
Encryption Switching Protocols

Geoffroy Couteau1, Thomas Peters2?, and David Pointcheval1

1 ENS, CNRS, INRIA, PSL Research University, Paris, France
2 UCLouvain, ICTEAM, Belgium

Abstract. We formally define the primitive of encryption switching pro-
tocol (ESP), allowing to switch between two encryption schemes. In-
tuitively, this two-party protocol converts given ciphertexts from one
scheme into ciphertexts of the same messages under the other scheme,
for any polynomial number of switches, in any direction. Although ESP is
a special kind of two-party computation protocol, it turns out that ESP
implies general two-party computation (2-PC) under natural conditions.
In particular, our new paradigm is tailored to the evaluation of func-
tions over rings. Indeed, assuming the compatibility of two additively and
multiplicatively homomorphic encryption schemes, switching ciphertexts
makes it possible to efficiently reconcile the two internal laws. Since no
such pair of public-key encryption schemes appeared in the literature, ex-
cept for the non-interactive case of fully homomorphic encryption which
still remains prohibitive in practice, we build the first multiplicatively
homomorphic ElGamal-like encryption scheme over (Zn,×) as a comple-
ment to the Paillier encryption scheme over (Zn,+), where n is a strong
RSA modulus. Eventually, we also instantiate secure ESPs between the
two schemes, in front of malicious adversaries. This enhancement relies
on a new technique called refreshable twin ciphertext pool, which we show
being of independent interest. We additionally prove this is enough to
argue the security of our general 2-PC protocol against malicious adver-
saries.

1 Introduction

The development of the Internet witnessed the explosive growth of the amount
of available data. We now live in an era of big data in which there is an always
increasing need for efficient tools to store and manipulate huge quantities of
information. While most companies now outsource their data to get an arbitrar-
ily large storage capacity with efficient access, manipulating data in the Cloud
raises many security issues. Secure multi-party computation (MPC) has thus
gained tremendous importance by providing privacy-preserving tools allowing
manipulations of sensitive inputs.

Secure Two-Party and Multiparty Computation. Secure two-party com-
putation (2-PC) targets the following problem: Alice and Bob, modeled as prob-
abilistic polynomial-time algorithms, wish to jointly compute a public function
? Work done while being at ENS under the ERC CryptoCloud Project

2 Geoffroy Couteau, Thomas Peters, and David Pointcheval

f of their respective inputs x and y, while keeping them private. We will focus
on the case where Alice only gets the final result f(x, y), while Bob should learn
nothing, but this is not really a loss of generality. To this end, they perform an
interactive protocol, that is expected to be correct (i.e., the final output of the
protocol is indeed f(x, y)) and private (i.e., no one can learn from his own view
any information that he could not have deduced from his input, and the outcome
f(x, y) for Alice). Secure multiparty computation is the natural extension of this
problem to more than two players. Two kinds of adversarial behaviors are usually
considered: semi-honest adversaries (a.k.a. honest-but-curious) follow the speci-
fications of the protocol and try to get as much information as possible from the
transcript, while malicious adversaries might deviate from these specifications
in any way to gain more information.

Starting with the seminal work of Yao [41], there have been a vast amount
of publications targeting secure two-party and multiparty computation. Today’s
most efficient schemes are based on various paradigms, such as secret sharing
with preprocessing (e.g. TinyOT [32], SPDZ [11], MiniMac [12]), oblivious trans-
fers [1], garbled circuits [28], or homomorphic encryption [10]. In addition, there
are several hybrid constructions which combine various approaches (e.g. gar-
bled circuit and homomorphic encryption in [21], secret sharing and garbled
circuits in [13]). Most of those schemes are very efficient when the circuit to
be computed is of low depth. However, when high-depth circuits are involved,
the efficiency drops down: protocols based on secret sharing, oblivious transfers,
partially homomorphic encryption, or garbled circuits have a communication
proportional to the depth of the circuit. At the exception of the latter one, they
also have a round complexity proportional to the depth of the circuit. This can
be avoided with somewhat homomorphic encryption, but as soon as the circuit
has a high depth, the players will have to rely on prohibitively expensive boot-
strapping procedures. In the honest-but-curious setting, hybrid protocols might
provide efficient solutions in some particular cases (although they will still suf-
fer from comparable downsides in general, as they combine approaches which
do all have such downsides). However, enhancing hybrid protocols efficiently to
security against malicious adversaries is highly non-trivial, due to the lack of a
common structure between the various elements manipulated in those protocols;
in fact, [21] and [13] do only consider the honest-but curious setting.

Switching Between Homomorphic Schemes. The existence of very efficient
MPC protocols for circuits containing a large number of additions, and few mul-
tiplications, suggests that multiplications might be way more expensive than
additions. However, there exist encryption schemes which are multiplicatively
homomorphic, the most famous one being the ElGamal encryption scheme [14].
In such cryptosystems, multiplications come essentially for free, but additions
cannot be performed (unless a fully homomorphic scheme is used). Therefore,
a natural way to design a MPC protocol in which multiplications would not
incur a significant overhead compared to additions would be to combine a mul-
tiplicative cryptosystem with an additive cryptosystem: multiplications would
be performed homomorphically on multiplicative ciphertexts, and additions on

Encryption Switching Protocols 3

additive ciphertexts. The missing ingredient in such a protocol is a procedure to
convert a multiplicative (resp. additive) ciphertext into an additive (resp. mul-
tiplicative) ciphertext encrypting the same plaintext: an encryption switching
protocol.

