
The SKINNY Family of Block Ciphers
and its Low-Latency Variant MANTIS

Christof Beierle1, Jérémy Jean2, Stefan Kölbl3, Gregor Leander1, Amir Moradi1,
Thomas Peyrin2, Yu Sasaki4, Pascal Sasdrich1, and Siang Meng Sim2

1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{Firstname.Lastname}@rub.de

2 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Jean.Jeremy@gmail.com, Thomas.Peyrin@ntu.edu.sg, SSIM011@e.ntu.edu.sg

3 DTU Compute, Technical University of Denmark, Denmark
stek@dtu.dk

4 NTT Secure Platform Laboratories, Japan
Sasaki.Yu@lab.ntt.co.jp

Abstract. We present a new tweakable block cipher family SKINNY,
whose goal is to compete with NSA recent design SIMON in terms of hard-
ware/software performances, while proving in addition much stronger
security guarantees with regards to differential/linear attacks. In particu-
lar, unlike SIMON, we are able to provide strong bounds for all versions,
and not only in the single-key model, but also in the related-key or
related-tweak model. SKINNY has flexible block/key/tweak sizes and can
also benefit from very efficient threshold implementations for side-channel
protection. Regarding performances, it outperforms all known ciphers
for ASIC round-based implementations, while still reaching an extremely
small area for serial implementations and a very good efficiency for soft-
ware and micro-controllers implementations (SKINNY has the smallest
total number of AND/OR/XOR gates used for encryption process).

Secondly, we present MANTIS, a dedicated variant of SKINNY for low-latency
implementations, that constitutes a very efficient solution to the problem
of designing a tweakable block cipher for memory encryption. MANTIS
basically reuses well understood, previously studied, known components.
Yet, by putting those components together in a new fashion, we obtain a
competitive cipher to PRINCE in latency and area, while being enhanced
with a tweak input.

Key words: lightweight encryption, low-latency, tweakable block cipher,
MILP.

Updated information on SKINNY will be made available via https://sites.google.

com/site/skinnycipher/

https://sites.google.com/site/skinnycipher/
https://sites.google.com/site/skinnycipher/

1 Introduction

Due to the increasing importance of pervasive computing, lightweight cryptogra-
phy is currently a very active research domain in the symmetric-key cryptography
community. In particular, we have recently seen the apparition of many (some
might say too many) lightweight block ciphers, hash functions and stream ci-
phers. While the term lightweight is not strictly defined, it most often refers
to a primitive that allows compact implementations, i.e. minimizing the area
required by the implementation. While the focus on area is certainly valid with
many applications, most of them require additional performance criteria to be
taken into account. In particular, the throughput of the primitive represents an
important dimension for many applications. Besides that, power (in particular for
passive RFID tags) and energy (for battery-driven device) may be major aspects.

Moreover, the efficiency on different hardware technologies (ASIC, FPGA)
needs to be taken into account, and even micro-controllers become a scenario
of importance. Finally, as remarked in [3], software implementations should not
be completely ignored for these lightweight primitives, as in many applications
the tiny devices will communicate with servers handling thousands or millions of
them. Thus, even so research started by focusing on chip area only, lightweight
cryptography is indeed an inherent multidimensional problem.

Investigating the recent proposals in more detail, a major distinction is eye-
catching and one can roughly split the proposals in two classes. The first class
of ciphers uses very strong, but less efficient components (like the Sbox used in
PRESENT [5] or LED [15], or the MDS diffusion matrix in LED or PICCOLO [30]).
The second class of designs uses very efficient, but rather weak components (like
the very small KATAN [9] or SIMON [2] round function).1

From a security viewpoint, the analysis of the members of the first class can
be conducted much easily and it is usually possible to derive strong arguments
for their security. However, while the second class strategy usually gives very
competitive performance figures, it is much harder with state-of-the-art analysis
techniques to obtain security guarantees even with regards to basic linear or
differential cryptanalysis. In particular, when using very light round functions,
bounds on the probabilities of linear or differential characteristics are usually both
hard to obtain and not very strong. As a considerable fraction of the lightweight
primitives proposed got quickly broken within a few months or years from their
publication date, being able to give convincing security arguments turns out to
be of major importance.

Of special interest, in this context, is the recent publication of the SIMON

and SPECK family of block ciphers by the NSA [2]. Those ciphers brought a
huge leap in terms of performances. As of today, these two primitives have
an important efficiency advantage against all its competitors, in almost all
implementation scenarios and platforms. However, even though SIMON or SPECK
are quite elegant and seemingly well-crafted designs, these efficiency improvements
came at an essential price. Echoing the above, since the ciphers have a very light

1Actually, this separation is not only valid for lightweight designs. It can well be
extended to more classical ciphers or hash functions as well.

round function, their security bounds regarding classical linear or differential
cryptanalysis are not so impressive, quite difficult to obtain or even non-existent.
For example, in [22] the authors provide differential/linear bounds for SIMON,
but, as we will see, one needs a big proportion of the total number of rounds
to guarantee its security according to its block size. Even worse, no bound is
currently known in the related-key model for any version of SIMON and thus there
is a risk that good related-key differential characteristics might exist for this
family of ciphers (while some lightweight proposals such as LED [15], PICCOLO [30]
or some versions of TWINE [32] do provide such a security guarantee). One should
be further cautious as these designs come from a governmental agency which does
not provide specific details on how the primitives were built. No cryptanalysis
was ever provided by the designers. Instead, the important analysis work was
been carried out by the research community in the last few years and one should
note that so far SIMON or SPECK remain unbroken.

It is therefore a major challenge for academic research to design a cipher that
can compete with SIMON’s performances and additionally provides the essential
strong security guarantees that SIMON is clearly lacking. We emphasize that this
is both a research challenge and, in view of NSA’s efforts to propose SIMON into
an ISO standard, a challenge that has likely a practical impact.

Lightweight Tweakable Block Ciphers and Side-Channel Protected
Implementations. We note that tiny devices are more prone to be deployed
into insecure environments and thus side-channel protected implementations
of lightweight encryption primitives is a very important aspect that should be
taken care of. One might even argue that instead of comparing performances of
unprotected implementations of these lightweight primitives, one should instead
compare protected variants (this is the recent trend followed by ciphers like
ZORRO [14] or PICARO [28] and has actually already been taken into account long
before by the cipher NOEKEON [13]). One extra protection against side-channel
attacks can be the use of leakage resilient designs and notably through an extra
tweak input of the cipher. Such tweakable block ciphers are rather rare, the only
such candidate being Joltik-BC [18] or the internal cipher from SCREAM [33].
Coming up with a tweakable block cipher is indeed not an easy task as one must
be extremely careful how to include this extra input that can be fully controlled
by the attacker.

Low-Latency Implementations for Memory Encryption. One very inter-
esting field in the area of lightweight cryptography is memory encryption (see
e.g. [16] for an extensive survey of memory encryption techniques). Memory
encryption has been used in the literature to protect the memory used by a
process domain against several types of attackers, including attackers capable
of monitoring and even manipulating bus transactions. Examples of commercial
uses do not abound, but there are at least two: IBM’s SecureBlue++ [35] and
Intel’s SGX whose encryption and integrity mechanisms have been presented
by Gueron at RWC 2016.2 No documentation seems to be publicly available

2The slides can be found here.

https://drive.google.com/file/d/0Bzm_4XrWnl5zOXdTcUlEMmdZem8/view

regarding the encryption used in IBM’s solution, while Intel’s encryption method
requires additional data to be stored with each cache line. It is optimal in the
context of encryption with memory overhead, but if the use case does not allow
memory overhead then an entirely different approach is necessary.

With a focus on data confidentiality, a tweakable block cipher in ECB mode
would then be the natural, straightforward solution. However, all generic methods
to construct a tweakable block cipher from a block cipher suffer from an increased
latency. Therefore, there is a clear need for lightweight tweakable block ciphers
which do not require whitening value derivation, have a latency similar to the
best non-tweakable block ciphers, and that can also be used in modes of operation
that do not require memory expansion and offer beyond-birthday-bound security.

While being of great practical impact and need, it is actually very challenging
to come up with such a block cipher. It should have three main characteristics.
First, it must be executed within a single clock cycle and with a very low latency.
Second, a tweak input is required, which in the case of memory encryption will
be the memory address. Third, as one necessarily has to implement encryption
and decryption, it is desirable to have a very low overhead when implementing
decryption on top of encryption. The first and the third characteristics are already
studied in the block cipher PRINCE [7]. However, the second point, i.e. having a
tweak input, is not provided by PRINCE. It is not trivial to turn PRINCE into a
tweakable block cipher, especially without increasing the number of rounds (and
thereby latency) significantly.

Our Contributions. Our contributions are twofold. First, we introduce a new
lightweight family of block ciphers: SKINNY. Our goal here is to provide a com-
petitor to SIMON in terms of hardware/software performances, while proving in
addition much stronger security guarantees with regard to differential/linear at-
tacks. Second, we present MANTIS, a dedicated variant of SKINNY that constitutes
a very efficient solution to the aforementioned problem of designing a tweakable
block cipher for memory encryption.

