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Abstract. We introduce the notion of an FExtremely Lossy Function
(ELF). An ELF is a family of functions with an image size that is tunable
anywhere from injective to having a polynomial-sized image. Moreover,
for any efficient adversary, for a sufficiently large polynomial r (necessarily
chosen to be larger than the running time of the adversary), the adversary
cannot distinguish the injective case from the case of image size r.

We develop a handful of techniques for using ELFs, and show that such
extreme lossiness is useful for instantiating random oracles in several
settings. In particular, we show how to use ELFs to build secure point
function obfuscation with auxiliary input, as well as polynomially-many
hardcore bits for any one-way function. Such applications were previously
known from strong knowledge assumptions — for example polynomially-
many hardcore bits were only know from differing inputs obfuscation, a
notion whose plausibility has been seriously challenged. We also use ELFs
to build a simple hash function with output intractability, a new notion
we define that may be useful for generating common reference strings.
Next, we give a construction of ELFs relying on the exponential hardness
of the decisional Diffie-Hellman problem, which is plausible in pairing-
based groups. Combining with the applications above, our work gives
several practical constructions relying on qualitatively different — and
arguably better — assumptions than prior works.

1 Introduction

Hash functions are a ubiquitous tool in cryptography: they are used for pass-
word verification, proofs of work, and are central to a variety of cryptographic
algorithms including efficient digital signatures and encryption schemes.
Unfortunately, formal justifications of many of the uses of hash functions have
been elusive. The trouble stems from the difficulty of even defining what security
properties a hash function should satisfy. On one extreme, a hash function can
be assumed to have standard security properties such as one-wayness or collision
resistance, which are useless for most of the applications above. On the other
extreme, a hash function can be modeled as a truly random function, where it is
assumed that an adversary only has black-box access. In the so-called random
oracle model (ROM) [5], all of the above applications are secure. However, random
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oracles clearly do not exist and moreover provably cannot be replaced by any
concrete hash function [16]. In this light, it is natural to ask:

What are useful properties of random oracles
that can be realized by real-world hash functions.

Some attempts have been made to answer this question; however, many
such attempts have serious limitations. For example Canetti, Goldreich, and
Halevi [16] propose the notion of correlation intractability as a specific feature
of random oracles that could potentially have a standard model instantiation.
However, they show that for some parameter settings such standard model
hash functions cannot exist. The only known positive example [15] relies on
extremely strong cryptographic assumptions such as general-purpose program
obfuscation. For another example, Bellare, Hoang, and Keelveedhi [4] define a
security property for hash functions called Universal Computational Extractors
(UCE), and show that hash functions with UCE security suffice for several uses
of the random oracle model. While UCE’s present an important step toward
understanding which hash function properties might be achievable and which are
not, UCE’s have several limitations. For example, the formal definition of a UCE
is somewhat complicated to even define. Moreover, UCE is not a single property,
but a family or “framework” of assumptions. The most general form of UCE is
trivially unattainable, and some of the natural restricted classes of UCE have
been challenged [13, 7]. Therefore, it is unclear which versions of UCE should be
trusted and which untrusted.

Similar weaknesses have been shown for other strong assumptions that can
be cast as families of assumptions or as knowledge/extracting assumptions, such
as extractable one-way functions (eOWFs) [8] and differing inputs obfuscation
(diO) [12, 2, 21]. These weakness are part of a general pattern for strong assump-
tions such as UCE, eOWFs, and diO that are not specified by a cryptographic
game. In particular, these assumptions do not meet standard notions of falsifiabil-
ity ([28, 22]), and are not complezity assumptions in the sense of Goldwasser and
Kalai [24]. We stress that such knowledge/extracting/framework assumptions
are desirable as security properties. However, in order to trust that the prop-
erty actually holds, it should be derived from a “nice” and trusted assumption.
Therefore, an important question in this space is the following:

Are there primitives with “nice” (e.g. simple, well-established, game-based,
falsifiable, complezity assumption, etc) security properties that can be used to
build hash functions suitable for instantiating random oracles for many protocols.

1.1 Our Work

Our Random Oracle Targets. we aim to base several applications of random
oracles on concrete, “nice” assumptions with relatively simple instantiations.

— Boosting selective to adaptive security. A trivial application of random
oracles is to boost selective to adaptive security in the case of signatures and



identity-based encryption. This is done by first hashing the message/identity
with the random oracle before signing/generating secret keys. There has been
no standard-model security notion for hash functions that allows for this
conversion to be secure, though in the case of signatures, chameleon hash
functions [27] achieve this conversion with a small tweak.

Password hashing. Another common use of hash functions is to securely
store a password in “encrypted” form, allowing for the password to be
verified, but hiding the actual password in case the password database is
compromised. This use case is a special instance of point obfuscation (PO).
In the case that there may be side information about the password, we
have the notion of auziliary input point obfuscation (AIPO). The only prior
constructions of AIPO [14, 9] rely on very strong knowledge assumptions.
The first is Canetti’s [14] strong knowledge variant of the decisional Diffie
Hellman (DDH) assumption, whose plausibility has been called into question
by a recent work showing it is incompatible with the existence of certain
strong forms of obfuscation [7]. The second is a strong knowledge assumption
about one-way permutations due to Bitansky and Paneth [9], which is a
strengthening of Wee’s strong one-way permutation assumption [37]. To the
best of our knowledge, the only currently known ways to instantiate the [9]
assumption is to make the tautological assumption that a particular one-
way permutation is secure. For reasons mentioned above, such tautological
knowledge assumptions are generally considered undesirable in cryptography.
Generating system parameters. A natural use case of hash functions
is for generating common random strings (crs) in a trusted manner. More
specifically, suppose a (potentially untrusted) authority is generating a crs
for some protocol. Unfortunately, such a crs may admit a “trapdoor” that
allows for breaking whatever protocol is using it (Dual EC_DRBG is a
prominent example of this). In order to ensure to untrusting parties that
no trapdoor is known, the authority will generate the crs as an output of
the hash function on some input. The authority may have some flexibility in
choosing the input; we wish to guarantee that it cannot find an input such
that it also knows a trapdoor for the corresponding output. In the random
oracle model, this methodology is sound: the authority cannot choose an
input so that it knows the trapdoor for the output. However, standard notions
of security for hash functions give no guarantees for this setting. We propose
(Section 5) the notion of output intractability as a standard-model security
notion that captures this use case. Output intractability is related to, but
incomparable with, the notion of correlation intractability mentioned above.
As an assumption, our notion of output intractability takes the form of a
knowledge assumption on hash functions; no construction based on “nice”
assumptions is currently known.

Hardcore bits for any one-way function. A random oracle serves as a
good way to extract many hardcore bits for any one-way function. This fact
gives rise to a simple public-key encryption scheme from trapdoor permu-
tations. While it is known how to extract many hardcore bits for specific
functions [34, 29, 1], extracting many bits for general one-way functions may



be useful in settings where we cannot freely choose the function, such as if the
function is required to be a trapdoor permutation. Unfortunately, for general
one-way functions, the only known way to extract more than a logarithmic
number of hardcore bits is to use very strong (and questionable [21]) knowl-
edge assumptions: differing inputs obfuscation [6] (plus one-way functions)
or extractable witness PRFs [39]. In the case of injective one-way functions,
Bellare, Stepanovs, and Tessaro [6] show that the weaker assumption of
indistiguishability obfuscation (i0) (plus one-way functions) suffices. While
weaker than diO, iO is still one of the strongest assumptions made in cryp-
tography. Either way, the forms of obfuscation required are also completely
impractical [3]. Another limitation of prior constructions is that randomness
used to sample the hardcore function needs to be kept secret.

— Instantiating Full Domain Hash (FDH) signatures. Finally, we con-
sider using random oracles to instantiate the Full Domain Hash (FDH)
protocol transforming trapdoor permutations into signatures. Hohenberger,
Sahai, and Waters [26] show that (indistinguishability) obfuscating a (punc-
turable) pseudorandom function composed with the permutation is sufficient
for FDH signatures. However, their proof has two important limitations.
First, the resulting signature scheme is only selectively secure. Second, the
instantiation depends on the particular trapdoor permutation used, as well as
the public key of the signer. Thus, each signer needs a separate hash function,
which needs to be appended to the signer’s public keys. To use their protocol,
everyone will therefore need to publish new keys, even if they already have
published keys for the trapdoor permutation.