To our knowledge, three papers have considered switching between cipher-
texts under different homomorphic schemes in the past. The concept was initially
introduced in [17], where the authors propose a variant of the ElGamal encryp-
tion scheme to work over Z∗n, together with a protocol to switch between this
scheme and the Paillier scheme. In [40], a trusted software is used to switch
between various homomorphic schemes. In a recent unpublished paper [27], the
authors propose methods to switch from the ElGamal scheme to the Paillier
scheme, to evaluate DNF formulae.

As [40] relies on a trusted software, it cannot be compared to our work,
which does not make this assumption. Moreover, we found both [17] and [27]
to be flawed: in [17], a variant of the ElGamal encryption scheme is proposed;
however, the public key of the scheme contains a square root β of unity with
Jacobi symbol −1. But then, computing gcd(β−1, n) gives a non-trivial factor of
n. Hence, the scheme leaks the factorization of the modulus. In [27], the following
variant of the ElGamal scheme is proposed: to encrypt m ∈ Z∗n, pick a random
scalar r in Z∗n and output (gr mod n,mhr mod n), where g is a square (g = 16
in the article) and h is gx for some secret key x. Given a ciphertext (c0, c1), any
player can compute the Jacobi symbol of c0 and c1, and check whether they are
equal or different. The former case corresponds to the Jacobi symbol of m being
1, while the latter case corresponds to the Jacobi symbol of m being −1: the
scheme leaks the Jacobi symbol of the plaintext, which contradicts the semantic
security, at least in Z∗n.

Indeed, constructing a multiplicatively homomorphic variant of the ElGamal
encryption scheme that is still semantically secure over Z∗n (and a fortiori over
Zn) turns out to be a non-trivial task.

Our Contribution. In this work, we formally define encryption switching pro-
tocol (ESP), which allows two players to interactively and obliviously convert
an encryption of a message m with a cryptosystem Π1 to an encryption of the
same message with a cryptosystem Π2, provided that m lies in the intersection
of the plaintext spaces of the cryptosystems. To instantiate this primitive, we
introduce (and formally prove the security of) a new multiplicatively homomor-
phic variant of the ElGamal encryption scheme whose plaintext space is Z∗n. To
our knowledge, our scheme is the first secure construction of a multiplicatively
homomorphic IND-CPA encryption scheme over Z∗n and might be of independent
interest. We extend our variant of the ElGamal cryptosystem to a space which
is “nearly” equal to Zn, in a sense that we formally define. We then construct
encryption switching protocols between our new scheme and the Paillier encryp-
tion scheme. Our ESPs (between the two encryption schemes, in both directions)
have a constant communication (counted as a number of group elements), and
their security relies on standard assumptions (the decisional composite residu-
osity, the decisional Diffie-Hellman, and the quadratic residuosity assumptions).

4 Geoffroy Couteau, Thomas Peters, and David Pointcheval

In addition to its application to two-party computation, which will be outlined
afterward, we believe that the primitive of ESP is of theoretical interest on its
own.

To demonstrate the generality of our approach, we construct a generic two-
party computation protocol over a ring (R,⊕,⊗) assuming the existence of
homomorphic cryptosystems for each law, ⊕ and ⊗, and encryption switching
protocols. We formally prove that our generic protocol achieves the standard
security notions for two-party computation. Our new paradigm is particularly
suited for high depth circuits.

We then turn our attention to the malicious setting. The natural way to
provide security against malicious adversaries is to ask each player to prove, using
a zero-knowledge proof, that he behaved honestly. However, ESPs can be seen as
hybrid protocols, as they combine primitives with very different structures (in
our case, the ElGamal scheme and the Paillier scheme). As is often the case in
hybrid schemes, the lack of a common algebraic structure between the schemes
prevents us from using standard zero-knowledge proofs. We tackle this issue by
introducing a new technique for zero-knowledge, which we call a refreshable twin-
ciphertext pool. In addition to providing an efficient way to enhance the security
of ESPs to the malicious setting, we show that our new technique allows us to
improve over several classical zero-knowledge proofs, such as proofs of knowledge
of a double logarithm, or proof of primality of a committed value, which is of
independent interest.

A nice feature of our two-party computation paradigm is that it is in fact
sufficient to instantiate it with an ESP secure against malicious adversaries for
the full generic two-party computation protocol to be secure against malicious
adversaries.

Related Work. We already mentioned (and argued the insecurity of) [17, 27]
which design methods for switching between homomorphic schemes, and [40],
which relies on a trusted software to achieve a comparable goal. Fully homomor-
phic encryption (FHE), gathering both additive and multiplicative homomorphic
properties in a single encryption scheme, has been a long standing open problem
until the seminal work of Gentry [18]. It relies on a somewhat homomorphic
encryption scheme, that allows to perform a bounded number of operations, and
a technique called bootstrapping to remove this bound. Our work can be seen as
a similar line of work, using homomorphic encryption schemes (HEs) to perform
an unlimited number of specific operations, and then relying on a switching tech-
nique to replace one HE by another one to get access to other specific operations.
However, a fundamental difference is that the bootstrapping is a non-interactive
technique, while our encryption switching protocols are interactive.

