
A 270 Attack on the Full MISTY1

Achiya Bar-On1? and Nathan Keller1

1 Department of Mathematics
Bar Ilan University

Ramat Gan, 52900, Israel

Abstract. MISTY1 is a block cipher designed by Matsui in 1997. It is
widely deployed in Japan, and is recognized internationally as a Euro-
pean NESSIE-recommended cipher and an ISO standard. After almost
20 years of unsuccessful cryptanalytic attempts, a first attack on the full
MISTY1 was presented at CRYPTO 2015 by Yosuke Todo. The attack,
using a new technique called division property, requires almost the full
codebook and has time complexity of 2107.3 encryptions.

In this paper we present a new attack on the full MISTY1. It is based
on Todo’s division property, along with a variety of refined key-recovery
techniques. Our attack requires almost the full codebook (like Todo’s
attack), but allows to retrieve 49 bits of the secret key in time complexity
of only 264 encryptions, and the full key in time complexity of 269.5

encryptions.

While our attack is clearly impractical due to its large data complexity,
it shows that MISTY1 provides security of only 270 — significantly less
than what was considered before.

1 Introduction

MISTY1 [10] is a 64-bit block cipher with 128-bit keys designed in 1997 by
Matsui. In 2002, MISTY1 was selected by the Japanese government to be one
of the e-government candidate recommended cipher, and since then, it became
widely deployed in Japan. MISTY1 also gained recognition outside Japan, when
it was selected to the portfolio of European NESSIE-recommended ciphers, and
approved as an ISO standard in 2005. Furthermore, the block cipher KASUMI [1]
designed as a slight modification of MISTY1 is used in the 3G cellular networks,
which makes it one of the most widely used block ciphers today.

MISTY1 has an 8-round recursive Feistel structure, where the round function
FO is in itself a 3-round Feistel construction, whose F-function FI is in turn a 3-
round Feistel construction using 7-bit and 9-bit invertible S-boxes. The specific
choice of S-boxes and the recursive structure ensure provable security against
differential and linear cryptanalysis. In order to thwart other types of attacks,
after every two rounds an FL function is applied to each of the two halves

? This research was partially supported by the Israeli Ministry of Science, Technology
and Space, and by the Check Point Institute for Information Security.



2 Achiya Bar-On and Nathan Keller

independently. The FL functions are key-dependent linear functions which play
the role of whitening layers.

In the 18 years since its design, MISTY1 withstood numerous cryptana-
lytic attempts. More than a dozen of papers analyzed its reduced-round variants
(see, e.g., [2, 7, 13, 14]), yet the full 8-round variant seemed completely out of
reach. The situation changed when Yosuke Todo presented at CRYPTO’2015 [11]
the first attack on the full MISTY1. The attack is based on a new variant of
integral cryptanalysis, called division property, presented by Todo at EURO-
CRYPT’2015. Using the new technique, Todo showed that there exist seven in-
dependent integral structures of 263 plaintexts, whose propagation can be traced
through 6 rounds of MISTY1. (This should be compared with 4 rounds achieved
by the best previously known integral characteristics.) These characteristics al-
low to break the full MISTY1 with data complexity of 263.994 chosen plaintexts
and time complexity of 2107.3 encryptions.

In this paper, we present an improved attack on the full MISTY1, which
allows to significantly reduce the time complexity. Our attack uses Todo’s di-
vision property both in the encryption direction (like Todo used it) and in the
decryption direction (which turns out to be more useful than the encryption di-
rection due to key schedule considerations). In addition, we use refined key recov-
ery techniques, including the partial sums technique [6], and a two-dimensional
meet-in-the-middle attack (like the one is used in [4]). Our attack has two phases.
The first phase requires 264 − 250 chosen ciphertexts and allows to recover the
equivalent of 49 key bits in time of 264 encryptions (i.e., dominated by the time
required for encrypting the plaintexts!). The second phase requires almost all
the rest of the codebook and allows to recover all remaining key bits in time of
269.5 encryptions. Alternatively, the rest of the key can be found in time of 279

encryptions without additional data. A comparison of our attack with the best
previously known attacks on full-round and reduced-round MISTY1 is presented
in Table 1.

The paper is organized as follows. In Section 2 we describe the structure of
MISTY1 and introduce some notations that will be used throughout the paper.
The division property is described in Section 3, as well as the 6-round integral
characteristic based on its propagation. Our improved attack on full MISTY1 is
presented in Section 4. Finally, in Section 5 we summarize the paper.

2 Brief Description of MISTY1

MISTY1 is an 8-round Feistel construction, where the round function, FO, is in
itself a variant of a 3-round Feistel construction, defined as follows. The input
to FO is divided into two halves. The left one is XORed with a subkey, enters a
keyed permutation FI, and the output is XORed with the right half. After the
XOR, the two halves are swapped, and the same process (including the swap)
is repeated two more times. After that, an additional swap and an XOR of the
left half with a subkey is performed (see Fig. 1).



A 270 Attack on the Full MISTY1 3

Table 1: Summary of the best known single-key attacks on MISTY1

FO
rounds

FL layers
Data

complexity
Time

complexity
Type

7 3 258 KP 2124.4 ID attack [7]

7 4 262.9 KP 2118 MZC attack [14]

7 4 249.7 CP 2116.4 HOD attack [13]

7 4 250.1 CP 2100.4 HOD attack [2]

7 5 251.45 CP 2121 HOD attack [2]

8 5 263.58 CP 2121 IDP attack [11]

8 5 263.994 CP 2107.3 IDP attack [11]

8 5 263.9999 CC 264 IDP attack† (Section 4)

8 5 263.9999 CC 279 IDP attack (Section 4)

8 5 264 − 236 CPC 269.5 IDP attack (Section 4)

ID attack: Impossible Differential attack
HOD attack: Higher Order Differential attack
MZC attack: Multi-Dimensional Zero Correlation attack
IDP attack: Integral attack using division property
† Attack recovers 49 key bits
KP: Known Plaintexts; CP: Chosen Plaintexts; CC: Chosen Ciphertexts; CPC:
Chosen Plaintexts and Ciphertexts

The FI function in itself also has a Feistel-like structure. Its 16-bit input is
divided into two unequal parts – one of 9 bits, and the second of 7 bits. The left
part (which contains 9 bits) enters an S-box, S9, and the output is XORed with
the right 7-bit part (after padding the 7-bit value with two zeroes as the most
significant bits). The two parts are swapped, the 7-bit part enters a different S-
box, S7, and the output is XORed with 7 bits out of the 9 of the right part. The
two parts are then XORed with a subkey, and swapped again. The 9-bit value
again enters S9, and the output is XORed with the 7-bit part (after padding).
The two parts are then swapped for the last time.