Regarding SKINNY, we have pushed further the recent trend of having a SPN
cipher with locally non-optimal internal components: SKINNY is an SPN cipher
that uses a compact Sbox, a new very sparse diffusion layer, and a new very light
key schedule. Yet, by carefully choosing our components and how they interact,
our construction manages to retain very strong security guarantees. For all the
SKINNY versions, we are able to prove using mixed integer linear programming
(MILP) very strong bounds with respect to differential/linear attacks, not only in
the single-key model, but also in the much more involved related-key model. Some
versions of SKINNY have a very large key size compared to its block size and this
theoretically renders the bounds search space huge. Therefore, the MILP methods
we have devised to compute these bounds for a SKINNY-like construction can
actually be considered a contribution by itself. As we will see later, compared to
SIMON, in the single-key model SKINNY needs a much lower proportion of its total
number of rounds to provide a sufficient bound on the best differential/linear
characteristic. In the related-key model, the situation is even more at SKINNY’s
advantage as no such bound is known for any version of SIMON as of today.

With regard to performance, SKINNY reaches very small area with serial
ASIC implementations, yet it is actually the very first block cipher that leads
to better performances than SIMON for round-based ASIC implementations,
arguably the most important type of implementation since it provides a very good
throughput for a reasonably low area cost, in contrary to serial implementations
that only minimizes area. We also exhibit ASIC threshold implementations
of our SKINNY variants that compare for example very favourably to AES-128

threshold implementations. As explained above, this is an integral part of modern
lightweight primitives.

Regarding software, our implementations outperform all lightweight ciphers,
except SIMON which performs slightly faster in the situation where the key
schedule is performed only once. However, as remarked in [3], it is more likely
in practice that the key schedule has to be performed everytime, and since
SKINNY has a very lightweight key schedule we expect the efficiency of SKINNY
software implementations to be equivalent to that of SIMON. This shows that
SKINNY would perfectly fit a scenario where a server communicate with many
lightweight devices. These performances are not surprising, in particular for
bit-sliced implementations, as we show that SKINNY uses a much smaller total
number of AND/NOR/XOR gates compared to all known lightweight block
ciphers. This indicates that SKINNY will be competitive for most platforms and
scenarios. Micro-controllers are no exception, and we show that SKINNY performs
extremely well on these architectures.

We further remark that the decryption process of SKINNY has almost ex-
actly the same description as the encryption counterpart, thus minimizing the
decryption overhead.

We finally note that similarly to SIMON, SKINNY very naturally encompasses
64- or 128-bit block versions and a wide range of key sizes. However, in addition,
SKINNY provides a tweakable capability, which can be very useful not only for
leakage resilient implementations, but also to be directly plugged into higher-level
operating modes, such as SCT [27]. In order to provide this tweak feature, we have
generalized the STK construction [17] to enable more compact implementations
while maintaining a high provable security level.

The SKINNY specifications are given in Section 2. The rationale of our design
as well as various theoretical security and efficiency comparisons are provided in
Section 3. Finally, we conducted a complete security analysis in Section 4 and
we exhibit our implementation results in Section 5 (all the details are provided
in the full version of the paper).

Regarding MANTIS, we propose in Section 6 a low-latency tweakable block
cipher that reuses some design principles of SKINNY.3 It represents a very efficient
solution to the aforementioned problem of designing a tweakable block cipher
tailored for memory encryption.

The main challenge when designing such a cipher is that its latency is directly
related to the number of rounds. Thus, it is crucial to find a design, i.e. a round

3For the genesis of the cipher MANTIS, we acknowledge the contribution of Roberto
Avanzi, as specified in Section 6.

function and a tweak-scheduling, that ensures security already with a minimal
number of rounds. Here, components of the recently proposed block ciphers
PRINCE and MIDORI [1] turn out to be very beneficial.

The crucial step in the design of MANTIS was to find a suitable tweak-scheduling
that would ensure a high number of active Sboxes not only in the single-key
setting, but also in the setting where the attacker can control the difference in
the tweak. Using, again, the MILP approach, we are able to demonstrate that a
rather small number of rounds is already sufficient to ensure the resistance of
MANTIS to differential (and linear) attacks in the related-tweak setting.

Besides the tweak-scheduling, we emphasize that MANTIS basically reuses
well understood, previously studied, known components. It is mainly putting
those components together in a new fashion, that allows MANTIS to be very
competitive to PRINCE in latency and area, while being enhanced with a tweak.
Thus, compared to the performance figures of PRINCE, we get the tweak almost
for free, which is the key to solve the pressing problem of memory encryption.

2 Specification of SKINNY

Notations and SKINNY Versions. The lightweight block ciphers of the SKINNY

family have 64-bit and 128-bit block versions and we denote n the block size. In
both n = 64 and n = 128 versions, the internal state is viewed as a 4× 4 square
array of cells, where each cell is a nibble (in the n = 64 case) or a byte (in the
n = 128 case). We denote ISi,j the cell of the internal state located at Row i
and Column j (counting starting from 0). One can also view this 4× 4 square
array of cells as a vector of cells by concatenating the rows. Thus, we denote
with a single subscript ISi the cell of the internal state located at Position i in
this vector (counting starting from 0) and we have that ISi,j = IS4·i+j .

SKINNY follows the TWEAKEY framework from [17] and thus takes a tweakey
input instead of a key or a pair key/tweak. The user can then choose what part
of this tweakey input will be key material and/or tweak material (classical block
cipher view is to use the entire tweakey input as key material only). The family
of lightweight block ciphers SKINNY have three main tweakey size versions: for
a block size n, we propose versions with tweakey size t = n, t = 2n and t = 3n
(versions with other tweakey sizes between n and 3n are naturally obtained from
these main versions) and we denote z = t/n the tweakey size to block size ratio.
The tweakey state is also viewed as a collection of z 4× 4 square arrays of cells
of s bits each. We denote these arrays TK1 when z = 1, TK1 and TK2 when
z = 2, and finally TK1, TK2 and TK3 when z = 3. Moreover, we denote TKzi,j
the cell of the tweakey state located at Row i and Column j of the z-th cell array.
As for the internal state, we extend this notation to a vector view with a single
subscript: TK1i, TK2i and TK3i. Moreover, we define the adversarial model
SK (resp. TK1, TK2 or TK3) where the attacker cannot (resp. can) introduce
differences in the tweakey state.

Initialization. The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15,
where the mi are s-bit cells, with s = n/16 (we have s = 4 for the 64-bit
block SKINNY versions and s = 8 for the 128-bit block SKINNY versions). The

initialization of the cipher’s internal state is performed by simply setting ISi = mi

for 0 ≤ i ≤ 15:

IS =


m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15


This is the initial value of the cipher internal state and note that the state is

loaded row-wise rather than in the column-wise fashion we have come to expect
from the AES; this is a more hardware-friendly choice, as pointed out in [24].

The cipher receives a tweakey input tk = tk0‖tk1‖ · · · ‖tk30‖tk16z−1, where
the tki are s-bit cells. The initialization of the cipher’s tweakey state is performed
by simply setting for 0 ≤ i ≤ 15: TK1i = tki when z = 1, TK1i = tki and
TK2i = tk16+i when z = 2, and finally TK1i = tki, TK2i = tk16+i and
TK3i = tk32+i when z = 3. We note that the tweakey states are loaded row-wise.

Table 1: Number of rounds for SKINNY-n-t, with n-bit internal state and t-bit tweakey
state.

Tweakey size t
Block size n n 2n 3n

64 32 36 40
128 40 48 56

The Round Function. One encryption round of SKINNY is composed of five
operations in the following order: SubCells, AddConstants, AddRoundTweakey,
ShiftRows and MixColumns (see illustration in Figure 1). The number r of rounds

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1: The SKINNY round function applies five different transformations: SubCells (SC),
AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC).

to perform during encryption depends on the block and tweakey sizes. The actual
values are summarized in Table 1. Note that no whitening key is used in SKINNY.
Thus, a part of the first and last round do not add any security. We motivate
this choice in Section 3.

SubCells. A s-bit Sbox is applied to every cell of the cipher internal state. For
s = 4, SKINNY cipher uses a Sbox S4 very close to the PICCOLO Sbox [30].
The action of this Sbox in hexadecimal notation is given by the following
Table 2.

Table 2: 4-bit Sbox S4 used in SKINNY when s = 4.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S4[x] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

S−1
4 [x] 3 4 6 8 c a 1 e 9 2 5 7 0 b d f

Note that S4 can also be described with four NOR and four XOR operations,
as depicted in Figure 2. If x0, x1, x2 and x3 represent the four inputs bits of
the Sbox (x0 being the least significant bit), one simply applies the following
transformation:

(x3, x2, x1, x0)→ (x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by a left shift bit rotation. This process is repeated four times, except
for the last iteration where the bit rotation is omitted.

MSB LSB

MSB LSB

Fig. 2: Construction of the Sbox S4.

MSB LSB

MSB LSB

Fig. 3: Construction of the Sbox S8.

For the case s = 8, SKINNY uses an 8-bit Sbox S8 that is built in a similar
manner as for the 4-bit Sbox S4 described above. The construction is simple
and is depicted in Figure 3. If x0, . . ., x7 represent the eight inputs bits of
the Sbox (x0 being the least significant bit), it basically applies the below
transformation on the 8-bit state:

(x7, x6, x5, x4, x3, x2, x1, x0)→ (x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by the bit permutation:

(x7, x6, x5, x4, x3, x2, x1, x0) −→ (x2, x1, x7, x6, x4, x0, x3, x5),

repeating this process four times, except for the last iteration where there is
just a bit swap between x1 and x2.

