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Abstract. We perform a concrete security treatment of digital signa-
ture schemes obtained from canonical identification schemes via the Fiat-
Shamir transform. If the identification scheme is random self-reducible
and satisfies the weakest possible security notion (hardness of key-recover-
ability), then the signature scheme obtained via Fiat-Shamir is unforge-
able against chosen-message attacks in the multi-user setting. Our secu-
rity reduction is in the random oracle model and loses a factor of roughly
Qh, the number of hash queries. Previous reductions incorporated an ad-
ditional multiplicative loss of N , the number of users in the system. Our
analysis is done in small steps via intermediate security notions, and
all our implications have relatively simple proofs. Furthermore, for each
step, we show the optimality of the given reduction in terms of model
assumptions and tightness.
As an important application of our framework, we obtain a concrete
security treatment for Schnorr signatures in the multi-user setting.
Keywords: Signatures, Identification, Schnorr, tightness

1 Introduction

Canonical Identification Schemes and the Fiat-Shamir Transform.
A canonical identification scheme ID as formalized by Abdalla et al. [1] is a
three-move public-key authentication protocol of a specific form. The prover
(holding the secret-key) sends a commitment R to the verifier. The verifier (hold-
ing the public-key) returns a random challenge h, uniformly chosen from a set
ChSet (of exponential size). The prover sends a response s. Finally, using the
verification algorithm, the verifier publicly checks correctness of the transcript
(R, h, s). There is a large number of canonical identification schemes known
(e.g. [20,31,13,36,42,15,28,39,38,34,29], the most popular among them being the
scheme by Schnorr [42]. The Fiat-Shamir method [20] transforms any such canon-
ical identification scheme into a digital signature scheme SIG[ID] using a hash
function.
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Digital Signatures in the Multi-User Setting. When it comes to secu-
rity of digital signature schemes, in the literature almost exclusively the standard
security notion of unforgeability against chosen message attacks (UF-CMA) [30]
is considered. This is a single-user setting, where an adversary obtains one sin-
gle public-key and it is said to break the scheme’s security if he can produce
(after obtaining Qs many signatures on messages of his choice) a valid forgery,
i.e. a message-signature pair that verifies on the given public-key. However, in
the real world the attacker is usually confronted with many public-keys and
presumably he is happy if he can produce a valid forgery under any of the
given public-keys. This scenario is captured in the multi-user setting for signa-
tures schemes. Concretely, in multi-user unforgeability against chosen message
attacks (MU-UF-CMA) the attacker obtains N independent public-keys and is
said to break the scheme’s security if he can produce (after obtaining Qs many
signatures on public-keys of his choice) a valid forgery that verifies under any of
the public-keys.

There are essentially two reasons why one typically only analyzes signatures
in the single-user setting. First, the single-user security notion and consequently
their analysis are simpler. Second, there exists a simple generic security reduc-
tion [25] between multi-user security and standard single-user security. Namely,
for any signature system, attacking the scheme in the multi-user setting with
N public-keys cannot increase the attacker’s success ratio (i.e., the quotient of
its success probability and its running time) by a factor more than N compared
to attacking the scheme in the single-user setting. As the number of public-keys
N is bounded by a polynomial, asymptotically, the single-user and the multi-
user setting are equivalent. However, the security reduction is not tight: it has
a loss of a non-constant factor N . This is clearly not satisfactory as in complex
environments one can easily assume the existence of at least N = 230 (≈ 1 bil-
lion) public-keys, thereby increasing the upper bound on the attacker’s success
ratio by a factor of 230. For example, if we assume the best algorithm breaking
the single-user security having success ratio ρ = 2−80, then it can only be ar-
gued that the best algorithm breaking the multi-user security has success ratio
ρ′ = 2−80 · 230 = 2−50, which is not a safe security margin that defends against
today’s attackers.

Tightness. Generally, we call a security implication between two problems
tight [9], if the success ratio ρ of any adversary attacking the first problem
cannot decease by more than a small constant factor compared to the success
ratio ρ′ of any adversary attacking the second problem [26,7]. Here the success
ratio ρ is defined as the quotient between the adversary’s success probability
and its running time. We note that this notion of tightness is slightly weaker
than requiring that both, success probability and running time, cannot decrease
by more than a small constant factor (called strong tightness in [26]). However,
the main goal of a concrete security analysis is to derive parameters provably
guaranteeing k-bit security. As the term k-bit security is commonly defined as
the non-existence of any adversary that breaks the scheme with a success ratio
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better than 2−k (see, e.g., [7,18]), our definition of tightness is sufficient for this
purpose.

1.1 Our Contributions

This work contains a concrete and modular security analysis of signatures SIG[ID]
obtained via the Fiat-Shamir transform. Throughout this paper we assume that
our identification schemes ID are Σ-protocols, i.e. they are honest-verifier zero-
knowledge (HVZK), have special soundness (SS), and commitments R are sam-
pled at random from a sufficiently large set. For some of our tight implications
we furthermore require ID to be random self-reducible (RSR), a property we for-
mally define in Definition 5. Most known canonical identification schemes satisfy
the above properties.

Security Notions. For identification schemes we consider XXX-YYY secu-
rity, where XXX ∈ {KR, IMP,PIMP} denotes the attacker’s goal and YYY ∈
{KOA,PA} the attacker’s capabilities. If the attacker’s goals defined as follows:
in key-recovery (KR), it tries to compute a valid secret-key; in impersonation
(IMP), it tries to impersonate a prover by convincing an honest verifier; parallel
impersonation (PIMP) is a parallel version of IMP, where the adversary tries
to convince a verifier in one of QCh many parallel sessions. The attacker’s ca-
pabilities are defined as follows: in a key-only attack (KOA), the adversary is
only given the public-key; in a passive attack (PA), the adversary is provided
with valid transcripts between an honest prover and verifier. In total, we obtain
3 × 2 = 6 different security notions that that were all previously considered in
the literature [41,37,1], except PIMP-YYY security.

Overview. We show via a chain of implications that KR-KOA-security (the
weakest possible security notion for ID where the adversary has to compute
a secret-key from a given public-key without any further oracle access) im-
plies multi-user unforgeability against chosen message attacks (MU-UF-CMA) of
SIG[ID]. The diagram in Figure 1 summarizes our results. All implications are op-
timal in terms of tightness and model requirements in the following sense. If one
implication makes use of a special model requirement, we prove its impossibility
without this requirement. For example, our implication PIMP-KOA −→ UF-KOA
requires the random oracle model [8] (with its well-known deficiencies [17]) and
we show that the non-programmable random oracle model [22] is not suffi-
cient to prove the same implication. Exactly one of our implications, namely
IMP-KOA −→ PIMP-KOA is non-tight, and we prove the impossibility of such a
tight implication. We now discuss the implications from Figure 1 in more detail.

From Identification to Single User Security for Signatures. Our first
main theorem can be informally stated as follows.

Theorem 1. If the identification scheme is KR-KOA-secure against any adver-
sary having success ratio ρ, then SIG[ID] is UF-CMA-secure in the random oracle
model against any adversary having success ratio ρ′ ≈ ρ/Qh, where Qh is the
maximal number of the adversary’s random oracle queries.
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KR-KOA IMP-KOA PIMP-KOA UF-KOA MU-UF-KOA

KR-PA IMP-PA PIMP-PA UF-CMA MU-UF-CMA

RSR+SS+rew. (L. 3)

non-rew. (L. 9)

loss Q (L. 4)

loss < Q (L. 10)

PRO (L. 5)

NPRO (L. 11)

PRO (L. 6)
NPRO (L. 12)

RSR (L. 7)

PRO (L. 8)(L. 2) (L. 2) (L. 2)

︸ ︷︷ ︸
Identification scheme ID

︸ ︷︷ ︸
Signature scheme SIG[ID]

Fig. 1. Overview of our notions and results for canonical identification schemes ID

and their implied signature schemes SIG[ID]. X Z−→ Y means that X-security implies
Y-security under condition Z. Trivial implications are denoted with dashed arrows. All
implications are tight except the one marked with “loss Q”. The conditions are: rew.
(reduction rewinds), loss Q (reduction loses a factor of Q), PRO (reduction is in the
programmable random oracle model), SS (reduction uses special soundness), and RSR
(reduction uses random self-reducibility for tightness). All implications from top to
bottom require HVZK. X 6 Z−→ Y means that X-security does not imply Y-security if
only condition Z is fulfilled. The conditions are: non-rew. (reduction does not rewind),
loss < Q (reduction loses a factor smaller than Q), and NPRO (reduction is in the
non-programmable random oracle model).

The proof of this theorem is obtained by combining four independent Lemmas 3,
4, 5, and 6 via intermediate security notions IMP-KOA, PIMP-KOA, and UF-KOA1

security, see Figure 1. We certainly do not claim any novelty of the above lemmas,
nor a new proof technique. For example, the implication IMP-KOA → UF-CMA
is already explicitly contained in [37] (and implicitly in the seminal paper by
Pointcheval and Stern [41]). However, by our specific choice of the interme-
diate security notions, all four proofs are simple and intuitive. In particular,
unlike previous proofs, none of our proofs requires the full power of the Forking
Lemma [41,5]. At the core of Lemma 3 (KR-KOA → IMP-KOA) we use a new
Multi-Instance Reset Lemma (Lemma 1) which is a generalization of Bellare and
Palacio’s (Single-Instance) Reset Lemma [6] and may be of independent interest.
The key to simplicity is the fact that IMP-KOA security only deals with one sin-
gle impersonation session, which greatly simplifies the probability analysis. Even
though the reduction uses rewinding, the RSR property makes the implication
KR-KOA → IMP-KOA tight. We view identifying the intermediate security no-
tions that allow for simple proofs as a conceptual contribution. Our result show
that IMP-KOA and PIMP-KOA security can be seen as the tightness barrier for
identification schemes in the sense that PIMP-KOA is the weakest of our notions
for ID that is tightly equivalent to (multi-user) UF-CMA security of SIG[ID] in
the random oracle model, whereas IMP-KOA is tightly equivalent to KR-KOA.