Every two rounds, starting before the first one, each of the two 32-bit halves
enters an FL layer. The FL layer is a simple linear transformation. Its input is
divided into two halves of 16 bits each, the AND of the left half with a subkey
is XORed to the right half, and the OR of the updated right half with another
subkey is XORed to the left half. We outline the structure of MISTY1 and its
parts in Fig. 1.

The key schedule of MISTY1 takes the 128-bit key, and treats it as eight
16-bit words K1,K2, . . . ,K8. From this sequence of words, another sequence of
eight 16-bit words is generated, according to the rule K ′i = FIKi+1

(Ki).



4 Achiya Bar-On and Nathan Keller

64

FL1

KL1

FL2

KL2

⊕FO1

KO1,KI1

⊕FO2

KO2,KI2

FL3

KL3

FL4

KL4

⊕FO3

KO3,KI3

⊕FO4

KO4,KI4

FL5

KL5

FL6

KL6

⊕FO5

KO5,KI5

⊕FO6

KO6,KI6

FL7

KL7

FL8

KL8

⊕FO7

KO7,KI7

⊕FO8

KO8,KI8

FL9

KL9

FL10

KL10

MISTY function

32

⊕ KOi,1

FIi,1 KIi,1

⊕

⊕ KOi,2

FIi,2 KIi,2

⊕

⊕ KOi,3

FIi,3 KIi,3

⊕

⊕ KOi,4

FO function

16

S9

⊕

S7

⊕

⊕KIi,j,2

⊕ KIi,j,1

S9

⊕

zero-extend

truncate

zero-extend

FI function

32

⊕

⊕

∩
KLi,1

∪
KLi,2

FL function

∩
bitwise AND

∪
bitwise OR

Fig. 1: Outline of MISTY1



A 270 Attack on the Full MISTY1 5

In each round, seven words are used as the round subkey, and each of the FL
functions accepts two subkey words. We give the exact key schedule of MISTY1
in Table 2.

Table 2: The Key Schedule of MISTY1

KOi,1 KOi,2 KOi,3 KOi,4 KIi,1 KIi,2 KIi,3 KLi,1 KLi,2

Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3

K i+1
2

(odd i)

K′
i
2
+2

(even i)

K′
i+1
2

+6
(odd i)

K i
2
+4 (even i)

2.1 Notations Used in the Paper

Throughout the paper, we use the following notations for intermediate values
during the MISTY1 encryption process.

– The plaintext and the ciphertext are denoted, as usual, by P and C = E(P ).
– The input of the i’th round (1 ≤ i ≤ 8) is denoted by Xi. If we want to

emphasize that the intermediate value corresponds to the plaintext P , we
denote it by Xi(P ).

– For odd rounds, we denote by X ′i the intermediate value after application of
the FL functions.

– The output of the FO function of round i is denoted Outi.
– For any intermediate value Z, Z[k–l] denotes bits from k to l (inclusive) of
Z. The special case Z[i] denotes the i’th bit of Z.

– For any intermediate value Z, the right and left halves of Z are denoted by
ZR and ZL, respectively.

– For any 16-bit key K, the 9 rightmost bits and 7 left most bits of K are
denoted by KR and KL, respectively.

– The first S9 function of FIi,j is denoted by S9i,j,1 and its input is denoted
by ES9i,j,1. Similarly, S7i,j , ES7i,j and S9i,j,2, ES9i,j,2 denote the other
S-boxes, S7 and the second S9, and their inputs in FIi,j .

3 Integral Cryptanalysis using Division Property and its
Application to MISTY1

3.1 Integral Cryptanalysis

Integral cryptanalysis is a powerful cryptanalytic technique presented in [3, 8].
The basic idea behind integral cryptanalysis is to trace the encryption process of
a structured set of plaintexts, called integral structure, during part of the cipher’s
rounds. Usually, the information on the intermediate values gradually reduces
as the encryption proceeds, so that eventually, one can predict only the sum of
the set of intermediate values in part of the state.



6 Achiya Bar-On and Nathan Keller

Definition 1. A set of values V is called balanced if
⊕

x∈V x = 0.

An integral characteristic predicts that for a structured set V of plaintexts
(usually, an affine subspace of the plaintext space), the set of corresponding
intermediate values after i rounds is balanced in some bit j. That is,

⊕

x∈V
Xi+1[j](x) = 0. (1)

Note that unlike differential and linear cryptanalysis, an integral characteristic
is combinatorial and not statistical, meaning that (1) holds with probability 1.
A characteristic that satisfies (1) is called an i-round characteristic of order
log2 |V |.

An example of an integral characteristic is an 8-order 3-round characteristic
of AES presented in [3], which predicts that if V consists of 256 plaintexts that
are constant in all bytes but one, and assume all possible values in the remaining
byte, then the corresponding set of intermediate values after 3 rounds is balanced
in each of the 16 bytes. This property is used in [3] to attack up to 6 rounds of
AES with a practical complexity.

Once an integral characteristic is found, it can be used to mount a key-
recovery attack. Suppose that for some block cipher E : {0, 1}n → {0, 1}n, there
exists an i-round integral characteristic that satisfies (1). Denote by E−11 the
Boolean function that represents the mapping from the ciphertext of E to the
intermediate state bit Xi[j] (see Fig. 2). Then Equation (1) can be rewritten as

⊕

x∈V
E−11 (E(x)) = 0. (2)

(Equation (2) is called the attack equation). The adversary asks for the encryp-
tion of several structured sets of plaintexts of the form V , partially decrypts
the corresponding ciphertexts (by guessing the key material used in E−11 ), and
checks whether Equation (2) holds.

3.2 Division Property

The idea behind the division property is to increase the precision of the in-
formation on intermediate values traced by the integral attack. As the idea is
rather complex in its general form, we present in this section all definitions and
notations required for it (mostly taken from [11]), and in the next section its
application to MISTY1. For the general division property technique, we refer
the reader to [12].