Our approach. We take a novel approach to addressing the questions above. We
isolate a (generally ignored) property of random oracles, namely that random ora-
cles are indistinguishable from functions that are extremely lossy. More precisely,
the following is possible in the random oracle model. Given any polynomial time
oracle adversary A and an inverse polynomial §, we can choose the oracle such
that (1) the image size of the oracle is a polynomial r (even for domain/range
sizes where a truly random oracle will have exponential image size w.h.p.), and (2)
A cannot tell the difference between such a lossy oracle and a truly random oracle,
except with advantage smaller than §. Note that the tuning of the image size must
be done with knowledge of the adversary’s running time — an adversary running
in time O(,/r) can with high probability find a collision, thereby distinguishing
the lossy function from a truly random oracle. However, by setting /7 to be much
larger than the adversary’s running time, the probability of finding a collision
diminishes. We stress that any protocol would still use a truly random oracle and
hence not depend on the adversary; the image size tuning would only appear in
the security proof. Our observation of this property is inspired by prior works of
Boneh and Zhandry [38, 11], who use it for the entirely different goal of giving
security proofs in the so-called quantum random oracle model (random oracle
instantiation was not a goal nor accomplishment of these prior works).

We next propose the notion of an FExtremely Lossy Function (ELF) as a
standard-model primitive that captures this tunable image size property. The



definition is related to the notion of a lossy trapdoor function due to Peikert and
Waters [30], with two important differences: we do not need any trapdoor, giving
hope that ELFs could be constructed from symmetric primitives. On the other
hand, we need the functions to be much, much more lossy, as standard lossy
functions still have exponential image size.

On the surface, extreme lossiness without a trapdoor does not appear in-
credibly useful, since many interesting applications of standard lossy functions
(e.g. CCA-secure public key encryption) require a trapdoor. Perhaps surprisingly,
we show that this extremely lossy property, in conjunction with other tools —
usually pairwise independence — can in fact quite powerful, and we use this
power to give new solutions to each of the tasks above. Our results are as follows:

— (Section 3) We give a practical construction of ELFs assuming the exponential
hardness of the decisional Diffie-Hellman (DDH) problem: roughly, that the
best attack on DDH for groups of order p takes time O(p€) for some constant c.
More generally, our construction can be based on the exponential hardness of
the k-Lin problem. Our construction is based on the lossy trapdoor functions
due to Peikert and Waters [30] and Freeman et al. [20], though we do not need
the trapdoor from those works. Our construction starts from a trapdoor-less
version of the DDH-based construction of [20], and iterates it many times at
different security levels, together with pairwise independent hashing to keep
the output length from growing too large. Having many different security
levels allows us to do the following: when switching the function to be lossy,
we can do so at a security level that is just high enough to prevent the
particular adversary from detecting the switch. Using the exponential DDH
assumption, we show that the security level can be set low enough so that (1)
the adversary cannot detect the switch, and (2) so that the resulting function
has polynomial image size. We note that a couple prior works [10, 18] have
used a similar technique of combining several “bounded adversary” instances
at multiple security levels, and invoking the security of the instance with “just
high enough” security. The main difference is that in prior works, “bounded
adversary” refers to bounded queries, and the security parameter itself is
kept constant across instances; in our work, “bounded adversary” refers to
bounding the running time of the adversary, and the security parameter is
what is varied across instances.

Our iteration at multiple security levels is somewhat generic and would
potentially apply to other constructions of lossy functions, such as those
based on LWE. However, LWE-based constructions of lossy functions are not
quite lossy enough for our needs since even “exponentially secure” LWE can
be solved in time sub-exponential in the length of the secret.

The exponential hardness of DDH is plausible on elliptic curve groups —
despite over a decade of wide-spread use and cryptanalysis attempts, there
are virtually no non-trivial attacks on most elliptic curve groups and the
current best attacks on DDH take time Q(pl/ 2). In fact, the parameter settings
for most real-world uses of the Diffie-Hellman problem are set assuming the
Diffie-Hellman problem takes exponential time to solve. If our assumption



turns out to be false, it would have significant ramifications as it would
suggest that parameters for many cryptosystems in practice are set too
aggressively. It would therefore be quite surprising if DDH turned out to
not be exponentially hard on elliptic curves. While not a true falsifiable
assumption in the sense of Naor [28] or Gentry and Wichs [22] due to the
adversary being allowed to run in exponential time, the exponential DDH
assumption is falsifiable in spirit and naturally fits within the complexity
assumption framework of Goldwasser and Kalai [24].

While our ELFs are built from public key tools, we believe such tools are
unnecessary and we leave as an interesting open question the problem of
constructing ELFs from symmetric or generic tools.

We observe that our construction achieves a public coin notion, which is
useful for obtaining public coin hash functions in applications’.

— We give several different hash function instantiations based on ELFs ranging
in complexity and the additional tools used. In doing so, we give new solutions
to each of the problems above. Each construction uses the ELFs in different
ways, and we develop new techniques for the analysis of these constructions.
Thus we give an initial set of tools for using ELFs that we hope to be useful
outside the immediate scope of this work.

e The simplest instantiation is just to use an ELF itself as a hash function.
Such a function can be used to generically boost selective security to
adaptive security in signatures and identity-based encryption by first
hashing the message/user identity (more details below).

e (Section 4) The next simplest instantiation is to pre-compose the ELF
with a pairwise independent hash function. This function gives rise to a
simple (public coin) point function obfuscation (PO). Proving this uses a
slight generalization of the “crooked leftover hash lemma” [17].

e (Section 5) A slightly more complicated instantiation is given by post-
composing and ELF with a k-wise independent function. We show that
this construction satisfies our notion of output intractability. It is moreover
public coin. This construction and analysis can be seen as a generalization
of the result of [30] that post-composing a standard lossy function with
a pairwise independent hash function gives a collision resistant function,
though the details of the analysis are very different.

e (Section 6) We then give an even more complicated construction, though
still using ELF’s as the only underlying source of cryptographic hardness.
The construction roughly follows a common paradigm used in leakage
resilience [19]: apply a computational step (in our case, involving ELFs),
compress with pairwise independence, and repeat. We note however that
the details of the construction and analysis are new to this work.

We demonstrate that our construction is a pseudorandom generator
attaining a very strong notion of leakage resilience for the seed. This

! The construction of [20] can also be made public coin by tweaking the generation
procedure. However, this necessarily loses the trapdoor, as having a trapdoor and
being public coin are incompatible. To the best of our knowledge, however, we are
the first to observe this public coin feature.



property strengthens the one-way notion of Bitansky and Paneth [9]. Our
construction therefore shows how to instantiate the knowledge properties
conjectured in their work using a more traditional-style assumption.
An immediate consequences of our generator requirement is a (public
coin) point function obfuscation that is secure even in the presence
of auxiliary information (AIPO), which was previously known from
either permutations satisfying [9]’s one-wayness requirement (our function
is not a permutation), or from Canetti’s strong knowledge variant of
DDH [14, 9]%. Our ATPO construction is qualitatively very different from
these existing constructions, and when plugging in our ELF construction,
again relies on just exponential DDH.

Our generator also immediately gives a family of (public coin) hardcore
functions of arbitrary stretch for any one-way function. Unlike the pre-
vious obfuscation-based solutions, our is practical, and public coin, and
ultimately based on a well-studied game-based assumption.

Our analysis also demonstrates that our ELF-based function can be used
in a standard random oracle public key encryption protocol [5].

e In the full version [40], we give an instantiation useful for Full Domain
Hash (FDH) signatures which involves obfuscating the composition of
an ELF and a (puncturable) pseudorandom function using an indis-
tinguishability obfuscator. Since we use obfuscation as in Hohenberger,
Sahai, and Waters’ [26] scheme, this construction is still completely im-
practical and therefore currently only of theoretical interest. We show
that our construction can be used in the FDH protocol, solving some
of the limitations in [26]. In particular, by composing with an ELF, we
immediately get adaptive security as observed above. Our construction
is moreover independent of the permutation (except for the size of the
circuit computing it), and is also independent of the signer’s public key.
Thus, our instantiation is universal and one instantiation can be used by
any signer, even using existing keys. Similar to [26], this construction is
still required to be secret coin, even if the underlying ELF is public coin.

Warm up: generically boosting selective to adaptive security. To give a sense for
our techniques, we show how ELFs can be used to generically boost selective to
adaptive security in signatures and identity-based encryption. We demonstrate
the case for signatures; the case for identity based encryption is almost identical.
Recall that in selective security for signatures, the adversary commits to a
message m™ at the beginning of the experiment before seeing the public key.
Then the adversary makes a polynomial g adaptive signing queries on messages
mi,..., Mg # m*, receiving signatures oy, ...,0,. Then, the adversary produces
a forged signature o* on m*, and security states that ¢* is with overwhelming
probability invalid for any efficient adversary. Adaptive security, in contrast,
allows the adversary to choose m* potentially after the ¢ adaptive queries.

