricter password restrictions (e.g., requiring a mix of num-

 http://www.privacyrights.org/data-breach/


bcrypt [PM], is typically an insufficient defense against an adversary who could
build customized hardware to evaluate the underlying hash function. In particu-
lar, the cost of computing a hash function H like SHA256 or MD5 on an ASIC is
orders of magnitude smaller than the cost of computing H on traditional hard-
ware [DGN03,NB+15]. By contrast, memory costs tend to be relatively stable
across different architectures [DGN03], which motivates the use of memory-hard
functions for password hashing [Per09].

Several orthogonal lines of research have explored defenses such as: dis-
tributing the storage and/or computation of a password hash across multiple
servers (e.g., [BJKS03,CLN12]), storing fake password hashes on the server (e.g.,
[JR13,BBBB10]), the inclusion of secret salt values (e.g., “pepper”) in password
hashes [Man96,BD16] and the inclusion of the solution(s) to hard AI challenges
in password hashes [CHS06,DC08,BBD13].

2 Preliminaries

We begin with some notation. Given a directed acyclic graph (DAG) G = (V,E)
of size |V | = n and a subset S ⊆ V we use G − S to denote the resulting
DAG after removing all nodes in S. We denote by depth(G) the length of the
longest (directed) path in G and we denote by indeg(G) the maximum number
of directed edges entering a single node. For integers a ≤ b we write [a, b] as
shorthand for the set {a, a+ 1, . . . , b} and we write [a] for the set [1, a].

We use Hλ =
∑λ
i=1

1
i to denote the λ’th harmonic number. In particular Hλ

can be approximated by the natural logarithm Hλ ≈ lnλ.

2.1 Complexity and Quality of Attacks

We consider algorithms in the parallel random oracle model (pROM) [AS15] of
computation.13 That is an algorithm is repeatedly invoked. At invocation i ∈
{1, 2, . . .} the algorithm is given the state (bit-string) σi−1 it produced at the end
of the previous invocation. Next A can make a batch of calls qi = (q1,i, q2,i, . . .)
to the underlying round function H (modeled as a random oracle (RO)). Then
it receives the response from H and can perform arbitrary computation before
finally outputting an updated state σi. The initial state σ0 contains the input to
the computation which terminates once a special final state is produced by A.
Apart from the explicit states σ the algorithm may keep no other state between
invocations. For a input x and coins r we denote by A(x; r;H) the corresponding
(deterministic) execution of A.

We define the runtime time(A) to be the maximum running time of A in
any execution (over all choices of x, r and H). Then the cumulative memory
complexity (CMC) and cumulative RO complexity are defined as

bers and upper/lower case letters) [SS09] have not been found to greatly improve
the entropy of the resulting passwords [KSK+11,BKPS13]. In fact, sometime these
policies reduced the entropy of user selected passwords [KSK+11]. These policies are
often associated with high usability costs [FH10].

13 Alternatively the results in this work also apply to the random access machine model
of computation.



cmc(A) = max
x,r,H

∑
i∈[T−1]

|σi| crc(A) = max
x,r,H

∑
i∈[T ]

|qi|

where |σ| is the bit-length of state σ, |q| is the dimension of the vector q and
maxx,r,H denotes the maximum over all possible executions of A. Similarly the
absolute memory complexity (AMC) and absolute RO complexity are defined to
be (ARC)

amc(A) = max
x,r,H

max
i∈[T−1]

|σi| arc(A) = max
x,r,H

max
i∈[T ]

|qi|.

We remark that these complexity measures are stricter then is common, espe-
cially with respect to maximizing over all random oracles H. However we use
them to upper-bound the complexity of our attacks so this strictness can only
serve to strengthen the results.

Using these tools we can now define the complexity of an algorithm as follows.

Definition 1 (AT and Energy Complexities). Let A be a pROM algorithm
which computes #inst(A) instances of an iMHF in parallel. Then for any core-
memory area ratio R > 0 and any core-memory energy ratio R̄ > 0 the (amor-
tized) AT-complexity and the (amortized) energy-complexity of A are defined to
be

ATR(A) = [amc(A) +R · arc(A)]× time(A)

#inst(A)
ER̄(A) =

cmc(A) + R̄ · crc(A)

#inst(A)
.

Finally we can define the quality of an attack in terms of how much (if at
all) it improves on the näıve algorithm

Definition 2 (Attack Quality). Let f be an MHF with näıve algorithm N and
let A be a pROM algorithm for evaluating #inst(A) instance(s) of f . Then for
any core-memory area ratio R > 0 and any core-memory energy ratio R̄ > 0 the
AT-quality and energy-quality of A is defined to be

AT-qualityR(A) =
ATR(N )

ATR(A)
E-qualityR̄(A) =

ER̄(N )

ER̄(A)
.

In particular if either quantity is less than 1 then we call A an attack on f .

Let f be an iMHF based on some DAG G of size n with constant in-degree.
Observe f can always be evaluated by computing one intermediate value at a
time in topological order while never deleteing a computed value. Clearly this
always results in correctly computing f and it corresponds to a well defined
pROM algorithm triv for evaluating f . Moreover ATR(triv) = Θ(n(n+ R)) and
ER̄(triv) = Θ(n(n+ R̄)). Given a constant c > 0 we say that f is a c-ideal iMHF
if, when triv = N is the näıve, for any attack A we have AT-qualityR(A) ≥ c
and E-qualityR̄(A) ≥ c. This is motivated by the observation that for any iMHF
algorithm triv is always a possible way to evaluate it. An ideal iMHF captures
the property that triv is (approximately) the best evaluation strategy possible.

Unfortunately we will later show that c-ideal iMHFs do not exist for any con-
stant c > 0. As n→∞ we will have AT-qualityR(A) = ω(1) and E-qualityR̄(A) =
ω(1).



2.2 Pebbling and Graph Theory

We provide some shorthand for describing algorithms and give some useful graph
theoretic definitions and lemmas.

Graph Pebbling. To simplify exposition, our attacks are often described in the
language of parallel graph pebbling [AS15]. However, unlike in [AS15], we merely
think of this as shorthand for describing an evaluation strategy of an iMHF rather
then describing an algorithm in a distinct model of computation.

In particular any iMHF f which we consider is based on some fixed underlying
DAG G with (a single source and sink node) which describes which values are
used as inputs to which calls to the round function. To compute f on some input
x each node of G is assigned a value (bit-string). The source receives the value x.
The value of any other node v is defined to be the output of the round function
applied to the values of the parent nodes of v. Finally f(x) is defined to be the
value of the sink node.14

With this in mind, each round of pebbling corresponds to one invocation
in an execution. Placing a pebble on a node v in some round is shorthand for
computing the value of v by computing the round function on the values of v’s
parents. Clearly this can only be done if (x1, . . . , xz) are stored in memory and
so, if an algorithm places a pebble on a node whose parents do not all contain
a pebble then we call such a move illegal. Thus we will always show that our
pebbling strategies only produce legal pebblings in order to ensure that they
correspond to a feasible pROM algorithm for evaluating iMHF. Finally having a
pebble on a node at the end of a round corresponds to storing the value of that
node in the state σ for that invocation.