For a linear subspace U ⊂ Fn
2 and a vector v ∈ Fn

2 , we call V = {u+v|u ∈ U}
an affine subspace of Fn

2 . The dimension of V is, as usual, log2 |V |.
For u ∈ Fn

2 we denote by wu the Hamming weight of u (i.e., wu =
∑n

i=1 u[i])
and by Snk = {u ∈ Fn

2 : wu ≥ k} the set of all values with Hamming weight larger
than (or equal to) k. For x, u ∈ Fn

2 we define xu =
∏n

i=1 x[i]u[i]. In general, for



A 270 Attack on the Full MISTY1 7

V

⊕
x∈V Xi+1[j](x)

{E(x)|x ∈ V }

i rounds

E−11

E

Fig. 2: Outline of the Integral Attack

x = (x1, x2, . . . , xm), u = (u1, u2, . . . , um) ∈ Fn1
2 ×Fn2

2 ×· · ·×Fnm
2 , we write xu for∏m

i=1 x
ui
i and Sn1,n2,...,nm

[k1,k2,...,km] for the set {u ∈ Fn1
2 × · · · × Fnm

2 : wui
≥ ki for all i}.

Let X ⊂ Fn1
2 × · · · × Fnm

2 be a multiset. We say that X has the division
property Dn1,n2,...,nm

[k1,k2...,km] if

⊕

x∈X
xu = 0, for all u ∈ (Fn1

2 × · · · × Fnm
2 \ Sn1,...,nm

[k1,...,km])

(with no restriction on
⊕

x∈X x
u for u ∈ Sn1,...,nm

[k1,...,km]). We also define

Sn1,n2,...,nm

k1,...,kt
=

t⋃

i=1

Sn1,n2,...,nm

ki

(ki ∈ Fn1
2 × · · · ×Fnm

2 ) and define the division property Dn1,n2,...,nm

k1,...,kt
similarly to

the above definition of Dn1,n2,...,nm

[k1,k2...,km].

Example 2. Any 4-dimensional affine subspace V ⊂ F7
2 has the property

⊕

x∈V
xi1xi2xi3 = 0

for all 1 ≤ i1 < i2 < i3 ≤ 7 (where xj = x[j] denote the jth bit of x). Hence, V
has the division property D7

4.

Example 3. For 1 ≤ i ≤ m, let Vi ⊂ Fni
2 be an affine subspace of dimension ki.

Then X = {(x1, . . . , xm) ∈ Fn1
2 × · · · × Fnm

2 : xi ∈ Vi} has the division property
Dn1,n2,...,nm

[k1,k2...,km].

Notation 4. Let ki,kj ∈ Zm. We write ki ≤ kj if ki[`] ≤ kj [`] for all 1 ≤ ` ≤ m.

Example 5. Let X ⊆ F7
2 × F7

2 be a multiset that has the division property
D7,7

[5,0],[1,4],[2,3]. Then ⊕

(x,y)∈X
xi1 · · ·xityj1 · · · yjs



8 Achiya Bar-On and Nathan Keller

is unknown if (5, 0) ≤ (t, s) or (1, 4) ≤ (t, s) or (2, 3) ≤ (t, s) and equals 0
otherwise.

Observation 6. If ki ≤ kj (⇐⇒ Ski
⊆ Skj

) then we omit kj from Sn1,n2,...,nm

k1,...,kt

because Sn1,n2,...,nm

k1,...,kt
= Sn1,n2,...,nm

k1,...,kj−1,kj+1,...,kt
in this case. For example, we replace

D7,7
[5,0],[1,4],[2,4],[2,3] with D7,7

[5,0],[1,4],[2,3].

Remark 7. Let X be a multiset that has the division property Dn1,n2,...,nm

k1,...,kt
. If

(2, 0, 0, . . . , 0) ≤ kj for some j then

⊕

x∈X
xi = 0

for 1 ≤ i ≤ n1. In other words, X is balanced in the n1 first bits.

For the full details of the propagation of the division property, we refer the
interested reader to the original paper in [12].

3.3 An Integral characteristic of 6-round MISTY1

In [11], Yosuke Todo presented a new integral characteristic for 6-round MISTY1,
constructed by tracing the propagation of a division property. Todo showed that
if a set V of values after the first FL layer (i.e., a set of X ′1 values) has the divi-
sion property D7,2,7,7,2,7,7,2,7,7,2,7

[6,2,7,7,2,7,7,2,7,7,2,7] then the corresponding set of X7 values has

the division property D7,2,7,7,2,7,7,2,7,7,2,7
k1,...,k132

, where k1, . . . ,k132 is a list of vectors
presented in [11]. For our purposes, it is sufficient to know that one of the ki’s is
[2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. In particular, if we take V63 to be a 63-dimensional
affine subspace of the values X ′1 of a specific form, then the following equation
holds: ⊕

x∈V63

X7[57–63](x) = 0. (3)

The “specific form” of V63 is defined as follows: For every 6-dimensional affine
subspace V6 ⊂ F7

2, the set V63 = {(x6, x57) : x6 ∈ V6, x57 ∈ F57
2 } has the “correct”

form. Note that while there are many options for “correct” V63 (since there are
many options for V6), we can construct only 7 independent Eq. 3 equations. For
example, define 7 particular V63’s by fixing one of the 7 bits X ′1[57−63] and take
all the values in the other bits. Knowing that Eq. 3 holds for these seven V63’s
implies that Eq. 3 for all possible V63’s. Therefore, attacks using Eq. 3 exploit up
to 7 V63’s simultaneously. Fig. 3 illustrates the 6-round integral characteristic.

3.4 Todo’s Integral Attack on Full MISTY1

Todo’s integral attack on full MISTY1 [11] uses the 6-round integral character-
istic described above and has the following steps.

1. Choose V to be one of the “possible” V63’s and ask for the encryption of
263.58 chosen plaintexts such that V is included in the set of intermediate
X ′1 values.



A 270 Attack on the Full MISTY1 9

64

FL1 FL2

⊕FO1

⊕FO2

FL3 FL4

⊕FO3

⊕FO4

FL5 FL6

⊕FO5

⊕FO6

FL7 FL8

⊕FO7

⊕FO8

FL9 FL10

V63

X7[57− 63] = 0

V63 is a 63-dimensional affine subspace of the form
V63 = {(x6, x57) : x6 ∈ V6, x57 ∈ F57

2 }.

Fig. 3: A 6-Round Integral Characteristic



10 Achiya Bar-On and Nathan Keller

2. As the values of plaintexts that correspond to the values in V depend on
the value of 2 key bits used in FL1, guess those key bits, and for each guess,
perform the following steps assuming that Eq. (3) holds.
(a) Guess the key bits needed to partially decrypt the ciphertexts of V and

get the corresponding values X7[57–63]. (This step is performed effi-
ciently using the partial sums technique.)

(b) Check whether Eq. (3) holds. A wrong key-guess will pass this seven-bit
condition with probability 2−7, and thus, 2128−7 = 2121 wrong keys are
expected to remain.