AddConstants. A 6-bit affine LFSR, whose state is denoted (rc5, rc4, rc3, rc2,
rc1, rc0) (with rc0 being the least significant bit), is used to generate round
constants. Its update function is defined as:

(rc5||rc4||rc3||rc2||rc1||rc0)→ (rc4||rc3||rc2||rc1||rc0||rc5 ⊕ rc4 ⊕ 1).

The six bits are initialized to zero, and updated before use in a given round.
The bits from the LFSR are arranged into a 4×4 array (only the first column
of the state is affected by the LFSR bits), depending on the size of internal
state: 

c0 0 0 0
c1 0 0 0
c2 0 0 0
0 0 0 0

 ,
with c2 = 0x2 and

(c0, c1) = (rc3‖rc2‖rc1‖rc0, 0‖0‖rc5‖rc4) when s = 4

(c0, c1) = (0‖0‖0‖0‖rc3‖rc2‖rc1‖rc0, 0‖0‖0‖0‖0‖0‖rc5‖rc4) when s = 8.

The round constants are combined with the state, respecting array positioning,
using bitwise exclusive-or.

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted
and bitwise exclusive-ored to the cipher internal state, respecting the array
positioning. More formally, for i = {0, 1} and j = {0, 1, 2, 3}, we have:
• ISi,j = ISi,j ⊕ TK1i,j when z = 1,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.

Then, the tweakey arrays are updated as follows (this tweakey schedule
is illustrated in Figure 4). First, a permutation PT is applied on the cells
positions of all tweakey arrays: for all 0 ≤ i ≤ 15, we set TK1i ← TK1PT [i]

with

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7],

and similarly for TK2 when z = 2, and for TK2 and TK3 when z = 3. This

corresponds to the following reordering of the matrix cells: (0, . . . , 15)
PT7−→

(9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7), indices being taken row-wise.
Finally, every cell of the first and second rows of TK2 and TK3 (for the
SKINNY versions where TK2 and TK3 are used) are individually updated
with an LFSR. The LFSRs used are given in Table 3 (x0 stands for the LSB
of the cell).

Table 3: The LFSRs used in SKINNY to generate the round constants. The TK parameter
gives the number of tweakey words in the cipher, and the s parameter gives the size of
cell in bits.

TK s LFSR

TK2
4 (x3||x2||x1||x0) → (x2||x1||x0||x3 ⊕ x2)
8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

TK3
4 (x3||x2||x1||x0) → (x0 ⊕ x3||x3||x2||x1)
8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

ShiftRows. As in AES, in this layer the rows of the cipher state cell array are
rotated, but they are to the right. More precisely, the second, third, and
fourth cell rows are rotated by 1, 2 and 3 positions to the right, respectively.
In other words, a permutation P is applied on the cells positions of the cipher
internal state cell array: for all 0 ≤ i ≤ 15, we set ISi ← ISP [i] with

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].

MixColumns. Each column of the cipher internal state array is multiplied by the
following binary matrix M:

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 .

The final value of the internal state array provides the ciphertext with cells
being unpacked in the same way as the packing during initialization. Note that
decryption is very similar to encryption as all cipher components have very simple
inverse (SubCells and MixColumns are based on a generalized Feistel structure,
so their respective inverse is straightforward to deduce and can be implemented
with the exact same number of operations).

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Fig. 4: The tweakey schedule in SKINNY. Each tweakey word TK1, TK2 and TK3 (if
any) follows a similar transformation update, except that no LFSR is applied to TK1.

Extending to Other Tweakey Sizes. The three main versions of SKINNY

have tweakey sizes t = n, t = 2n and t = 3n, but one can easily extend this to
any size4 of tweakey n ≤ t ≤ 3n:

• for any tweakey size n < t < 2n, one simply uses exactly the t = 2n version
but the last 2n − t bits of the tweakey state are fixed to the zero value.
Moreover, the corresponding cells in the tweakey state TK2 will not be
updated throughout the rounds with the LFSR.

• for any tweakey size 2n < t < 3n, one simply uses exactly the t = 3n version
but the last 3n − t bits of the tweakey state are fixed to the zero value.
Moreover, the corresponding cells in the tweakey state TK3 will not be
updated throughout the rounds with the LFSR.

We note that some of our 64-bit block SKINNY versions allow small key
sizes (down to 64-bit). We emphasize that we propose these versions mainly for
simplicity in the description of the SKINNY family of ciphers. Yet, as advised by
the NIST [26], one should not to use key sizes that are smaller than 112 bits.

Instantiating the Tweakey State with Key and Tweak Material. Fol-
lowing the TWEAKEY framework [17], SKINNY takes as inputs a plaintext or a
ciphertext and a tweakey value, which can be used in a flexible way by filling it
with key and tweak material. Whatever the situation, the user must ensure that
the key size is always at least as big as the block size.

In the classical setting where only key material is input, we use exactly the
specifications of SKINNY described previously. However, when some tweak material
is to be used in the tweakey state, we dedicate TK1 for this purpose and XOR a
bit set to “1” every round to the second bit of the top cell of the third column
(i.e. the second bit of IS0,2). In other words, when there is some tweak material,
we add an extra “1” in the constant matrix from AddConstants). Besides, in
situations where the user might use different tweak sizes, we recommend to
dedicate some cells of TK1 to encode the size of the tweak material, in order to
ensure proper separation. Note that these are only recommendations, thus not
strictly part of the specifications of SKINNY.

3 Rationale of SKINNY

Several design choices of SKINNY have been borrowed from existing ciphers, but
most of our components are new, optimized for our goal: a cipher well suited for
most lightweight applications. When designing SKINNY, one of our main criteria
was to only add components which are vital for the security of the primitive,
removing any unnecessary operation (hence the name of our proposal). We end
up with the sound property that removing any component or using weaker version
of a component from SKINNY would lead to a much weaker (or actually insecure)
cipher. Therefore, the construction of SKINNY has been done through several

4For simplicity we do not include here tweakey sizes that are not a multiple of s
bits. However, such cases can be trivially handled by generalizing the tweakey schedule
description to the bit level.

iterations, trying to reach the exact spot where good performance meets strong
security arguments. We detail in this section how we tried to follow this direction
for each layer of the cipher.

We note that one could have chosen a slightly smaller Sbox or a slightly
sparser diffusion layer, but our preliminary implementations showed that these
options represent worse tradeoff overall. For example, one could imagine a very
simple cipher iterating thousands of rounds composed of only a single non-linear
boolean operation, an XOR and some bit wiring. However, such a cipher will lead
to terrible performance regarding throughput, latency or energy consumption.

When designing a lightweight encryption scheme, several use cases must be
taken in account. While area optimized implementations are important for some
very constrained applications, throughput or throughput-over-area optimized
implementations are also very relevant. Actually, looking at recently introduced
efficiency measurements [19], one can see that our designs choices are good for
many types of implementations, which is exactly what makes a good general-
purpose lightweight encryption scheme.

3.1 Estimating Area and Performances

In order to discuss the rationale of our design, we first quickly describe an
estimation in Gate Equivalent (GE) of the ASIC area cost of several simple
bit operations (for UMC 180nm 1.8 V [34]): a NOR/NAND gate costs 1 GE, a
OR/AND gate costs 1.33 GE, a XOR/XNOR gate costs 2.67 GE and a NOT
gate costs 0.67 GE. Finally, one memory bit can be estimated to 6 GE (scan
flip-flop). Of course, these numbers depend on the library used, but it will give
us at least some rough and easy evaluation of the design choices we will make.

Besides, even though many tradeoffs exist, we distinguish between a serial
implementation, a round-based implementation and a low-latency implementation.
In the latter, the entire ciphering process is performed in a single clock cycle,
but the area cost is then quite important as all rounds need to be directly
implemented. For a round-based implementation, an entire round of the cipher is
performed in a single clock cycle, thus ending with the entire ciphering process
being done in r cycles and with a moderate area cost (this tradeoff is usually a
good candidate for energy efficiency). Finally, in a serial implementation, one
reduces the datapath and thus the area to the minimum (usually a few bits, like
the Sbox bit size), but the throughput is greatly reduced. The ultimate goal of a
good lightweight encryption primitive is to use lightweight components, but also
to ensure that these components are compact and efficient for all these tradeoffs.
This is what SIMON designers have managed to produce, but sacrificing a few
security guarantees. SKINNY offers similar (sometimes even better) performances
than SIMON, while providing much stronger security arguments with regard to
classical differential or linear cryptanalysis.

3.2 General Design and Components Rationale

A first and important decision was to choose between a Substitution-Permutation
Network (SPN), or a Feistel network. We started from a SPN construction as it

is generally easier to provide stronger bounds on the number of active Sboxes.
However, we note that there is a dual bit-sliced view of SKINNY that resembles
some generalized Feistel network. Somehow, one can view the cipher as a primitive
in between an SPN and an “AND-rotation-XOR” function like SIMON. We try
to get the best of both worlds by benefiting the nice implementation tradeoffs
of the latter, while organizing the state in an SPN view so that bounds on the
number of active Sboxes can be easily obtained.