2 One drawback — which is shared with some of the prior constructions — is that we
achieve a relaxed notion of correctness where for some sparse “bad” choices of the
obfuscation randomness, the outputted program may compute the wrong function.



We now convert selective to adaptive security using ELFs: first hash the
message using the ELF, and then sign. Adaptive security is proved through a
sequence of hybrids. The first is the standard adaptive security game above.
Toward contradiction, suppose that the adversary runs in polynomial time ¢ and
succeeds in forging a signature on m* with non-negligible probability €. Let § be
an inverse polynomial that lower bounds € infinitely often. In the second hybrid,
the ELF is selected to have polynomial image size r, where r > 2q is chosen, say,
so that no t-time adversary can distinguish between this ELF and an injective
ELF, except with probability at most §/2. Thus, in this hybrid, the adversary
still successfully forges with probability € — §/2. This is lower bounded by /2
infinitely often, and is therefore non-negligible.

In the next hybrid, at the beginning of the experiment, one of the r image
points of the ELF, y*, is chosen at random?®. Then we abort the experiment if
the adversary’s chosen m* does not hash to y*; with probability 1/r, we do not
abort*. This abort condition is independent of the adversary’s view, meaning
that we do not abort, and the adversary successfully forges, with probability at
least (e — &/2)/r, which again is non-negligible. Notice now that y* can be chosen
at the beginning of the experiment. This is sufficient for obtaining an adversary
for the selective security of the original signature scheme.

1.2 Complexity Absorption

It may be more reasonable to assume the (sub-)exponential hardness of an
existing well-studied problem than to assume such hardness for new and untested
problems. Moreover, there might be implementation issues (such as having to
re-publish longer keys, see the full version [40] for a setting where this could
happen) that make the sub-exponential hardness of certain primitives undesirable.

The application of ELFs to signatures and identity-based encryption above
can be seen as an instance of a more general task of complexity absorption,
where an extra complexity-absorbing primitive (in our case, and ELF) is in-
troduced into the protocol. The original building blocks of the protocol (the
underlying signature/identity-based encryption in this case) can be reduced from
(sub)exponential security to polynomial security. Meanwhile, the complexity-
absorbing primitive may still require exponential hardness as in our case, but
hopefully such hardness is a reasonable assumption. Our hardcore function with
arbitrary span can also be seen in this light: it is straightforward to extend
Goldreich-Levin [23] to a hardcore function of polynomial span for exponentially-
secure one-way functions. By introducing an ELF into the hardcore function,
the ELF can absorb the complexity required of the one-way function, yielding a
hardcore function for any one-way function, even one-way functions that are only
polynomially secure. Similarly, our random oracle instantiation for Full Domain
Hash can also be seen as an instance of complexity absorption.

3 The ability to sample a random image point does not follow immediately from our
basic ELF definition, though this can be done in our construction.

4 We also need to abort if any of the m; do hash to y;. It is straightforward to show
that we still do not abort with probability at least %



Thus, our work can be seen as providing an initial set of tools and techniques
for the task of complexity absorption that may be useful in other settings where
some form of sub-exponential hardness is difficult or impossible to avoid. For
example, Rao [32] argues that any proof of adaptive security for multiparty non-
interactive key exchange (NIKE) will likely incur an exponential loss. As all current
multiparty NIKE protocols are built from multilinear maps or obfuscation, which
in turn rely on new, untested (and in many cases broken) hardness assumptions,
assuming the sub-exponential security of the underlying primitives to attain
adaptive security is undesirable. Hofheinz et al. [25] give a construction in the
random oracle model that only has a polynomial loss; our work gives hope that
a standard model construction based on ELFs may be possible where the ELF is
the only primitive that needs stronger than polynomial hardness.

1.3 Non-black box simulation

Our proofs require knowledge of the adversary’s running time (and success
probability). Thus, they do not make black box use of the adversary. Yet, this
is the only non-black box part of our proofs — the reduction does not need to
know the description or internal workings of the adversary. This is similar to
Goldreich-Levin [23], where only the adversary’s success probability is needed.
Thus our reductions are nearly black box, while potentially giving means to
circumvent black-box impossibilities. For example, proving the security of AIPO
is known to require non-black box access to the adversary [37, 9], and yet our
reduction proves the security of AIPO knowing only the adversary’s running time
and success probability. We leave it as an interesting open question to see if your
techniques can be used to similarly circumvent other black box impossibilities.

1.4 On the minimal assumptions needed to build ELFs

We show how to construct extremely lossy functions from a specific assumption on
elliptic curve groups. One could also hope for generic constructions of ELFs based
on existing well-studied primitives. Unfortunately, this appears to be a difficult
task, and there are several barriers to constructing ELFs. For example, lossy
functions (even standard ones) readily imply collision resistance [30], which cannot
be built from one-way functions in a black-box fashion [35]. Rosen and Segev [33]
show a similar separation from functions that are secure under correlated products.
Pietrzak, Rosen, and Segev [31] show that efficiently amplifying lossiness in a
black box way is impossible — this suggests that building ELFs from standard
lossy functions will be difficult, if not impossible.

Perhaps an even stronger barrier to realizing ELFs from standard assumptions
is the following. Our assumption, unfortunately, is about exponential-time ad-
versaries, as opposed to typical assumptions about polynomial-time adversaries.
One could hope for basing ELFs on standard polynomial assumptions, such as
polynomial DDH. However, this would require major breakthroughs in complexity
theory. Indeed, lossy and injective modes of an ELF can be distinguished very



efficiently using a super-logarithmic amount of non-determinism as follows. Let
D = [2¢(°g™)] where m is the number of input bits to the ELF. In the injective
mode, there will be no collisions when the domain is restricted to D. However, in
the lossy mode for any polynomial image size r = r(m), there is guaranteed to
be a collision in D. Points in D can be specified by w(logm) bits. Therefore, we
can distinguish the two modes by non-deterministically guessing two inputs in D
(using w(logm) bits of non-determinism) and checking that they form a collision.
Therefore, if NP restricted to some super-logarithmic amount of non-determinism
was solvable in polynomial time, then this algorithm could be made efficient while
removing all non-determinism. Such an algorithm would violate ELF security.

Theorem 1. If ELFs exist, then for any super-logarithmic function t, NP with t
bits of non-determinism is not solvable in polynomial time.

Therefore, it seems implausible to base ELFs on any polynomially-secure
primitive, since it is consistent with our current knowledge that NP with, say, log?
bits of non-determinism is solvable in polynomial time, but polynomially-secure
cryptographic primitives exist. This may seem to suggest that ELFs are too strong
of a starting point for our applications; to the contrary, we argue that for most of
our applications — point functions® (Section 4), output intractability (Section 5),
and polynomially-many hardcore bits for any one-way function (Section 6) —
similar barriers are inherent to the applications. Therefore, this limitation of
ELFs is shared with any primitive strong enough to realize the applications.

Therefore, instead of starting from standard polynomially-secure primitives,
we may hope to build ELFs generically from, say, an exponentially secure primi-
tive which has a similar limitation. Can we build ELFs from exponentially secure
(injective) one-way functions? Exponentially-secure collision resistant hash func-
tions? To what extent do the black-box barriers above extend into the regime of
exponential hardness? We leave these as interesting open questions.

2 Preliminaries

Given a distribution D over a set X', define the support of D, Supp(D), to be the set
of points in X" that occur with non-zero probability. For any € X, let Pr[D = z]
be the probability that D selects x. For any set X, define Uy to be the uniform
distribution on X. Define the collision probability of D to be CP(D) = Pr[x; =
ry:x1, 20 D=3 . Pr[D= x)2. Given two distributions D, Dy, define the
statistical distance between D; and Dy to be A(D;1,Ds) = %ZweX | Pr[D; =
] — Pr[D; = ]|. Suppose Supp(D1) C Supp(D2). Define the Rényi Divergence

between Dy and Dy to be RD(D1,D2) = 3, coun(py) i=a ©. The Rényi

divergence is related to the statistical distance via the following lemma:

® The case of point functions is more or less equivalent to a similar result of Wee [37].
5 Often, the Rényi Divergence is defined to be proportional to the logarithm of this
quantity. The definition here will be more convenient for our purposes.



Lemma 1. For any distributions D1, Dy over a set Z such that Supp(D1) C

Supp(Dz), A(D1,Dz) < §+/RD(Dy,Dy) — 1.