1 Unforgeability against key-only attack (UF-KOA security) is the same as standard
UF-CMA security, but the adversary is not allowed to ask any signing query.
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One particular advantage of our modular approach is that we are able to
prove optimality of all four implications via meta-reductions (Lemmas 9, 10,
11, and 12). Lemma 10 proving the impossibility of a tight reduction between
PIMP-KOA and IMP-KOA security is a generalization of Seurin’s impossibility
result to canonical identification schemes [43]; Lemmas 11 and 12 proving the
impossibility of a reduction in the non-programmable random oracle model be-
tween PIMP-KOA, UF-KOA, and UF-CMA can be considered as a fine-grained
version of a general impossibility result by Fukumitsu and Hasegawa [24] who
only consider the implication IMP-PA → UF-CMA; All our impossibility results
assume the reductions to be key-preserving [40] and are conditional in the sense
that the existence of a reduction would imply that ID does not satisfy some other
natural security property (that is believed to hold).

From Single-User to Multi-User Security for Signatures. Our second
main theorem can be informally stated as follows.

Theorem 2. If ID is UF-KOA-secure against any adversary having success ratio
ρ, then it is MU-UF-CMA-secure in the random oracle model against any adver-
sary having success ratio ρ′ ≈ ρ/4, independent of the number of users N in the
multi-user scenario.

This theorem improves the bound implied by previous generic reductions [25]
by a factor of N . Following our modular approach, the theorem is proved in
two steps via Lemmas 7 and 8. Lemma 7 proves that UF-KOA tightly implies
MU-UF-KOA. Tightness stems from the RSR property, meaning that from a given
public key pk we can derive properly distributed pk1, . . . , pkN such that any
signature σ which is valid under pk can be transformed into a signature σi
which is valid under pki and vice-versa.

Lemma 8 is our main technical contribution and proves MU-UF-KOA →
MU-UF-CMA in the programmable random oracle model, again with a tight
reduction. One is tempted to believe that it can be proved the same way as in
the single user setting (i.e., the same way as UF-KOA→ UF-CMA). In the single
user setting, the reduction simulates signatures on mj using the HVZK prop-
erty to obtain a valid transcript (Rj , hj , sj) and programs the random oracle as
H(Rj ,mj) := hj . However, in the MU-UF-KOA experiment an adversary can ask
for a signature under pk1 on message m which makes the reduction program the
random oracle H(R1,m) := h1. Now, if the adversary submits a forgery (R1, s2)
under pk2 on the same messagem, the reduction cannot use this forgery to break
theMU-UF-KOA experiment because the random oracleH(R1,m) was externally
defined by the reduction. Hence, for the MU-UF-KOA experiment, m, (R1, s2)
does not constitute a valid forgery. In order to circumvent the above problem
we make a simple probabilistic argument. In our reduction, about one half of
the multi-user public-keys are coming from the MU-UF-KOA experiment, for the
other half the reduction knows the corresponding secret-keys. Which secret-keys
are known is hidden from the adversary’s view. Now, if the multi-user adversary
first obtains a signature on message m under pk1 and then submits a forgery on
the same message m under pk2, the reduction hopes for the good case that one
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of the public-keys comes from the MU-UF-KOA experiment and the other one is
known. This happens with probability 1/4 which is precisely the loss of our new
reduction.

1.2 Example Instantiations

Schnorr Signatures. One of the most important and signature schemes in the
discrete logarithm setting is the Schnorr signature scheme [42]. It is obtained via
the Fiat-Shamir transform applied to the Schnorr identification protocol. The
recent expiry of the patent in 2008 has triggered a number of initiatives to obtain
standardized versions of it.

Theorems 1 and 2 can be used to derive a concrete security bound for strong
multi-user MU-UF-CMA-security of Schnorr signatures in the random oracle
model from the DLOG problem.2 Our reduction loses a factor of roughly Qh, the
number of random oracle queries. This improves previous bounds by a factor
of N , the number of users in the system. We derive concrete example param-
eters for a provably secure instantiation. Figure 1 shows that DLOG is tightly
equivalent to IMP-KOA-security and PIMP-KOA-security is tightly equivalent to
MU-UF-CMA-security, meaning the tightness barrier for Schnorr lies precisely
between IMP-KOA and PIMP-KOA security.

Katz-Wang Signatures. The Chaum-Pedersen identification scheme [19] is
a double-generator version of Schnorr. It is at least as secure as Schnorr which
means one cannot hope for a tight proof under the DLOG assumption. How-
ever, we can use a simple argument from [34,29] for a tight security proof of its
PIMP-KOA security under the (stronger) Decision Diffie-Hellman Assumption.
The resulting signature scheme is known as the Katz-Wang signature scheme
[34] and our framework yields a tight proof of its strong MU-UF-CMA-security.
Again, this improves previous bounds by a factor of N , the number of users in
the system.

Guillou-Quisquater Signatures. Another canonical identification scheme
of interest with the required properties is the one by Guillou-Quisquater [31].
Similar to Katz-Wang, for the Guillou-Quisquater scheme, we can use an ar-
gument from [2] for a tight proof of PIMP-KOA security under the Phi-hiding
assumption. Alternatively, we can give a proof with loss Qh under the Factoring
assumption. Our framework also shows that this loss is unavoidable. Details are
shown in the full version [35].

1.3 Related Work

Single-User Security. There have been many different works addressing the
single-user security of Fiat-Shamir based signature schemes SIG[ID]. In pioneer-
ing work, Pointcheval and Stern [41] introduced the Forking Lemma as a tool to
2 We can even prove strong MU-UF-CMA security of Schnorr signatures in the sense
that a new signature on a previously signed message already counts as a valid forgery.
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prove UF-CMA security of SIG[ID] from HVZK, SS and KR-KOA-security. Ohta
and Okamoto [37] gave an alternative proof from IMP-KOA security and HVZK.
Abdalla et al. [1] prove the equivalence of IMP-PA-security of ID and UF-CMA
security of SIG[ID] in the random oracle model. All above results incorporate a
security loss of at least Qh and can be seen as a special case of our framework.
Furthermore, [6] consider stronger security notions (e.g., IMP-AA and man-in-the
middle security) for the Schnorr and GQ identification schemes. Abdalla et al. [3]
show that lossy identification schemes tightly imply UF-CMA-secure signatures
in the random oracle model from decisional assumptions. Our Multi-Instance
Reset Lemma (Lemma 1) is a generalization to the Reset Lemma of Bellare and
Palacio [6].

Multi-user security. To mitigate the generic security loss problem in the
multi-user setting for the special case of Schnorr’s signature scheme, Galbraith,
Malone-Lee, and Smart (GMLS) proved [25] a tight reduction, namely that
attacking the Schnorr signatures in the multi-user setting with N public-keys
provably cannot decrease (by more than a small constant factor) the attacker’s
success ratio compared to attacking the scheme in the single-user setting. Un-
fortunately, Bernstein [11] recently pointed out an error in the GMLS proof
leaving a tight security reduction for Schnorr signatures as an open problem.
Even worse, Bernstein identifies an “apparently insurmountable obstacle to the
claimed [GMLS] theorem”. Section 4.3 of [11] further expands on the insurmount-
able obstacle. Our Theorem 2 shows there is such a tight security reduction for
Schnorr signatures if one is willing to rely on the random oracle model. Ad-
ditionally, in [35] we also prove an alternative tight reduction in the standard
model which assumes strong UF-CMA security. (Schnorr is generally believed to
be strongly UF-CMA secure and this is provably equivalent to UF-CMA security
in the random oracle model.) Proving the original GMLS theorem (i.e., without
random oracles and from standard UF-CMA security) remains an open problem.

Impossibility Results. In terms of impossibility results, Seurin [43], build-
ing on earlier work of [40,27], proves that there is no tight reduction from the
(one-more) discrete logarithm assumption to UF-KOA-security of Schnorr sig-
natures. A more recent result by [23] even excludes a reduction from any non-
interactive assumption.3 Fukumitsu and Hasegawa [24], generalizing earlier work
on Schnorr signatures [21,40], prove that SIG[ID] cannot be proved secure in the
non-programmable random oracle model only assuming IMP-PA security of ID.

Schnorr signatures vs. Key-Prefixed Schnorr signatures. After iden-
tifying the error in the GMLS proof, Bernstein [11] uses the lack of a tight
security reduction for Schnorr’s signature scheme as a motivation to promote
a “key-prefixed” modification to Schnorr’s signature scheme which includes the
verifier’s public-key in the hash function. The EdDSA signature scheme by Bern-
stein, Duif, Lange, Schwabe, and Yang [12] is essentially a key-prefixing variant

3 The main result of the published paper [23] even excludes reduction from any inter-
active assumption (with special algebraic properties), but the proof turned out to
be flawed.
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of Schnorr’s signature scheme. (In the context of security in a multi-user setting,
key-prefixing was considered before, e.g., in [14].) In [12] key-prefixing is adver-
tized as “an inexpensive way to alleviate concerns that several public keys could
be attacked simultaneously.” Indeed, Bernstein [11] proves that single-user secu-
rity of the original Schnorr signatures scheme tightly implies multi-user security
of the key-prefixed variant of the scheme. That is, the key-prefixed variant has
the advantage of a standard model proof of its tight multi-user security, whereas
for standard Schnorr signatures one has to assume strong security or rely on the
random oracle model.