The absence of whitening key is justified by the reduction of the control logic:
by always keeping the exact same round during the entire encryption process we
avoid the control logic induced by having a last non-repeating layer at the end of
the cipher. Besides, this simplifies the general description and implementation of
the primitive. Obviously, having no whitening key means that a few operations of
the cipher have no impact on the security. This is actually the case for both the
beginning and the end of the ciphering process in SKINNY since the key addition
is done in the middle of the round, with only half of the state being involved
with this key addition every round.

A crucial feature of SKINNY is the easy generation of several block size or
tweakey size versions, while keeping the general structure and most of the security
analysis untouched. Going from the 64-bit block size versions to the 128-bit block
size versions is simply done by using a 8-bit Sbox instead of a 4-bit Sbox, therefore
keeping all the structural analysis identical. Using bigger tweakey material is
done by following the STK construction [17], which allows automated analysis
tools to still work even though the input space become very big (in short, the
superposition trick makes the TK2 and TK3 analysis almost as time consuming
as the normal and easy TK1 case). Besides, unlike previous lightweight block
ciphers, this complete analysis of the TK2 and TK3 cases allows us to dedicate a
part of this tweakey material to be potentially some tweak input, therefore making
SKINNY a flexible tweakable block cipher. Also, we directly obtain related-key
security proofs using this general structure.

SubCells. The choice of the Sbox is obviously a crucial decision in an SPN cipher
and we have spent a lot of efforts on looking for the best possible candidate.
For the 4-bit case, we have designed a tool that searches for the most compact
candidate that provides some minimal security guarantees. Namely, with the
bit operations cost estimations given previously, for all possible combinations
of operations (NAND/NOR/XOR/XNOR) up to a certain limit cost, our tool
checks if certain security criterion of the tested Sbox are fulfilled. More precisely,
we have forced the maximal differential transition probability of the Sbox to
be 2−2 and the maximal absolute linear bias to be 2−2. When both criteria are
satisfied, we have filtered our search for Sbox with high algebraic degree.

Our results is that the Sbox used in the PICCOLO block cipher [30] is close to
be the best one: our 4-bit Sbox candidate S4 is essentially the PICCOLO Sbox with
the last NOT gate at the end being removed (see Figure 2). We believe this extra
NOT gate was added by the PICCOLO designers to avoid fixed points (actually, if
fixed points were to be removed at the Sbox level, the PICCOLO candidate would
be the best choice), but in SKINNY the fixed points are handled with the use of

constants to save some extra GE. Yet, omitting the last bit rotation layer removes
already a lot of fixed points (the efficiency cost of this omission being null).

The Sbox S4 can therefore be implemented with only 4 NOR gates and 4 XOR
gates, the rest being only bit wiring (basically free in hardware). According to
our previously explained estimations, this should cost 14.68 GE, but as remarked
in [30], some libraries provide special gates that further save area. Namely, in
our library the 4-input AND-NOR and 4-input OR-NAND gates with two inputs
inverted cost 2 GE and they can be used to directly compute a XOR or an XNOR.
Thus, S4 can be implemented with only 12 GE. In comparison, the PRESENT

Sbox [5] requires 3 AND, 1 OR and 11 XOR gates, which amounts to 27.32 GE
(or 34.69 GE without the special 4-input gates).

All in all, our 4-bit Sbox S4 has the following security properties: maximal
differential transition probability of 2−2, maximal absolute linear bias of 2−2,
branching number 2, algebraic degree 3 and one fixed point S4(0xF) = 0xF.

Regarding the 8-bit Sbox, the search space was too wide for our automated
tool. Therefore, we instead considered a subclass of the entire search space: by
reusing the general structure of S4, we have tested all possible Sboxes built by
iterating several times a NOR/XOR combination and a bit permutation. Our
search found that the maximal differential transition probability and maximal
absolute linear bias of the Sboxes are larger than 2−2 when we have less than 8
iterations of the NOR/XOR combination and bit permutation. With 8 iterations
of the NOR/XOR combination and bit permutation, we found Sboxes with
desired maximal differential transition probability of 2−2 and maximal absolute
linear bias of 2−2 with algebraic degree 6. However, the algebraic degree of the
inverse Sboxes of all these candidates is 5 rather than 6. In addition, having
8 iterations may result in higher latency when we consider a serial hardware
implementation. Therefore, we considered having 2 NOR/XOR combinations
in every iteration and reduce the number of iteration from 8 to 4. As a result,
we found several Sboxes with the desired maximal differential probability and
absolute linear bias, while reaching algebraic degree 6 for both the Sbox and its
inverse (thus better than the 8 iterations case). Although such Sbox candidates
have 3 fixed points when we omit the last bit permutation layer like the 4-bit
case, we can easily reduce the number of fixed points by introducing a different
bit permutation from the intermediate bit permutations to the last layer without
any additional cost.

With 2 NOR/XOR combinations and a bit permutation iterated 4 times, S8
can be implemented with only 8 NOR gates and 8 XOR gates (see Figure 3), the
rest being only bit wiring (basically free in hardware). The total area cost should
be 24 GE according to our previously explained estimations and using special
4-input AND-NOR and 4-input OR-NAND gates. In comparison, while ensuring
a maximal differential transition probability (resp. maximum absolute linear bias)
of 2−6 (resp. 2−4), the AES Sbox requires 32 AND/OR gates and 83 XOR gates
to be implemented, which amounts to 198 GE. Even recent lightweight 8-bit Sbox
proposal [10] requires 12 AND/OR gates and 26 XOR gates, which amounts to

64 GE, for a maximal differential transition probability (resp. maximum linear
bias) of 2−5 (resp. 2−2), but their optimization goal was different from ours.

All in all, we believe our 8-bit Sbox candidate S8 provides a good tradeoff
between security and area cost. It has maximal differential transition probability
of 2−2, maximal absolute linear bias of 2−2, branching number 2, algebraic
degree 6 and a single fixed point S8(0xFF) = 0xFF (for the Sbox we have chosen,
swapping two bits in the last bit permutation was probably the simplest method
to achieve only a single fixed point).

Note that both our Sboxes S4 and S8 have the interesting feature that their
inverse is computed almost identically to the forward direction (as they are
based on a generalized Feistel structure) and with exactly the same number of
operations. Thus, our design reasoning also holds when considering the decryption
process.

AddConstants. The constants in SKINNY have several goals: differentiate the
rounds (see Section 4.2), differentiate the columns and avoid symmetries, compli-
cate subspace cryptanalysis (see Section 4.2) and attacks exploiting fixed points
from the Sbox. In order to differentiate the rounds, we simply need a counter,
and since the number of rounds of all SKINNY versions is smaller than 64, the
most hardware friendly solution is to use a very cheap 6-bit affine LFSR (like
in LED [15]) that requires only a single XNOR gate per update. The 6 bits are
then dispatched to the two first rows of the first column (this will maximize the
constants spread after the ShiftRows and MixColumns), which will already break
the columns symmetry.

In order to avoid symmetries, fixed points and more generally subspaces to
spread, we need to introduce different constants in several cells of the internal
state. The round counter will already naturally have this goal, yet, in order to
increase that effect, we have added a “1” bit to the third row, which is almost free
in terms of implementation cost. This will ensure that symmetries and subspaces
are broken even more quickly, and in particular independently of the round
counter.

AddRoundTweakey. The tweakey schedule of SKINNY follows closely the STK con-
struction from [17] (that allows to easily get bounds on the number of active
Sboxes in the related-tweakey model). Yet, we have changed a few parts. Firstly,
instead of using multiplications by 2 and 3 in a finite field, we have instead
replaced these tweakey cells updates by cheap 4-bit or 8-bit LFSRs (depending
on the size of the cell) to minimize the hardware cost. All our LFSRs require
only a single XOR for the update, and we have checked that the differential
cancellation behavior of these interconnected LFSRs is as required by the STK

construction: for a given position, a single cancellation can only happen every 15
rounds for TK2, and same with two cancellations for TK3.

Another important generalization of the STK construction is the fact that every
round we XOR only half of the internal cipher state with some subtweakey. The
goal was clearly to optimize hardware performances of SKINNY, and it actually
saves an important amount of XORs in a round-based implementation. The

potential danger is that the bounds we obtain would dramatically drop because
of this change. Yet, surprisingly, the bounds remained actually good and this
was a good security/performance tradeoff to make. Another advantage is that
we can now update the tweakey cells only before they are incorporated to the
cipher internal state. Thus, half of tweakey cells only will be updated every
round and the period of the cancellations naturally doubles: for a certain cell
position, a single cancellation can only happen every 30 rounds for TK2 and
two cancellations can only happen every 30 rounds for TK3.

The tweakey permutation PT has been chosen to maximize the bounds on the
number of active Sboxes that we could obtain in the related-tweakey model (note
that it has no impact in the single-key model). Besides, we have enforced for PT
the special property that all cells located in third and fourth rows are sent to the
first and second rows, and vice-versa. Since only the first and second rows of the
tweakey states are XORed to the internal state of the cipher, this ensures that
both halves of the tweakey states will be equally mixed to the cipher internal
state (otherwise, some tweakey bytes might be more involved in the ciphering
process than others). Finally, the cells that will not be directly XORed to the
cipher internal state can be left at the same relative position. On top of that, we
only considered those variants of PT that consist of a singe cycle.

We note that since the cells of the first tweakey word TK1 are never updated,
they can be directly hardwired to save some area if the situation allows.