Graph Theory. The key insight behind our attacks is that if a graph is not
depth-robust enough then it can be efficiently pebbled.

Definition 3 (Depth Robust and Depth Reducible DAGs). For e, d ∈ N
a DAG G = (V,E) is called (e, d)-depth-robust if

∀S ⊆ V : |S| ≤ e⇒ depth(G− S) ≥ d.

If G is not (e, d)-depth-robust then we say that G is (e, d)-reducible.

In order to prove the generic attack on any iMHF we rely on a lemma,
originally due to Valiant [Val77], to show that no graph is depth-robust enough
not to permit at least some sort of attack.

3 Generic Attack

In this section we describe a general pebbling attack GenPeb against any (e, d)-
reducible graph. GenPeb(G,S, g, d) takes as input a DAG G = (V,D) and a set
S ⊆ V of size e such that depth(G − S) ≤ d and a parameter g ≥ d which we

14 For concreteness, though not relevant to this work, in most cases the round func-
tion is simply the compression function H (with the exception of the Linear iMHF
of [CGBS16]).



will define below. In every round GenPeb makes progress (i.e., places a pebble on
node i in the i’th round). Thus, time

(
GenPeb

)
= n as the algorithm will place a

pebble on the final node n in the n’th rounds. Intuitively, GenPeb is divided into
two types of phases: Balloon Phases and a Light Phases. During light phases we
throw out most of the pebbles on the graph keeping only pebbles on nodes in S,
the highest pebbled node i and the parents of the nodes [i, i + g] that we plan
to pebble in the next g rounds. Every g rounds we execute a balloon phase to
ensure that we will always have pebbles placed on the parents of the nodes that
we plan to pebble in the next g rounds. Because we never remove pebbles on
nodes in S and the DAG G−S has depth ≤ d we will be able to accomplish this
goal in at most d rounds. During light phases we keep at most δg+ e pebbles on
the graph and we place at most one new pebble on G in every round. Thus the
total cost during all light phases is at most n

(
δg + e+ R̄

)
. While we may incur

higher costs during a balloon phase we are only in the balloon phase for at most
dn
g rounds.

We analyze the energy complexity of GenPeb in terms of the depth reduc-
tion parameters e and d. These results are summarized in Theorem 2. While
GenPeb will lead to attacks with good energy-quality E-qualityR̄ the attack may
not necessarily have good AT-quality AT-qualityR. This is because GenPeb may
still have high absolute memory and RO complexity due to the balloon phase.
However, we can easily circumvent this problem by pebbling multiple copies of
the DAG G in parallel, which corresponds to evaluating multiple independent
instances of the iMHF. In particular, PGenPeb pebbles bg/dc instances of G in
parallel. We stagger evaluation of the different iMHF instances so that at most
one of the bg/dc pebbling instances is in a balloon phase at any point in time. To
accomplish this PGenPeb simply waits (i− 1)d steps to begin pebbling the i’th
instance of G. Thus, PGenPeb takes at most n+ bg/dcd ≤ 2n steps to complete.
The absolute memory and RO complexity of PGenPeb is essentially just the cost
of the balloon phase for a single iMHF instance. Thus, PGenPeb leads to attacks
with good AT-quality AT-qualityR because the cost of the balloon phase can be
amortizes among the bg/dc iMHF instances we compute. Theorem 3 states both
the energy and AT complexity of PGenPeb. The energy complexity of PGenPeb is
roughly equivalent to the energy complexity of GenPeb, and the AT-complexity
of PGenPeb is roughly twice the energy complexity of PGenPeb.

In the rest of the paper we will consider several specific families of DAGs
like the underlying DAGs in the Catena and Argon2i iMHFs. For Catena, we
can find a set S ⊆ V of size e = n/t such that depth(G − S) = O(t) for every
t > 1. For Argon2i we can find a set S with expected size O (n/t+ (n lnλ)/λ)
such that depth(G − S) ≤ t · λ. Combined with Theorem 3 we will obtain an
attack on Catena with quality Ω

(
n1/3

)
and an attack on Argon2i with quality

Ω
(
n1/4/ lnn

)
.

GenPeb makes use of two subroutines need and keep. In our complexity anal-
ysis we omit the cost of computing these functions. However we stress that in all
our attacks they are either trivial (constant) or very easy to compute. By “easy
to compute” we mean that the sets returned by these subroutines will have a



short description size (e.g., “all nodes” or [i, j]) and that it will be trivial to
decide whether a given node v is in these sets.

We begin with some useful notation. Fix a DAG G of size n and number its
nodes in (arbitrary) topological order from 1 to n. For i ∈ [n] and j ≥ i we write
parents(i, j) for the set of nodes v with an edge (v, u) for some u ∈ [i,min{j, n}].
Next we fix the class of functions from which need and keep must be chosen in
order to prove that GenPeb produces a legal pebbling (and thus defines a pROM
evaluation algorithm).15

Algorithm 1: GenPeb (G, S, g, d)

Arguments : G = (V,E), S ⊆ V , g ∈ [depth(G− S), |V |], d ≥ depth(G− S)
Local Variables: n = |V |

1 for i = 1 to n do
2 Pebble node i.
3 l← bi/gc ∗ g + d+ 1
4 if i mod g ∈ [d] then // Balloon Phase

5 d′ ← d− (i mod g) + 1
6 N ← need(l, l + g, d′)
7 Pebble every v ∈ N which has all parents pebbled.
8 Remove pebble from any v 6∈ K where K ← S ∪ keep(i, i+ g) ∪ {n}.
9 else // Light Phase

10 K ← S ∪ parents(i, i+ g) ∪ {n}
11 Remove pebbles from all v 6∈ K.

12 end

13 end

Definition 4 (Needed Pebbles). Fix a subset of target nodes T ⊆ V and a
pebbling configuration C ⊆ V of G.16 Then a node v ∈ V is needed for T within
d′ steps if there exists a completely unpebbled path P 17 of length ≥ d′ from v
to some node in T . We use NC,T,d′ to denote the set of all such nodes. We use
KC,T to denote the set of all nodes v ∈ C such that v ∈ T or v has a child v′

such that v′ ∈
⋃n
i=0NC,T,i.

Definition 5 (Valid need and keep). We say that the pair of functions need
and keep is valid for GenPeb(G,S, d, g) if we always have need(i, j, d′) ⊇ NC,[i,j],d′
and keep(i, j) ⊇ KC,[i,j] whenever GenPeb(G,S, depth(G−S), g) queries need or
keep.

In our generic iMHF attack we use use the trivial functions need and keep
which always output V (e.g., during the balloon phase we pebble every node we

15 Later on we instantiate need and keep in several ways but will always prove that
they are valid for the inputs we use them for.