The TLS standard used to secure HTTPS connections is maintained by the
Internet Engineering Task Force (IETF) which delegates research questions to
the Internet Research Task Force (IRTF). Cryptographic research questions are
usually discussed in the Crypto Forum Research Group (CFRG) mailing list. In
the last months the CFRG discussed the issue of key-prefixing.

Key-prefixing comes with the disadvantage that the entire public-key has
to be available at the time of signing. Specifically, in a CFRG message from
September 2015 Hamburg [32] argues “having to hold the public key along with
the private key can be annoying” and “can matter for constrained devices”. In-
dependent of efficiency, we believe that a cryptographic protocol should be as
light as possible and prefixing (just as any other component) should only be
included if its presence is justified. Naturally, in light of the GMLS proof, Ham-
burg [32] and Struik [44] (among others) recommended against key prefixing for
Schnorr. Shortly after, Bernstein [10] identifies the error in the GMLS theorem
and posts a tight security proof for the key-prefixed variant of Schnorr signa-
tures. In what happens next, the participant of the CFRG mailing list switched
their minds and mutually agree that key-prefixing should be preferred, despite of
its previously discussed disadvantages. Specifically, Brown writes about Schnorr
signatures that “this justifies a MUST for inclusion of the public key in the mes-
sage of the classic signature” [16]. As a consequence, key-prefixing is contained in
the current draft for EdDSA [33]. In the light of our new results, we recommend
to reconsider this decision.

2 Definitions

2.1 Preliminaries

For an integer p, define [p] := {1, . . . , p} and Zp as the residual ring Z/pZ. If
A is a set, then a ← A denotes picking a from A according to the uniform
distribution. All our algorithms are probabilistic polynomial time unless stated
otherwise. If A is an algorithm, then a← A(b) denotes the random variable which
is defined as the output of A on input b. To make the randomness explicit, we
use the notation a := (A)(b; ρ) meaning that the algorithm is executed on input
b and randomness ρ. Note that A’s execution is now deterministic.
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2.2 Canonical Identification Schemes

A canonical identification scheme ID is a three-move protocol of the form depicted
in Figure 2. The prover’s first message R is called commitment, the verifier selects
a uniform challenge h from set ChSet, and, upon receiving a response s from the
prover, makes a deterministic decision.

Definition 1 (Canonical Identification Scheme). A canonical identifica-
tion scheme ID is defined as a tuple of algorithms ID := (IGen,P,ChSet,V).
– The key generation algorithm IGen takes system parameters par as input and

returns public and secret key (pk, sk). We assume that pk defines ChSet, the
set of challenges.

– The prover algorithm P = (P1,P2) is split into two algorithms. P1 takes as
input the secret key sk and returns a commitment R and a state St ; P2 takes
as input the secret key sk, a commitment R, a challenge h, and a state St
and returns a response s.

– The verifier algorithm V takes the public key pk and the conversation tran-
script as input and outputs a deterministic decision, 1 (acceptance) or 0
(rejection).

We require that for all (pk, sk) ∈ IGen(par), all (R,St) ∈ P1(sk), all h ∈ ChSet
and all s ∈ P2(sk,R, h,St), we have V(pk,R, h, s) = 1.

We make a couple of useful definitions. An identification scheme ID is called
unique if for all (pk, sk) ∈ IGen(par), (R,St) ∈ P1(sk), h ∈ ChSet, there exists at
most one response s ∈ {0, 1}∗ such that V(pk,R, h, s) = 1. A transcript is a three-
tuple (R, h, s). It is called valid (with respect to public-key pk) if V(pk,R, h, s) =
1. Furthermore, it is called real, if it is the output of a real interaction between
prover and verifier as depicted in Figure 2. A canonical identification schemes
ID has α bits of min-entropy, if for all (pk, sk) ∈ IGen(par), the commitment
generated by the prover algorithm is chosen from a distribution with at least
α bits of min-entropy. That is, for all strings R′ we have Pr[R = R′] ≤ 2−α, if
(R,St)← P1(sk) was honestly generated by the prover.

Prover P(sk) Verifier V(pk)

(R,St)← P1(sk)

h← ChSet

s← P2(sk,R, h,St)

d = V(pk,R, h, s)

R

h

s

Fig. 2. A canonical identification scheme and its transcript (R, h, s).

We now define (parallel) impersonation against key-only attack (KOA), pas-
sive attack (PA), and active attack (AA).
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Definition 2 ((Parallel) Impersonation). Let YYY ∈ {KOA,PA,AA}. A
canonical identification ID is said to be (t, ε,QCh, QO)-PIMP-YYY secure (paral-
lel impersonation against YYY attacks) if for all adversaries A running in time
at most t and making at most QCh queries to the challenge oracle Ch and QO
queries to oracle O,

Pr

V(pk,Ri∗ , hi∗ , si∗) = 1 ∧ i∗ ∈ [QCh]

∣∣∣∣∣∣
(pk, sk)← IGen(par)
St ← AO(·)(pk)
(i∗, si∗)← ACh(·)(pk)

 ≤ ε,
where on the i-th query Ch(Ri) (i ∈ [QCh]), the challenge oracle returns hi ←
ChSet to A.4 Depending on YYY, oracle O is defined as follows.
– If YYY = KOA (key-only attack), then O always returns ⊥.
– If YYY = PA (passive attack), then O := Tran, where on the j-th empty

query Tran(ε) (j ∈ QO), the transcript oracle returns a real transcript
(R′j , h

′
j , s
′
j) to A, where (R′j ,St

′
j) ← P1(sk), h′j ← ChSet; s′j ← P2(sk,R

′
j ,

h′j ,St
′
j).

– If YYY = AA (active attack), then O := Prover = (Prover1,Prover2),
where on the j-th query Prover1(ε) (j ∈ QO), the prover oracle returns R′j
for (R′j ,St

′
j) ← P1(sk) to A; on query Prover2(j, h

′
j), the oracle returns

s′j ← P2(sk,R
′
j , h
′
j ,St

′
j), if R′j is already defined (and ⊥ otherwise).

If YYY = KOA, then the parameter QO is not used and we simply speak of
(t, ε,QCh)-PIMP-KOA. Moreover, (t, ε,QO)-IMP-YYY ( impersonation against
YYY attack) security is defined as (t, ε, 1, QO)-PIMP-YYY security, i.e., the ad-
versary is only allowed QCh = 1 query to the Ch oracle.

Definition 3 (Key-recovery). Let YYY ∈ {KOA,PA,AA}. A canonical iden-
tification ID is said to be (t, ε)-KR-YYY secure (key recovery under YYY attack)
if for all adversaries A running in time at most t,

Pr

[
(sk∗, pk) ∈ IGen(par)

∣∣∣∣ (pk, sk)← IGen(par)
sk∗ ← AO(·)(pk)

]
≤ ε,

where depending on YYY oracle O is defined as in Definition 2. The winning
condition (sk∗, pk) ∈ IGen(par) means that the tuple (sk∗, pk) is in the support
of IGen(par), i.e., that A outputs a valid secret-key sk∗ with respect to pk.

Definition 4 (Special Soundness). A canonical identification ID is said to
be SS (special sound) if there there exists an extractor algorithm Ext such that,
for all (pk, sk) ∈ IGen(par), given any two accepting transcripts (R, h, s) and
(R, h′, s′) (where h 6= h′), we have Pr[(sk∗, pk) ∈ IGen(par) | sk∗ ← Ext(pk,R, h,
s, h′, s′)] = 1.

Definition 5 (Random Self-reducibility). A canonical identification ID is
said to be RSR (random self-reducible) if there is an algorithm Rerand and two
deterministic algorithms Tran and Derand such that, for all (pk, sk) ∈ IGen(par):
4 On two queries Ch(Ri) and Ch(Ri′) with the same input Ri = Ri′ the oracle returns
two independent random challenges hi ← ChSet and hi′ ← ChSet.
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– pk′ and pk′′ have the same distribution, where (pk′, τ ′) ← Rerand(pk) is
the rerandomized key-pair and (pk′′, sk′′)← IGen(par) is a freshly generated
key-pair.

– For all (pk′, τ ′) ∈ Rerand(pk), all (pk′, sk′) ∈ IGen(par), and sk∗ = Derand(pk,
pk′, sk′, τ ′), we have (pk, sk∗) ∈ IGen(par), i.e., Derand returns a valid secret-
key sk∗ with respect to pk, given any valid sk′ for pk′.

– For all (pk′, τ ′) ∈ Rerand(pk), all transcripts (R′, h′, s′) that are valid with
respect to pk′, the transcript (R′, h′, s := Tran(pk, pk′, τ ′, (R′, h′, s′))) is valid
with respect to pk.

Definition 6 (Honest-verifier Zero-knowledge). A canonical identification
ID is said to be (perfect) HVZK (honest-verifier zero-knowledge) if there exists
an algorithm Sim that, given public key pk, outputs (R, h, s) such that (R, h, s)
is a real (i.e., properly distributed) transcript with respect to pk.

2.3 Digital Signatures

We now define syntax and security of a digital signature scheme. Let par be
common system parameters shared among all participants.