We stress that our ESP primitive makes use of shared decryption keys to
obliviously decrypt and re-encrypt under the other encryption scheme, with a
similar public key. This is totally different from proxy re-encryption, where the
proxy knows a key to convert a ciphertext under one key into a ciphertext under
another independent key. For instance, disclosure of secret key of one encryption
scheme in our realization breaks the semantic security of the other one too.

Encryption Switching Protocols 5

Preliminaries. Because of lack of space, basics on classical tools are postponed
to the full version [6] (as well as the optimizations and detailed proofs), and the
reader is recommended to refer to it for more details. But in short, a public-key
encryption scheme Π is defined by the four algorithms (Setup,KeyGen,Enc,Dec),
where the two first generate the global parameters and the keys, and the two
others encrypt and decrypt. If nothing else is specified we assume that a correctly
encrypted message is always returned back by the decryption algorithm. We
denote M the message space.

Throughout this paper, κ denotes the security parameter. The notation x $←
S indicates that x is sampled uniformly at random from the finite set S. We
write a = b mod n to specify that a = b in Zn and we write a ← [b mod n] to
affect the smallest non-negative integer to a so that a = b mod n.

2 Two-Party Computation from ESPs

We introduce a theoretical framework for alternating between different encryp-
tion schemes: the new primitive of encryption switching protocol (ESP) allows
to switch a ciphertext under an encryption scheme into a ciphertext of the same
message under the other encryption scheme without damaging their semantic
security. We define this primitive as a 2-party protocol and we show that secure
ESP implies secure general 2-party computation under natural conditions. This
is the first main contribution of the paper.

2.1 Definitions

Definition 1 (Twin-Ciphertext Pair). For i = 1, 2, let Πi be an encryption
scheme (Setupi,KeyGeni,Enci,Deci) with plaintext space Mi. A twin-ciphertext
pair (c1, c2) is a pair of ciphertexts so that:

1. c1 is an encryption of m1 ∈M1 under Π1;
2. c2 is an encryption of m2 ∈M2 under Π2;
3. m1 = m2 (which in turn belongs to M1 ∩M2).

Given an encryption c of a message m ∈M1 ∩M2, under one of the two above
encryption schemes, we will say that any ciphertext c′ which does encrypt m
under the other encryption scheme is a twin ciphertext of c.

On the other hand, if c and c′ encrypt the same m under the same encryption
scheme, they are said equivalent. Informally, given a ciphertext c of a plaintextm
under one of the two above encryption schemes, an encryption switching protocol
(ESP) describes how users A and B, sharing the decryption key, can interact to
construct a twin ciphertext of c. This is of course under the restriction that
the plaintext m lies in the intersection of the two message spaces. We focus
on two encryption schemes that use common Setup and KeyGen algorithms for
generating the global parameters and the keys3.
3 In any case, we could just take the concatenation of the outputs of the algorithms
of the two schemes.

6 Geoffroy Couteau, Thomas Peters, and David Pointcheval

Definition 2 (Encryption Switching Protocol). For i = 1, 2, let Πi be an
encryption scheme (Setup,KeyGen,Enci,Deci). An encryption switching proto-
col (ESP) between Π1 and Π2, noted Π1
 Π2, is a tuple (Share,Switch):

Share(pk, sk) given the common keys sk and pk of both schemes, it outputs a
secret sharing (skA, skB) of sk and updates pk if necessary. The party A
(resp. B) is intended to be given skA (resp. skB);

Switchpar((pk, skA, c), (pk, skB , c)) is an interactive protocol in the direction par ∈
{1→2, 2→1} which, from a ciphertext c under the source encryption scheme,
jointly computes a twin ciphertext c′ of c under the target encryption scheme
or outputs ⊥ (in case of problems during the protocol execution).

Correctness. An ESPΠ1
 Π2 = (Share,Switch) is correct if bothΠ1 andΠ2 are
correct encryption schemes, and for any pp ← Setup(1κ), any keys (pk, sk) ←
KeyGen(pp), any key shares (pk, skA, skB) ← Share(pk, sk), any message m ∈
M1 ∩M2, and any ci ← Enci(pki,m) for i = 1, 2,

Dec2(sk,Switch1→2 ((pk, skA, c1), (pk, skB , c1))) = m,

Dec1(sk,Switch2→1 ((pk, skA, c2), (pk, skB , c2))) = m,

always hold. Ciphertexts on messages in the intersection of the two plaintext
spaces are called switchable.

2.2 Security Notions

We expect ESP not to break the IND-CPA security of the encryption schemes,
even in front of malicious adversaries: the adversary A is given pk, but since it
plays against Alice or Bob it can choose either skB or skA, respectively. Then,
even interacting with an oracle that emulates the other party as an honest player,
A should not be able to break IND-CPA security of neither Π1 nor Π2. Let us
more formally define this security notion.