3. Check the 2121 remaining options by exhaustive search.

The time complexity of the attack is dominated by the last step. Hence,
the attack requires 263.58 chosen plaintexts and has time complexity of 2121

encryptions.
To reduce the time complexity, more V63’s can be used. As we can use only

independent subspaces, we can use up to 7 of them. Increasing the number of
the V63’s has two effects. On the one hand, there is an increase in the time
complexity of the filtering step and in the data complexity. On the other hand,
as the filtering of wrong key-guesses is stronger, the time complexity of the
exhaustive search step is reduced. The tradeoff between those two effects was
considered in [11]. The optimal time complexity is 2107.3, achieved by using 4
subspaces of the form V63 that require 264 − 256 = 263.994 chosen plaintexts.

4 Improved Attack on Full MISTY1

In this section we present our improved attack on the full MISTY1. Our attack is
based on using Todo’s characteristic both in the encryption and the decryption
directions and on a mixture of improved key-recovery techniques. First, we dis-
cuss application of Todo’s characteristic in the decryption direction and present
several observations used in the attack. Then we present the first phase of the
attack that requires 264−250 chosen ciphertexts and recovers 49 key bits in time
complexity of 264 encryptions. Finally, we present the second phase of the attack
that recovers the rest of the key in 269.5 time, given almost the entire codebook.

4.1 Using Todo’s Characteristic in the Decryption Direction

We observe that while Todo’s characteristic (described in Section 3.3 and illus-
trated in Fig. 3) holds in the encryption direction of MISTY1, it can be used in
the decryption direction as well. Indeed, since the characteristic exploits only the
general structure of MISTY1 and not the exact subkeys used in the encryption
process, and as MISTY1 is a Feistel construction, the characteristic holds also
for the inverse cipher MISTY1−1, which possesses the same general structure.
(It should be noted that MISTY1−1 is not exactly equivalent to MISTY1, since
the FL functions are not involutions. However, as we verified experimentally,
this difference does not affect the applicability of Todo’s characteristic.)

Hence, we have the following “dual” claim:



A 270 Attack on the Full MISTY1 11

Claim 8. The equation:
⊕

x∈V63

X ′3[25− 31](x) = 0 (4)

holds for every 63-dimensional affine subspace V63 of the values X9 of the form
V63 = {(x57, x6) : x6 ∈ V6, x57 ∈ F57

2 } (where V6 ⊂ F7
2 is a 6-dimensional affine

subspace).

Our attack (see Sections 4.3, 4.4) takes advantage of Todo’s characteristic
in both the encryption and the decryption directions, and by that increases
the filtering of wrong key-guesses. The reverse 6-round integral characteristic is
illustrated in Fig. 4.

4.2 Preliminaries

In this section we give several useful observations exploited in our attack.

Computing the Attack Equation by Independent Calculations Con-
sider the attack equation

⊕
x∈V63

X ′3[25–31](x) = 0 (see also Fig. 5a). The
last functions applied during the evaluation of the attack equation are the
bit-wise AND and OR of FL4. Since both functions are linear/affine func-
tions, an equivalent function EFL4 can be used. In EFL4 the OR opera-
tion is replaced by AND operation and those for every value x it holds that
FL4(x,K ′4,K6) = EFL4(x,K ′4,K6 ⊕ 116) ⊕ (K6, 0

16). The constant (K6, 0
16)

can be omitted because we sum over even number of values1. So, it is suffi-
cient to compute the contributions of Out1 and FL2(PR) independently and
then XOR them together. Moreover, the bits X ′3[25–31] depend only on bits
9–15,25–31 of the input of FL4. Thus, it is sufficient to compute the contri-
butions of Out1[9–15,25–31] and FL2(PR)[9–15,25–31] = FL2(PR[9–15,25–31])
independently.

Another independence appears in computing Out1 given the inputs to FI1,2
and to FI1,3. (As the computation is up to XORs with key bits, we assume
that these bits have already been guessed.) Denoting the inputs to FI1,2 and
to FI1,3 by I2 and I3, respectively, the explicit formula for Out1 is Out1 =
(FI1,2(I2)⊕I3, F I1,2(I2)⊕I3⊕FI1,3(I3)). Furthermore, we need only the values
in Out1[9–15,25–31] and these values can be found by independent computations
of the four S-boxes S91,2,1, S71,2, S91,3,1, S71,3.

As a result, we get the following Observation:

Observation 9. Suppose we want to compute
⊕

x∈S X
′
3[25–31](x) for some set

S of plaintexts and we already partially encrypted S using knownKL1,KO1,1,KI1,1.
The rest of the computation can be done as follows. For every x ∈ S and for
every guess of the 14 bits of K ′L4 ,K

L
6 :

1. Guess the 14 relevant bits of KL2 (the bits K ′L3 ,K
L
5 ). For each guess, cal-

culate the contribution of FL2(PR[9–15,25–31]) to
⊕

x∈S X
′
3[25–31](x).

1 We will write FL even when the meaning is of the equivalent function EFL.



12 Achiya Bar-On and Nathan Keller

P

FL1 FL2

⊕FO1

⊕FO2

FL3 FL4

⊕FO3

⊕FO4

FL5 FL6

⊕FO5

⊕FO6

FL7 FL8

⊕FO7

⊕FO8

FL9 FL10

C

V63

X′
3[25− 31] = 0

C

FL10−1 FL9−1

⊕FO8

⊕FO7

FL8−1 FL7−1

⊕FO6

⊕FO5

FL6−1 FL5−1

⊕FO4

⊕FO3

FL4−1 FL3−1

⊕FO2

⊕FO1

FL2−1 FL1−1

P

V63

Bits[57− 63] = 0

V63 is a 63-dimensional affine subspace of the form
V63 = {(x6, x57) : x6 ∈ V6, x57 ∈ F57

2 }.

Fig. 4: A 6-Round Integral Characteristic of MISTY1 in the Decryption Direction



A 270 Attack on the Full MISTY1 13

2. Guess the 9 leftmost bits of KO1,2. For each guess, calculate the value
ES91,2,1 (the bits that enter S91,2,1), encrypt it through S91,2,1, and store
in a table its contribution to

⊕
x∈S X

′
3[25− 31](x).

3. Guess the 7 rightmost bits of KO1,2. For each guess, calculate the value
ES71,2, encrypt it through S71,2, and store in a table its contribution to⊕

x∈S X
′
3[25–31](x).

4. Guess the 9 leftmost bits of KO1,3. For each guess, calculate the value
ES91,3,1, encrypt it through S91,3,1, and store in a table its contribution
to

⊕
x∈S X

′
3[25–31](x).