Consider a distribution H over the set of functions h : X — ). We say that H
is pairwise independent if, for any x1 # xo € X, the random variables H(x1) and
H(x2) are independent and identically distributed, though not necessarily uniform.
Similarly define k-wise independence. We say that H has output distribution D if
for all z, the random variable H(x) is identical to D. Finally, we say that H is
uniform if it has output distribution Uy,7. We will sometimes abuse notation and
say that a function h is a pairwise independent function (resp. uniform) if A is
drawn from a pairwise independent (resp. uniform) distribution of functions.

We will say that a (potentially probabilistic) algorithm 4 outputting a bit
b distinguishes two distributions Dy, D; with advantage e if Pr[A(Dy) : b +
{0,1}] € [3 — € % + ¢€]. This is equivalent to the random variables A(Dy) and
A(D1) have 2¢ statistical distance.

Unless otherwise stated, all cryptographic protocols will implicitly take a
security parameter A as input. Moreover, any sets (such as message spaces, ci-
phertext spaces, etc) will be implicitly indexed by A, unless otherwise stated. In
this context, when we say that an adversary is efficient, we mean its running
time is polynomial in A. A non-negative function ¢ = €(n) is negligible if, for
any polynomial p = p(\), € < 1/p for all sufficiently large A\. When discussing
cryptographic protocols, we say that a probability of an event or advantage
of an adversary is negligible if it is negligible in A. Two distributions Dy, D,
(implicitly parameterized by \) are computationally indistinguishable if any effi-
cient algorithm has only negligible distinguishing advantage, and are statistically
indistinguishable if the distributions have negligible statistical distance. In the
statistical setting, we also sometimes say that Dy, D; are statistically close.

The Crooked Leftover Hash Lemma. Here we state a slight generalization of the
“crooked Leftover Hash Lemma” of Dodis and Smith [17]; the proof is in the full
version [40] and follows [17].

Lemma 2. Let H be a distribution on functions h : X — Y that is pairwise
independent with output distribution &, for some distribution £ that is possibly
non-uniform. Let D be an arbitrary distribution over X. Then we have that

A((H,H(D)), (H,€)) < 1,/CP(D)( |Supp(&)| —1).

3 Extremely Lossy Functions

Here, we define our notion of extremely lossy functions, or ELFs. A standard
lossy function [30] is intuitively a function family with two modes: an injective
mode where the function is injective, and a lossy mode where the image size of

" Note that the typical use of pairwise independence is equivalent to our notion of
pairwise independence plus uniformity. For our purposes, it will be convenient to
separate out the two properties.



the function is much smaller than the domain. The standard security requirement
is that no polynomial-time adversary can distinguish the two modes®.

An ELF is a lossy function with a much stronger security requirement. In the
lossy mode, the image size can be taken to be a polynomial r. Clearly, such a
lossy mode can be distinguished from injective by an adversary running in time
O(4/r) that simply evaluates the function on /7 inputs, looking for a collision.
Therefore, we cannot have security against arbitrary polynomial-time attackers.
Instead, we require security against r¢-time attackers, for some ¢ < 1/2. Moreover,
we require that r is actually tunable, and can be chosen based on the adversary
in question. This means that for any polynomial time attacker, we can set the
lossy function to have domain 7 for some polynomial 7, and the lossy function
will be indistinguishable from injective to that particular attacker (note that the
honest protocol will always use the injective mode, and therefore will not depend
on the adversary in any way).

Definition 1. An extremely lossy function (ELF) consists of an algorithm
ELF.Gen, which takes as input integers M and v € [M]. There is no security
parameter here; instead, log M acts as the security parameter. ELF.Gen outputs
the description of a function f :[M] — [N] such that:

— [ is computable in time polynomial in the bit-length of its input, namely
log M. The running time is independent of r.

— Ifr =M, then f is injective with overwhelming probability (in log M ).

— For all v € [M], |f([M])| < r with overwhelming probability. That is, the
function f has image size at most r.

— For any polynomial p and inverse polynomial function 6 (in log M ), there is
a polynomial q such that: for any adversary A running in time at most p, and
any r € [q(log M), M], we have that A distinguishes ELF.Gen(M, M) from
ELF.Gen(M,r) with advantage less than 6. Intuitively, no polynomial-time
adversary A can distinguish an injective from polynomial image size (where
the polynomial size depends on the adversary’s running time.).

For some applications, we will need an additional requirement for ELFs:

Definition 2. An ELF has an efficiently enumerable image space if there is a
(potentially randomized) procedure running in time polynomial in r and log M
that, given f < ELF.Gen(M,r) and r, outputs a polynomial-sized set S of points
in [N] such that, with overwhelming probability over the choice of [ and the
randomness of the procedure, f([M]) C S.

Definition 3. An ELF has a efficiently sampleable image space if there is a
polynomial s and a randomized polynomial time procedure (where “polynomial”
means polynomial in r and log M) such that the following holds. Given f «+
ELF.Gen(M,r) and r, the procedure outputs a point y € [N]| such that with
overwhelming probability over the choice of f, the point y has a distribution that
places weight at least 1/s on each image point in f([M]).

8 [30] additionally require that, in the injective mode, there is a trapdoor that allows
inverting the function. We will not need any such trapdoor



Lemma 3. An ELF is efficiently sampleable iff it is efficiently enumerable.

Proof. In one direction, we just sample a random element from the polynomial-
sized list S, obtaining each image point with probability 1/|S|. In the other
direction, by sampling \s points independently at random, except with negligible
probability in A, the set of sampled points will contain each of the r images. O

The following property will be useful for attaining ELFs with efficiently enumer-
able/sampleable image spaces:

Definition 4. An ELF is reqular if, for all polynomial r, with overwhelming
probability over the choice of f < ELF.Gen(M,r), the distribution f(z) for a
uniform x < [M] is statistically close to uniform over f([M]).

Lemma 4. If an ELF is reqular, then it is efficiently sampleable/enumerable.

Proof. To sample, just apply the ELF to a random point. Notice that the sampled
point is guaranteed to be an image point. Thus regularity actually implies a strong
notion of enumerability where S = f([M]) with overwhelming probability. O

The final ELF property we define is public coin.

Definition 5. An ELF is public coin if the description of an injective mode f
outputted by ELF.Gen(M, M) is simply the random coins used by ELF.Gen(M, M).
The descriptions of lossy mode f’s outputted by ELF.Gen(M,r),r < M may (and
in fact, must) be a more complicated function of the random coins.

3.1 Constructing ELFs

We now show how to construct ELFs. Our construction will have two steps: first,
we will show that ELFs can be constructed from a weaker primitive called a
bounded adversary ELF, which is basically and ELF that is only secure against
a priori bounded adversaries. Then we show essentially that the DDH-based
lossy function of [20], when the group size is taken to be polynomial, satisfies
our notion of a bounded-adversary ELF.

Bounded Adversary ELFs

Definition 6. An bounded adversary extremely lossy function (bounded ELF)
consists of an algorithm ELF.Gen', which takes as input integers M, r € [M], and
b € {0,1}. Here, b will indicate whether the function should be lossy, and r will
specify the lossiness. Similar to reqular ELF's, there is no security parameter here;
instead, log M acts as the security parameter. ELF.Gen’ outputs the description
of a function f: [M] — [N] such that:

— [ is computable in time polynomial in the bit-length of its input, namely
log M. The running time is independent of r.
— Ifb=0, then f is injective with overwhelming probability (in log M ).



— For allr € [M], if b=1, then |f([M])| < r with overwhelming probability.
That is, the function f has image size at most r.

— For any polynomial p and inverse polynomial function § (in log M ), there
is a polynomial q such that: for any adversary A running in time at most
p, and any r € [q(log M), M], we have that A distinguishes ELF.Gen' (M, r,0)
from ELF.Gen' (M, r, 1) with advantage less than §.

Intuitively, the difference between a regular ELF and a bounded adversary ELF
is that in a regular ELF, r can be chosen dynamically based on the adversary,
whereas in a bounded adversary ELF, » must be chosen first, and then security
only applies to adversaries whose running time is sufficiently small. In a bounded
adversary ELF, the adversary may be able to learn . We now show that bounded
ELFs are sufficient for constructing full ELFs.

Construction 1 On input M,r, ELF.Gen does:

— For simplicity, assume M is a power of 2: M = 2%, Let M' = M3 = 22F,
and [N] be the co-domain of ELF.Gen’ on domain [M'].

— Let i* be the integer such that 2° € (r/2,r]. Set bj» = 1 and b; = 0 for i # i*

— Fori=1,...,k—1, let f; < ELF.Gen'(M’, 2% b;).

— Fori=2,...,k, choose a pairwise independent random h; : [N'] — [M].

— Choose a pairwise independent random hy : [M] — [M'].

Output the function f = hy o fr_10ohp_10 fy_o0-+-0 f10hy.

Fig.1: An example instantiation for k = 3.