16 That is fix a set C of nodes of V which currently have a pebble on them.
17 That is P ∩ C = ∅.



can during each round and we never discard any pebbles). The following fact is
easy to see:

Fact 1 (Generic Valid Subroutine) Fix a DAG G = (V,E) and let need
and keep be the constant function returning V . Then the pair need and keep is
valid for GenPeb(G,S, d, g) for any set S ⊆ V and any parameters g ≥ d ≥
depth(G− S).

While we would already obtain high quality attacks on Catena and Argon2i
by using the generic need and keep subroutines, we show how our attacks can be
optimized further by defining the subroutines need and keep more carefully.

We remark that by leaving need and keep undefined for now we leave some
flexibility in the implementation of the balloon phase in GenPeb(G,S, g, d). Dur-
ing each round of a balloon phase we may pebble any v ∈ V which has all
parents pebbled, but we are only required to add pebbles to these nodes once it
becomes absolutely necessary to finish the balloon phase in time (e.g., there are
only d′ rounds left in the balloon phase and the vertex v is part of an completely
unpebbled path to T of length ≥ d′. Similarly, we are allowed to remove pebbles
provided that they are no longer needed for the balloon phase (e.g., every path
to T from that node has an intermediate pebble).

The easiest way to satisfy these conditions is to simply pebble every v ∈ V
which has all parents pebbled, and to never remove pebbles during the balloon
phase (Fact 1). Indeed this is exactly what we do in our general attack on iMHFs.
However, we demonstrate that further optimizations are possible against the
Catena and Argon2i iMHFs (e.g., each of the new pebbles we add during a
Catena balloon phase does not need to remain on the DAG very long). In each
case the subroutines need and keep will have very simple instantiations — we
will not need to perform complicated computations like breadth first search to
find these sets.

Fix any G, S, g and d and let M(G,S, g, d) be the largest number of pebbles
simultaneously on G − S − parents(i, i + g) during any round i which is in a
Balloon phase of GenPeb(G,S, g, d).18. Similarly let C(G,S, g, d) be the largest
number of pebbles placed on G during any single round in a Balloon Phase. In
the following we prove that GenPeb always produces a legal pebbling. Thus it
describes a well formed pROM algorithm A for evaluating an iMHF based on
G. We also show how to use M(G,S, g, d) and C(G,S, g, d) to upper-bound the
energy-complexity of A with hardcoded inputs (G,S, g, d).

Theorem 2 (Energy Complexity of GenPeb). Let G = (V,E) be a DAG,
with indeg(G) = δ. Further let S ⊆ V with |S| = e and d ≥ depth(G − S) and
let integer g ∈ [d, n]. Fix any valid pair of subroutines need and keep and let A
be the pROM algorithm described by GenPeb with hardcoded inputs (G,S, g, d).
Then A produces a valid pebbling and for any core-memory energy ratio R̄ and

18 Recall that there are n/g Balloon Phases and the jth Balloon Phase consists of rounds
{jg + 1, . . . , jg + d}



M = M(G,S, g, d) and C = C(G,S, g, d) it holds that:

cmc(A) ≤ n
(
d ·M
g

+ δg + e

)
crc(A) ≤ n

(
min{d · C, n}

g
+ 1

)

ER̄(A) ≤ n
(
d ·M + min{dC, n} · R̄

g
+ δg + e+ R̄

)
.

Proof. We first prove that GenPeb(G,S, g, d) produces a legal pebbling to ensure
that A is a well defined algorithm. Then we upper-bound its energy complexity.

Recall that pebbles can be removed at will and by definition, in Step 7,
GenPeb only places a pebble if it is legal to do so. Thus the only illegal move
could come due to Step 2. Assume no illegal pebble has been placed up to node
i. To show that i is then also pebbled legally it suffices to show that each of its
parents P ⊆ V are have a pebble at the beginning of round i. The most recent
Balloon Phase to have completed before round i (if any) consisted of rounds
B = [i′, i′+d] where i−(i′+d) ≤ g. Consider the partition P1 = P∩[i′+d+1, i−1],
P2 = P ∩ [i′, i′ + d] and P3 ∩ [1, i′ − 1] of the set of parents P . By assumption
all v ∈ P1 were pebbled (legally) in the previous g rounds using Step 2 and so
were not removed (by definition of K in Step 10). Moreover by assumption all
nodes in P2 where pebbled by Step 2 during B and so were not removed (by
definition of K in Step 8 and the validity of the subroutine keep the pebble is
not removed during the balloon phase B = [i′, i′ + d] and by definition of K in
Step 10 the pebble was not removed during rounds [i′ + d + 1, i − 1]). Thus it
suffices to prove that all v ∈ P3 contained a pebble at some point during B since
then by definition of K in Steps 2 and 10 they too will not be removed.

Let P4 be the subset of P3 which don’t contain a pebble at the start of B.
(If it is empty we are done.) Otherwise, for a given round j let pj be all paths
which end with a node in P4 and are unpebbled at the beginning of the round.
Let lj be the length of the longest path in pj . We argue that ∀j ∈ [i′, i′ + d− 1]
then lj ≤ d − (j − i′). If this is the case then we are done. Entering the final
round i′ + d − 1 the length of the longest unpebbled path is li′+d−1 ≤ 1 so by
the end of the final round of B all nodes P4 – the end points of paths pj – are
pebbled.

We argue that lj ≤ d − (j − i′) by induction. Clearly, this is true when
j = i′ as lj ≤ depth(G − S) ≤ d. Now assume that lj ≤ d − (j − i′) for some
j ∈ [i′, i′ + d− 1], let p ∈ pj denote a longest path and let v denote the starting
node of p. We first observe that either the starting node v of p has no parents or
they are all pebbled.19 Second, we observe that, because need is valid, in round
j we must either have v ∈ N or we must have lj < d − (j − i′). In the latter
case we have lj+1 ≤ lj ≤ d − (j + 1 − i′) — because keep is valid we are not
allowed to remove pebbles from any of the parents of v. In the former case we
have lj+1 ≤ lj−1 ≤ d−(j+1−i′) because v ∈ need

(
i′, i′+g, d′ = d−(j+1−i′)

)
by the validity of need. Thus in Step 7 of round j node v is pebbled. Finally it
remains there till the end of the round since v ∈ keep(j, j+ g) because there is a

19 as otherwise it wouldn’t be a longest path in pj



completely unpebbled path from v’s children in p to [i′, i′+g+d]. This completes
the proof that GenPeb produces a legal pebbling.