5. Guess the 7 rightmost bits of KO1,3. For each guess, calculate the value
ES71,3, encrypt it through S71,3, and store in a table its contribution to⊕

x∈S X
′
3[25–31](x).

6. Finally,
⊕

x∈S X
′
3[25–31](x) is equal to the XOR of the five contributions

listed above.

The addition of KI1,2 and KI1,3 was omitted from the calculation in Obser-
vation 9. We give the explanation for this in the next section.

Removing Unnecessary Key-Bits and Equivalent Keys As observed by
Kühn ([9], see also [5]), the structure of FO and FI allows to use equivalent keys.
In MISTY1, each FIi,j computation involves 32 key bits – 16 bits of KOi,j and
16 bits of KIi,j . These 32 bits can be replaced by an equivalent 25-bit subkey,
by “pushing” all key additions forward until they meet a non-linear operation,
using the fact that linear operations can be interchanged easily. (The 7 leftmost
bits of KIi,j do not meet any S-box of FIi,j and therefore are “pushed” outside
FIi,j and added at a later place where they are merged into another subkey.)

Another way to decrease the key material involved in the computations is
removing unnecessary key bits. When we compute

⊕
x∈S X

′
3[25–31](x) for a set

S of even size, there is no effect of the key bits KI1,2,KI1,3 and KO1,4 since
they all affect X ′3[25–31] in the same (constant) way for every plaintext and their
contributions cancel each other. In our attack we consider equivalent keys and
remove unnecessary key bits, as described in Fig. 5a.

Partial Sums and Piles Construction Key guessing becomes more efficient
if we combine it with the partial sums technique, presented by Ferguson et al
[6]. Here is an example that illustrates the technique.

Suppose there are 2n values {Di} after the partial encryption of one FI
function in FO1 (the first round) and we want to calculate the XOR of the
outputs from S91,2,1. If two values are equal in the 9 input bits of S91,2,1, then
their contributions to the XOR of the output from S91,2,1 cancel each other.
Hence, we sort the 2n values according to those 9 bits, check which of the 29

values appears an odd number of times and encrypt through S91,2,1 only them
(and each of them only once). Hence, it is sufficient to encrypt 29 values instead
of 2n values. We use the term pile for a set of the values that appears an odd
number of times in the 9 examined bits (so that there are at most 29 values in
a pile in total), and constructing pile for the process of reducing the 2n inputs
to 29 values. In general, we define:



14 Achiya Bar-On and Nathan Keller

Definition 10. Let S = {Di} be a set of n-bit values that are required for some
calculation. Assume that the calculation can be done only with the knowledge of
{Di∩Ω}, where Ω is a mask with Hamming weight d and ∩ means bitwise AND
(i.e., knowing only d of the n bits is sufficient for the calculation). Denote by B
the position of those d bits. Constructing pile of size 2d in B means reducing the
number of values from |S| to at most 2d by considering only the values {Di∩Ω}
that appear an odd number of times.

4.3 A New Integral Attack on Full MISTY1 – The First Phase

In this section we present the first phase of our attack on the full MISTY1. This
phase uses only the “reverse” 6-round characteristic presented in Section 4.1. It
requires 264 − 250 chosen ciphertexts and recovers the equivalent of 49 key bits
in time complexity dominated by the decryption of the ciphertexts.

Remark 11. We chose to begin with the “reverse” characteristic due to key
scheduling arguments (namely, this allows to exploit the fact that the subkeys
KL1 and KO1 share 16 key bits).

First, we choose seven independent structures V63 of X9 states, to be used
in the integral characteristics exploited by the attack. Then, we choose 264 −
250 ciphertexts, structured such that for any value of the subkey KL10, the
corresponding intermediate X9 values contain all seven V63 structures. (The
way to choose ciphertexts such that this property holds is presented in [11].)

After choosing the ciphertexts, we guess the subkeys K1 and K ′7. This allows
us to identify the right 263 ciphertexts that yield each of the seven chosen V63
structures. An efficient procedure for this identification is presented below.

The goal of this phase is to discard wrong key guesses using the attack
equation

⊕
x∈V63

X ′3[25–31](x) = 0 (derived from the “reverse” 6-round char-
acteristic). We use a meet-in-the-middle (MITM) approach: We split the 7-bit
attack equation into two equations, a 4-bit equation and a 3-bit equation. We
treat each equation separately and then combine the results, getting an extra
filtering by comparing the key bits involved in both equations.

To check whether the attack equation holds, we construct the following piles
(see Def. 10 and Fig. 5a):

(i) The pile αR =
⊕

x∈V63
PR (which is of size 1).

(ii) A pile of size 29 in the 9 leftmost bits of B.
(iii) A pile of size 27 in the 7 rightmost bits of B.
(iv) A pile of size 29 in the 9 leftmost bits of D.
(v) A pile of size 27 in the 7 rightmost bits of D.

The total sum
⊕

x∈V63
X ′3[25–31](x) is the sum of the contributions of the five

piles. We use the MITM approach once again (thus, getting a two-dimensional
MITM attack) by dividing the piles into two sets – piles (i),(ii), and (iii) on the
one hand and piles (iv),(v) on the other hand. We then compute the contributions
of each set of piles separately and check whether they are equal. For the right
key, the contributions must be equal (since the contributions of the five piles



A 270 Attack on the Full MISTY1 15

FL1
∩K1

∪K′
7

⊕ FI ⊕ ⊕ FI ⊕ ⊕ FI ⊕

FL2
∩K′L

3
∪KL

5

⊕

FL4

X′
3[25− 31] = 0

∩K′L
4

∪KL
6

K1 K3 EK1,3 = K8 ⊕K′L
6 ||00||K′L

6

S9 ⊕ S7 ⊕ ⊕ S9 ⊕

K′R
6

A

C

B D

E

F=X3[9− 15, 25− 31]

(a) Phase 1

FL10
∩K′

7
∪K1

⊕ FI ⊕ ⊕ FI ⊕ ⊕ FI ⊕

FL9
∩KL

5
∪K′L

3

⊕

FL7

X7[57− 63] = 0

∪K′L
2

K8 K2 EK8,3 = K7 ⊕K′L
5 ||00||K′L

5

S9 ⊕ S7 ⊕ ⊕ S9 ⊕

K′R
5

A

B DG

C

F=X′
7[41− 47, 57− 63]

E

(b) Phase 2

Fig. 5: Reference Figures for the Attack



16 Achiya Bar-On and Nathan Keller

sum to zero), while for a wrong key the contributions are equal with probability
2−7 (per V63 structure). Since we use seven V63 structures, we obtain 7 · 7 = 49
bits of filtering overall.