Definition 3 (OA and OB Oracles). For appropriate keys (pk, skA, skB), we
denote the stateful oracle OA(i→j, c,Flow) that emulates the honest player A:
it provides the answers A would send back upon receiving the flow Flow when
running the protocol Switchi→j((pk, skA, c), (pk, skB , c)). We similarly define the
oracle OB that emulates the honest player B. A special flow ‘Start’ is used to
initialize the protocol.

In our target application of 2-PC, these oracles will not be available on any input,
but on controlled ciphertexts only. Hence our following security notion.

Definition 4 (ESP Security). An encryption switching protocol Π1
 Π2 is
secure if it is strongly sound and zero-knowledge (see below).

The soundness property guarantees that no malicious player can successfully
force the outcome of Switch not to be a twin ciphertext of the input, when the
input is indeed a switchable ciphertext. The strong requirement means that the
soundness holds even if the adversary is also given the whole secret key sk (or
both skA and skB), instead of just one of the two shares.

Encryption Switching Protocols 7

Definition 5 (Strong Soundness). An encryption switching protocol Π1

Π2 is strongly sound, if it is strongly sound for A and strongly sound for
B. The scheme is strongly sound for B, if for any pp ← Setup(1κ), any keys
(pk, sk) ← KeyGen(pp), any secret key shares (pk, skA, skB) ← Share(pk, sk), for
all PPT adversary A playing the role of A, the success

Succesp-sound
B (A) = Pr[BadSwitch|A OB(·,·,·)(pk, skA, sk)]

is negligible, where the event BadSwitch is raised when a full protocol execution of
Switch with OB on a switchable input ciphertext c successfully outputs c? which is
not a twin ciphertext of c. (In a non-strong version of soundness the adversary
is only given (pk, skA).) We denote Succesp-sound(κ, t) the maximal success an
adversary can get against A or B within time t.

The zero-knowledge property guarantees that no information leaks about the
secret key shares to a malicious player when switches are performed on switchable
ciphertexts: its view can be simulated without any additional information than
its own secret share.

Definition 6 (Zero-Knowledge). An encryption switching protocol Π1
 Π2

is zero-knowledge, if it is zero-knowledge for A and zero-knowledge for B. The
scheme is zero-knowledge for B if there exist two efficient simulators, Simshare

B

and SimESP
B of Share and the oracle OB respectively, with the following property:

for any pp← Setup(1κ), any keys (pk, sk)← KeyGen(pp), any secret key shares
(pk, skA, skB)← Share(pk, sk) or simulated shares (pk′, sk′A)← Simshare

B (pk), and
for any PPT adversary A playing the role of A, the advantage

Advesp-zk
B (A) =

∣∣ Pr[1← A O′B(·,·,·,·)(pk, skA)]− Pr[1← A SimB(·,·,·,·)(pk′, sk′A)]
∣∣

is negligible, where the adversary A is given unbounded access to either the
simulator SimB or the stateful oracle O ′B described below, with the restriction
that input ciphertexts (c, c̄) to SimB or O ′B are twin ciphertexts:

Oracle O ′B(i→j, c, c̄,Flow): on input a direction i→j, a ciphertext c under the
encryption scheme Πi, a ciphertext c̄ under the encryption scheme Πj, and
a message flow Flow, ignores c̄ and runs OB(i→j, c,Flow);

Simulator SimB(i→j, c, c̄,Flow): on the same inputs as above, emulates the
output an honest player B would answer upon receiving the flow Flow when
running the protocol Switchi→j((pk, skA, c), (pk, skB , c)), without skB but pos-
sibly with skA, and forcing the output to be a ciphertext c̄′ equivalent to c̄
(i.e., a ciphertext c̄′ such that Dec(sk, c̄) = Dec(sk, c̄′)).

If the adversary A can be unbounded, Π1
 Π2 is statistically zero-knowledge.
We denote Advesp-zk(κ, t) the maximal advantage an adversary can get against A
or B within time t.

At a high level, Definition 4 says that (misbehaving) players A and B sepa-
rately gain no information on the plaintexts even if they can switch the cipher-
texts between Π1 and Π2. In that sense, switching ciphertexts is a special kind
of two-party computation. It is pretty clear that a secure ESP on appropriate
encryption schemes allows to build two-party protocols in M1 ∩M2.

8 Geoffroy Couteau, Thomas Peters, and David Pointcheval

2.3 Computational Equality

Let us consider an adversary A which can efficiently sample messages in both
the intersection of the message spaces M1 ∩M2 and their symmetric difference
M1 ⊕M2 = (M1 ∪M2)\(M1 ∩M2). A simple observation shows that a secure
ESP could not be safe to use inside a larger protocol, even in front of a passive
adversary, since the switching protocol does not provide any guarantee on non-
switchable ciphertexts, that encrypt messages outside M1 ∩M2. They could
help to distinguish ciphertexts. More generally, we would like Switch not to help
for distinguishing switchable ciphertexts from non-switchable ciphertexts, which
would break the IND-CPA security with the Switch oracle.

A solution could be a restriction on the choice of the ciphertexts asked to
the Switch oracles, so that the plaintexts lie in M1 ∩M2. But this would not
be strong enough for practical purpose, since there is no reason that it cannot
happen during a complex evaluation. We thus define the following additional
property, to be satisfied by the message spaces, with the common public key pk
as auxiliary input:

Definition 7 (Computational Equality). Let (M1,M2, aux) be two sets and
some additional information. M1 and M2 are computationally equal given aux-
iliary input aux if, for any adversary A , its success probability for outputting
a message in the symmetric difference M1 ⊕M2, denoted Succcomp-eq(A) =
Pr[m← A (M1,M2, aux) : m ∈M1 ⊕M2], is negligible.