Theorem 2. IfELF.Gen' is a bounded-adversary ELF, then ELF.Gen is a (stan-
dard) ELF. If ELF.Gen’ is public coin, then so is ELF.Gen. If ELF.Gen’ is enumer-
able, then so is ELF.Gen. If ELF.Gen’ is reqular, then so is ELF.Gen.

Proof. First, if r = M, then ¢* = k, and so each of the b; will be 0. Thus each of
the f; will be injective with overwhelming probability. Fix hq, fi, ..., hi_1, fi—_1,
and let S; be the image of f;_1 o h;_10 fx_o0---0 f; o hy Since each of the
functions h; have co-domain of size M’ = M?3, by pairwise independence, h;
will be injective on S; with overwhelming probability. Thus, with overwhelming
probability, the entire evaluation of f will be injective.

Second, if » < M, the function f;- is set to be lossy with image size 2¢° < r.
Thus, f will have image size at most r. Third, we need to argue security. Let
p be a polynomial and o be an inverse polynomial (in log M). Let p’ = p+ ¢
for some c to be determined later. We can think of p’, o as being functions of
log M’ = 3log M. Let ¢ be the polynomial guaranteed by ELF.Gen’ for p’ and o.



Then we can consider g to be a polynomial in log M. Consider any adversary A for
ELF.Gen running in time at most p. Let r € (¢(log M), M|, and let * be such that
21" € (r/2,7]. We construct an adversary A’ for ELF.Gen’: let f;« be the f that A’
receives, where f;- is either ELF.Gen(M, 2" ,0) or ELF.Gen(M, 2%, 1). A’ simulates
the rest of f for itself, setting b; = 0, f; < ELF.Gen’(M, 2%, b;) for i # i* as well
as generating the h;. A’ then runs A on the simulated f. Let ¢ be the overhead
of this reduction, so that A’ runs in time p + ¢ = p’. Thus by the bounded-
adversary security of ELF.Gen’, A’ cannot distinguish injective or lossy mode,
except with advantage o. Moreover, if f;+ is generated as ELF.Gen(M, 2i*70),
then this corresponds to the injective mode of ELF.Gen, and if f;« is generated
as ELF.Gen(M, 2", 1), then this corresponds to ELF.Gen(M,r). Thus, A’ and A
have the same distinguishing advantage, and therefore A cannot distinguish the
two cases except with probability less than o.

It remains to show that ELF.Gen inherits some of the properties of ELF.Gen'.
Being public coin is trivially inherited. To get a sampler for ELF.Gen, apply the
sampler for ELF.Gen’ to the instance f;+ that is lossy, obtaining point y(*"). Then
compute 3y = hj 0 fr—1 0hgp_10 fr—20---0 firy10hi41(y?)). Since any image of
f is necessarily computed as hg o fr—10hg—10 fr_20---0 fixiq10 hi*+1(y(i*)) for
some y;+ in the image of f;+, and all other steps are injective with overwhelming
probability, the result 2(**1) will hit each image point of f frequently as well. In
the full version [40], we also show that regularity is inherited. O

Instantiation for Bounded Adversary ELFs Our construction of bounded
adversary ELFs is based on the DDH-based lossy trapdoor functions of Peikert
and Waters [30] and Freeman et al. [20]. We stress that we do not need the
trapdoor property of their construction, only the lossy property. Security will be
based on the exponential hardness of the decisional Diffie-Hellman problem, or
its k-linear generalizations.

Definition 7. A cryptographic group consists of an algorithm GroupGen that
takes as input a security parameter \, and outputs the description of a cyclic
group G of prime order p € [2*,2 x 2*), and a generator g for G such that:

— The group operation x : G2 — G can be computed in time polynomial in X.

— FEzponentiation by elements in Z, can be carried out in time polynomial in X.
This follows from the efficient group operation procedure by repeated doubling
and the fact that logp < A+ 1.

— The representation of a group element h has size polynomial in X. This also
follows implicitly from the assumption that the group operation is efficient.

We now introduce some notation. For vectors v,w € ZZ, let v * w denote
the point-wise product of the two vectors. For a matrix A € Z;"*", we write
g™ € G™*™ to be the m x n matrix of group elements g*7. Similarly define g™
for a vector w € Zj;. Given a matrix A € G™*" of group elements and a vector
v € Zy, define A v to be w € G™ where 0; = H?ﬂ A?j Using this notation,

(g®) - v = g™V Therefore, the map g, v > g2V is efficiently computable.



Definition 8. The exponential decisional k-linear assumption (k-eLin) on a
cryptographic group specified by GroupGen holds if there is a polynomial q(-,-)
such that the following is true. For any time bound t and probability €, let
A = logq(t,1/e). Then for any adversary A running in time at most t, the
following two distributions are indistinguishable, except with advantage at most €:

(G,9,9%,97"™", 9% : (G, g,p) < GroupGen(\),v,w < Z’;, ¢+ Z, and
k
(G, g,g%, 9", g2~ " : (G, g,p) ¢ GroupGen()), v, W « z;
Definition 9. A cryptographic group is public coin if the following holds:

— The “description” of G, g,p is just the random coins sampled by GroupGen.

— There is a (potentially redundant) efficiently computable representation of
group elements in G as strings in {0,1}™ such that (1) a random string in
{0,1}™ corresponds to a random element in G, and (2) a random representa-
tion of a random element in G is a random string in {0,1}™.

A plausible candidate for a cryptographic group supporting the k-eLin as-
sumption are groups based on elliptic curves. Despite over a decade or research,
essentially no non-trivial attack is known on general elliptic curve groups. There-
fore, the k-eLin assumption on these groups appears to be a reasonable assumption.
We note that groups based on elliptic curves can be made public coin.

Construction 2 OQur construction is as follows, and will be parameterized by k.
ELF.Gen) (M, r,b) does the following.

— Let \ be the largest integer such that (2 x 2M)* < r. Run (G,g,p) <
GroupGen()\).

— Assume for simplicity that M = p™ for some integer m. Then associate
the domain [M] with Z;'. The more general case can be handled by hashing
[M] into Zy' for some m using a pairwise independent hash function which
s injective with overwhelming probability; we defer the analysis to the full
version [40] and here focus on the simple case.

— Let n > m be such that a random matriz sampled from Zy*™ has rank m
with overwhelming probability. For this, it suffices to set n = 2m.

— Ifb=0, choose a random matriz of group elements g™. If b =1, choose a
random rank-k matriz A € Z™ and compute g*.

— Output the function f(x) = A -x. The description of f will consist of
((G?p’A?m?n)'

Theorem 3. If GroupGen is a group where the k-eLin assumption holds for
some constant k, then ELF.Gen), is a reqular bounded adversary ELF. If GroupGen
s public coin, then so is ELF.Gen’.

Proof. If A is full rank, then the map y — g2 is injective. If A has rank k,
then the map has image size p* < r. For security, we just need to show that the
two distributions on ¢ are indistinguishable. Note that it is well known that



the k-linear assumption implies that it is hard to distinguish ¢gB for a random
B € ZFTHF+ from gP for a random rank k matrix B with no loss in the security
of the reduction. From here, it is straightforward to show that it is hard to
distinguish the full rank and rank k cases of g®, with a loss of a factor of m — k.
In fact, using the ideas of [36], the loss can even be made logarithmic in m,
but we will use m as an upper bound on the loss for simplicity. Let g be the
polynomial guaranteed by the k-eLin assumption. Let ¢ be a polynomial and
§ an inverse polynomial. Let ¢’ = 4q(t + u,m/d)*, where u is the overhead in
the reduction from k-eLin to the problem of distinguishing ranks of matrices.
Suppose an adversary runs in time ¢ and distinguishes the two distributions on
g® with advantage §. For any 7 > ¢/, we have that A\ > r'/* /4 > q(t + u,m/§).
This means no (¢t + u)-time adversary can break the k-eLin assumption with
advantage greater than 6/m. By our reduction from distinguishing ranks, this
means no t-time adversary can distinguish the two cases of ¢, except with
advantage at most ¢, as desired.

Notice that if GroupGen is public coin, we can sample g directly in the
injective mode since it is just a matrix of random group elements. Finally, note
that the function y — ¢V is perfectly regular due to its linear structure. ad

Corollary 1. If there exists a constant k and a cryptographic group where
the k-eLin assumption holds, then there exists an ELF with efficiently sam-
pleable/enumerable image. If the group is public coin, then so is the ELF.

4 Point Function Obfuscation

A (expanding) random oracle H serves as a good point function obfuscator: to
1 ifa' ==z
0 ifa’ £z
Then to run the “program” on input 2/, simply check that H(z') = y. For any =
that is drawn from an source with super-logarithmic min-entropy, an adversary
making a polynomial number of queries to H will not be able to determine x
from y. Thus, « is hidden to all efficient adversaries.