Definition 7 (Digital Signature). A digital signature scheme SIG is defined
as a triple of algorithms SIG = (Gen,Sign,Ver).
– The key generation algorithm Gen(par) returns the public and secret keys

(pk, sk).
– The signing algorithm Sign(sk,m) returns a signature σ.
– The deterministic verification algorithm Ver(pk,m, σ) returns 1 (accept) or

0 (reject).
We require that for all (pk, sk) ∈ Gen(par), all messages m ∈ {0, 1}∗, we have
Ver(pk,m, Sign(sk,m)) = 1.

Definition 8 (Multi-user Security). A signature scheme SIG is said to be
(t, ε,N,Qs)-MU-SUF-CMA secure (multi-user strongly unforgeable against cho-
sen message attacks) if for all adversaries A running in time at most t and
making at most Qs queries to the signing oracle,

Pr

[
Ver(pki∗ ,m

∗, σ∗) = 1
∧ (i∗,m∗, σ∗) /∈ {(ij ,mj , σj) | j ∈ [Qs]}

∣∣∣∣For i = 1, . . . , N : (pki, ski)← Gen(par)

(i∗,m∗, σ∗)← ASign(·,·)(pk1, . . . , pkN )

]
≤ ε,

where on the j-th query (ij ,mj) ∈ [N ] × {0, 1}∗ (j ∈ [Qs]) the signing oracle Sign
returns σj ← Sign(skij ,mj) to A, i.e., a signature on message mj under public-key
pkij .

We stress that an adversary in particular breaks multi-user security if he asks
for a signature on message m under pk1 and submits a valid forgery on the same
message m under pk2.

The first condition in the probability statement of Definition 8 is called the
correctness condition, the second condition is called the freshness condition.
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Definition 8 covers strong security in the sense that a new signature on a previ-
ously queried message is considered as a fresh forgery. For standard (non-strong)
MU-UF-CMA security (multi-user unforgeablility against chosen message attack)
we modify the freshness condition in the experiment to (i∗,m∗) /∈ {(ij ,mj , ) |
j ∈ [Qs]}, i.e., to break the scheme the adversary has to come up with a sig-
nature on a message-key pair which has not been queried to the signing oracle.
We also define (t, ε,N)-MU-UF-KOA security (multi-user unforgeability against
key only attack) as (t, ε,N, 0)-MU-UF-CMA security, i.e. Qs = 0, the adversary
is not allowed to make any signing query.

Definition 9 (Single-user Security). In the single-user setting, i.e. N = 1
users, (t, ε,Qs)-SUF-CMA security (strong unforgeablility against chosen mes-
sage attacks) is defined as (t, ε, 1, Qs)-MU-SUF-CMA security. Similarly, stan-
dard (non-strong) (t, ε,Qs)-UF-CMA security (unforgeablility against chosen mes-
sage attack) is defined as (t, ε, 1, Qs)-MU-UF-CMA security. Further, (t, ε)-UF-
KOA security (unforgeablility against key-only attack) is defined as (t, ε, 1, 0)-
MU-SUF-CMA security, i.e., N = 1 users and Qs = 0 signing queries.

Security in the random oracle model. The security of identification and
signature schemes containing a hash function can be analyzed in the random
oracle model [8]. In this model hash values can only be accessed by an adver-
sary through queries to an oracle H. On input x this oracle returns a uniformly
random output H(x) which is consistent with previous queries for input x. Us-
ing the random oracle model, the maximal number of queries to H becomes a
parameter in the concrete security notions. For example, for (t, ε,N,Qs, Qh)-
MU-SUF-CMA security we consider all adversaries making at most Qh queries
to the random oracle. We make the convention that each query to the random
oracle made during a signing query is counted as the adversary’s random oracle
query, meaning Qh ≥ Qs.

2.4 Signatures from Identification Schemes

Let ID := (IGen,P,ChSet,V) be a canonical identification scheme. By the general-
ized Fiat-Shamir transformation [6], the signature scheme SIG[ID] := (Gen,Sign,
Ver) from ID is defined as follows. par contains the system parameters of ID and
a hash function H : {0, 1}∗ → ChSet.

Gen(par):
(pk, sk)← IGen(par)
Return (pk, sk)

Sign(sk,m):
(R,St)← P1(sk)
h = H(R,m)
s← P2(sk,R, h,St)
Return σ = (R, s)

Ver(sk,m, σ):
Parse σ = (R, s)
h = H(R,m)
Return V(pk,R, h, s)

In some variants of the Fiat-Shamir transform, the hash additionally inputs some
public parameters, for example h = H(pk,R,m).
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We call ID commitment-recoverable, if V(pk,R, h, s) first recomputes R′ =
V′(pk, h, s) and then outputs 1 iff R′ = R. For commitment-recoverable ID, we
can define an alternative Fiat-Shamir transformation SIG′[ID] := (Gen,Sign′,Ver′),
where Gen is as in SIG[ID]. Algorithm Sign′(sk,m) is defined as Sign(sk,m) with
the modified output σ′ = (h, s). Algorithm Ver′(pk,m, σ′) first parses σ′ = (h, s),
then recomputes the commitment as R′ := V′(pk, h, s), and finally returns 1 iff
H(R′,m) = h.

Since σ = (R, s) can be publicly transformed into σ′ = (h, s) and vice-cersa,
SIG[ID] and SIG′[ID] are equivalent in terms of security. On the one hand, the
alternative Fiat-Shamir transform yields shorter signatures if h ∈ ChSet has a
smaller representation size than response s. On the other hand, signatures of the
Fiat-Shamir transform maintain their algebraic structure which in some cases
enables useful properties such as batch verification.

3 Security Implications

In this section we will prove the following two main results.

Theorem 3 (Main Theorem 1). Suppose ID is SS, HVZK, RSR and has α
bit min-entropy. If ID is (t, ε)-KR-KOA secure then SIG[ID] is (t′, ε′, Qs, Qh)-
UF-CMA-secure and (t′′, ε′′, N,Qs, Qh)-MU-UF-CMA-secure in the programmable
random oracle model, where

ε′

t′
≤ 6(Qh + 1) · ε

t
+
Qs
2α

+
1

|ChSet|
,

ε′′

t′′
≤ 24(Qh + 1) · ε

t
+
Qs
2α

+
1

|ChSet|
.

The proof of Theorem 3 is obtained by combining Lemmas 3-8 below and using
Qh ≤ t′ − 1.

Theorem 4 (Main Theorem 2). Suppose SIG[ID] is HVZK, RSR and has
α bit min-entropy. If SIG[ID] is (t, ε,Qh + Qs)-UF-KOA secure then SIG[ID] is
(t′, ε′, N,Qs, Qh)-MU-UF-CMA secure in the programmable random oracle model,
where

ε′ ≤ 4ε+
QhQs
2α

, t′ ≈ t

and Qs, Qh are upper bounds on the number of signing and hash queries in the
MU-UF-CMA experiment, respectively.

The proof of Theorem 4 is obtained by combining Lemmas 7 and 8 below.
Here we present the proofs of Lemma 1, Lemma 3 (a new Multi-Instance

Reset Lemma and an application of it), Lemma 7, and Lemma 8 (the implication
of “UF-KOA −→ MU-UF-CMA”), which are the main contributions of this paper.
All remaining proofs are deferred to [35].
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3.1 Multi-Instance Reset Lemma

We first state a new reset lemma that we will later use in the proof of Theorem 3.
It is presented in the style of Bellare and Neven’s General Forking Lemma [5] and
does not talk about signatures or identification protocols. It is a generalization
to many parallel instances of the Reset Lemma [6], which is obtained by setting
N = 1.

Lemma 1 (Multi-Instance Reset Lemma). Fix an integer N ≥ 1 and a
non-empty set H. Let C be a randomized algorithm that on input (I, h) returns a
pair (b, σ), where b is a bit and σ is called the side output. Let IG be a randomized
algorithm that we call the input generator. The accepting probability of C is
defined as

acc := Pr[b = 1 | I ← IG;h← H; (b, σ)← C(I, h)]

The (multi-instance) reset algorithm RC associated to C is the randomized algo-
rithm that takes input I1, . . . , IN and proceeds as follows.

Algorithm RC(I1, . . . , IN ):
For i ∈ [N ]:
Pick random coins ρi
hi ← H
(bi, σi)← C(Ii, hi; ρi)

If b1 = . . . = bN = 0 then return (0, ε, ε) // Abort in Phase 1
Fix i∗ ∈ [N ] such that bi∗ = 1
For j ∈ [N ]:
h′j ← H

(b′j , σ
′
j)← C(Ii∗ , h′j ; ρi∗)

If ∃j∗ ∈ [N ] : (hi∗ 6= h′j∗ and b′j∗ = 1) then return (i∗, σi∗ , σ
′
j∗)

Else return (0, ε, ε) // Abort in Phase 2

Let res := Pr[i∗ ≥ 1 | I1, . . . , IN ← IG; (i∗, σ, σ′)← RC(I1, . . . , IN )]. Then

res ≥

(
1−

(
1− acc+

1

|H|

)N)2

.

Proof. For fixed instance I and coins ρ, we define the probabilities

acc(I, ρ) := Pr
h←H

[b = 1 | (b, σ)← A(I, h; ρ)],

res(I, ρ) := Pr
h,h′←H

[
b = 1 ∧ b′ = 1 ∧ h 6= h′

∣∣∣∣ (b, σ)← A(I, h; ρ);(b′, σ′)← A(I, h′; ρ)

]
.