Recall that the energy-complexity ofA can be computed as ER̄(A) = cmc(A)+
R̄ · crc(A). To upper-bound cmc(A) we can sum upper-bounds on the cmc of the
Balloon phases and the cmc of the Light phases. To compute the Balloon phase
term notice that GenPeb is in a Balloon Phase for nd/g steps and during each
round i of a balloon phase there are, by definition, at most M(G,S, g, d) extra
pebbles on G − S − parents(i, i + g). On the other hand, there are clearly at
most n Light phase steps and at the start of each round i of a light phase there
are no pebbles on G− S − parents(i, i+ g). Finally, during each round i we pay
cumulative memory cost at most e to keep pebbles on nodes in S and at most
δg to keep pebbles on nodes in the set parents(i, i + g), which can be of size
at most δg. Adding these three terms and factoring out an n term we get that

cmc(A) ≤ n
(
d·M(G,S,g,d)

g + δg + e
)
.

Placing a pebbled on G corresponds to making a call to H. To upper-bound
crc(A) we observe that in any round of a Light phase only one pebble is ever
placed on G (namely in Step 2). During each balloon phase we place at most
C(G,S, g, d) pebbles on the graph in each rounds, and at most n pebbles on the

graph in total. Thus we can write crc(A) ≤ n
(

min{n,d·C(G,S,g,d)}
g + 1

)
. Combing

this with the bound on cmc and rearranging terms we obtain the theorem. �
The following Theorem 3 upper-bounds the complexity of PGenPeb. The

proof in the full version [AB16] closely follows the analysis of GenPeb in The-
orem 2. The key difference is that we evaluate multiple instances, and at that
at most one of these instances is in a balloon phase at any point in time. Thus,
we get a much tighter bound on AT -complexity because the worst-case memory
usage M is approximately the same as the average memory usage of PGenPeb.

Theorem 3 (Complexity of PGenPeb). Let G = (V,E) be a DAG, with
indeg(G) = δ. Further let S ⊆ V with |S| = e and d ≥ depth(G− S) and let in-
teger g ∈ [d, n]. Fix any valid pair of subroutines need and keep and let A be the
pROM algorithm described by PGenPeb with hardcoded inputs

(
G,S, g, d, b gdc

)
.

Then for any core-memory area and energy ratios R > 0 and R̄ > 0 and
M = M(G,S, g, d) and C = C(G,S, g, d) it holds that:

ATR(A) ≤ 2n

[
d(M +RC)

g
+ δg + e+R

]
and

ER̄(A) ≤ n
[
dM + min{dR̄C, nR̄})

g
+ δg + e+ R̄+ 1

]
.

4 Sandwich Graph Attacks

In this section we focus on the two Catena hash functions [FLW13] as well as the
second two Balloon Hashing constructions of [CGBS16]. The first Catena iMHF
is given by the Catena Bit Reversal Graph (which we denote BRGnλ); an n node
DAG which consists of a stack of λ ∈ N≥1 bit-reversal graphs [LT82]. Each node



Algorithm 2: PGenPeb (G, S, g, d, k)

Arguments : G, S ⊆ V , g ∈ [depth(G− S), |V |] d ≥ depth(G− S), k ≤ b g
d
c

Local Variables: n = |V |, copies G1, . . . , Gk = G, S1, . . . , Sk = S

1 for t = 1 to n+ kd do
2 Parallel for j = max{1, t−n

d
} to min

{
k, t−1

d

}
do

3 i← t− jd
4 Pebble node i in Gj .
5 if i = n then
6 Remove pebbles from all v /∈ {n} in Gj
7 Break

8 end
9 l← bi/gc ∗ g + d+ 1

10 if i mod g ∈ [d] then // Balloon Phase

11 d′ ← d− (i mod g) + 1
12 Nj ← needj(l, l + g, d′)
13 Pebble any v ∈ Nj which has all parents pebbled.
14 Remove pebble from any v 6∈ Kj where

Kj ← Sj ∪ keepj(i, i+ g) ∪ {n}.
15 else // Light Phase

16 Kj ← Sj ∪ parentsj(i, i+ g) ∪ {n}
17 Remove pebbles from all v 6∈ Kj .

18 end

19 end

20 end

in a layer is associated with a log2

(
n
λ+1

)
bit string and edges between layers

correspond to the bit reversal operation20. The Catena designers recommended
choosing λ ∈ {1, 2, 3, 4} [FLW13]. The second Catena hash function is an iMHF
based on the Catena Double Butterfly Graph, denoted DBGnλ. It is an n node
DAG with O (λ log n) layers of nodes.

The “Double-Buffer” and “Linear” iMHFs of [CGBS16] consist of τ layers
of σ nodes for a total of n = τ ∗ σ nodes. Each layer is a path with its origin
connected to the final node in the path of the previous layer. Moreover all nodes
at layers τ ≥ i ≥ 1 have 20 incoming edges from nodes selected uniformly
and independently in the previous layer. In the “Double-Buffer” construction
the hash of a node is given by hashing the concatenation of all parent node
labels while in the “Linear” construction the parent node labels are first XORed
together before being hashed for greater throughput. However this difference will
not affect the results in this work.21

20 The parameter λ in Catena is related to the parameter τ in Argon2i. The intended
space complexity of Catena is σ = 2n/(λ+ 1) and the intended computation time is
n. Thus, the intended energy complexity is 2n2/(λ+ 1).

21 We remark that we have assumed that the thread count parameter p = 1. However
we observe that for p > 1 the resulting DAG has an almost identical distribution



In this section we demonstrate that all of these DAGs can be computed with
lower then hoped for energy and AT complexities (simultaneously) regardless
of the random choices made when constructing the graphs. In particular, the
iMHF corresponding to both BRGnλ and DBGnλ can be evaluated with amortized
AT complexity ATR(A) = O

(
n5/3 +Rn4/3

)
and energy complexity ER̄(A) =

O
(
n5/3 +Rn4/3

)
for any value of λ. In fact, our attacks hold for a more general

class of graphs characterized by Definition 6 below. Thus, to understand our
attacks it is not critical to know the exact specification of these DAGs just that
both DAGs are strict sandwich graphs. We refer an interested reader to the full
version [AB16] of this paper for the actual definitions of the Catena DAGs BRGnλ
and DBGnλ.

Definition 6 ((Strict) λ-Stacked Sandwich Graphs). Let n, λ ∈ N≥1 be a
integers such that λ + 1 divides n and let k = n/(1 + λ) and let G be a DAG
with n nodes. We say that G is a λ-stacked sandwich DAG if G contains a
directed path of n nodes (v1, . . . , vn) with arbitrary additional edges connecting
nodes from lower layers Lj

.
= {vjk+1, . . . , vjk+k} with j ≤ i to the i + 1st layer

Li+1. If the DAG has no edges of the form (u, v) with u ∈ Lj and v ∈ Lj+2+i

for i ≥ 0 then we say it is a strict λ-stacked sandwich DAG.