As mentioned above, the sets of ciphertexts that correspond to the seven
V63’s can be computed once K1 and K ′7 are guessed. Those key bits are indeed
guessed at the beginning of this phase but if we identify the V63’s after guessing
K1,K

′
7 then the time complexity of this identification would be at least 232·263·7.

We can reduce this time complexity by a precomputation, as follows.
Recall that for each structure V63, the exact 263 ciphertexts that are de-

crypted to V63 are determined by the value of only two key bits (one bit of K1

and another of K ′7). For each of the 4 options, we identify the 263 ciphertexts
{Ci}, get the corresponding plaintexts {P i} and save αR =

⊕
i P

i
R. Additionally,

construct a pile of size 232 in PL and save it. All information we need for the
attack is now contained in the computed piles (so that once K1,K

′
7 are guessed,

we can continue the attack with the right piles). In this way, the time complexity
of the identification step becomes 7 · 4 · 263 = 267.8 operations.

The procedure of Phase 1 consists of several steps for each one of the seven
V63’s. First, guess K1 and K ′7, get αR and the pile of size 232. Partially encrypt
the 232 values through FL1 to the point A (the time complexity of this step is
232 · 232 = 264) and continue as follows:

1. Construct piles of size 29 and 27 in B (piles (ii),(iii)).
1.1. Guess the 9 leftmost bits of K3 and partially encrypt the 29 values of

pile number (ii) to the point F.
1.2. Guess the 7 rightmost bits of K3, encrypt the 27 values of pile number

(iii) to the point F and calculate their XOR. Note that the XOR of
the values is sufficient (instead of the values themselves) because FL4 is
linear. Explicitly, for a set of values S, the equation

⊕

x∈S
FL4(x) = EFL4(

⊕

x∈S
x)⊕

⊕

x∈S
const

holds for the right key (where const = (K6, 0
16)).

1.3. GuessK ′3[12–15],K5[12–15] (8 bits ofKL2) and encrypt αR[12–15,28–31]
to the point F.

1.4. XOR the results from the previous steps in F and call the joint XOR J1.
1.5. Guess K ′4[12–15],K6[12–15] (8 bits of KL4), encrypt J1 and save in a

table T1 the contribution to X ′3[28− 31] (4 bits of the attack equation)
with the relevant key (a table of size 29+7+8+8 = 232).

2. Partially encrypt the 232 values through S91,1,1 and S71,1 (note that we
already know K1), get partial outputs from FI1 and add them to the values
in C. To construct pile number (iv), we first construct a pile of size 218

corresponding to the 9 leftmost bits in C and the 9 bits in E. Similarly, to
construct pile number (v), we first construct a pile of size 216 corresponding
to the 7 rightmost bits in C and the 9 bits in E.

2.1. Guess the 9 bits K ′R6 , encrypt the 218 and 216 values through FI1 to
construct piles of size 29 and 27 in D (piles number (iv) and (v)).



A 270 Attack on the Full MISTY1 17

2.2. Guess the 9 leftmost bits of EK1,3, encrypt the 29 values of pile number
(iv) to the point F and calculate their XOR.

2.3. Guess the 7 rightmost bits of EK1,3, encrypt the 27 values of pile number
(v) to the point F and calculate their XOR.

2.4. XOR the results from the previous steps in the point F and call the joint
XOR J2.

2.5. Guess K ′4[12–15],K6[12–15] (8 bits of KL4), encrypt J2, calculate the
contribution to X ′3[28 − 31] (4 bits of the attack equation) and search
for a collision in T1 (i.e., a collision both in the contributions and in the
common key bits). Save the collision in a table T2.

2.6. The size of T2 is 29+7+8+8 ·29+9+7+8 ·2−8 ·2−4·7 = 229, since a match must
occur in K ′4[12–15],K6[12–15] (8 bits of KL4) and in the contribution
to X ′3[28− 31] (a 4-bit attack equation, for the seven V63’s).

3. Produce T ′2 using the 3-bit attack equation
⊕

x∈V63
X ′3[25−27] = 0 by a sim-

ilar process. The difference is that we guess K ′4[9− 11],K6[9− 11] instead of
K ′4[12–15],K6[12–15] andK ′3[9−11],K5[9−11] instead ofK ′3[12–15],K5[12–15].
The size of T ′2 is 29+7+6+6 · 29+9+7+6 · 2−6 · 2−3·7 = 232.

4. There are 9 + 16 + 16 = 41 shared bit-guesses in T2 and T ′2 (the bits
K ′L6 ,K3, EK1,3). Search for a collision in those bits and store them in a
table T3. The size of T3 is 229 · 232 · 2−41 = 220.

We save in T3 the corresponding guess of K1 and K ′7, and thus, the size of T3 is
220 · 232 = 252. For each suggestion in T3, we guess the subkey K ′L6 (seven bits),
retrieve the entire subkey K ′6, and then:

– Retrieve K8 from K8 ⊕K ′L6 ||00||K ′L6 and K ′6,
– Retrieve K7 from K ′7 and K8,
– Retrieve K6 from K ′6 and K7.
– Compare with the known KL

6 and discard wrong guesses (we guess seven
bits of K ′L6 and have a 7-bit condition, so we remain with a table of the
same size).

– Retrieve KL
4 from K ′L3 and K3.

The output of Phase 1 is two tables. The first is the table Tphase1, that con-
tains 252 suggestions for five full subkeys K1,K3,K6,K

′
7,K8 and four 7-bit sub-

keys K ′L3 ,K
L
5 ,K

′L
4 ,K

L
4 , sorted according to K1,K

′
7,K8. The second is the table

T ′phase1 with the same 252 suggestions, but sorted according to K1,K
′
7,K

′L
3 ,K

L
5 .

The time complexity of Phase 1 for a single V63 and a fixed guess of K1,K
′
7

is less than 233.7 operations. The calculation is given in Table 3 and composed
of the sum of time complexities of the steps involving key guessing and (partial)
encryption. Since we use seven V63’s, the total time complexity of Phase 1 (with
the precomputation) is bounded by

T1 = 267.8 + 7 · 232 · 233.7 = 269.2

operations, which is less than 264 encryptions.



18 Achiya Bar-On and Nathan Keller

Table 3: Time complexity of Phase 1 for single V63 and K1,K
′
7 guess

Step Time complexity Description

1.1. 218 = 29 · 29 Guess 9 bits of K3 and partially encrypt 29 values.

1.2. 214 = 27 · 27 Guess 7 bits of K3 and partially encrypt 27 values.