ShiftRows and MixColumns. Competing with SIMON’s impressive hardware per-
formance required choosing an extremely sparse diffusion layer for SKINNY, which
was in direct contradiction with our original goal of obtaining good security
bounds for our primitive. Note that since our Sboxes S4 and S8 have a branching
number of two, we cannot use only a bit permutation layer as in the PRESENT

block cipher: differential characteristics with only a single active Sbox per round
would exist. After several design iterations, we came to the conclusion that binary
matrices were the best choice. More surprisingly, while most block cipher designs
are using very strong diffusion layers (like an MDS matrix), and even though a
4 × 4 binary matrices with branching number four exist, we preferred a much
sparser candidate which we believe offers the best security/performance tradeoff
(this can be measured in terms of Figure Of Adversarial Merit [19]).

Due to its strong sparseness, SKINNY binary diffusion matrix M has only a
differential or linear branching number of two. This seems to be worrisome as it
would again mean that differential characteristics with only a single active Sbox
per round would exist (it would be the same for PRESENT block cipher if its Sbox
did not have branching number three, which is the reason of the relatively high
cost of the PRESENT Sbox). However, we designed M such that when a branching
two differential transition occurs, the next round will likely lead to a much higher
branching number. Looking at M, the only way to meet branching two is to have
an input difference in either the second or the fourth input only. This leads to
an input difference in the first or third element for the next round, which then
diffuses to many output elements. The differential characteristic with a single
active Sbox per round is therefore impossible, and actually we will be able to

prove at least 96 active Sboxes for 20 rounds. Thus, for the very cheap price
of a differential branching two binary diffusion matrix, we are in fact getting a
better security than expected when looking at the iteration of several rounds.
The effect is the same with linear branching (for which we only need to look at
the transpose of the inverse of M, i.e. (M−1)>).

We have considered all possibilites for M that can be implemented with at
most three XOR operations and eventually kept the MixColumns matrices that,
in combination with ShiftRows, guaranteed high diffusion and led to strong
bounds on the minimal number of active Sboxes in the single-key model.

Note that another important criterion came into play regarding the choice of
the diffusion layer of SKINNY: it is important that the key material impacts as
fast as possible the cipher internal state. This is in particular a crucial point for
SKINNY as only half of the state is mixed with some key material every round, and
since there is no whitening keys. Besides, having a fast key diffusion will reduce
the impact of meet-in-the-middle attacks. Once the two first rows of the state
were arbitrarily chosen to receive the key material, given a certain subtweakey, we
could check how many rounds were required (in both encryption and decryption
directions) to ensure that the entire cipher state depends on this subtweakey.
Our final choice of MixColumns is optimal: only a single round is required in both
forward and backward directions to ensure this diffusion.

3.3 Comparing Differential Bounds

Our entire design has been crafted to allow good provable bounds on the minimal
number of differential or linear active Sboxes, not only for the single-key model,
but also in the related-key model (or more precisely the related-tweakey model
in our case). We provide in Table 4 a comparison of our bounds with the best
known proven bounds for other lightweight block ciphers at the same security
level (all the ciphers in the table use 4-bit Sboxes with a maximal differential
probability of 2−2). We give in Section 4 more details on how the bounds of
SKINNY were obtained.

First, we emphasize that most of the bounds we obtained for SKINNY are not
tight, and we can hope for even higher minimal numbers of active Sboxes. This
is not the case of LED or PRESENT for which the bounds are tight.

From the table, we can see that LED obtains better bounds for SK. Yet,
the situation is inverted for TK2: due to a strong plateau effect in the TK2
bounds of LED, it stays at 50 active Sboxes until Round 24, while SKINNY already
reaches 72 active Sboxes at Round 24. Besides, LED performance will be quite
bad compared to SKINNY, due to its strong MDS diffusion layer and strong Sbox.

Regarding PICCOLO, the bounds5 are really similar to SKINNY for SK but
worse for TK2. Yet, our round function is lighter (no use of a MDS layer), see
Section 3.4.

No related-key bounds are known for MIDORI, PRESENT or TWINE. Besides, our
SK bounds are better than PRESENT. Regarding MIDORI or TWINE in SK, while

5We estimate the number of active Sboxes for PICCOLO to d4.5 ·Nfe, where Nf is
the number of active F -functions taken from [30].

Table 4: Proved bounds on the minimal number of differential active Sboxes for
SKINNY-64-128 and various lightweight 64-bit block 128-bit key ciphers. Model SK
denotes the single-key scenario and model TK2 denotes the related-tweakey scenario
where differences can be inserted in both states TK1 and TK2.

Cipher Model
Rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SKINNY SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66 75
(36 rounds) TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35 40

LED SK 1 5 9 25 26 30 34 50 51 55 59 75 76 80 84 100
(48 rounds) TK2 0 0 0 0 0 0 0 0 1 5 9 25 26 30 34 50

PICCOLO SK 0 5 9 14 18 27 32 36 41 45 50 54 59 63 68 72
(31 rounds) TK2 0 0 0 0 0 0 0 5 9 14 18 18 23 27 27 32

MIDORI SK 1 3 7 16 23 30 35 38 41 50 57 62 67 72 75 84
(16 rounds) TK2 - - - - - - - - - - - - - - - -

PRESENT SK - - - - 10 - - - - 20 - - - - 30 -
(31 rounds) TK2 - - - - - - - - - - - - - - - -

TWINE SK 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 -
(36 rounds) TK2 - - - - - - - - - - - - - - - -

our bounds are slightly worse, we emphasize again that our round function is
much lighter and thus will lead to much better performances.

Comparing differential bounds with SIMON is not as simple as with SPN
ciphers. Yet, bounds on the best differential/linear characteristics for SIMON have
been provided recently by [22].6

Assuming (very) pessimistically for SKINNY that a maximum differential
transition probability of 2−2 is always possible for each active Sbox in the
differential paths with the smallest number of active Sboxes, we can directly
obtain easy bounds on the best differential/linear characteristics for SKINNY.
We provide in Table 5 a comparison between SIMON and SKINNY versions for
the proportion of total number of rounds needed to provide a sufficiently good
differential characteristic probability bound according to the cipher block size.
One can see that SKINNY needs a much smaller proportion of its total number of
rounds compared to SIMON to ensure enough confidence with regards to simple
differential/linear attacks. Actually the related-key ratios of SKINNY are even
smaller than single-key ratios of SIMON (no related-key bounds are known as of
today for SIMON).

Finally, in terms of diffusion, all versions of SKINNY achieve full diffusion
after only 6 rounds (forwards or backwards), while SIMON versions with 64-bit
block size requires 9 rounds, and even 13 rounds for SIMON versions with 128-bit

6Their article initially contained results only for the smallest versions of SIMON, but
the authors provided us updated results for all versions of SIMON.

Table 5: Comparison between AES-128 and SIMON/SKINNY versions for the proportion
of total number of rounds needed to provide a sufficiently good differential characteristic
probability bound according to the cipher block size (i.e. < 2−64 for 64-bit block size and
< 2−128 for 128-bit block size). Results for SIMON are updated results taken from [22].

Cipher
Model

Single-Key Related-Key

SKINNY-64-128 8/36 = 0.22 15/36 = 0.42

SIMON-64-128 19/44 = 0.43 ?

SKINNY-128-128 15/40 = 0.37 19/40 = 0.47

SIMON-128-128 41/72 = 0.57 ?

AES-128 4/10 = 0.40 6/10 = 0.60

block size [22] (AES-128 reaches full diffusion after 2 of its 10 rounds). Again,
the diffusion comparison according to the total number of rounds is at SKINNY’s
advantage.

3.4 Comparing Theoretical Performance

After some minimal security guarantee, the second design goal of SKINNY was to
minimize the total number of operations. We provide in Table 6 a comparison of
the total number of operations per bit for SKINNY and for other lightweight block
ciphers, as well as some quality grade regarding its ASIC area in a round-based
implementation. We explain in the full version of this article how these numbers
have been computed.

One can see from the Table 6 that SIMON and SKINNY compare very favorably
to other candidates, both in terms of number of operations and theoretical area
grade for round-based implementations. This seems to confirm that when it comes
to lightweight block ciphers, SIMON is probably the strongest competitor as of
today. Besides, SKINNY has the best theoretical profile among all the candidates
presented here, even better than SIMON for area. For speed efficiency, SKINNY
outperforms SIMON when the key schedule is taken in account. This scenario is
arguably the most important in practice: as remarked in [3], it is likely that
lightweight devices will cipher very small messages and thus the back-end servers
communicating with millions of devices will probably have to recompute the key
schedule for every small message received.

In addition to its smaller key size, we note that KATAN-64-80 [9] theoretical
area grade is slightly biased here as one round of this cipher is extremely light
and such a round-based implementation would actually look more like a serial
implementation and will have a very low throughput (KATAN-64-80 has 254
rounds in total).

While Table 6 is only a rough indication of the efficiency of the various
designs, we observe that the ratio between the SIMON and SKINNY best software
implementations, or the ratio between the smallest SIMON and SKINNY round-

Table 6: Total number of operations and theoretical performance of SKINNY and various
lightweight block ciphers. N denotes a NOR gate, A denotes a AND gate, X denotes a
XOR gate.