In particular, the Catena bit reversal graph BRGnλ is a strict λ-stacked sand-
wich DAG with n nodes and maximum indegree indeg = 2. The Catena double
butterfly graph DBGnλ is a strict

(
λ(2x− 1) + 1

)
-stacked sandwich DAG with n

nodes, where x ≤ log n is the integer such that n = 2x ·
(
λ(2x−1)+1

)
— see the

full version [AB16] of this paper for additional details about the construction of
BRGnλ and DBGnλ. Finally, for any parameters t and s, a randomly chosen DAG
for the Double-Buffer and Linear iMHFs is a strict t-stacked sandwich graph on
n = ts nodes with probability 1.

Summary of The Results in this Section. Lemma 1 upper-bounds the depth-
robustness of any λ-stacked sandwich DAG G — any λ-stacked sandwich DAG
is (n/t, λt+t)-reducible. Thus we can apply the generic attack (Theorem 3) to get
an upper-bound on the energy and AT complexities of such graphs (Theorem 4)
and so, in particular, also for the 4 constructions mentioned above. Theorem 4
states that there is an attack A with ATR(A) and energy complexity ER̄(A) =
O
(
(λ+ δ)n5/3 + R̄n4/3

)
, where δ denotes the maximum indegree of the DAG.

While these results will also be useful in the next section focused on Argon2i
for the 4 constructions above the results can be improved somewhat by observing
that the constructions are actually based on strict stacked sandwich DAGs. In
particular, we can further decrease the resulting complexity if we first define more
targeted need and keep functions and prove that they are valid for PGenPeb when
G is a strict λ-stacked sandwich DAG (Lemma 2). Theorem 5 says that there is
an attack A with ATR(A) and energy complexity ER̄(A) = O

(
δn5/3 + R̄n4/3

)
.

except that every s/pth edge along the path forming a layer is removed. This can
only make the job easier of an evaluation algorithm. In particular the complexity
of our attacks for the case p = 1 are an upper-bound on the complexities of these
constructions for p > 1.



Algorithm 3: Function: need(x, y, d′)

Arguments: x, y ≥ x, d′ ≥ 0
Constants : Pebbling round i, g, t.

1 j ← (i mod g) // Current Layer is Lbj/tc
2 Return Lbj/tc ∩

{
it+ j i ≤ n

t

}
Algorithm 4: Function: keep(x, y)

Arguments: x, y ≥ x
Constants : Pebbling round i, g, t.

1 j ← (i mod g)
2 `← bj/tc // Current Layer

3 Return L≥`−1

The following Lemma upper-bounds the depth-robustness of any λ-stacked
sandwich DAG G. By combining this observation with the generic attack from
the previous section we can obtain strong attacks on any λ-stacked sandwich
DAG G.

Lemma 1 (Sandwich Graphs are Reducible). Let G be a λ-stacked sand-
wich DAG then for any integer t ≥ 1 G is (n/t, λt+ t− λ− 1)-reducible.

Proof. Let S =
{
vit 1 ≤ i ≤ n/t

}
. We claim that depth(G−S) ≤ λt+ t−λ− 1.

Consider any path P in G − S. For each layer Lj the path P can contain at
most t − 1 nodes from layer Lj because any sequence of t consecutive nodes
vi, vi+1 . . . , vi+1 must contain at least one node in S. Thus,

|P | ≤
λ∑
i=0

∣∣∣P⋂Lj

∣∣∣ ≤ (λ+ 1
)(
t− 1

)
.

�

The next lemma states that keep and need from Algorithm 3 and Algorithm 4
are valid for strict sandwich DAGs.

Lemma 2 (Valid need and keep for Strict Sandwich Graphs). Let G be a

strict λ-stacked sandwich DAG on n nodes, let S =
{
it i ≤ n

λ+1

}
, d = (λ+ 1)t

and g ≥ d then the functions need and keep from Algorithm 3 and Algorithm 4
are valid for GenPeb(G,S, g, d).

If we modify keep to simply return the entire vertex set then we obtain a valid
pair need and keep for general sandwich DAGs. The proofs of Lemma 2 and
Lemma 3 are in the full version [AB16].

Lemma 3 (Valid need and keep for Sandwich Graphs). Let G be a λ-

stacked sandwich DAG on n nodes, let S =
{
it i ≤ n

λ+1

}
, d = (λ + 1)t and



g ≥ d. Further, let keep be the constant function that returns V and let need
be the function from Algorithm 3. Then the pair need and keep are valid for
GenPeb(G,S, g, d).

Theorem 4 follows easily from Theorem 3, Lemma 3 and Lemma 1 by setting
g = n2/3 and t = n1/3.

Theorem 4 (Complexity of Sandwich Graph). Let F be an iMHF based
on DAG G; a λ-stacked sandwich DAG on n nodes with λ < n1/3 and maximum
indegree indeg(G) = δ. Then for any core-memory area and energy ratios R and
R̄ there exists an evaluation algorithm A with

ATR(A) ≤ 2n5/3

[
(1 + δ) + (λ+ 1) +

R

n1/3
+

2R+ (λ+ 1)R

n2/3

]
and

ER̄(A) ≤ n5/3

[
(λ+ 1) + (δ + 1) +

3R̄+ 1

n2/3
+

R̄

n1/3

]
For strict λ-stacked sandwich DAGs Theorem 5 improves on the attack Theo-
rem 4 by instantiating the keep function with Algorithm 4 instead of the constant
function keep(·) = V that returns all vertices (permissible by Lemma 2). A for-
mal proof of Theorem 4 and Theorem 5 can be found in the full version of this
paper [AB16].

Theorem 5 (Complexity of Strict Sandwich Graph). Let G be a strict
λ-stacked sandwich DAG on n nodes with λ < n1/3 and maximum indegree
indeg(G) = δ then for any core-memory area and energy ratios R and R̄ there
exists an evaluation algorithm A for the corresponding iMHF with

ATR(A) ≤ 2n5/3 ×
[
3 + δ +

R

n1/3
+

3R

n2/3

]
and

ER̄(A) ≤ n5/3 ×
[
3 + δ +

R̄

n1/3
+
R̄+ 1

n2/3

]
.

Theorem 5 follows easily from Theorem 3, Lemma 2 and Lemma 1 by setting
t = n1/3 and g = n2/3. While Theorem 4 and Theorem 5 only hold for λ < n1/3

we note there is an trivial pebbling algorithm for strict sandwich graphs with
complexity O(n2/λ), or O(n5/3) whenever λ > n1/3 — see [AB16].

We remark that for special cases (e.g., λ = 1) an alternative instantiation
of the functions need and keep in GenPeb allows us to immediately generalize a
result of [AS15]. For any λ = 1-sandwich DAG G with maximum indeg = 2 there
is an algorithm A with amc(A) = O(indeg

√
n) and cmc

(
A
)

= O(indeg×n1.5) —
our result is slightly more general in that we do not require that G has maximum
indeg = 2. Briefly, we can use need from Algorithm 3 and we can redefine keep
to simply return the exact same set as need in each round of GenPeb (so that
we don’t immediately throw out pebbles in step 14 of the same round). It is
easy to show that the pair keep and need is valid whenever G is a λ = 1-stacked
sandwich DAGs. We refer an interested reader to the full version [AB16] of this
paper for details.