As for fixed I, ρ, the two events b = 1 and b′ = 1 are independent and we
obtain

res(I, ρ) ≥ acc(I, ρ) ·
(
acc(I, ρ)− 1

|H|

)
, (1)
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where the additive factor 1
|H| accounts for the fact that Pr[h′ = h] = 1/|H|.

With the expectation taken over I ← IG and random coins ρ, we bound

EI,ρ [res(I, ρ)] ≥ EI,ρ

[
acc(I, ρ) ·

(
acc(I, ρ)− 1

|H|

)]
≥ EI,ρ[acc(I, ρ)] ·

(
EI,ρ[acc(I, ρ)]−

1

|H|

)
= acc

(
acc− 1

|H|

)
.

Above, we used (1), Jensen’s inequality5 applied to the convex function ϕ(X) :=
X · (X − 1/|H|), and the fact that acc = EI,ρ[acc(I, ρ)].

Next, consider the random variables bi∗ and b′j (j ∈ [N ]) as defined during in
the execution of RA(I1, . . . , IN ). Using acc = Pr[bi∗ = 1] and Pr[b′j = 1 ∧ bi∗ =
1] = EIi∗ ,ρi∗ [res(Ii∗ , ρi∗)], we obtain

Pr[b′j = 1 | bi∗ = 1] =
Pr[b′j = 1 ∧ bi∗ = 1]

Pr[bi∗ = 1]
≥ acc− 1

|H|
.

Finally, we bound

Pr[no abort in phase 2 | no abort in phase 1] = 1−
N∏
j=1

(1− Pr[b′j = 1 | bi∗ = 1])

≥ 1−
(
1− acc+

1

|H|

)N
,

and

Pr[no abort in phase 1] = 1−
N∏
i=1

(1− Pr[bi = 1]) = 1− (1− acc)N

to establish

res = Pr[no abort in phase 1 ∧ no abort in phase 2] ≥ (1− (1− acc+
1

|H|
)N )2.

This completes the proof. ut

3.2 Proof of the Main Theorems

Lemma 2 (XXX-KOA −→ XXX-PA). Let XXX ∈ {KR, IMP,PIMP}. If ID is
(t, ε,QCh)-XXX-KOA secure and HVZK, then ID is (≈ t, ε,QCh, QO)-XXX-PA
secure.
5 Jensen’s inequality states that if ϕ is a convex function and X is a random variable,
then E[ϕ(X)] ≥ ϕ(E[X]).
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The proof is given in the full version [35].
Lemma 3 below proving that KR-KOA tightly implies IMP-KOA uses the

Multi-Instance Reset Lemma and that takes advantage of ID’s random self-
reducibility (RSR).

Lemma 3 (KR-KOA rewinding−−−−−−−→ IMP-KOA). If ID is (t, ε)-KR-KOA secure, SS
and RSR, then ID is (t′, ε′)-IMP-KOA secure, where for any N ≥ 1,

ε ≥ (1− (1− ε′ + 1

|ChSet|
)N )2, t ≈ 2Nt′. (2)

In particular, the two success ratios are related as

ε′

t′
− 1

t′|ChSet|
≤ 6 · ε

t
. (3)

We remark that without RSR, we we can still obtain the weaker bounds ε ≥
ε′(ε′ − 1

|ChSet| ), t ≈ 2t′.

Proof. We first show how to derive (3) from (2). If ε′ ≤ 1/|ChSet|, then (3)
holds trivially. Assuming ε′ > 1/|ChSet|, we set N := (ε′ − 1/|ChSet|)−1 to
obtain t ≈ 2t′/(ε′ − 1/|ChSet|) and ε ≥ (1− 1

e )
2 ≥ 1

3 . Dividing ε by t yields (3).
To prove (2), let A be an adversary against the (t′, ε′)-IMP-KOA-security of

ID. We now build an adversary B against the (t, ε)-KR-KOA security of ID, with
(t, ε) as claimed in (2).

We use the Multi-Instance Reset Lemma (Lemma 1), where H := ChSet
and IG runs (pk, sk) ← IGen and returns pk as instance I. We first define ad-
versary C(pk, h; ρ) that executes A(pk; ρ), answers A’s single query R with h,
and finally receives s from A. If transcript (R, h, s) is valid with respect to pk
(i.e., V(pk,R, h, s) = 1)), C returns (b = 1, σ = (R, h, s)); otherwise, it returns
(b = 0, ε). By construction, C returns b = 1 iff A is successful: acc = ε′.

Adversary B is defined as follows. For each i ∈ [N ], it uses the RSR prop-
erty of ID to generate a fresh public key/trapdoor pair (pki, τi) ← Rerand(pk).
Next, it runs (i∗, σ, σ′) ← RC(pk1, . . . , pkN ), with C defined above. If i∗ ≥ 1,
then both transcripts σ = (R, h, s) and σ′ = (R, h′, s′) are valid with respect
to pki∗ and h 6= h′. B uses the SS property of ID and computes ski∗ ←
Ext(pki∗ , R, h, s, h

′, s′). Finally, using the RSR property of ID, it returns sk =
Derand(pki∗ , ski∗ , τi∗) and terminates. By construction, B is successful iff RC is.
By Lemma 1 we can bound B’s success probability as

ε = res ≥ (1− (1− ε′ + 1

|ChSet|
)N )2.

The running time t of B is that of RC , meaning 2Nt′ plus the N times the
time to run the Rerand and Derand algorithms of RSR plus the time to run the
Ext algorithm of SS. We write t ≈ 2Nt′ to indicate that this is the dominating
running time of B. ut
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Lemma 4 (IMP-KOA loss Q−−−−→ PIMP-KOA). If ID is (t, ε)-IMP-KOA secure, then
ID is (t′, ε′, QCh)-PIMP-KOA secure, where

ε′ ≤ QCh · ε, t′ ≈ t.

The proof is given in the full version [35].

Lemma 5 (PIMP-KOA PRO−−−→ UF-KOA). If ID is (t, ε,QCh)-PIMP-KOA secure,
then SIG[ID] is (t′, ε′, Qh)-UF-KOA secure in the programmable random oracle
model, where

ε′ = ε, t′ ≈ t, Qh = QCh − 1.

The proof is given in the full version [35].
The following lemma is a special case of Lemma 8 (with a slightly improved

bound).

Lemma 6 (UF-KOA PRO−−−→ UF-CMA). Suppose ID is HVZK and has α bit min-
entropy. If SIG[ID] is (t, ε,Qh)-UF-KOA secure, then SIG[ID] is (t′, ε′, Qs, Qh)-
UF-CMA secure in the programmable random oracle model, where

ε′ ≤ ε+ QhQs
2α

, t′ ≈ t,

and Qs, Qh are upper bounds on the number of signing and hash queries in the
UF-CMA experiment, respectively.

Lemma 7 (UF-KOA RSR−−−→ MU-UF-KOA). Suppose ID is RSR. If SIG[ID] is
(t, ε)-UF-KOA secure, then SIG[ID] is (t′, ε′, N)-MU-UF-KOA secure, where

ε′ = ε, t′ ≈ t.

Note that without the RSR property one can use the generic bounds from [25]
to obtain a non-tight bound with a loss of N .

Proof. Let A be an algorithm that breaks (t′, ε′, N)-MU-UF-KOA security of
SIG[ID]. We will describe an adversary B invoking A that breaks (t, ε)-UF-KOA
security of SIG[ID] with (t, ε) as stated in the lemma. Adversary B is executed
in the UF-KOA experiment and obtains a public-key pk.

Simulation of public-keys input to A. For each i ∈ [N ], B generates
(pki, τi) ← Rerand(pk) by using the RSR property of ID. Then B runs A on
input (pk1, . . . , pkN ).

Forgery. Eventually, A will submit its forgery (i∗,m∗, σ∗ := (R∗, s∗)) in the
MU-UF-KOA experiment. B computes h∗ = H(m∗, R∗) and runs s ← Tran(pk,
pki∗ , τi∗ , (R

∗, h∗, s∗)). By the RSR property of ID, the random variables (pk,R∗,
h∗, s) and (pki∗ , R

∗, h∗, s∗) are identically distributed. If σ∗ is a valid signature
on message m∗ under pki∗ , then (R∗, s) is also a valid signature on m∗ under
pk. Thus, we have ε = ε′. The running time t of B is t′ plus the N times the
time to run the Rerand and Tran algorithms of RSR. We again write t ≈ t′. ut
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Lemma 8 (MU-UF-KOA PRO−−−→ MU-UF-CMA). Suppose ID is HVZK and has
α bit min-entropy. If SIG[ID] is (t, ε,N,Qh)-MU-UF-KOA secure, then SIG[ID] is
(t′, ε′, N,Qs, Qh)-MU-UF-CMA secure in the programmable random oracle model,
where

ε′ ≤ 4ε+
QhQs
2α

, t′ ≈ t,

and N is the number of users and Qs and Qh are upper bounds on the number
of signing and hash queries in the MU-UF-CMA experiment, respectively.

Proof. Let A be an algorithm that breaks (t′, ε′, N,Qs, Qh)-MU-UF-CMA se-
curity of SIG[ID]. We will describe an adversary B invoking A that breaks
(t, ε,N,Qh)-MU-UF-KOA security of SIG[ID] with (t, ε) as stated in the lemma.
Adversary B is executed in the MU-UF-KOA experiment and obtains public-keys
(pk1, . . . , pkN ), and has access to a random oracle H.