Cipher nb. of gate cost (per bit per round) nb. of op. nb. of op. round-based

rds int. cipher key sch. total w/o key
sch.

w/ key sch. impl. area

SKINNY
36

1 N 1 N 3.25× 36 3.875× 36 1 + 2.67× 2.875

-64-128 2.25 X 0.625 X 2.875 X = 117 = 139.5 = 8.68

SIMON
44

0.5 A 0.5 A 2× 44 3.5× 44 0.67 + 2.67× 3

-64/128 1.5 X 1.5 X 3.0 X = 88 = 154 = 8.68

PRESENT
31

1 A 0.125 A 1.125 A 4.75× 31 5.22× 31 1.5+ 2.67× 4.094

-128 3.75 X 0.344 X 4.094 X = 147.2 = 161.8 = 12.43

PICCOLO
31

1 N 1 N 5.25× 31 5.25× 31 1 + 2.67× 4.25

-128 4.25 X 4.25 X = 162.75 = 162.75 = 12.35

KATAN
254

0.047 N 0.047 N 0.141× 254 3.141× 254 0.19+2.67×3.094

-64-80 0.094 X 3 X 3.094 X = 35.81 = 797.8 = 8.45

SKINNY
40

1 N 1 N 3.25× 40 3.25× 40 1 + 2.67× 2.25

-128-128 2.25 X 2.25 X = 130 = 130 = 7.01

SIMON
72

0.5 A 0.5 A 2× 68 3× 68 0.67 + 2.67× 2.5

-128/128 1.5 X 1 X 2.5 X = 136 = 204 = 7.34

NOEKEON
16

0.5 (A + N) 0.5 (A + N) 1 (A + N) 6.25× 16 12.5× 16 2.33+ 2.67× 10.5

-128 5.25 X 5.25 X 10.5 X = 100 = 200 = 30.36

AES
10

4.25 A 1.06 A 5.31 A 20.25× 10 24.81× 10 7.06+ 2.67× 19.5

-128 16 X 3.5 X 19.5 X = 202.5 = 248.1 = 59.12

SKINNY
48

1 N 1 N 3.25× 48 3.81× 48 1 + 2.67× 2.81

-128-256 2.25 X 0.56 X 2.81 X = 156 = 183 = 8.5

SIMON
72

0.5 A 0.5 A 2× 72 3.5× 72 0.67 + 2.67× 3

-128/256 1.5 X 1.5 X 3.0 X = 144 = 252 = 8.68

AES
14

4.25 A 2.12 A 6.37 A 20.25× 14 29.37× 14 8.47 + 2.67× 23

-256 16 X 7 X 23 X = 283.5 = 411.2 = 69.88

based hardware implementations actually match the results from the table (see
full version of the paper).

4 Security Analysis

In this section, we provide a short summary of the in-depth analysis we conducted
on the security of the SKINNY family of block ciphers. All details are provided in
the full version of this article. We emphasize that we do not claim any security in
the chosen-key or known-key model, but we do claim security in the related-key
model. Moreover, we chose not to use any constant to differentiate between
different block sizes or tweakey sizes versions of SKINNY, as we believe such a
separation should be done at the protocol level, for example by deriving different
keys (note that, if needed, this can easily be done by encoding these sizes and
use them as fixed extra constant material every round).

Table 7: Lowerbounds on the number of active Sboxes in SKINNY for large number of
rounds. Note that the bounds on the number of linear active Sboxes in the single-key
model are also valid in the related-tweakey model. In case the MILP optimization was
too long, we provide upper bounds between parentheses.

Model 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SK 75 82 88 92 96 102 108 (114) (116) (124) (132) (138) (136) (148) (158)
TK1 54 59 62 66 70 75 79 83 85 88 95 102 (108) (112) (120)
TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96
TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

SK Lin 70 76 80 85 90 96 102 107 (110) (118) (122) (128) (136) (141) (143)

4.1 Differential/Linear Cryptanalysis

In order to argue for the resistance of SKINNY against differential and linear
attacks, we computed lower bounds on the minimal number of active Sboxes,
both in the single-key and related-tweakey model. We recall that, in a differential
(resp. linear) characteristic, an Sbox is called active if it contains a non-zero input
difference (resp. input mask). In contrast to the single-key model, where the
round tweakeys are constant and thus do not influence the activity pattern, an
attacker is allowed to introduce differences (resp. masks) within the tweakey state
in the related-tweakey model. For that, we considered the three cases of choosing
input differences in TK1 only, both TK1 and TK2, and in all of the tweakey
states TK1, TK2 and TK3, respectively. Table 7 presents lower bounds on the
number of differential active Sboxes for 16 up to 30 rounds. For computing these
bounds, we generated a Mixed-Integer Linear Programming model following the
approach explained in [25,31].

For lower bounding the number of linear active Sboxes, we used the same
approach. For that, we considered the inverse of the transposed linear trans-
formation M>. However, for the linear case, we only considered the single-key
model. As it is described in [23], there is no cancellation of active Sboxes in
linear characteristics. Thus, the bounds for SK give valid bounds also for the
case where the attacker is allowed to not only control the message but also the
tweakey input.

The above bounds are for single characteristic, thus it will be interesting to
take a look at differentials and linear hulls. Being a rather complex task, we leave
this as future work.

4.2 Further Cryptanalysis

Meet-in-the-Middle Attacks Meet-in-the-middle attacks have been applied
to block ciphers, e.g. [6, 11]. From its application to the SPN structure [29],
the number of attacked rounds can be evaluated by considering the maximum
length of three features, partial-matching, initial structure and splice-and-cut.

We conclude that meet-in-the-middle attack may work up to at most 22 rounds,
so that 32+ rounds of SKINNY-64 provides a reasonable margin.

Remarks on Biclique Cryptanalysis. Biclique cryptanalysis improves the
complexity of exhaustive search by computing only a part of encryption algorithm.
The improved factor is often evaluated by the ratio of the number of Sboxes
involved in the partial computation to all Sboxes in the cipher. The improved
factor can be relatively big when the number of rounds in the cipher is small,
which is not the case in SKINNY. We do not think improving exhaustive search
by a small factor will turn into serious vulnerability in future. Therefore, SKINNY
is not designed to resist biclique cryptanalysis with small improvement.

Impossible Differential Attacks. Impossible differential attack [4] finds two
internal state differences ∆ and ∆′ such that ∆ is never propagated to ∆′. The
attacker then finds many plaintext/ciphertext pairs and tweakey values leading
to (∆,∆′). Those tweakey values are wrong values, thus tweakey space can be
reduced.

We found that the longest impossible differential characteristics reach 11
rounds and there are 16 such characteristics in total. While several rounds can
be appended to turn this into a key-recovery attack, the number of rounds for
SKINNY provide a sound security margin.

Integral Attacks. Integral attack [12, 21] prepares a set of plaintexts so that
particular cells can contain all the values in the set and the other cells are fixed
to a constant value. Then properties of the multiset of internal state values after
encrypting several rounds are considered. The integral distinguisher in the best
attack we found covers 10 rounds that can be turned into a key-recovery attack
on 14 rounds. The division property could be used to slightly extend those results.
Again, given the number of rounds for SKINNY, integral attacks do not seem to
be a threat for the security of the cipher.

Slide Attacks. In SKINNY, the distinction between the rounds of the cipher
is ensured by the AddConstants operation and thus the straightforward slide
attacks cannot be applied. We consider possible variants (in the full version of
the paper), but we could not turn any of those into a valid attack.

Subspace Cryptanalysis. Invariant subspace cryptanalysis makes use of affine
subspaces that are invariant under the round function. Given that SKINNY has a
non-trivial key-scheduling, this technique does not seem well suited to launch an
attack.

Algebraic Attacks We detail in the full version of our paper why, not surpris-
ingly, algebraic attacks do not threaten SKINNY.

5 Implementations, Performance and Comparison

We provide a complete study of SKINNY performance on various platforms (soft-
ware, ASIC, FPGA, micro-controllers, ...) in the full version of the paper. Yet,

we describe here our results regarding ASIC round-based implementations since
it represents our top performance criterion.

We used Synopsys DesignCompiler version A-2007.12-SP1 to synthesize the
designs considering UMCL18G212T3 [34] standard cell library, which is based
on the UMC L180 0.18µm 1P6M logic process with a typical voltage of 1.8 V.
For the synthesis, we advised the compiler to keep the hierarchy and use a clock
frequency of 100 KHz, which allows a fair comparison with the benchmark of
other block ciphers reported in literature.

In a first step, we designed round-based implementations for all SKINNY

variants providing a good trade-off between performance and area. All imple-
mentations compute a single round of SKINNY within a clock cycle. Besides, our
designs take advantage of dedicated scan flip-flops rather than using simple
flip-flops and additional multiplexers placed in front in order to hold round states
and keys. Note that this approach leads to savings of 1 GE per bit to be stored.
In order to allow a better and fairer comparison, we provide both throughput at
a maximally achievable frequency and throughput at a frequency of 100KHz.

Table 8 briefly summarizes the results of the round-based architectures of
all SKINNY variants and compares it to other round-based implementations of
lightweight ciphers taken from the literature. In particular, SKINNY-64-128 offers
the smallest area footprint compared to other lightweight ciphers providing the
same security level. Note, that even SIMON-64-128 implemented in a round-based
fashion cannot compete with our design in terms of both area and throughput.

6 The Low-Latency Tweakable Block Cipher MANTIS

In this section, we present a tweakable block cipher design which is optimized for
low-latency implementations.