In this section, we show how to use ELFs to implement a concrete function
H for which the strategy above still yields a secure point obfuscation (PO).

obfuscate the point function I, (z') = { , simply output y = H(z).

Definition 10. A point obfuscator (PO) is an efficient probabilistic algorithm
O with the following properties:

— (Almost Perfect Correctness) On input a point function I, with overwhelming
probability over the random coins of O, O outputs the description of a program
P that is functionally equivalent to I,. P must run in time polynomial in the
length of x and the security parameter.

— (Secrecy) For any distribution D over a set X with super-logarithmic min-
entropy, the distribution O(I,) for x « D is computationally indistinguishable
from O(I,/) where ' < Ux.



Before giving our construction, we point out that a point obfuscator implies
a separation from NP with super-logarithmic non-determinism and P. Thus, any
primitive used to build point obfuscation, such as ELFs, must necessarily imply
such a separation. This is essentially the same statement as a theorem of Wee [37],
and is proved in the full version [40].

Theorem 4. If Point Obfuscators exist, then for any super-logarithmic function
t, NP with t bits of non-determinism is not solvable in polynomial time.

4.1 The Construction
Construction 3 Let X be the desired domain of H. To generate H,

— Let Z be some set such that |X|? /| Z| is negligible, and sample a hash function
h from a uniform and pairwise independent function distribution from X to
Z. h will thus be injective with overwhelming probability.

— Let f «+ ELF.Gen(|Z|,|Z]) to get an injective-mode f.

— Output H = foh.

Fig. 2: The function H = f o h.

Theorem 5. Assuming ELF is a secure ELF, H in Construction 8 gives a secure
point obfuscator. If ELF is public coin, then so is H.

Proof. We will actually show something stronger: that the point function obfus-
cation of x is indistinguishable from an obfuscation of the all-zeros function. In
particular, we will show that no efficient adversary can distinguish y = f(h(z))
from y = f(z) for a uniformly random z. Notice that by injectivity of f, y has a
pre-image under H = f o h if and only if 2 = f~!(y) has a pre-image under h.
Since we chose h to be expanding, when we sample z uniformly random, z will
have no pre-image with overwhelming probability. Therefore, y = f(z) has no
pre-image with overwhelming probability.

The proof involves a sequence of hybrids. Suppose the adversary runs in time
t and distinguishes y = f(h(x)) from y = f(z) with non-negligible advantage e.
This means there is an inverse polynomial § such that € > ¢ infinitely often.

Hybrid 0 This is the honestly generated y = f(h(x)) for f drawn in injective
mode and z drawn from D.



Hybrid 1 Now, we change f to be lossy. That is, we generate f +— ELF.Gen(|Z],r)
where r is chosen so that no adversary running in time ¢ can distinguish this
lossy f from an injective f, except with advantage at most 6/3. Thus by ELF
security, the adversary cannot distinguish Hybrid 0 from Hybrid 1, except
with probability ¢/3.

Hybrid 2 Now we change y to be y = f(z) for a random uniform z € Z. Fix
f, and let E be the distribution of y. Then notice that by the pairwise
independence and uniformity of h, the composition H = f o h is pairwise
independent and has output distribution E. Moreover, Supp(F) < r is a
polynomial. Therefore, by Lemma 2, we see that Hybrid 1 and Hybrid 2
are indistinguishable, except with probability %\/C’P(D)( [Supp(E)| —1 )
As long as the collision probability of X' is negligible (which in particular
happens when X has super-logarithmic min-entropy), this quantity will be
negligible. In particular, the distinguishing advantage will be less than §/3.

Hybrid 3 Now we change f to be injective again. The distinguishing advantage
between Hybrid 2 and Hybrid 3 will be at most 6/3. Notice that Hybrid
3 is exactly our all-zeros obfuscation. Therefore, Hybrid 0 and Hybrid 3
are indistinguishable, except with probability less than §, meaning ¢ < §.
This contradicts our assumption about the adversary. a

In Section 6, we will show how to strengthen our construction to get a point
obfuscator that is secure even against auxiliary information about the point.

5 Output Intractability

Consider any k4 1-ary relation R over V¥ x W that is computationally intractable:
on a random input y € V¥, it is computationally infeasible to find a w € W such
that R(y,w) outputs 1. If H is a random oracle, assuming k is a constant, it
is computationally infeasible for find a set of distinct inputs x, z; # z;Vi # j,
and a w € W, such that R(H(x),w) = 1. We will now show how to build
standard-model hash functions H that achieve the same property.

Definition 11. A family of hash functions H : [M] — Y is k-ary output in-
tractable if, for any computationally intractable k + 1-ary relation R : Y* x W —
{0,1}, no efficient adversary, given H, can find a set of distinct inputs x € [M]*
and an element w € W, such that R(H (x),w) = 1.

Note that binary output intractability implies as a special case collision
resistance. In the unary case, and if WV is just a singleton set, then output
intractability is a special case of correlation intractability, which allows the
relation to additionally depend on the input.

The unary case captures the following use case of hash functions: a given
protocol may require a common reference string (crs), but some or all instances of
the crs may admit a trapdoor that allows breaking the protocol. Of course, such
a trapdoor should be difficult to find for a random crs. To “prove” that the crs is



generated so that the generator of the crs does not know a trapdoor, the generator
sets the crs to be the output of a public hash function on an arbitrary point. Since
the potentially malicious generator does not control the hash function, he should
be unable to find an output along with a corresponding trapdoor. Modeling the
hash function as a random oracle, this methodology is sound. However, standard
notions of security do not prevent the crs generator from choosing the input in
such a way so that it knows a trapdoor. Unary output intractability precludes
this case. Of course, the hash function itself needs to be set up in a trusted
manner; however, once the hash function is set up and trusted, it can be used to
generate arbitrarily many different crs by even untrusted authorities.

We note, however, that the unary case on its own is not very interesting: the
family of hash functions H parameterized by a string y € ) where H(x) = y for
all z is clearly unary intractable. Depending on the application, one may want
additional features such as collision resistance, which as noted above is implied
by binary output intractability (k = 2). Therefore, k = 2 and above are likely
to be the most interesting settings. In the full version [40], we argue that k > 2
inherently requires some sort of super-polynomial hardness:

Theorem 6. If binary output intractable hash functions exist, then for any
super-logarithmic function t, NP with t bits of non-determinism is not solvable in
polynomial time.

Trivial impossibility for arbitrary k. We note that no one family of hash functions
H can satisfy k-ary output intractability for all k. That is, for different k, a
different family will be required. Suppose to the contrary that a family H satisfied
k-output intractability for all k. Let ¢ be the size of the circuit computing H.
Choose k so that klog|Y| > ¢. Then with overwhelming probability over the
choice of random y € Y*, there is no circuit of size at most ¢ that outputs
y; on input ¢ € [k]. Therefore, let W be the set of circuits of size at most ¢,
and let R(y,C) output 1 if and only if C(i) = y; for each i € [k]. Then R is
computationally (in fact statistically) intractable. However, it is trivial to find
an x,w that satisfy R(H(x),w) = 1: set x = [k] and w = H. Therefore, output
intractability is violated. We obtain the following:

Theorem 7. For any family H : [M] — Y of hash functions, let t be the
description size of H. Then H cannot be output intractable for any k > t/log |Y|.

In the following, we show that it is nonetheless possible to obtain output
intractability for any given constant k. Our functions will be described by strings
of length k(log |V |+poly(log M)), which in the case | Y| > M gives a near-optimal
relationship between k and t.

5.1 The Construction

Construction 4 Let [M] be the desired domain of H, and Y the desired range.
To generate H, to the following:

— Let f «+ ELF.Gen(M, M) to get an injective-mode f, with codomain Z.



— Let g be a k-wise independent and uniform function from Z to ).

— Qutput H=go f.

Fig. 3: The function H = go f.

Theorem 8. IfELF is a secure ELF with an efficiently enumerable image, then
for any constant k the hash function H in Construction 4 is k-ary output
intractable. If ELF is public coin, then so is H.

Proof. Suppose toward contradiction that there is an intractable k+1-ary relation
R and an adversary A that on input H finds a set of distinct inputs x and a
value w € W such that R(H(x),w) = 1 with non-negligible probability e. Let §
be an inverse polynomial such that € > § infinitely often. We will switch to a
lossy mode for f so that (1) f has polynomial image size, and (2) no adversary
running in time ¢ (for a t to be chosen later) can distinguish the lossy mode
from injective, except with probability /3. By choosing ¢ to be larger than the
running time of A, we have that A still outputs x of distinct elements, and a
string w, such that R(H (x),w) = 1 with probability e — §/3.