Preparation of public-keys. For each i ∈ [N ], adversary B picks a secret
bit bi ← {0, 1}. If bi = 1 then B defines pk′i := pki, else B generates the key-pair
(pk′i, sk

′
i)← Gen(par) itself. We note that all simulated public-keys are correctly

distributed.
Adversary B runs A on input (pk′1, . . . , pk′N ) answering hash queries to ran-

dom oracle H ′ and signing queries as follows.

Simulation of hash queries. A hash query H ′(R,m) is answered by B by
querying its own hash oracle H(R,m) and returning its answer.

Simulation of signing queries. On A’s j-th signature query (ij ,mj), B re-
turns a signature σj on message mj under pkij according to the following case
distinction.
– Case A: bij = 0. In that case sk′ij is known to B and the signature is com-

puted as σj := (Rj , sj) ← Sign(sk′ij ,mj). Note that this involves B making
a hash query and defining H ′(Rj ,mj) := H(Rj ,mj).

– Case B: bij = 1. In that case sk′ij is unknown to B and the signature is
computed using the HVZK property of ID. Concretely, B runs (Rj , hj , sj)←
Sim(pk′ij ). If hash value H ′(Rj ,mj) was already defined (via one of A’s
hash/signing queries) and H ′(Rj ,mj) 6= hj , B aborts. Otherwise, it defines
the random oracle

H ′(Rj ,mj) := hj (4)

and returns σj := (Rj , sj), which is a correctly distributed valid signatures
on mj under pkij . Note that by (4), B makes H and H ′ inconsistent, i.e.,
we have H(Rj ,mj) 6= H ′(Rj ,mj) with high probability. Also note that for
each signing query, B aborts with probability at most Qh/2α because Rj
has min-entropy α. Since the number of signing queries is bounded by Qs,
B aborts overall with probability at most QhQs/2α.

Forgery. Eventually, A will submit its forgery (i∗,m∗, σ∗ := (R∗, s∗)). We as-
sume that it is a valid forgery in the MU-UF-CMA experiment, i.e., for h∗ =
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H ′(R∗,m∗) we have V(pk′i∗ , R
∗, h∗, s∗) = 1. Furthermore, it satisfies the fresh-

ness condition, i.e.,
(i∗,m∗) 6∈ {(ij ,mj) : j ∈ [Qs]}. (5)

After receivingA’s forgery, B computes a forgery for theMU-UF-KOA experiment
according to the following case distinction.
– Case 1: There exists a j ∈ [Qs] such that (m∗, R∗) = (mj , Rj). (If there is

more than one j, fix any of them.) In that case we have and h∗ = hj and
furthermore i∗ 6= ij by the freshness condition (5).
• Case 1a: (bi∗ = 1) and (bij = 0). Then the hash value h∗ = H ′(R∗,m∗)

was not programmed by B in (4). That means h∗ = H ′(R∗,m∗) =
H(R∗,m∗) and B returns (i∗,m∗, (R∗, s∗)) as a valid forgery to its
MU-UF-KOA experiment.

• Case 1b: (bi∗ = bij ) or (bi∗ = 0 ∧ bij = 1). Then B aborts.
Note that in case 1 we always have i∗ 6= ij and therefore B does not abort
with probability 1/4 in which case it outputs a valid forgery.

– Case 2: For all j ∈ [Qs] we have: (m∗, R∗) 6= (mj , Rj).
• Case 2a: bi∗ = 1. Then the hash value h∗ = H ′(R∗,m∗) was not pro-

grammed by B in (4). That means h∗ = H ′(R∗,m∗) = H(R∗,m∗) and
B returns (i∗,m∗, (R∗, s∗)) as a valid forgery to its MU-UF-KOA experi-
ment.

• Case 2b: bi∗ = 0. Then B aborts.
Note that in case 2, B does not abort with probability 1/2 in which case it
outputs a valid forgery.
Overall, B returns a valid forgery ofMU-UF-KOA experiment with probability

ε ≥ min

{
1

4
,
1

2

}
·
(
ε′ − QhQs

2α

)
=

1

4

(
ε′ − QhQs

2α

)
.

The running time of B is that of A plus the Qs executions of Sim. We write
t′ ≈ t. This completes the proof. ut

If s in ID is uniquely defined by (pk,R, h) (e.g., as in the Schnorr identifica-
tion scheme), then one can show the above proof even implies MU-SUF-CMA
security of SIG[ID]. The simulation of hash and signing queries is the same as
in the above proof. Let (i∗,m∗, R∗, s∗) be A’s forgery. The freshness condition
of the MU-SUF-CMA experiment says that (i∗,m∗, R∗, s∗) /∈ {(ij ,mj , Rj , sj) :
j ∈ [Qs]}. Together with the uniqueness of ID, this implies (i∗,m∗, R∗) /∈
{(ij ,mj , Rj) : j ∈ [Qs]}. If (i∗,m∗) 6∈ {(ij ,mj) : j ∈ [Qs]}, then B can break
MU-UF-KOA security by the same case distinction as in the proof above. Oth-
erwise, we have R∗ /∈ {Rj : j ∈ [Qs]}, in which case we can argue as in case
2.

4 Impossibility Results

In this section, we show that Theorems 3 and 4 from the previous section are
optimal in the sense that the security reduction requires: rewinding (Lemma
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9), security loss of at least O(Q) (Lemma 10) and programmability of random
oracles (Lemmas 11 and 12).

Let X and Y be some hard cryptographic problems, defined through a (possi-
bly) interactive experiment. A black-box reductionR from X to Y is an algorithm
that, given black-box access to an adversary A breaking problem Y, breaks prob-
lem X. If X and Y are security notions for identification or signatures schemes,
then a reduction R is called key-preserving, if R only makes calls to A with the
same pk that it obtained by its own problem X. All our reductions considered in
this section are key-preserving. All proofs from this section are given in the full
version [35].

Lemma 9 (KR-KOA 6
non-rewind.
−−−−−−−−−→ IMP-KOA). If there is a key-preserving re-

duction R that (tR, εR)-breaks KR-KOA security of ID with one-time black-box
access to an adversary A that (tA, εA)-breaks IMP-KOA security of ID, then there
exists an algorithmM that (tM, εM, QO)-breaks IMP-AA security of ID, where

εM ≥ εR −
1

|ChSet|
, tM ≈ tR, QO = 1.

For our next impossibility result, we will require the following definition for
identification schemes.

Definition 10 (Concurrent (Weak) Impersonation against Man-in-the-
Middle Attacks). A canonical identification ID is said to be (t, ε,QCh, QO)-
IMP-MIM secure (impersonation against man-in-the-middle attacks) if for all
adversaries A running in time at most t and adaptively making at most QO
queries to the prover oracle Prover and QCh queries to the challenge oracle
Ch,

Pr

[
V(pk,Ri∗ , hi∗ , si∗) = 1 ∧ (i∗ ∈ [QCh])
∧(Ri∗ , hi∗ , si∗) /∈ {(R′j , h′j , s′j) | j ∈ [QO]}

∣∣∣∣ (pk, sk)← IGen(par)
(i∗, si∗)← AProver(·),Ch(·)(pk)

]
≤ ε,

where oracles Prover and Ch are defined as in Definition 2. We define weak im-
personation against man-in-the-middle attack (wIMP-MIM) by restricting Ri∗ ∈
{R′1, . . . , R′QO

}.

We remark that wIMP-MIM is a non-standard definition without any practical
relevance, but it will only be used for showing negative results. The following
generalizes a result by Seurin [43] to canonical identification schemes.

Lemma 10 (IMP-KOA 6
loss <Q
−−−−−−→ PIMP-KOA). Suppose that ID has α bit min-

entropy and there is a key-preserving reduction R that (tR, εR)-breaks IMP-KOA
security of ID with n-time black-box access to an adversary A that (tA, εA, QCh)-
breaks PIMP-KOA security of ID. Then there exists an algorithmM that (tM, εM,
1, QO = nQCh)-breaks IMP-MIM security of ID, where

εM ≥ εR −
n ln

(
(1− εA)−1

)
QCh

− n

|ChSet|
− n

2α
, tM ≈ tR.
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For a precise analysis of the function ln
(
(1 − εA)−1

)
, we refer to [43]. For

our purpose, it is sufficient that for a concrete choice of εA, there is a constant
c such that c · εA = ln

(
(1 − εA)

−1). Hence Lemma 10 gives roughly εM ≥
εR − (c · n/QCh) · εA for a suitable choice of εA. Therefore εR can be at most
(c ·n/QCh) ·εA. OtherwiseM would break IMP-MIM security of ID with εM > 0.

In the proof of Lemma 10 (cf. [35]), the meta-reduction just forwards all Rj,i
received during the Man-in-the-Middle attack and R sent by R. So if R is fur-
thermore randomness-preserving, i.e., it chooses R ∈ {R1,1, . . . , Rn,QCh}, then
M attacks wIMP-MIM-security of ID. This observation (formalized in the follow-
ing corollary) is important since the Schnorr identification scheme is wIMP-MIM
but not IMP-MIM-secure.

Corollary 1. If ID has α bit min-entropy and there exists a key- and randomness-
preserving reduction R that (tR, εR)-breaks IMP-KOA security of ID with n-time
black-box access to an adversary A that (tA, εA, QCh)-breaks PIMP-KOA secu-
rity of ID, then there exists an algorithmM that (tM, εM, 1, QO = nQCh)-breaks
wIMP-MIM security of ID, where

εM ≥ εR −
n ln

(
(1− εA)−1

)
QCh

− n

|ChSet|
− n

2α
, tM ≈ tR.