The low-latency block cipher PRINCE already provides a very good starting
point for a low-latency design. Its round function basically follows the AES

structure, with the exception of using a MixColumns-like mapping with branch
number 4 instead of 5. The main difference between PRINCE and AES (and actually
all other ciphers) is that the design is symmetric around a linear layer in the
middle. This allows to realize what was coined α-reflection: the decryption for
a key K corresponds (basically) to encryption with a key K ⊕ α where α is a
fixed constant. Turning PRINCE into a tweakable block cipher is (conceptually)
well understood when using e.g. the TWEAKEY framework [17]. First, define a
tweakey-schedule and than simply increase the number of rounds until one can
ensure that the cipher is secure against related-tweak attacks.

However, the problem is that the latency of a cipher is directly related to
the number of rounds. Thus, it is crucial to find a design, i.e. a round function
and a tweak-scheduling, that ensures security already with a minimal number
of rounds. Here, components of the recently proposed block ciphers MIDORI [1]
turn out to be very beneficial. In MIDORI, again an AES-like design, one of the
key observations was that changing ShiftRows into a more general permutation
allows to significantly improve upon the number of active Sboxes (in the single
key model) while keeping a MixColumns-like layer with branch number 4 only.

Table 8: Round-based implementations of SKINNY-64 and SKINNY-128.

Area Delay Clock Throughput Ref.

Cycles @100KHz @maximum

GE ns # KBit/s MBit/s

SKINNY-64-64 1223 1.77 32 200.00 1130.00 New

SKINNY-64-128 1696 1.87 36 177.78 951.11 New

SKINNY-64-192 2183 2.02 40 160.00 792.00 New

SKINNY-128-128 2391 2.89 40 320.00 1107.20 New

SKINNY-128-256 3312 2.89 48 266.67 922.67 New

SKINNY-128-384 4268 2.89 56 228.57 790.86 New

SIMON-64-128 1751 1.60 46 145.45 870.00 [2]

SIMON-128-128 2342 1.60 70 188.24 1145.00 [2]

SIMON-128-256 3419 1.60 74 177.78 1081.00 [2]

LED-64-64 2695 - 32 198.90 - [15]

LED-64-128 3036 - 48 133.00 - [15]

PRESENT-64-128 1884 - 32 200.00 - [5]

PICCOLO-64-128 1773a - 33 193.94 - [30]

aThis number includes 576 GE for key storage that is not considered in the original
work.

On top, the designers of MIDORI designed a 4-bit Sbox that was optimized with
respect to circuit-depth. This directly leads to an improved version of PRINCE
itself: replace the PRINCE round function by the MIDORI-round function while
keeping the entire design symmetric around the middle to keep the α-reflection
property. This simple change would result in a cipher with improved latency
and improved security (i.e. number of active Sboxes) compared to PRINCE. It
is actually exactly this PRINCE-like MIDORI that we use as a starting point for
designing the low-latency block cipher MANTIS. The final step in the design of
MANTIS was to find a suitable tweak-scheduling that would ensure a high number
of active Sboxes not only in the single-key setting, but also in the setting where
the attacker can control the difference in the tweak. Using, again, the MILP
approach, we are able to demonstrate that a slight increase in the number of
rounds (from 12 to 14) is already sufficient to ensure the resistance of MANTIS to
differential (and linear) attacks in the related-tweak setting. Note that MANTIS is
certainly not secure in the related-key model, as there always exist a probability
one distinguisher caused by the α-reflection property.

MANTISr has a 64-bit block length and works with a 128-bit key and 64-bit
tweak. The parameter r specifies the number of rounds of one half of the cipher.
The overall design is illustrated in Figure 5.

We acknowledge the contribution of Roberto Avanzi to the design of MANTIS.
He first suggested us to combine PRINCE with the TWEAKEY framework, and also

R1 R2 R3 R4 R5 R6 S M S R−1
6 R−1

5 R−1
4 R−1

3 R−1
2 R−1

1

h h h h h h h−1 h−1 h−1 h−1 h−1 h−1

k1k1 k1 k1 k1 k1 k1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1k0

m

T

c

k
′
0

Fig. 5: Illustration of MANTIS6.

to modify the latter by permuting the tweak independently from the key, in order
to save on the Galois multiplications of the tweak cells. He then brainstormed
with us on early versions of the design.

6.1 Description of the Cipher

MANTISr is based on the FX-construction [20] and thus applies whitening keys
before and after applying its core components. The 128-bit key is first split into
k = k0 || k1 with 64-bit subkeys k0, k1. Then, (k0 || k1) is extended to the 192
bit key

(k0 || k
′
0 || k1) := (k0 || (k0 ≫ 1)⊕ (k0 � 63) || k1),

and k0, k
′
0 are used as whitening keys in an FX-construction. The subkey k1 is

used as the round key for all of the 2r rounds of MANTISr. We decided to stick
with the FX construction for simplicity., even so other options as described in [8].

Initialization. The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15,
where the mi are 4-bit cells. The initialization of the cipher’s internal state
is performed by setting ISi = mi for 0 ≤ i ≤ 15.

The cipher also receives a tweak input T = t0‖t1‖ · · · ‖t15, where the ti are
4-bit cells. The initialization of the cipher’s tweak state is performed by setting
Ti = ti for 0 ≤ i ≤ 15. Thus,

IS =


m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

 T =


t0 t1 t2 t3
t4 t5 t6 t7
t8 t9 t10 t11
t12 t13 t14 t15


The round function. One round Ri(·, tk) of MANTISr operates on the cipher
internal state depending on the round tweakey tk as

MixColumns ◦ PermuteCells ◦ AddTweakeytk ◦ AddConstanti ◦ SubCells.

In the following, we describe the components of the round function.

SubCells. The involutory MIDORI Sbox Sb0 is applied to every cell of the internal
state. Using the MIDORI Sbox is beneficial as this Sbox is especially optimized
for small area and low circuit depth.

AddConstant. In the i-th round, the round constant RCi is XORed to the
internal state. The round constants are generated in a similar way as for
PRINCE, that is we used the first digits of π to generate those constants
(actually the very first digits correspond to α defined below). The round
constants can be found in the full version of the paper. Note that, in contrast
to PRINCE, the constants are added row-wise instead of column-wise.

AddRoundTweakey. In round Ri, the (full) round tweakey state hi(T) ⊕ k1 is
XORed to the cipher internal state. In the i-th inverse round R−1i , the
tweakey state hi(T)⊕ k̄1 := hi(T)⊕ k1 ⊕ α with α = 0x243f6a8885a308d3

is XORed to the internal state. Note that this α, as the round constants, is
chosen as the first digits of π. Thereby, it is h(T) = th(0)‖th(1) · ‖th(15), where
the tweak permutation h is defined as

h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11].

PermuteCells. The cells of the internal state are permuted according to the
MIDORI permutation

P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

Note that the MIDORI permutation ensures a higher number of active Sboxes
compared to the choice made in PRINCE.

MixColumns. Each column of the cipher internal state array is multiplied by the
binary matrix used in MIDORI.

Encryption. In the following, we define Hr as the application of r rounds Ri
and one additional SubCells layer. Similarly, we define H−1r as the application
on one inverse SubCells layer plus r inverse rounds. Thus,

Hr(·, T, k1) = SubCells ◦ Rr(·, hr(T)⊕ k1) ◦ · · · ◦ R1(·, h(T)⊕ k1)

H−1r (·, T, k̄1) = R−11 (·, h(T)⊕ k̄1) ◦ · · · ◦ R−1r (·, hr(T)⊕ k̄1) ◦ SubCells.

With this notation, it is

Enc(k0,k′0,k1)(·, T) = AddTweakeyk′0⊕k1⊕α⊕T ◦H
−1
r (·, T, k1 ⊕ α)

◦ MixColumns ◦Hr(·, T, k1) ◦ AddTweakeyk0⊕k1⊕T
Decryption. It is Enc−1(k0,k′0,k1)

(·, T) = Enc(k′0,k0,k1⊕α)(·, T) because of the α-

reflection property.

6.2 Design Rationale

The goal was to design a cipher which is competitive to PRINCE in terms of latency
with the advantage of being tweakable. In contrast to SKINNY, we distinguish
between tweak and key input. In particular, we allow an attacker to control the
tweak but not the key. Thus, similar to PRINCE, we do not claim related-key
security. In order to reach this goal, again, several components are borrowed
from already existing ciphers. In the following, we present the reasons for our
design. Note that, as we aim for an efficient unrolled implementation, one is not
restricted to a classical round-iterated design.

α-Reflection Property. MANTISr is designed as a reflection cipher such that
encryption under a key k equals decryption under a related key. This significantly
reduces the implementation overhead for decryption. Therefore, the parameter
r denotes only half the number of rounds, as the second half of the cipher is
basically the inverse of the first half. It is advantageous that the diffusion matrix
M is involutory since we need the middle part of the cipher to be an involution.
Unlike in the description of PRINCE, we use the same round constant for the
inverse R−1i of the i-th round and apply the addition of α to the round key k1.

The Choice of the Diffusion Layer. To achieve low latency in an unrolled
implementation, one is limited in the number rounds to be applied. Therefore,
one has to achieve very fast diffusion while guaranteeing a high number of active
Sboxes. To reach these requirements, we adopted the linear layer of MIDORI. It
provides full diffusion only after three rounds and guarantees a high number of
active Sboxes in the single-key setting. We refer to Table 4 for the bounds.