5 (n, δ, w)-Random Graph Attacks

In this section we demonstrate how to extend our attacks to two recent iMHF
proposals. The first is the Argon2i iMHF — the variant of Argon2 in which
data access patterns are data independent [BDK15]. The authors recommended
using Argon2i for password hashing applications to avoid potential side-channel
leakage through data dependent memory access patterns [BDK15]. The basic
Argon2i DAG is a (pseudo) randomly generated DAG with maximum indegree
indeg = 2. Thus, we view the Argon2i DAG as a distribution over n node DAGs
— see Definition 7. The second iMHF considered is the Single-Buffer (SB) con-
struction of [CGBS16] (we considered the Double-Buffer and Linear iMHFs from
[CGBS16] in Section 4).

We begin with the following definition which fixes a class of random graphs
key to our analysis.

Definition 7 ((n, δ, σ)-random DAG). Let n ∈ N, 1 < δ < n, and 1 ≤ σ ≤ n
such that σ divides n. An (n, δ, w)-random DAG is a randomly generated directed
acyclic (multi)graph with n nodes v1, . . . , vn and with maximum in-degree δ for
each vertex. The graph has directed edges (vi, vi+1) for 1 ≤ i < n and random
forward edges (vr(i,1), vi), . . . , (vr(i,δ−1), vi) for each vertex vi. Here, r(i, j) is
independently chosen uniformly at random from the set [max{0, i− σ}, i− 1].

We observe that a τ -pass instance of Argon2i iMHF 22 is an (n, 2, n/τ)-
random DAG23. Similarly the τ -pass “Single-Buffer” construction of [CGBS16]
is based on an (n, 21, n/τ)-random DAG. Here, σ = n/τ denotes the size of the
memory window used by the naive pebbling algorithm N (e.g., amc(N ) = σ).
The hope is that such graphs will have complexity θ(σ2 × τ).

We cannot directly apply our results from the previous section because a
(n, δ, σ)-random DAG will not be λ-stacked sandwich DAG with high probability.
However, we can show that these graphs are ‘close’ to λ-stacked sandwich DAGs
in the sense that, with high probability, there is a ‘small’ set S such that we
can turn G into a λ-stacked sandwich DAGs just by removing edges incident to
vertices in S. Definition 8 formalizes this intuition.

Definition 8 ((m,λ)-Layered Graph). Let G be a DAG with n = kλ nodes
v1, . . . , vn with directed edges (vi, vi+1) for 1 ≤ i < n. Given a set S of nodes we
use GS to denote the resulting DAG if we removed all directed edges (v, v′) that
are incident to nodes in S (e.g., v ∈ S or v′ ∈ S) except for edges of the form
(vi, vi+1). We say that G is a (m,λ)-layered DAG if we can find a set S with at
most m nodes such that GS is a λ-stacked sandwich DAG.

22 In the notation of [BDK15] the case when τ = 1 corresponds to a single pass.
23 In response to our attack and the attack of Gibbs et al. [CGBS16] the Argon2i

team recently ‘tweaked’ their construction by adding additional edges of the form
(i, i + σ), where σ = n/τ is the size of the memory window. While this tweak does
seem to eliminate the attack of Gibbs et al. [CGBS16], it is ineffective against our
attack. In fact, as long as τ < n1/4 we can completely ignore these extra edges when
constructing our depth-reducing set S in Lemma 5.



Demonstrating that a graph is (m,λ)-layered is useful because Theorem 6
upper-bounds the AT and energy complexities of an iMHF based on such a graph.
In particular, Theorem 6 relies on Lemma 4 which states that any layered graph
is also depth reducible. In Lemma 5, for any given probability γ > 0 we upper-
bound the size m when viewing an Argon2i graph as an (m,λ)-layered graph.
Thus we get Theorem 7 which describes an evaluation algorithm for Argon2i and
the Balloon Hashing algorithms and bound their AT and energy complexities. In
particular it states both their expected values and upper-bounds holding with a
given probability γ.

Lemma 4 (Layered Graphs are Reducible). Let G be a (m,λ)-layered DAG
then for any integer t ≥ 1 G is (n/t+m,λt+ t− λ− 1))-reducible.

Proof. By definition there is a set S1 of m nodes such that GS1
is a λ-stacked

sandwich DAG. Now by Lemma 1 we can find a set S2 ⊆ V (G) of size n/t such
that GS1

− S2 has depth at most depth
(
GS1
− S2

)
≤ λt + t − λ − 1. Now we

set S = S1

⋃
S2 we have |S| ≤ m+ n/t and depth(G− S) ≤ depth(GS1

− S2) ≤
λt− λ− 1.

Theorem 6, which upper bounds the complexity of a layered graph, now
follows directly from Lemma 3, Lemma 4 and Theorem 2. The proof is in the
full version [AB16] of the paper.

Theorem 6 (Complexity of Layered Graph). Let G be a (m,λ)-layered
DAG on n nodes with λ < n1/3 and maximum indegree indeg(G) = δ and fix
any t > 0, g ≥ t(λ + 1) then there exists an attack A on the corresponding
iMHF such that for any core-memory ratio R > 0 and R̄ > 0 the energy and AT
complexities of A are at most

ATR(A) ≤ 2n

[
n

t
+m+ δg +R+

(λ+ 1)t · (n+ 2R) +R · n
g

]
and

ER̄(A) ≤ n

[
(λ+ 1)t

(
n+ 2R̄

)
+ R̄ · n

g
+ δg +

n

t
+m+ R̄

]
.

Lemma 5 is the key technical result in this section. It states that, in particular,
for any m ≤ n and any constants τ and δ a (n, δ, σ = n/τ)-random DAG will be
a
(
O
(
m log n

)
, O
(
n
m

))
-layered DAG with high probability.

In a bit more detail we show how to construct a set S of (expected) size
O
(
m log n

)
. We note that our construction is computationally efficient. Intu-

itively, we partition the nodes of G into equal sized layers of consecutive nodes
L0, . . . , Lλ. We add a node v ∈ Li to our set S if any of v’s parents are also in layer
Li. In the single pass case (w = n) we will add a vertex v ∈ Li to S with proba-
bility at most (δ − 1)/i. Thus, in expectation we will add at most (δ − 1) |Li| /i
nodes from layer Li to S. In total we add at most n

λ+1

∑λ
i=1

1
i = nHλ

λ+1 nodes
from layers L≥ 1 in expectation. Recall that by Hλ we denote the λth harmonic
number.



Lemma 5 ((n, δ, σ)-random DAGs are Layered). Fix any λ ≥ 1 and let
q = d n

λ+1e. Then a (n, δ, σ = n/τ)-random DAG is a (m,λ)-layered DAG, where

the random variable m has expected value E [m] = τ(δ−1)q+q+ (δ−1)q·Hλ
2 . Fur-

thermore, for any γ > e
−3

(
E[m]−q

)
/4

we have m ≤ E [m]+

√
3
(
E [m]− q

)
ln γ−1

except with probability γ.