Lemma 11 (IMP-KOA 6
NPRO
−−−−−→ UF-KOA). If there exists a key-preserving re-

duction R in the non-programmable random oracle (NPRO) model that (tR, εR)-
breaks IMP-KOA security of ID with n-time black-box access to an adversary A
that (tA, εA, Qh)-breaks UF-KOA security of SIG[ID], then there exists an algo-
rithmM that (tM, εM, 1)-breaks IMP-AA-security of ID, where

εM ≥ εR −
1

|ChSet|
, tM ≈ tR.

By Lemma 4, Lemma 11 implies that there is no reduction from PIMP-KOA
to UF-KOA in the non-programmable random oracle model.

The following simple lemma actually holds for any signature scheme SIG.

Lemma 12 (UF-KOA 6
NPRO
−−−−−−→ UF-CMA). Suppose that there is a key-preserving

reduction R in the non-programmable random oracle (NPRO) model that (tR, εR,
Qh)-breaks UF-KOA security of SIG with n-time black-box access to an adversary
A that (tA, εA, Qs, Qh)-breaks UF-CMA security of SIG. Then there exists an
algorithmM that (tM, εM)-breaks UF-KOA security of SIG, where

εM ≥ εR, tM ≈ tR.

Remark 1. All the reductions considered in this section are key-preserving which
is the main restriction of our results. If pk and R are elements from some multi-
plicative group G of prime order p, then we can extend our previous techniques
to exclude the larger class of algebraic reductions. A reduction is algebraic, if
for all group elements h output by the reduction, their respective representation
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is known. That is, if at some point of its execution the reduction holds group
elements g1, . . . , gn ∈ G and outputs a new group element h, then it also knows it
representation meaning it also outputs (α1, . . . , αn) ∈ Znp satisfying h =

∏
gαi
i .

Note that key-preserving and randomness-preserving reductions are a special
case of algebraic reductions.

5 Instantiations

In this section we consider two important identification schemes, namely the ones
by Schnorr [42] and by Katz-Wang [34,19]. We use our framework to derive tight
security bounds and concrete parameters for the corresponding Schnorr/Katz-
Wang signature schemes. In the full version [35] we discuss one more identifica-
tion scheme, namely the one by Guillou-Quisquater [31].

5.1 Schnorr Identification/Signature Scheme

Schnorr’s Identification Scheme. The well-known Schnorr’s identification
scheme is one of the most important instantiations of our framework. For com-
pleteness we show that Schnorr’s identification has large min-entropy, special
soundness (SS), honest-verifier zero-knowledge (HVZK), random-self reducibil-
ity (RSR) and key-recovery security (KR-KOA) based on the discrete logarithm
problem (DLOG). Moreover, based on the one-more discrete logarithm problem
(OMDL), Schnorr’s identification is actively secure (IMP-AA) and weakly secure
against man-in-the-middle attack (wIMP-MIM).

Let par := (p, g,G) be a set of system parameters, where G = 〈g〉 is a
cyclic group of prime order p with a hard discrete logarithm problem. Examples
of groups G include appropriate subgroups of certain elliptic curve groups, or
subgroups of Z∗q . The Schnorr identification scheme IDS := (IGen,P,ChSet,V) is
defined as follows.

IGen(par):
sk := x← Zp

pk := X = gx

ChSet := {0, 1}n
Return (pk, sk)

V(pk,R, h, s):
If R = gs ·X−h then return 1
Else return 0

P1(sk):
r ← Zp; R = gr

St := r
Return (R,St)

P2(sk,R, h,St):
Parse St = r
Return s = x · h+ r mod p

We recall the DLOG assumption.

Definition 11 (Discrete Logarithm Assumption). The discrete logarithm
problem DLOG is (t, ε)-hard in par = (p, g,G) if for all adversaries A running
in time at most t, Pr

[
gx = X

∣∣X ← G;x← A(X)
]
≤ ε.
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Lemma 13. IDS is a canonical identification with α = log p bit min-entropy and
it is unique, has special soundness (SS), honest-verifier zero-knowledge (HVZK)
and is random-self reducible (RSR). Moreover, if DLOG is (t, ε)-hard in par =
(p, g,G) then IDS is (t, ε)-KR-KOA secure.

Proof. The correctness of IDS is straightforward to verify. We note that R in
(R,St)← P1(sk) is uniformly random over G. Hence, IDS has log |G| = log p bit
min-entropy. We show the other properties as follows.

Uniqueness. For all (X,x) ∈ IGen(par), (R := gr,St := r) ∈ P1(sk) and h ∈
{0, 1}n, the value s ∈ Zp satisfying gs = XhR⇔ s = xh+ r is uniquely defined.

Special Soundness (SS). Given two accepting transcripts (R, h, s) and (R, h′, s′)
with h 6= h′, we define an extractor algorithm Ext(X,R, h, s, h′, s′) := x∗ :=
(s− s′)/(h− h′) such that, for all (X := gx, x) ∈ IGen(par), we have Pr[gx

∗
=

X] = 1, since we have R = gsX−h = gs
′
X−h

′
and then X = g(s−s

′)/(h−h′).

Honest-verifier Zero-knowledge (HVZK). Given public key X, we let
Sim(X) first sample h← {0, 1}n and s← Zp and then output (R := gsX−h, h, s).
Clearly, (R, h, s) is a real transcript, since s is uniformly random over Zp and R
is the unique value satisfying R = gsX−h.

Random-self Reducibility (RSR). Algorithm Rerand and two deterministic
algorithm Derand and Tran are defined as follows:
– Rerand(X) chooses τ ′ ← Zp and outputs (X ′ := X · gτ ′ , τ ′). We have that,

for all (X,x) ∈ IGen(par), X ′ is uniform and has the same distribution as
X ′′, where (X ′′, x′′)← IGen(par).

– Derand(X,X ′, x′, τ ′) outputs x∗ = x′ − τ ′. We have, for all (X ′, τ ′) ←
Rerand(X := gx) and (X ′, x′) ∈ IGen(par), X ′ = gx

′
and x′ = x + τ ′ and

thus x∗ = x.
– Tran(X,X ′, τ ′, (R′, h′, s′)) outputs s = s′− τ ′ ·h′. We have, for all (X ′, τ ′) ∈

Rerand(X := gx), if (R′, h′, s′) is valid with respect to X ′ := gx+τ
′
then

s = s′ − τ ′ · h′ = (x+ τ ′)h′ + r− τ ′ · h′ = xh′ + r and (R′, h′, s) is valid with
respect to X.

Key-recovery against Key-only Attack (KR-KOA). KR-KOA-security for
ID is exactly the DLOG assumption. ut

Under the one-more discrete logarithm assumption [4], IDS is IMP-AA secure
[6] and in the full version [35] we show that IDS is weakly IMP-MIM secure.

We now define the Q-interactive discrete-logarithm problem which precisely
models PIMP-KOA-security for IDS, where Q = QO is the number of parallel
impersonation rounds.

Definition 12 (Q-IDLOG). The interactive discrete-logarithm assumption Q-
IDLOG is said to be (t, ε)-hard in par = (p, g,G) if for all adversaries A running
in time at most t and making at most Q queries to the challenge oracle Ch,

Pr

[
s ∈ {xhi + ri | i ∈ [Q]}

∣∣∣∣x← Zp;X = gx

s← ACh(·)(X)

]
≤ ε,
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where on the i-th query Ch(gri) (i ∈ [Q]), the challenge oracle returns hi ← Zp
to A.
In [35] we prove that in the generic group model, the Q-IDLOG problem in groups
of prime-order p is at least (t, 2t2/p)-hard. Note that the bound is independent
of Q.

Schnorr’s Signature scheme. Let H : {0, 1}∗ → {0, 1}n be a hash function
with n < log2(p). As IDS is commitment-recoverable we can use the alternative
Fiat-Shamir transformation to obtain the Schnorr signature scheme Schnorr :=
(Gen,Sign,Ver).

Gen(par):
sk := x← Zp

pk := X = gx

Return (pk, sk)

Sign(sk,m):
r ← Zp; R = gr

h = H(R,m)
s = x · h+ r mod p
σ = (h, s) ∈ {0, 1}n × Zp

Return σ

Ver(sk,m, σ):
Parse σ = (h, s) ∈ {0, 1}n×Zp

R = gsX−h

If h = H(R,m) then return 1
Else return 0.

The DLOG problem is tightly equivalent to the 1-IDLOG problem by Lemma
3. Assuming the OMDL problem is hard, Schnorr is wIMP-MIM-secure and by
Corollary 1 there cannot exist a tight implication 1-IDLOG→ Q-IDLOG meaning
the bound from Lemma 4 is optimal. By Lemmas 5 and 6, the Q-IDLOG prob-
lem is tightly equivalent to SUF-CMA-security of Schnorr in the programmable
ROM. The latter is only tightly equivalent to MU-SUF-CMA-security in the pro-
grammable ROM (via Lemmas 7 and 8). In the full version [35] we improve this
by proving that SUF-CMA security is tightly equivalent toMU-SUF-CMA-security
in the standard model. Figure 3 summarizes the modular security implications
for Schnorr.

We derive the following concrete security implications.

Lemma 14. If DLOG is (t, ε)-hard in par = (p, g,G) then Schnorr is (t′, ε′, Qs, Qh)-
SUF-CMA secure and (t′′, ε′′, N,Qs, Qh)-MU-SUF-CMA secure in the programmable
random oracle model, where

ε′

t′
≤ 6(Qh + 1) · ε

t
+
Qs
p

+
1

2n
,

ε′′

t′′
≤ 12(Qh + 1) · ε

t
+
Qs
p

+
1

2n
.