We first argue that each of the elements of f(x) are distinct except with
probability §/3. Since this was true in the injective case (since x is distinct), if
this is not true in the lossy case, then the injective and lossy modes could be
easily distinguished by an adversary taking slightly more time than A. Let ¢ be
this time, so that this distinguisher is impossible. Thus, the adversary succeeds
and the elements of f(x) are distinct with probability at least e — 2§/3. This
probability is larger than ¢/3 infinitely often, and is therefore non-negligible. Let
S be the polynomial-sized set of image points of f. Then in other words, the
adversary comes up with an ordered set z of distinct elements in .S, and a string
w, such that R(g(z),w) = 1.

Now, note that, for any ordered set z of k distinct inputs, g(z) is distributed
uniformly at random, by the k-wise independence of g. Moreover, it is straightfor-
ward, given z and a vector y € V¥, to sample a random g conditioned on g(z) = y.
Sampling random y, and then g in this way, gives a correctly distributed g.

We now describe an algorithm B that breaks the intractability of R. B, on
input y € V¥, chooses lossy f as above, and then selects k distinct (potential)
image points from the image sampling procedure. Let z be the ordered list of
points. Next, it chooses a random g such that g(z) = y. Finally, it runs A on
the hash function H = g o f. When A outputs x,w, if f(x) = z (equivalently,
H(x) =y), B outputs w; otherwise it aborts.

Since y is hidden from A’s view, g is distributed randomly according to
the k-wise independent distribution. Therefore, A will output a valid w with



probability at least € — 26/3. If B’s guess for z was correct, then w will break the
intractability of R on y. Since z is independent of A’s view, the probability of a
good guess is at least 1/s%, where 1/s is the inverse polynomial lower bound on
the probability any image point is selected. Therefore, 5 breaks the intractability
of R with probability (e — 2§/3)/s*, which is larger than §/3s* infinitely often,
and is therefore non-negligible. d

6 Leakage-resilient PRGs, AIPO and Poly-many
Hardcore Bits

In this section, we use ELFs to give arbitrarily-many hardcore bits for any one-way
function, and for constructing point function obfuscation secure in the presence
of auxiliary information. Both of these can be seen as special cases of a very
strong security requirement for pseudorandom generators.

Definition 12. A distribution D on pairs (x,z) € X x Z is computationally
unpredictable if no efficient adversary can guess x given z.

Definition 13. A family of pseudorandom generators H : X — Y secure for
computationally unpredictable seeds if, for any computationally unpredictable
distribution on (X, Z), no efficient adversary can distinguish (H,z, H(x)) from
(H,z,S) where (z,z) < D and S + Uy.

Basically, this requirement states that H is a secure pseudorandom generator
for arbitrary distributions on the seed, and even remains secure in the presence
of arbitrary leakage about the seed, so long as the seed remains computationally
unpredictable. The only restriction is that the distribution on the seed and the
leakage must be chosen independently of H. However, in the absence of other
restrictions, this independence between the source D and function H can easily
be seen to be necessary: if z contained a few bits of H(z), then it is trivial to
distinguish H(z) from random.

6.1 The Construction

The intuition behind our construction is the following. The usual way of extracting
pseudorandomness from computationally unpredictable source is to output a
hardcore bit of the source, say using Goldreich-Levin [23]. While this can be used
to generate a logarithmic number of pseudorandom bits, security is lost once a
super-logarithmic number of hardcore bits have been generated in this way.

In order to get around this logarithmic barrier, we actually compute a poly-
nomial number of Goldreich-Levin bits. Of course, we cannot output these in
the clear or else the seed can be easily computed by linear algebra. Instead, we
scramble the hardcore bits using a sequence of ELFs. We can argue that each
of the (scrambled) hardcore bits really is “as good as” random, in the sense
that we can replace each bit with a truly random bit before scrambling without
detection. To do so, we use the lossiness of the ELFs to argue that, when the ith



hardcore bit is incorporated into the scramble, enough information is lost about
the previous bits that the ith bit actually still is hardcore. By iterating this for
each bit, we replace each one with random. We now give the details.

Construction 5 Let q be the input length and m be the output length. Let X be
a security parameter. We will consider inputs x as g-dimensional vectors x € F3.
Let ELF be an ELF. Let M = 2™t 1 and let n be the bit-length of the ELF on
input m + 1. Set N = 2". Let { be some polynomial in m,\ to be determined
later. First, we will construct a function H' as follows.

Choose random f1,..., fi < ELF.Gen(M, M) where f; : [M] — [N], and let
hi,... he_1: [N] = [M/2] = 2] and hy : [N] — [2™] be pairwise independent
and uniform functions. Define f = {f1,..., fe} and h = {hy,...,he}. Define
H!:{0,1}" — [M/2] (and H}:{0,1}* — [2™]) as follows:

— Hy() =y =1 € 2]
— Hi(bpi—1),b:) = yir1 = hi(zi) where y; < H{_y(bp 1)), zi < fi(yil|bs).

Then we set H' = H),. Then to define H, choose a random matriz R € ]ngq.
The description of H consists of f,h, R. Then set H(x) = H'(R - x). A diagram
of H is given in Figure /.

Fig. 4: An example instantiation for ¢ = 3. Notice that each iteration is identical,
except for the final iteration, where hy has a smaller output.

We now prove several important facts about H and H':

Claim. If £ > m+ A, and if b is drawn uniformly at random, then (H', H' (b)) is
statistically close to (H’, R) where R is uniformly random in [2™].

Proof. We will prove the case £ = m + )\, the case of larger ¢ being similar. We
will consider f1,..., fo as being fixed injective functions; since the f; are injective
with overwhelming probability, the claim follows from this case. This means that
the composition h; o f; is pairwise independent, for all 4.

Let d;(hy, ..., h;) be the collision probability of y; 1 when b; ..., b; are random
bits, for fixed hq, ..., h;. Let d; be the expectation (over hq,...,h;) of this value.
There are two possibilities for a collision at y;41:



— There is a collision at y; and b;. This happens with half the probability that
there is a collision at y;.

— There is not a collision at y; and b;, but h; o f; maps the two points to the
same y;+1. Conditioned on there being no collision at (y;, b;), this occurs
with probability 27”% for i < ¢, and 2% for i = 4.

Then we have that dg = 1 and it is straightforward to show the following

recurrence for i < £: d; = d;_1 (% - M;m“) + 2,,,% This recurrence has the

form d; = a + bd;_1, which is solved by d; = b* + a};;:ll. Therefore, with some

mAA_qyitl .
manipulation we have that d; = 2m+2*+1 + 2(,53%)1(2;1}_%1). Now, for i = m+A—1,

2(1+(1_2—771—)\)7n+>\)
2mEA4]

this becomes d,,4r—1 = < 2,,f1+ <. Next, it is straightforward

to adapt the above argument to show that d,,1x = dpyr—1 (% — ﬁ) + 21 <
2% + zm% Now, the Rényi entropy of y,,+x+1 is exactly the collision probability,
scaled up by a factor of the 2™. Therefore, the expected Rényi entropy of 4411
is at most 1 + 2% Finally, we relate the Rényi entropy to the statistical distance

from uniform using Lemma 1:

1 1
E Ayer1, R) SE5VERE(ye) —1< 5 VEIRE(yer)] =1 <2702

hi,..,he

The statistical distance between (H', H'(b)) and (H’, R) is exactly this quantity,
which is negligible in A. ad

We will thus set £ = m+ X in our construction of H’. Claim 6.1 will be crucial
for our security proof for H. We also show our H is injective (with overwhelming
probability) exactly when a truly random function with the same domain and
co-domain is injective (with overwhelming probability).

Claim. If 2=(m=29) ig negligible (in ¢), and ¢ > m, then with overwhelming
probability H is injective.