We have defined the security of ESP for switchable inputs and, informally, the
computational equality will guarantee that non-switchable inputs are quite un-
likely during the execution of a protocol involving ESPs.

2.4 Ring-Homomorphic Encryption Schemes

Toward our aim of getting two-party computation protocols from ESP, our goal
is to design two encryption schemes on a ring structure (R,⊕,⊗), where the
encryption algorithms are homomorphic on the plaintexts (under either ⊕ or ⊗)
and on the random coins (with an appropriate group law � over the randomness
space R which may differ in every case), using the combinations � and � of the
ciphertexts:

E⊕(m1; r1) � E⊕(m2; r2) = E⊕(m1 ⊕m2; r1 � r2)

E⊗(m1; r1) � E⊗(m2; r2) = E⊗(m1 ⊗m2; r1 � r2)
(1)

In particular, this implies that we can maul any ciphertext ofm into a ciphertext
of R⊗m, for a known R, with an appropriate operation • in each case (and the
appropriate operation · on the random coins) on the ciphertexts:

R • E⊕(m; r) = E⊕(R⊗m;R · r) R • E⊗(m; r) = E⊗(R⊗m;R · r). (2)

Note that we explicitly choose �, � and • to be deterministic functions, so that
any local homomorphic evaluation on ciphertexts leads to the same ciphertext
result. Note also that the existence of � and � implies the stability of the
plaintexts spaces of E⊕() and E⊗(), under ⊕ and ⊗ respectively.

Encryption Switching Protocols 9

2.5 General Secure Two-Party Computation

The reason of designing ESP is to take advantage of the nice (homomorphic)
properties of the two schemes which may not be available in a single efficient
encryption scheme. When additions ⊕ are required, we use ciphertexts under the
additively homomorphic encryption scheme w.r.t. �, and when multiplications
⊗ and exponentiations are needed, we convert the operands into the other mul-
tiplicatively homomorphic encryption scheme w.r.t. �. In other words, ESP aims
at reconciling additively and multiplicatively homomorphic schemes, to jointly
compute the encryption of f(x, y), for any public function f over (R,⊕,⊗), on
encryptions of x and y. Below, we consider two-party computation which reveals
the result to a single party only (Alice).

Secure 2-PC. More formally, assuming only Alice gets the outcome, the security
game of such a privacy-preserving evaluation is the following one: The adversary
against Bob chooses its input x and the possible inputs y0, y1 for Bob, with
the additional restriction that f(x, y0) = f(x, y1) (otherwise the outcome would
reveal Bob’s actual input value); It gets the encryption of x and the encryption
of yb for a random bit b $← {0, 1}; At the end of the joint evaluation with Bob, it
should try to guess b, and thus Bob’s actual input value. If the adversary plays the
role of Bob against Alice, then it chooses its input y and the possible inputs x0, x1
for Alice but without any additional restriction. When no adversary can guess b
in any of the two games (against Alice or Bob), with non-negligible advantage,
we say that the 2-PC protocol is input-indistinguishable. This is formally defined
in the full version [6].

Since we assume that Alice receives the outcome of the 2-PC in our design we
also assume that Alice and Bob are able to decrypt ciphertexts from their shares.
Without loss of generality, we assume that Π2 admits a 2-party decryption (as
detailed in the full version [6]) so that only Alice gets the plaintexts. A rigorous
construction Π2PC is proposed in the full version [6], using a secure ESP between
homomorphic encryption schemes over computationally-equal message spaces,
following the above intuition, leads to the next result.

Theorem 8. Let Π1 and Π2 be IND-CPA (complementary) homomorphic en-
cryption schemes over a ring (R,⊕,⊗), whose message spaces are computation-
ally equal, equipped with a secure ESP, Π1
 Π2 = (Share,Switch), so that Π2

admits a 2-party decryption for A from the same key shares output by Share and
which is statistically sound and zero-knowledge, then the Π2PC protocol is an
input-indistinguishable 2-PC for any function f over (R,⊕,⊗).

We stress that this theorem is for the malicious setting: if the ESP protocols
(and the 2-party decryption) are secure against malicious adversaries, the Π2PC
protocol is secure against malicious adversaries, without any additional zero-
knowledge proofs.

Intuition. Our approach for Π2PC consists in starting from ciphertexts of x and
y, and to switch to the appropriate encryption scheme in order to be able to

10 Geoffroy Couteau, Thomas Peters, and David Pointcheval

make operations through the homomorphic property, until the encryption of the
result is reached. The rationale of the computational-equality property for the
message spaces, with the public key as auxiliary input, is the following one: on
encryptions of valid inputs x and yb, the evaluation of the encryption of f(x, yb)
follows a deterministic path of switches and public homomorphic operations
on the ciphertexts. In the honest-but-curious setting, the sequences of involved
plaintexts is indeed determined by x and yb, and in the malicious setting, the
soundness property ensures that the same happens. Then, if all the ciphertexts
are switchable, using the simulators from the zero-knowledge property of the
ESP leads to the privacy of the computation: no information leaks on b. If a
ciphertext happens to be non-switchable with non-negligible probability during
the computation, simply generating the sequences of plaintexts from (x, y0) and
from (x, y1) would efficiently generate an element in the symmetric difference: we
need this to be intractable. Eventually, the outcome of the protocol is recovered
by performing 2-party decryption.