Proof of Lemma 5. Let G be a (n, δ, σ = n/τ)-random DAG with nodes
v1, . . . , vn. For simplicity assume that λ = n/q − 1 is an integer so that we
can divide G into λ layers L0, . . . , Lλ of equal size q (If λ is not an integer then
the first dλe − 1 layers will contain q + 1 nodes each and the last layer will con-
tain ≤ q nodes.). Layer Li contains nodes Li = {viq+1, . . . , v(i+1)q}.We construct
S ⊆ V (G) as follows:

S =
⋃
i

{
vj ∈ Li ∃s ≤ d− 1.vr(j,s) ∈ Li

}
.

That is if any of v’s parents are in the same layer as v we add v to S.
Given vj ∈ Li we let xj denote the indicator random variable that is 1 if

and only if vr(j,t) ∈ Li for some index t ≤ δ − 1. We note that by linearity of
expectation we have

E [|S|] ≤
λ∑
t=0

q∑
j=1

E [xiq+j ] .

Let λ′ = bσq c−1. Suppose first that i ≤ λ′ and 0 < j ≤ q so that iq+j ≤ σ and

viq+j ∈ Li (i > 0) then the probability that we add viq+j to S because one of its
parents is also in layer Li is at most (δ−1)(j−1)/(iq). Thus, E [xiq+j ] ≤ (δ−1)/i

for each vj ∈ Li. Now suppose that iq + j > σ then the probability that we
add vr(iq+j) to S because one of its parents is in the same layer is at most
(δ− 1)(j − 1)/σ = (δ− 1)(j − 1)τ/n. Thus, E [xiq+j ] ≤ (δ− 1)(q− 1)τ/n. Thus,

in expectation we have

E [|S|] ≤ q + (δ − 1)

λ′∑
i=1

(q − 1)

2i
+ q(δ − 1)

λ∑
i=λ′+1

(q − 1)τ

n

≤ q + (δ − 1)

λ′∑
i=1

(q − 1)

2i
+ q(δ − 1) (λ− λ′) (q − 1)τ

n

≤ q + (δ − 1)
(q − 1)Hλ′

2
+ q(δ − 1)τ ,

where Hλ ≈ lnλ denotes the λ’th harmonic number and the last inequality
follows because (q− 1)λ ≤ n. Observe that the DAG GS with all directed edges
originating in S deleted (i.e., delete edges of the form (v, v′) with v ∈ S) will
be a λ-stacked sandwich graph because there are no forward edges within each
layer apart from the chain (vi, vi+1). Let X =

∑n
j=q+1 xj . Because the random



variables xj ∈ {0, 1} are independent standard concentration bounds imply that

Pr
[
X ≥ E [X] + τ

]
≤ exp

( −τ2

2Var(X)+2τ/3

)
. In our case we have

Var(X) =

n∑
i=q+1

n∑
j=q+1

E [xixj ]− E [xi]E [xj ] =

n∑
i=q+1

E [xi]− E [xi]
2

≤ E [X] = (δ − 1)
(q − 1)Hλ′

2
+ q(δ − 1)τ .

Thus, for any γ > exp
(
−3E [X]/4

)
we can set τ =

√
3E [X] ln γ−1 to obtain

Pr
[
X ≥ E [X] + τ

]
≤ exp

(
−τ2

E [X] + 2τ/3

)
≤ exp

(
3E [X] ln γ

3E [X]

)
≤ γ .

Where the second inequality follows from the observation that 2τ/3 < E [X]

whenever γ > exp
(
−3E [X]/4

)
. As |S| = X + q we have

|S| ≤ q+(δ−1)
(q − 1)Hλ′

2
+q(δ−1)τ+

√
3

(
(δ − 1)

(q − 1)Hλ′

2
+ q(δ − 1)τ

)
ln γ−1

except with probability γ24. �
As an immediate consequence of Lemma 5 we get an attack on the static mode

of operation of the Password Hashing Competition winner Argon2. Specifically
we can attack the Argon2i variant in which memory accesses patterns are not
input dependent — a desirable property to prevent side-channel attacks based
on cache timing. As another immediate consequence we also get an attack on
the Single-Buffer construction of [CGBS16].

Theorem 7. Let G be a (n, δ, n/τ)-random DAG on n nodes. There exists an
evaluation algorithm A for the corresponding iMHF such that for any core-
memory ratios R > 0 and R̄ > 0 the expected AT and energy complexities of
A are at most E [ATR(A)] ≤ UAT and E [ER̄(A)] ≤ UE, where

UAT = 2n7/4

[
1 + 2δ +

(δ − 1)Hn1/4/τ

2
+

1

τ
+
n1/4R+

√
n+R

n3/4

]
and

UE = n7/4

[
1 + 2δ +

(δ − 1)Hn1/4/τ

2
+

1

τ
+
n1/4R̄+

√
n+ R̄

n3/4

]
.

24 If γ < exp
(
− 3E [X]/4

)
then we can set τ =

√
3E [X] ln γ−1 to obtain a slightly

weaker concentration bound. However, the term exp
(
−3E [X]/4

)
is already negligi-

bly small in all of our applications.



Furthermore, except with probability γ > e
−n3/4

(
δ−1
)(

1+H
n1/4/τ

/2
)
, we have

ATR(A) ≤ UAT + 2n7/4 ×

√
3(δ − 1)

(
Hn1/4/τ + 2

)
ln γ−1

2n3/4
and

ER̄(A) ≤ UE + n7/4 ×

√
3(δ − 1)

(
Hn1/4/τ + 2

)
ln γ−1

2n3/4
.

In the special case τ = 1 (single-pass variants) Theorem 7 follows by setting
q = n3/4 in Lemma 5 and λ = n1/4−1, g = n3/4 and t = n1/4 in Theorem 6. For
the general case (multi-pass variants) we can customize the function keep. The
basic idea is simple: during a balloon phase we only need to keep about σ extra
pebbles on the (n, δ, σ = n/τ)-random DAG because we can discard pebbles
outside of the current memory window. The proof is included in the full version
of this paper [AB16].

6 Ideal iMHFs Don’t Exist
In this section we show that ideal iMHFs do not exist. More specifically we show
that for every graph G there exists node set S and positive integer g ≥ depth(G−
S) such that the iMHF evaluation algorithm A = PGenPeb(G,S, g, d, bg/dc) has
AT and energy-complexity o(n2/ log1−ε n) for any constant ε > 0. In particular,
if we take the näıve algorithm to be N = triv then A is an attack with energy-
quality ω(log1−ε n). We first prove (Lemma 7 ) that all DAGs are reducible
provided that the maximum indegree δ is sufficiently small (e.g., δ ≤ log0.999 n).
The proof of Lemma 7 follows from a result of Valiant [Val77]. Once we have
established that all DAGs are reducible we can use PGenPeb to obtain a high
quality attack on any iMHF.