1.3. 28 = 28 · 1 Guess 8 bits of KL2 and partially encrypt αR[12–15,28–31].

1.4. 224 = 29 · 27 · 28 Calculate J1.

1.5. 232 = 224 · 28 Guess 8 bits of KL4 and partially encrypt J1.

2.1. 227.3 = 29 ·(218 +216) Guess 9 bits of K′R
6 and partially encrypt 218 and 216 values.

2.2. 227 = 29+9 · 29 Guess 9 bits of EK1,3 and partially encrypt 29 values.

2.3. 223 = 29+7 · 27 Guess 7 bits of EK1,3 and partially encrypt 27 values.

2.4. 225 = 29 · 29 · 27 Calculate J2.

2.5. 233 = 225 · 28 Guess 8 bits of KL4 and partially encrypt J2.

3 < step 1+ step 2 Similar to 1 and 2, using ⊕X ′
3[25− 27] = 0.

4 232.2 = 229 + 232 Compare two tables of sizes 229 and 232.

Total < 233.7

After the first phase is completed, the rest of the key can be found imme-
diately in time complexity of 279 encryptions, by guessing the rest of the key
(for each of 252 entries of Tstage1, guess 227 key bits KR

4 ,K
R
5 ,K

′R
3 and derive

a master-key candidate) and checking it by a trial encryption. Of course, this
approach does not require additional data. In the following section we show that
if more data is available, the time complexity of the second phase can be reduced
to 269.5 encryptions.

4.4 A New Integral Attack on Full MISTY1 – The Second Phase

The second phase of our attack uses the 6-round characteristic presented in
Section 3.3 to apply a second filtering to the key suggestions remaining from
Phase 1.

The goal of this phase is to discard wrong key guesses that pass Phase 1,
using the attack equation

⊕
x∈V63

X7[57–63](x) = 0 (derived from the 6-round
characteristic).

To check whether the attack equations holds, we construct the following piles
(see Fig. 5b):

(i) The pile βR =
⊕

x∈V63
CR (which is of size 1).

(ii) A pile of size 29 in the 9 leftmost bits of B.
(iii) A pile of size 27 in the 7 rightmost bits of B.
(iv) A pile of size 216+9 in the 9 leftmost bits of C + 16 bits of D.



A 270 Attack on the Full MISTY1 19

(v) A pile of size 27 in the 7 rightmost bits of C + 16 bits of D.

The sum
⊕

x∈V63
X7[57–63](x) is the sum of the contributions of each pile sep-

arately. As in Phase 1 above, we calculate the contribution of piles number
(i),(ii),(iii) and of piles number (iv),(v) separately and check whether the two
contributions are equal. For the right key they must be equal, and for a wrong
key guess they are equal with probability 2−7 (per V63 structure). There are 7
optional V63’s and we use only two of them to get 2 · 7 = 14 bits filtering.

The procedure of Phase 2 consists of several steps (similarly to Phase 1) for
each one of the seven V63’s.

First, we ask for the encryption of 264−250 chosen plaintexts, such that each
of the seven chosen V63 structures (of X ′1 values) is covered by the texts. (This
data requirement, combined with the requirement of Phase 1, makes the data
complexity equal to 264 − 236 chosen plaintexts and ciphertexts, which is rather
close to the entire codebook). Second, we construct pile number (i) and a pile of
size 232 in CL for constructing the other piles.

Then, we guess K1 and K ′7 and partially decrypt the 232 values through FL10

to the point A (the time complexity of this step is negligible compared to the
total time complexity). The procedure continues as follows:

1. Construct piles of size 29 and 27 in B (piles (ii),(iii)).

1.1. Guess the 9 leftmost bits of K2 and decrypt the 29 values of pile number
(ii) to the point F.

1.2. Guess the 7 rightmost bits of K2, decrypt the 27 values of pile number
(iii) to the point F and calculate their XOR.

1.3. Guess K ′L3 ,K
L
5 (14 bits of KL9 and decrypt the βR[9–15,25–31] to the

point F.

1.4. XOR the results from the previous steps in the point F and call the joint
XOR J1.

1.5. Get the K1,K
′
7,K

′L
3 ,K

L
5 entry of T ′stage1. The entry consists of 252−46 =

26 values for K3,K6,K8,K
′L
4 ,K

L
4 . Compute K ′2 from K2,K3, decrypt

J1 and save in a table T1 the contribution to X ′7[57–63], along with the
relevant key (a table of size 29+7+14+6 = 236).

2. To construct pile number (iv), we first construct a pile of size 216+9 that
corresponds to the 9 leftmost bits of C + 16 bits of G. Similarly, to construct
pile number (v), we first construct a pile of size 216+7 that corresponds to
the 7 rightmost bits in C + 16 bits of G.

2.1. Guess K8 and construct a pile of size 29+9 that corresponds to the 9
leftmost bits of C + 9 bits of E. Construct a pile of size 29+7 that
corresponds to the 7 rightmost bits of C + 9 bits of E.

2.2. Guess the 9 bits K ′R5 , decrypt the 218 and 216 values of the piles from
the previous step through FI1 to construct piles of size 29 and 27 in D
(piles number (iv) and (v)). For the piles of size 29, this step can be
performed more efficiently by guessing key bits one by one, as described
in [2].



20 Achiya Bar-On and Nathan Keller

2.3. Get the K1,K
′
7,K8 entry of Tstage1. The entry consists of 252−48 = 24

values for K3,K6,K
′L
3 ,K

L
5 ,K

′L
4 ,K

L
4 . For each value, guess KR

5 , derive
K5, compute K ′5 (from K5,K6) and compare with K ′R5 that was guessed.
We remain with 24 values for K ′5 and hence 24 values for EK8,3.

2.4. With the known EK8,3, decrypt the 29 values of pile number (iv) to the
point F and calculate their XOR. In addition, decrypt the 27 values of
pile number (v) to the point F and calculate their XOR.

2.5. XOR the results from the previous steps at the point F and call the joint
XOR J2.

2.6. Guess K ′2[9–15], decrypt J2, calculate the contribution to X7[57–63] and
search for a collision in the table T1 (i.e., collision in the contributions
+ in the common key bits).

2.7. The expected number of collisions is 29+7+14+6 · 216+9+4+7 · 2−7 · 2−2·7 ·
2−20 = 231, since a match must occur in K ′2[9–15], in the contributions
in X7[57–63] (for two V63’s) and in the entry of Tstage1.

3. For each of the 231 suggestions, guessKR
4 , and use the knowledge ofK4,K5,K

′L
4

to get a 7-bit filtering. This yields 265 suggestions for the entire key. Test
them with a single plaintext/ciphertext pair. Only 265 ·2−64 = 2 suggestions
are expected to remain. Test them with another plaintext/ciphertext pair
and find the key.