Proof. First, note that with overwhelming probability by our choice of £ > m > 2g,
R is full rank. Next, let ); be the set of possible y; values as we vary x, and Z;
be the set of possible z; values. By the injectivity of f;, we have that |Z;| > |Vi|.
Moreover, since h; is pairwise independent and uniform, with overwhelming
probability h; is injective on Z; since |Z;| < 27 but the co-domain of h; has
size at least 2™ > (27)2. Therefore |V;11| = | 2Z;| > |Vi|. This means that as we
increase 4, the image size never decreases (with overwhelming probability)

Now pick ¢ linearly independent rows of R. We will assume that the ¢ rows
constitute the first ¢ rows of R; the more general case is handled analogously.
By performing an appropriate invertible transformation on the domain, we can
assume that these g rows form the identity matrix. Therefore, we can take b; = x;
for i € [¢]. Next, observe that y; for i € [¢] only depends on the first i — 1 bits of
x. Thus the set of possible pairs (y;,b;) = (yi, ;) is exactly V; x {0,1}, which
has size 2|Y;|. By the injectivity of f;, | Z;| = 2|V;|. Since |Vit1] = |Z:] = 2|Vil,



we have that the image size exactly doubles in each iteration for i € [¢]. Once we
get to ¢ = ¢, the image size is 29, and the remaining iterations do not introduce
any collisions. Thus the image size of H is 2%, meaning H is injective. a

Theorem 9. IfELF is a secure ELF, then H in Construction 5 is a pseudoran-
dom generator secure for computationally unpredictable seeds. If ELF is public
coin, then so is H.

Proof. Recall that H(x) = H'(R - x), and that H'(b) is (with overwhelming
probability over the choice of H’) statistically close to random when b is random.
Therefore, it suffices to show that the following distributions are indistinguishable:
(f,h,R,z, H(R-x) ) and (f,h,R, z, H'(b) ) for a uniformly random b.

Suppose an adversary A has non-negligible advantage € in distinguishing
the two distributions. Define b(") so that the first ¢ bits of b(¥) are equal to
the first ¢ bits of R - x, and the remaining £ — ¢ bits are chosen uniformly at
random independently of x. Define Hybrid ¢ to be the case where A is given
the distribution ( f,h, R, z, H'(b®) ).

Then A distinguishes Hybrid 0 from Hybrid ¢ with probability e. Thus
there is an index i € [¢] such that the adversary distinguishes Hybrid i — 1 from
Hybird i with probability at least e/£. Next, observe that since bits i+ 1 through
t are random in either case, they can be simulated independently of the challenge.
Moreover, H'(b) can be computed given H;_,(bj;_1)), b; (be it random or equal to
R;,x), and the random b;11, ..., by. Thus, we can construct an adversary A’ that
distinguishes R;-x from a random b; — given ( f,h, Ry;_1}, z, H; _;(Ry;_11-x), R, )

— with advantage €//, where R;_y) consists of the first i — 1 rows of R, R;; is the
1th row of R, and b; is a random bit.

Next, since €/3¢ is non-negligible, there is an inverse polynomial § such
that €/3¢ > 0 infinitely often. Then, there is a polynomial r such A’ cannot
distinguish f; generated as ELF.Gen(M,r) from the honest f; generated from
ELF.Gen(M, M), except with probability at most . This means, if we generate
fi + ELF.Gen(M, r), we have that A’ still distinguishes R -x from a random b; —
given (f,h,R;_qj, 2, H{_;(R[i—1) - x),R; ) — with advantage €’ = ¢/¢ — 25. Put
another way, given ( f,h, Ry}, 2, H]_;(R};_11-x),R; ), A’ is able to compute
R,; - x with probability % + €. Note that ¢ > ¢ infinitely often, and is therefore
non-negligible.

Now fix f, h, R;_y), which fixes H ;. Let y; = H; ;(R;—y) - x). Notice that
since f, h are fixed, there are at most r possible values for y;, and recall that r is
a polynomial. We now make the following claim:

Claim. Let D be a computationally unpredictable distribution on X x Z. Suppose
T:X — R is drawn from a family T of efficient functions where the size of the
image of T is polynomial. Then the following distribution is also computationally
unpredictable: (z, (T,z,T(z)) ) where T < T, (z,2) + D.

Proof. Suppose we have an efficient adversary B that predicts x with non-
negligible probability v given T, z, T'(x), and suppose T has polynomial image



size r. We then construct a new adversary C that, given x, samples a random T,
samples (z/, 2') < D, and sets a = T'(z'). It then runs B(T, z,a) to get a string
x”, which it outputs. Notice that a is sampled from the same distribution as T'(x),
so with probability at least 1/r, a = T'(x). In this case, " = x with probability
. Therefore, C outputs x with probability v/r, which is non-negligible. O

Using Claim 6.1 with T = H; | (Rp—y - x), we see that (x, (f,h,Rj_y),2,
H] | (R}—1 - x)) ) is computationally unpredictable. Moreover, R; - x is a
Goldriech-Levin [23] hardcore bit for any computationally unpredictable source.
Hence, no efficient adversary can predict R, -x given (f, h, Rji_), 2, H{_l(R[i,l] .

x), R;). This contradicts the existence of A’, proving the theorem. O

6.2 Applications

Polynomially-many hardcore bits for any one-way function. We see that H imme-
diately gives us a hardcore function of arbitrary stretch for any computationally
unpredictable distribution. This includes any one-way function. To the best of
our knowledge, this is the first hardcore function of arbitrary stretch based on
simple assumptions that applies to general computationally unpredictable sources.
In the special case of one-way functions, the only prior constructions are due
to Bellare, Stepanovs, and Tessaro [6] using differing inputs obfuscation (diO),
and of Zhandry [39] using extractable witness PRFs. Our construction offers
an entirely different approach to constructing hardcore functions with arbitrary
stretch, and is based on a very simple primitive.

Strong injective one-way functions. Bitansky and Paneth [9] conjecture the
existence of a very strong one-way permutation family. We demonstrate that
our function H meets this notion of security. Unfortunately, however, it is only
injective, not a permutation.

Definition 14. A [9] permutation is a family of functions H such that for any
computationally unpredictable distribution D, the following two distributions are
also unpredictable: (x, (z,H,H(x)) ) and (H(x), (z,H) ) where (x,z) < D.

The first property is a generalization of a strong uninvertability assumption
of Wee [37]. The second guarantees that if = is unpredictable, then so is H(x).
In the full version [40], we show that H satisfies this definition:

Theorem 10. H constructed above using a secure ELF, when set to be injective
as in Claim 6.1, is a [9]-injective one-way function.

The main application of Bitansky and Paneths [9] assumption is to build
auxiliary input point function obfuscation (AIPO). Since H is not a permutation,
it cannot be immediately plugged into their construction. Yet, next, we show
that going through their construction is unnecessary in our case: we show that
our function H gives an ATPO “out of the box” with no additional overhead.



Point function obfuscation with auziliary input (AIPO). We now show how to
achieve full AIPO using just the assumption of ELFs.

Definition 15. A auxiliary input point obfuscator (AIPO) is an efficient prob-
abilistic algorithm O that saitsfies the almost perfect correctness requirement
of Definition 10, as well as the following secrecy requirement: for any unpre-
dictable distribution D over pairs (v,z) € X x Z, (O(1y),z) and (O(Iy), z) are
computationally indistinguishable, where (x,z) < D and ' + X.

As in Section 4, an expanding ideal hash function (random oracle) H gives a
very natural ATPO: the obfuscation of a point function I, is simply S = H(z).
Injectivity of H gives (almost perfect) correctness. Moreover, security is easily
proved in the random oracle model.

We now show that that by choosing H to be as in the construction above,
the same is true. In particular, by Claim 6.1, H is injective in the same regime
of input/output sizes as a random oracle. For security, we have the following:

Theorem 11. The obfuscation construction described above is a secure AIPO
assuming H is constructed as in Construction 5 using a secure ELF.

Proof. Note that since H is expanding, if we choose S at random from [2™], then
with overwhelming probability there are no inputs x that map to S. Therefore,
the obfuscated program corresponding to S is just the all-zeros function.

Let D be any computationally unpredictable source. We thus need to show that
the following two distributions are indistinguishable: ( H, z, H(x) ) and( H, 2,5 )
(where (x, z) < D). This follows immediately from Theorem 9. O

Public key encryption from trapdoor permutations. In the full version [40], we
show that our hardcore function can be used in a simple hybrid encryption
scheme of Bellare and Rogaway [5].

6.3 Difficulty of Realizing Applications

Since ATPO implies PO, AIPO implies that NP with a super-logarithmic amount
of non-determinism cannot be solved in polynomial time. Hence, this separation
is inherent to the AIPO application. As an immediately corollary, we also have
that our pseudorandom generator definition also implies such a separation. Since
our pseudorandom generator definition is essentially equivalent to obtaining
hardcore functions of arbitrary span for any unpredictable source, we also see
that such a separation is inherent to such hardcore functions. In contrast, this
separation does not extend to the special case of hardcore functions for any
one-way function. It is consistent with our current knowledge that NP with, say,
log? bits of non-determinism 4s solvable in polynomial time, and yet there are
still hardcore functions of arbitrary stretch for any one-way function. However,
in the full version [40], we still demonstrate some barriers to realizing this special
case from polynomially-hard primitives.
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