Lemma 6 ([Val77] Extension). Given a DAG G with m edges and depth
depth(G) ≤ d = 2i there is a set of m/i edges s.t. by deleting them we obtain a
graph of depth at most d/2.

Lemma 7 (All DAGs are Reducible). Let G = (V,E) be an arbitrary DAG
of size |V | = n = 2k with indeg(G) = δ. Then for every integer t ≥ 1 there is a
set S ⊆ V of size |S| ≤ tδn

log(n)−t such that depth(G − S) ≤ 2k−t. Furthermore,

there is an efficient algorithm to find S.

In a nutshell, Lemma 7 follows by invoking Lemma 6 t times. The detailed
proof is in the full version [AB16]. Theorem 8 now follows from Lemma 7 and
Theorem 3.

Theorem 8 (Complexities of any iMHF). Let F be an iMHF based on
arbitrary DAG G = (V,E) of size |V | = n with in-degree indeg(G) = δ. Then for
every constant ε > 0 and fixed ratios R > 0 and R̄ > 0 there exists an evaluation
algorithm A such that

ER̄(A) = o

(
n

(
δn

log1−ε + R̂

))
= ATR(A)



where R̂ = max{R, R̄}.
In particular if we let the näıve algorithm for F be N = triv then algorithm

A is an attack with qualities

E-quality(A) = Ω

(
R̂+ n

R̂+ δn/ log1−ε n

)
= AT-quality(A)

or, for constant R and R̄, simply Ω
(
δ−1 log1−ε n

)
.

In a nutshell, in the proof we set t = O
(

log log n
)

in Lemma 7 to obtain a

set S s.t. |S| ≤ O
(
n log log(n)/ log(n)

)
and d = depth(G − S) ≤ n/ log2(n). We

then set g = n/ log1+ε(n) in Theorem 3. See the full version of this paper for a
detailed proof [AB16].

Remarks. We remark that for any constants δ and ε > 1 Theorem 8 yields an
attack with quality E-quality(A) = Ω

(
log1−ε n

)
= AT-quality(A). Furthermore,

provided that δ ≤ log1−ε′ n where ε′ > 1 Theorem 8 yields an attack with
quality E-quality(A) = ω

(
1
)

= AT-quality(A). If R̄ 6= R then we can obtain
separate attacks A1 and A2 optimizing E-quality and AT-quality respectively.

Erdos et al. [EGS75] constructed a graph G of any size n with indeg(G) =
O(log(n)) which is (αn, βn)-depth robust for some constants 0 < β < α < 1.25

This would imply that our bounds in Theorem 8 and Lemma 7 are essentially
tight. Alwen and Serbinenko [AS15] used the depth robust DAGs from [MMV13]
as a building block to construct a family of DAGs with provably high pebbling
complexity Ω̃

(
n2
)
. Thus, our general attack in Theorem 8 is optimal up to

polylogarithmic factors.

7 Practical Considerations

In this section we demonstrate that our attacks have high quality for practical
values of n. For example, we obtain positive attack quality against Argon2i, the
winner of the Password Hashing Competition, when n is only 218. Figure 1a
plots attack quality vs n for Argon2i and the Single-Buffer (SB) construction
for various values of varies τ ∈ {1, 3, 5}, the number of passes through memory.
The full version [AB16] includes additional plots showing that we achieve an
even greater attack quality against Catena Dragonfly and Butterfly variants.
Figure 1b shows the results for our generic attack on any iMHF.

Parameter Optimization. We remark that we optimized the parameters of our
attack for each specific value of n in our plots. For example, we showed that
any λ-stacked sandwich DAG is

(
n/t, t(λ + 1)

)
-reducible for any t ≥ 1. For

each different value of n we ran a script to find the optimal values of t and
g ≥ t(λ + 1) which minimize the energy complexity (resp. AT-complexity) of
PGenPeb(G,S, g, d = t(λ + 1), k = g/d). In our general iMHF attack we used a
script to find the optimal value of t in Lemma 7 and the optimal value of g.
25 In [MMV13] the authors give an explicit construction of a DAG which has indeg(G) =

log2 n which is (αn, βn)-depth robust for any α and β arbitrarily close to 1.
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Fig. 1: Attack Quality (R = R̄ = 3000)

Näıve Algorithms. The näıve algorithmN for the Catena Butterfly iMHF has ab-
solute memory complexity amc(N ) = n/(λ log n) and energy complexity ER̄(N ) =
n
(
amc(N ) + R̄

)
. Similarly, the näıve algorithm N for Catena Dragonfly has ab-

solute memory complexity amc(N ) = n/(λ+ 1) and the näıve k-pass algorithm
for Argon2i and SB has absolute memory complexity amc(N ) = n/k. Thus, our
attack quality decreases with λ or k. We stress that this is not because our at-
tacks becomes less efficient as λ and k increases, but because the N algorithm
requires less and less memory (thus, as λ, k increase the iMHFs become increas-
ingly less ideal). By contrast, the näıve algorithm N = triv for our general iMHF
(and for Argon2i) has ER̄(N ) = n(n+ R̄).

Customized Attack Architecture. We have outlined efficient attacks on Catena,
Argon2i and the Balloon Hashing iMHFs in the theoretical Parallel Random
Oracle Machine (pROM) model of computation. Because pROM is a theoretical
model of computation it is not obvious a priori that our attacks translate to
practically efficient attacks that could be implemented in real hardware because
it can be difficult to dynamically reallocate memory between processes in an
ASIC (the amount of memory used during each round of a balloon phase is sig-
nificantly greater than the amount of memory used during each round of a light
phase). In the full version we argue that this architecture challenge would not be
a fundamental barrier to an adversary. In particular, we outline an architecture
for our algorithm PGenPeb using Argon2i as an example.

Briefly, we execute n1/4 instances of the iMHF in parallel. Our architecture
includes n1/4 “light phase” chips and a single “Balloon Phase” chip which is
responsible for executing all of the balloon phases in a round robin fashion.
Each light phase chip only needs O(n3/4 lnn) memory and a single instance
of the compression function H. The central balloon phase chip needs to have
O(n lnn) memory and

√
n instances of the compression functions H.

8 Conclusions

The results in this work show that (at the very least asymptotically speaking)
most candidate iMHFs fall far short of their stated goals, and even of the weaker



general upper-bound in Section 6. The notable exception is the construction
of [AS15]. However, currently it can be viewed mainly as a theoretical result
rather then a practical one due to the recursive nature of the construction and
the high degree of the polylog factor complexity lower-bound (though this can
partially be tightened with a slightly more fine grained security proof). Thus we
are left with the central open problem of finding a practical construction of an
iMHF which get as close as possible to the general upper-bound.
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