The Choice of the Sbox. For the Sbox in MANTIS we used the same Sbox as
in MIDORI. The MIDORI Sbox has a significantly smaller latency than the PRINCE

Sbox. The maximal linear bias is 2−2 and the best differential probability is 2−2

as well.

The Choice of the Tweakey Permutation h. Our aim was to choose a
tweak permutation h such that five rounds (plus one additional SubCells layer)
guarantee at least 16 active Sboxes in the related-tweak setting. This would
guarantee at least 32 active Sboxes for MANTIS5 which is enough to bound
the differential probability (resp. linear bias) below 2−2·32. Since there are 16!
possibilities for h, which is too much for an exhaustive search, we restricted ourself
on a subclass of 8! tweak permutations. The restriction is that two complete
rows (without changing the position of the cells in those rows) are permuted to
different rows. In our case, the first and third row are permuted to the second
and fourth row, respectively. The bounds were derived using the MILP tool. We
tested several thousand choices for the permutation h and found out that 16
active Sboxes were the best possible to reach over H5. Out of these optimal
choices, we took the permutation that maximized the bound for MANTIS5, and as
a second step for MANTIS6. We refer to Table 9 for the actual bounds.

Table 9: Lower bounds on the number of linear (and differential) active Sboxes in the
single-key model and of differential active Sboxes in the related-tweak model.

MANTIS2 MANTIS3 MANTIS4 MANTIS5 MANTIS6 MANTIS7 MANTIS8

Linear 14 32 46 62 70 76 82

Rel. Tweak 6 12 20 34 44 50 56

Security Claim. For MANTIS7, we claim that any adversary who in possession
of 2n chosen plain/ciphertext pairs which were obtained under chosen tweaks, but
with a fixed unknown key, needs at least 2126−n calls to the encryption function
in order to recover the secret key. Thus, our security claims are the same as for
PRINCE, except that we also claim related-tweak security. Moreover, already for
MANTIS5 we claim security against practical attacks, similar to what has been
considered in the PRINCE challenge. More precisely, we claim that no related-
tweak attack (better than the generic claim above) is possible against MANTIS5
with less than 230 chosen or 240 known plaintext/ciphertext pairs. Note that
because of the α-reflection, there exists a trivial related-key distinguisher with
probability one. We especially encourage further cryptanalysis on the aggressive
versions.

6.3 Security Analysis

As one round of MANTIS is almost identical to one round in MIDORI, most of the
security analysis can simply be copied from the latter. This holds in particular
for meet-in-the-middle attacks, integral attacks and slide attacks. We therefore
only focus on the attacks where the changes in round constants and by adding
the tweak actually result in different arguments.

Invariant Subspaces. The most successful attack against MIDORI-64 at the
moment is an invariant subspace attack with a density of 296 weak keys. The
main observation here is that the round constants in MIDORI are too sparse and
structured to avoid certain symmetries. More precisely, the round constants in
MIDORI-64 only affect a single bit in each of the 16 4-bit cells. Together with a
property of the Sbox this finally results in the mentioned attack. For MANTIS,
the situation is very different as the round constants (in each half) are basically
random values. This in particular ensures that the invariant subspace attack on
MIDORI does not translate into an attack on MANTIS.

Differential and Linear Related-Tweak Attacks. Using the MILP ap-
proach, we are able to prove strong bounds against related-tweak linear and
differential attacks. In particular, no related tweak linear or differential distin-
guisher based on a characteristics is possible for MANTIS5, that is already for 12
layers of Sboxes. As MANTIS7 has four more rounds, and additional key-whitening,
we believe that is provides a small but sufficient security margin.

The results of unrolled implementations for MANTIS are listed in the full
version of the paper.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments.
This work is partly supported by the Singapore National Research Foundation
Fellowship 2012 (NRF-NRFF2012-06), the DFG Research Training Group GRK
1817 Ubicrypt and the BMBF Project UNIKOPS (01BY1040).

References

1. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A Block Cipher for Low Energy. In: Advances in Cryptology
- ASIACRYPT 2015 - Part II. Volume 9453 of LNCS., Springer (2015) 411–436

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
Simon and speck: Block ciphers for the internet of things. ePrint/2015/585 (2015)

3. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: SAC 2013. Volume 8282 of LNCS., Springer (2014)
324–351

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: EUROCRYPT 1999. Volume 1592 of
LNCS., Springer (1999) 12–23

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: CHES 2007. Volume 4727 of LNCS., Springer (2007) 450–466

6. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: Cryptanalysis
of the lightweight block cipher KTANTAN. In: SAC 2010. Volume 6544 of LNCS.,
Springer (2010) 229–240

7. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knežević, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: ASIACRYPT 2012. Volume 7658 of LNCS.,
Springer (2012) 208–225

8. Boura, C., Canteaut, A., Knudsen, L.R., Leander, G.: Reflection ciphers. Designs,
Codes and Cryptography (2015)

9. Cannière, C.D., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In: CHES 2009. Volume
5747 of LNCS., Springer (2009) 272–288

10. Canteaut, A., Duval, S., Leurent, G.: Construction of Lightweight S-Boxes using
Feistel and MISTY structures (Full Version). ePrint/2015/711 (2015)

11. Chaum, D., Evertse, J.: Crytanalysis of DES with a reduced number of rounds:
Sequences of linear factors in block ciphers. In: CRYPTO 1985. Volume 218 of
LNCS., Springer (1985) 192–211

12. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher square. In: FSE ’97.
Volume 1267 of LNCS., Springer (1997) 149–165

13. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: the Block
Cipher Noekeon. Nessie submission (2000) http://gro.noekeon.org/.

14. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.X.: Block ciphers that
are easier to mask: How far can we go? In: CHES 2013. Volume 8086 of LNCS.,
Springer (2013) 383–399

15. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In:
CHES 2011. Volume 6917 of LNCS., Springer (2011) 326–341

16. Henson, M., Taylor, S.: Memory encryption: A survey of existing techniques. ACM
Comput. Surv. 46(4) (2013) 53:1–53:26

17. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: ASIACRYPT 2014, Part II. Volume 8874 of LNCS., Springer (2014)
274–288

18. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1.3 (2015) Submission to the CAESAR
competition, http://www1.spms.ntu.edu.sg/~syllab/Joltik.

http://gro.noekeon.org/
http://www1.spms.ntu.edu.sg/~syllab/Joltik

19. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: Searching for hardware-
optimal SPN structures and components with a fair comparison. In: CHES 2014.
Volume 8731 of LNCS., Springer (2014) 433–450

20. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In:
CRYPTO’96. Volume 1109 of LNCS., Springer (1996) 252–267

21. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: FSE 2002. Volume 2365 of
LNCS., Springer (2002) 112–127

22. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family.
In: CRYPTO 2015, Part I. Volume 9215 of LNCS., Springer (2015) 161–185

23. Kranz, T., Leander, G., Wiemer, F.: Linear Cryptanalysis: On Key Schedules and
Tweakable Block Ciphers. Preprint (2016)

24. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Advances in Cryptology
- EUROCRYPT 2011. Volume 6632 of LNCS., Springer (2011) 69–88

25. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Inscrypt 2011. (2012) 57–76

26. National Institute of Standards and Technology: Recommendation for Key Manage-
ment – NIST SP-800-57 Part 3 Revision 1. http://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-57Pt3r1.pdf

27. Peyrin, T., Seurin, Y.: Counter-in-Tweak: Authenticated Encryption Modes for
Tweakable Block Ciphers. ePrint/2015/1049 (2015)

28. Piret, G., Roche, T., Carlet, C.: PICARO - a block cipher allowing efficient higher-
order side-channel resistance. In: ACNS 12. Volume 7341 of LNCS., Springer (2012)
311–328

29. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to whirlpool. In: FSE 2011. Volume 6733 of LNCS., Springer (2011)
378–396

30. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: CHES 2011. Volume 6917 of LNCS., Springer
(2011) 342–357

31. Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of block
ciphers with s-bp structures against related-key differential attacks. In: Inscrypt
2013. (2014) 39–51

32. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: twine : A lightweight
block cipher for multiple platforms. In: SAC 2012. Volume 7707 of LNCS., Springer
(2013) 339–354

33. Vincent Grosso and Gaëtan Leurent and François-Xavier Standaert and Kerem
Varici and Anthony Journault and François Durvaux and Lubos Gaspar and
Stéphanie Kerckhof: SCREAM v3 (2015) Submission to the CAESAR competition.

34. Virtual Silicon Inc.: 0.18 µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology:
0.18µm (July 2004)

35. Williams, P., Boivie, R.: CPU Support for Secure Executables. In: TRUST 2011.
Volume 6740 of LNCS., Springer (2011) 172–187

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

	Introduction
	Specification of SKINNY
	Rationale of SKINNY
	Estimating Area and Performances
	General Design and Components Rationale
	Comparing Differential Bounds
	Comparing Theoretical Performance

	Security Analysis
	Differential/Linear Cryptanalysis
	Further Cryptanalysis

	Implementations, Performance and Comparison
	The Low-Latency Tweakable Block Cipher MANTIS
	Description of the Cipher
	Design Rationale
	Security Analysis