Sketch of the Proof. The structure of the proof follows a sequence of indistin-
guishable games from the real game with (x, y0), between the adversary and a
simulator emulating the challenger using b = 0 with all the secret information
to the real game with (x, y1), and so using b = 1. We consider the output guess
b′, which should remain the same. The first games consist of a preparation for
replacing y0 by y1. We indeed cannot apply the semantic security of the encryp-
tion schemes yet since the decryption keys are known to the simulator. But first,
with the computational-equality property, we can guarantee that all the input
ciphertexts of the ESPs are switchable. Then, with the soundness of the ESPs, we
know that the outputs of the ESPs are twin ciphertexts. Actually, we need here
the strong flavor of soundness since the secret key is still known. Again we apply
the soundness of the final 2-party decryption to guarantee the correct decryption
(since the decryption key is still known, we require the statistical soundness, but
a strong flavor would be enough too). Now that we know all the input-output
pairs of the internal primitives (ESPs and decryption) are correct, we can safely
replace the honest emulation using the secret key by the simulators without the
secret key, thanks to the zero-knowledge property. So, the secret key is not re-
quired anymore, and we can replace y0 by y1, applying the IND-CPA security
game to the first encryption scheme. We also have to propagate to the outputs
of the ESPs, using again the IND-CPA security game of the other encryption
scheme. This is done sequentially, with hybrid games, to end with a game where
the input is (x, y1) and all the intermediate ciphertexts are consistent. We can
then move back to the honest emulation (and not the simulators for the ESPs
and the decryption) using the secret key. The full construction is described and
formally proven secure in the full version [6].

Our Next Goal. Three properties must be satisfied to securely evaluate func-
tions over a ring: the homomorphism of the encryption schemes, the security of
the ESPs and the computational equality of the messages spaces. Instantiating
these building blocks would allow us to achieve our second objective: building an

Encryption Switching Protocols 11

efficient two-party computation over a ring as a realistic alternative to standard
methods, particularly for arithmetic functions with a high multiplicative depth.
After discussing some applications of ESPs, we provide a first step toward our
goal by designing a secure ESP to switch between two homomorphic encryption
schemes over Z∗n.

3 Applications

In this section, we motivate our paradigm for two-party computation with some
concrete examples involving high-depth circuits.

Private Disjointness Testing (PDT). Two players, Alice and Bob, holding
respective databases A = (ai)i≤a and B = (bi)i≤b, wish to know whether their
databases have at least one common element or not, and nothing more. The
state-of-the-art solution to PDT is [42], which solves the problem with complexity
O
(
(a+ b)2

)
(counting group elements).

A natural way to solve the PDT is to view the items of A as the roots of a
polynomial P (X) =

∑a
i=0 αiX

i. Alice and Bob perform an interactive protocol
which outputs u = r

∏b
i=1 P (bi) to Alice, where r is a uniformly random value

picked by Bob. If this value is 0, then one of the P (bi)’s is zero, which means
that one of the bi’s is in A. However, the circuit computing u is of depth O(log b),
hence most 2-PC protocols computing this circuit are not constant round. Us-
ing carefully constructed circuits such as the sort-compare-shuffle circuit of [22]
(adapted to the case of PDT), the (constant-round) garbled circuit approach
transmits O(κ`(a+ b) log(a+ b) + κbM(κ)) bits, where ` is the size of the items
in A and B and M(κ) the circuit size of modular multiplication (multiplica-
tions are performed modulo a κ-bit value to avoid integer multiplication while
maintaining statistical correctness).

Our framework allows us to design a linear-communication constant-round
protocol for the private disjointness test:

1. Alice builds the polynomial P =
∑
αiX

i so that P (ai) = 0 for i ≤ a, and
sends (Ci = E⊕(αi))i;

2. Bob computes and sends Di ← �jb
j
i • Ci = E⊕(P (bi)) for i ≤ b;

3. They perform b ESPs in parallel to get (D′i = E⊗(P (bi)))i≤b;
4. Bob picks r $← Zn and computes E ← r •�iD′i = E⊗(r ×

∏
P (bi)).

5. Alice and Bob jointly decrypt the ciphertext, Bob gets the result and checks
whether the plaintext is zero or not.

The total communication complexity of this protocol is a+b+2 ciphertexts and b
parallel ESPs. With constant size ESPs (as we will construct in the following), this
gives a total communication of O(a+b) in constant round. We want to stress that
this does not mean that, for concrete parameters, this approach will necessarily
beat the best super-linear garbled circuits for PDT; however, garbled circuits
have enjoyed decades of optimizations, and given its asymptomatic complexity,
our new approach seems worth considering for further investigations and could

12 Geoffroy Couteau, Thomas Peters, and David Pointcheval

benefit from numerous optimizations. Note also that hybrid frameworks (such
as [21]) can also provide linear-communication constant-round solutions, but
unlike these protocols, our approach is easily enhanced to the malicious setting:
in a high level, items 1 and 2 are secure from [7] and the next items are secure
against malicious adversaries if so are the ESPs performing the switches (and
Section 6 provides an efficient technique to achieve this security).