The time complexity of stage 2 for each structure V63 and each guess of K1,K
′
7

is less than 242.5. The calculation is given in Table 4 and is composed of the
sum of the time complexities of the steps involving key guessing and (partial)
decryption. Since we use two V63’s, the total time complexity of Phase 2 is
bounded by

T2 = 2 · 232 · 242.5 = 275.5

operations.



A 270 Attack on the Full MISTY1 21

Table 4: Time complexity of Phase 2 for single V63 and K1,K
′
7 guess

Step Time complexity Description

1.1. 218 = 29 · 29 Guess 9 bits of K2 and partially decrypt 29 values.

1.2. 214 = 27 · 27 Guess 7 bits of K2 and partially decrypt 27 values.

1.3. 214 = 214 · 1 Guess 14 bits of KL9 and partially decrypt βR[9–15,25–31].

1.4. 230 = 29 · 27 · 214 Calculate J1.

1.5. 236 = 230+6 · 1 Partially decrypt J1.

2.1. 241.3 = 216·(225+223) Guess K8 and partially decrypt 225 and 223 values.

2.2.
241.3 =

216+9 · (214 + 216)
Guess 9 bits of K′R

5 and partially encrypt 218 and 216 values.

2.3. 238 = 216+9+4+9 Get 24 values from Tstage2 and for each value guess 9 bits of KR
5 .

2.4.+2.5.
238.3 =

216+9+4 · (29 + 27)
Partially decrypt 29 and 27 values. Calculate J2.

2.6. 236 = 216+9+4+7 · 1 Partially decrypt J2.

3 233 = 231 · 22
Obtain another 7-bit filtering (upon the attack equation filtering of

the two V63’s), and then test remaining key suggestions by trial
encryptions.

Total
< 242.5 simple

operations + 233 full
MISTY1 encryptions

All the operations of Phase 2 are simple operations besides Step 3 that con-
sists of 233 full MISTY1 encryptions (for each K1,K

′
7 guess). Thus, the time

complexity T2 is 275.5 simple operations + 265 full MISTY1 encryptions. As-
suming that each simple operation is comparable to an S-box evaluation, the

time complexity of stage 2 (in terms of full encryptions) is 275.5

8·9 + 265 = 269.5,
since MISTY1 has 9 S-boxes in each of its 8 rounds.

The output of Phase 1 required tables of size 252. In a naive approach, this
is the memory complexity of the attack but maybe it can be reduced.

5 Summary and Conclusions

In this paper we presented a new attack on the full MISTY1. The attack uses
Todo’s 6-round integral characteristic[11] both in the encryption direction (as it
was used by Todo) and in the decryption direction. The attack equations derived
from the characteristics provide a filtering for wrong key guesses. Exploiting the
filtering efficiently by using partial sums, two-dimensional meet-in-the-middle
and other techniques, our attack has time complexity of 269.5 encryptions. This
is a reduction by a factor of 238 over Todo’s attack that has time complexity of
2107.3 encryptions.



22 Achiya Bar-On and Nathan Keller

While our attack is clearly impractical due to its high data complexity, it
shows that MISTY1 has a rather low security margin, providing only 70 bits of
security.

As a problem for further research, it will be interesting to find out whether
the data complexity can be reduced. A possible direction for achieving this is
finding additional 6-round integral characteristics of a lower order.

References

1. 3rd Generation Partnership Project. Specification of the 3GPP Confidentiality and
Integrity Algorithms - Document 2: KASUMI Specification (Release 6). Technical
Report 3GPP TS 35.202 V6.1.0 (2005-09), September 2005.

2. Achiya Bar-On. Improved Higher-Order Differential Attacks on MISTY1. In Fast
Software Encryption, 22nd International Workshop, FSE ’15, Istanbul, TURKEY,
March 8-11, 2015, to appear, 2015.

3. Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block cipher Square. In
Eli Biham, editor, Fast Software Encryption, volume 1267 of Lecture Notes in
Computer Science, pages 149–165. Springer Berlin Heidelberg, 1997.

4. Itai Dinur, Orr Dunkelman, and Adi Shamir. Improved Attacks on Full GOST. In
Anne Canteaut, editor, Fast Software Encryption, volume 7549 of Lecture Notes
in Computer Science, pages 9–28. Springer Berlin Heidelberg, 2012.

5. Orr Dunkelman and Nathan Keller. Practical-Time Attacks Against Reduced Vari-
ants of MISTY1. Design, Codes and Cryptography, to appear, 2013.

6. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved Cryptanalysis of Rijndael. In Fast Software
Encryption, 7th International Workshop, FSE 2000, New York, NY, USA, April
10-12, 2000, Proceedings, pages 213–230, 2000.

7. Keting Jia and Leibo Li. Impossible Differential Attacks on Reduced-Round
MISTY1. In Dong Hoon Lee and Moti Yung, editors, WISA, volume 7690 of
Lecture Notes in Computer Science, pages 15–27. Springer, 2012.

8. Lars Knudsen and David Wagner. Integral Cryptanalysis. In Joan Daemen and
Vincent Rijmen, editors, Fast Software Encryption, volume 2365 of Lecture Notes
in Computer Science, pages 112–127. Springer Berlin Heidelberg, 2002.

9. Ulrich Kühn. Improved Cryptanalysis of MISTY1. In Joan Daemen and Vin-
cent Rijmen, editors, Fast Software Encryption, volume 2365 of Lecture Notes in
Computer Science, pages 61–75. Springer Berlin Heidelberg, 2002.

10. Mitsuru Matsui. New block encryption algorithm misty. In Eli Biham, editor, Fast
Software Encryption, volume 1267 of Lecture Notes in Computer Science, pages
54–68. Springer Berlin Heidelberg, 1997.

11. Yosuke Todo. Integral Cryptanalysis on Full MISTY1. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, to appear, 2015.

12. Yosuke Todo. Structural Evaluation by Generalized Integral Property. In Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, pages 287–314, 2015.

13. Yukiyasu Tsunoo, Teruo Saito, Takeshi Kawabata, and Hirokatsu Nakagawa. Find-
ing Higher Order Differentials of MISTY1. IEICE Transactions, 95-A(6):1049–
1055, 2012.



A 270 Attack on the Full MISTY1 23

14. Wentan Yi and Shaozhen Chen. Multidimensional Zero-Correlation Linear Attacks
on Reduced-Round MISTY1. CoRR, abs/1410.4312, 2014.