Lemma 15. If Qh-IDLOG is (t, ε)-hard in par then Schnorr is (t′, ε′, N,Qs, Qh)-
MU-SUF-CMA secure in the programmable random oracle model, where

ε′ ≤ 2ε+
QhQs
p

, t′ ≈ t.

We leave it an open problem to come up with a more natural hard problem over
par that tightly implies Q-IDLOG (and hence MU-SUF-CMA-security of Schnorr).
Note that according to [23], the hard problem has to have at least one round of
interaction.
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QDLOG Q1-IDLOG Q-IDLOG QSUF-CMA QMU-SUF-CMA

rew. (L. 3)

non-rew. (L. 9)

loss Q (L. 4)

loss < Q (L. 10)

PRO (L. 5, L. 6)

NPRO (L. 11, L. 12)

(L. B.1 [35])

Fig. 3. Security relations for the Schnorr signature scheme. All implications except
“1-IDLOG −→ Q-IDLOG” are tight.

Concrete parameters. In this section we derive parameters for Schnorr pro-
viding k-bit security in the multi-user setting. Following [26,7], for k-bit security
one requires (t′, ε′, N,Qs, Qh)-MU-SUF-CMA security with ε′/t′ ≤ 2−k for rea-
sonable choices of N,Qs, Qh.

The following lemma assumes that a generic algorithm (for example, the
Pollard-rho algorithm) is the best possible algorithm to break discrete logarithms
in group G. This is generally believed to be true for prime-order subgroups of
elliptic curves.

Lemma 16. Let Schnorr be instantiated with par = (p, g,G, H), where p is a
prime and H : {0, 1}∗ → {0, 1}n. If a generic algorithm is the best possible
algorithm to break discrete logarithms in group G, then Schnorr provides k-bits
security in the multi-user setting if

log p ≥ 2k + log(Qh) + c′dl, n ≥ k + 1,

where c′dl is a constant that only depends on the generic algorithm. Furthermore,
if a generic algorithm is the best possible algorithm to break the Q-IDLOG problem
in par, then Schnorr provides k-bits security in the multi-user setting if

log p ≥ 2k + c′′dl,

where c′′dl is a constant that only depends on the generic algorithm.

Proof. Assuming a generic algorithm is the best possible algorithm to compute
discrete logarithms, means that DLOG in group G of prime-order p is (t, ε =
cdl · t2/p)-hard, for any time bound t, where cdl is a fixed constant that only
depends on the specific choice of the generic algorithm.

We assume that the adversary makes Qh > 3 hash queries such that Qh+1 ≤
4/3 ·Qh. Define the constant c′dl := 5+ log(cdl). Plugging in the parameters from
Lemma 14 and using Qs ≤ t ≤ 2k we obtain

ε′

t′
≤ 12(Qh + 1)

ε

t
+
Qs
p

+
1

2n

≤ 16Qhcdl
t

p
+

1

2n

≤ t

22k+1
+

1

2k+1
≤ 2−k

which proves the first part of the statement.
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A similar computation can be done to prove the second part using a Theorem
from [35] saying that the best generic algorithm against Q-IDLOG has a success
ratio of at most 2t2/p. ut

The interpretation for the multi-user security of Schnorr over elliptic-curve
groups is as follows. It is well-known that a group of order p providing k-bits
security against the DLOG problem requires log p ≥ 2k. If one requires provable
security guarantees for Schnorr under DLOG, then one has to increase the group
size by ≈ log(Qh) bits. Reasonable upper bounds for logQh are between 40
and 80. However, the generic lower bound for the Q-IDLOG problem indicates
that the only way to attack Schnorr in the sense of UF-KOA (and hence to
attack Q-IDLOG) is to break the DLOG problem. In that case using groups with
log p ≈ 2k already gives provable security guarantees for Schnorr.

5.2 Chaum-Pedersen Identification/Katz-Wang Signature Scheme

Chaum-Pedersen Identification Scheme. Let par := (p, g1, g2,G) be a set
of system parameters, where G = 〈g1〉 = 〈g2〉 is a cyclic group of prime order p.
The Chaum-Pedersen identification scheme IDCP := (IGen,P,ChSet,V) is defined
as follows.

IGen(par):
sk := x← Zp

pk := (X1, X2) = (gx1 , g
x
2 )

ChSet := {0, 1}n
Return (pk, sk)

V(pk,R = (R1, R2), h, s):
If R1 = gs · X−h

1 and R2 = gs · X−h
2

then return 1
Else return 0

P1(sk):
r ← Zp; R = (R1, R2) = (gr1 , g

r
2)

St := r
Return (R,St)

P2(sk,R, h,St):
Parse St = r
Return s = x · h+ r mod p

We recall the DDH assumption.

Definition 13 (Decision Diffie-Hellman Assumption). The Decision Diffie-
Hellman problem DDH is (t, ε)-hard in par = (p, g1, g2,G) if for all adversaries
A running in time at most t,
|Pr

[
1← A(gx1 , gx2 ) | x← Zp

]
− Pr

[
1← A(gx1

1 , gx2
2 ) | x1 ← Zp;x2 ← Zp \ {x1}

]
| ≤ ε.

Clearly, all security results of Schnorr carry over to the Chaum-Pedersen
identification scheme, i.e., IDCP is at least as secure as IDS. That also means
that we cannot hope for tight PIMP-KOA security from the DLOG assumption.
Instead, for the Chaum-Pedersen identification scheme, we give a direct tight
proof of PIMP-KOA security under the DDH assumption which we extracted
from [34].

Lemma 17. IDCP is a canonical identification scheme with α = log p bit min-
entropy and it is unique, has special soundness (SS), honest-verifier zero-knowledge
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(HVZK) and is random-self reducible (RSR). Moreover, if DDH is (t, ε)-hard in
par = (p, g1, g2,G) then IDCP is (t′, ε′, QCh)-PIMP-KOA secure, where t ≈ t′ and
ε ≥ ε′ −QCh/2

n.

Proof. The proof of SS, HVZK, uniqueness, and RSR is the same as in IDS.
To prove PIMP-KOA-security under DDH, let A be an adversary that (t′, ε′,

QCh)-breaks PIMP-KOA security. We build an adversary B against the (t, ε)-
hardness of DDH as follows. Adversary B inputs (X1, X2) and defines pk :=
(X1, X2). On the i-th challenge query Ch(Ri,1, Ri,2), it returns hi ← Zp. Even-
tually, A returns i∗ ∈ [QCh] and si∗ and terminates. Finally, B outputs d :=
V(pk,Ri∗ , hi∗ , si∗).

Analysis of B. If (X1, X2) = (gx1 , g
x
2 ), then B perfectly simulates the PIMP-KOA

game and hence Pr[d = 1 | (X1, X2) = (gx1 , g
x
2 )] = ε′. If (X1, X2) = (gx1

1 , gx2
2 )

with x1 6= x2, then we claim that even a computationally unbounded A can only
win with probability QCh/2

n, i.e., Pr[d = 1 | (X1, X2) = (gx1
1 , gx2

2 )] ≤ QCh/2
n.

It remains to prove the claim. For each index i ∈ [QCh], A first commits to
Ri,1 = g

ri,1
1 and Ri,2 = g

ri,2
2 (for arbitrary ri,1, ri,2 ∈ Zp) and can only win if

there exists an si ∈ Zp such that

ri,1 + hix1 = si = ri,2 + hix2

⇔ hi =
ri,2 − ri,1
x1 − x2

where hi ← {0, 1}n is chosen independently of ri,1, ri,2. This happens with prob-
ability at most 1/2n, so by the union bound we obtain the bound QCh/2

n, as
claimed. ut

Katz-Wang Signature scheme. Let H : {0, 1}∗ → {0, 1}n be a hash function
with n < log2(p). As IDCP is commitment-recoverable we can use the alternative
Fiat-Shamir transformation to obtain a signature scheme which is known as the
Katz-Wang signature scheme KW := (Gen,Sign,Ver).

Gen(par):
sk := x← Zp

(X1, X2) = (gx1 , g
x
2 )

pk := (X1, X2)
Return (pk, sk)

Sign(sk,m):
r ← Zp

R = (R1, R2) = (gr1 , g
r
2)

h = H(R,m)
s = x · h+ r mod p
σ = (h, s) ∈ {0, 1}n × Zp

Return σ

Ver(sk,m, σ):
Parse σ = (h, s) ∈ {0, 1}n×Zp

R = gsX−h

If h = H(R,m) then return 1
Else return 0.

By our results we obtain the following concrete security statements, where
the first bound matches [34, Theorem 1].

Lemma 18. If DDH is (t, ε)-hard in par = (p, g1, g2,G) then KW is (t′, ε′, Qs, Qh)-
SUF-CMA secure and (t′′, ε′′, N,Qs, Qh)-MU-SUF-CMA secure in the programmable
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random oracle model, where

ε′

t′
≤ ε

t
+
Qs
p

+
1

2n
,

ε′′

t′′
≤ 4 · ε

t
+
Qs
p

+
1

2n
.

With a similar computation as in the case of Schnorr, one can compute concrete
parameters for k-bits security assuming that a generic algorithm is the best
method to attack the DDH assumption in par. If log p ≥ 2k+ c′′′dl and n ≥ k+1,
then KW is MU-SUF-CMA-secure, where c′′′dl is a constant that only depends on
the generic algorithm.
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