Oblivious Multivariate Polynomial Evaluation (OMPE). This is the nat-
ural extension of oblivious polynomial evaluation [31] over multivariate polyno-
mials [39]. Once an ESP is available, constructing an OMPE protocol is straight-
forward (we use the notations of [39]). Unlike previous solutions, it keeps the
degree d of P hidden.

– Alice holds an N -variate polynomial P of degree d with M monomials;
– Bob holds (x1, · · · , xN) and sends (E⊗(xi))i≤N ;
– Alice computes all the M monomials of P (x1, · · · , xN) encrypted under

Z∗n-EG, due to the multiplicativity;
– Alice and Bob perform M parallel ESPs on the encrypted monomials to get

the M additively encrypted monomials, and then get E⊕(P (x1, · · · , xN));
– Alice and Bob jointly decrypt it, so that Bob (or both) gets P (x1, · · · , xN).

Our OMPE protocol transmits O((N + M) log n) bits, to be compared with
O(Ndκ2) for [39]. In addition, our protocol can be adapted to the case of mul-
tivariate polynomials whose most compact representation is not their canonical
form; for example, if the polynomial is of the form

∏
i

∑
j X

δij
j , extending it to

its canonical form would result in an expression with exponentially many terms.
Instead, the polynomial can be directly evaluated from this compact form: first
using the multiplicative homomorphism to evaluate the Xδij

i ’s, they switch to
perform the sums, and then switch again to perform the final product. Several
applications of OMPE are discussed in [39], such as testing whether the union of
two sets of vectors are of full rank which has applications in linear secret shar-
ing schemes, where the secret can be recovered when a full rank set of vectors is
known; the players can determine whether they could recover the secret together
without revealing their set. We get a more efficient Full-Rank Test protocol.

4 An Encryption Switching Protocol over Z∗
n

For the internal laws on the plaintexts in Zn we keep the usual notations + and
× (or · and even nothing), but we still use the notations of the Section 2.4 for the
external operations on the ciphertexts and the relations on the random coins.

In order to complete the Paillier encryption scheme, that is additively homo-
morphic in Zn, we build an ElGamal variant that is multiplicatively homomor-
phic in Z∗n, both for the same RSA modulus n. The security of our new variant
relies on the DDH assumption in Jn, the (maximal) cyclic subgroup of Z∗n whose
elements have a Jacobi symbol equal to +1, and the QR assumption in Z∗n (see
the full version [6] for more details about the structure of the ring Zn). In order

Encryption Switching Protocols 13

to build a secure encryption switching protocol, we need an additional property
from the two encryption schemes: they can be randomized. An encryption scheme
E is randomizable if there exists an efficient algorithm Rand such that for every
message m and every random coins r ∈ R:

{E (m; r′) | r′ $← R} ≡ {Rand(E (m; r), r′) | r′ $← R} (3)

where ≡ denotes the computational/statistical/perfect indistinguishability of the
two distributions. For the sake of simplicity, we will denote Rand(C) the proba-
bilistic algorithm which picks r uniformly at random and returns Rand(C; r).

We now recall basic computational assumptions and an implication to Jn,
then we review the Paillier encryption which also admits a verifiable 2-party
decryption algorithm (where either the two players, or one player only, get the
result) and we introduce our new ElGamal encryption schemes. Finally, we show
how to switch between these schemes from encryptions over Z∗n.

4.1 Computational Assumptions

The security of our protocols will rely on the following standard assumptions:

– The DDH (Decisional Diffie-Hellman) assumption in a cyclic group G = 〈g〉
of order q states that, given (ga, gb) for a, b $← Zq, gab is indistinguishable
from a random element in G.

– The QR (Quadratic Residuosity) assumption in Z∗n, for an RSA modulus
n, states that a random element in QRn (square in Z∗n) is indistinguishable
from a random element in Jn (element of Z∗n with Jacobi symbol +1).

– The DCR (Decisional Composite Residuosity) assumption in Z∗n2 , for an RSA
modulus n, states that a random n-th power in Z∗n2 is indistinguishable from
a random element in Z∗n2 .

The DDH assumption is usually assumed to hold in large prime-order subgroups
of Z∗p. In the following, n = pq is a strong RSA modulus if p = 2p′ + 1 and
q = 2q′+1 are safe primes (with both p′ and q′ also prime). With such a modulus
n, DDH is also a reasonable assumption in QRn, since the order is p′q′ (see the
full version [6] for more details). Adding the QR assumption in Z∗n, this makes
the DDH assumption in Jn (of order 2p′q′) reasonable too:

Theorem 9. When n = pq is a strong RSA modulus, the DDH assumption in
Jn is implied by the DDH assumption in both the large prime-order subgroups of
Z∗p and Z∗q and the QR assumption in Z∗n. (The proof is in the full version [6].)

However, given m ∈ Z∗n, computing Jacobi symbol Jn(m) is easy and then the
DDH assumption does not hold in Z∗n which, in addition, is non cyclic.

4.2 Zn-P: The Paillier Encryption Scheme on Zn

For the Paillier encryption scheme (denoted Zn-P), we will use the notation E⊕(·)
since this will be our additively homomorphic encryption scheme. It implicitly

14 Geoffroy Couteau, Thomas Peters, and David Pointcheval

uses the strong RSA modulus n = pq, and we denote λ = λ(n) = (p−1)(q−1)/2,
the maximal order of an element of Z∗n. One can note that λ = (n− 1)/2 + (2−
(p+ q))/2 is statistically close to (n− 1)/2 or n/2 if we consider the Euclidean
division (we will abuse this notation n/2 in the following).

The Paillier Cryptosystem. In [33], Paillier proposed an encryption scheme
Zn-P for a modulus pk = n as public key, and sk = d← [λ−1 mod n]×λ mod nλ
as secret key: Zn-P.Enc(pk,m; r), for a message m ∈ Zn and random coins r in
Z∗n, outputs c = (1+n)m ·rn mod n2; Zn-P.Dec(sk, c) returnsm = ([cd mod n2]−
1)/n. (See details in the full version [6]). This scheme is IND-CPA under the
DCR assumption over Z∗n2 , and it is additively homomorphic in Zn. It satisfies
equation (1), � being the multiplication in Z∗n2 . The randomization algorithm
Rand is given by Zn-P.Rand(c; r) = c · rn mod n2, for any random coins r in Z∗n.

2-Party Paillier Decryption. In this section, we briefly recall the semi-honest
case where players are honest-but-curious. The reader can refer to the full ver-
sion [6] for more details and a description in the malicious case which makes use
of classical zero-knowledge proofs.

We assume that a trusted dealer generates the key shares for the two parties,
Alice and Bob (distributed key generation can be found in [20]). The dealer
generates random dA, dB ∈ Znλ subject to dA + dB = d mod nλ defined above.
Then, Alice gets dA and Bob gets dB .

In order to allow Bob to decrypt the ciphertext C, Alice computes and sends
CA ← CdA mod n2, which allows Bob to get the plaintext m← ([CA×CdB mod
n2]− 1)/n. Note that we do intentionally not disclose m to Alice in general. But
this is perfectly symmetric if one wants Alice to get the result instead of Bob.

The correctness of this protocol is straightforward. Let us show that it
is statistically zero-knowledge: To emulate Alice in front of a curious Bob,
we first pick dB in Zn2/2 instead of Znλ (since n/2 is statistically close to λ)
and we give it to Bob. The simulator with input (m, dB) sends CA ← (1 +
n ·m) × C−dB , which enforces the decryption to m for Bob. This simulation is
statistically indistinguishable from a real execution when C does indeed encrypt
m. No emulation of Bob is needed as he does not send any message.

4.3 Z∗
n-EG: An ElGamal Variant in Z∗

n

The ElGamal Cryptosystem. In [14], ElGamal proposed the famous en-
cryption scheme that applies in any cyclic group G = 〈g〉 of order q, in which
the DDH assumption holds: for a secret scalar sk = x

$← Zq, the public key is
pk = h ← gx: Enc(pk,m; r), for a message m ∈ G and random coins r in Zq,
outputs c = (c0 = gr, c1 = hr ·m); Dec(sk, c) returns m = c1/c

x
0 .

This scheme is IND-CPA under the DDH assumption over G, and it is multi-
plicatively homomorphic in G. ElGamal encryption scheme satisfies equation (1),
� being the component-wise multiplication in G2. The randomization algorithm
Rand is given by Rand(c; r) = (c0 · gr, c1 · hr), for any random coins r in Zq. The
2-party decryption protocol is quite similar to the above Paillier one.

Encryption Switching Protocols 15

Setup and Key Generation
– The main strong RSA modulus n:
• p, q two safe primes, n← pq;
• g0

$← Z∗n, g ← −g20 (a generator of Jn, of order λ);
• d← [λ−1 mod n] · λ mod nλ: d = 0 mod λ and d = 1 mod n;
• v ← [p−1 mod q] · p mod n: v = 0 mod p and v = 1 mod q;
• an even tp

$← Zλ and an odd tq
$← Zλ: χ← (1− v) · gtp + v · gtq mod n;

• s $← Zλ, and set g1 ← gs mod n (for Jn-EG).
– The additional modulus N :
• P,Q two strong primes, N ← PQ (such that N > (2 + 2κ+1)n2);
• D ← [Λ−1 mod N] · Λ mod NΛ, where Λ is the order of JN .

– Keys: pk← (n, g, χ, g1, N) and sk← (d, v, tp, tq, s,D).
– Partial keys: (dA, vA, tpA, tqA, sA, DA)

$← Znλ × Zn × Z3
λ × ZNΛ,

and dB ← d − dA mod nλ, vB ← v − vA mod n, tpB ← tp − tpA mod λ, tqB ←
tq − tqA mod λ, sB ← s− sA mod λ, and DB ← D −DA mod NΛ.

E⊗(·) = Z∗n-EG: ElGamal Encryption Scheme in Z∗n
Enc(pk,m) : On input m ∈ Z∗n, compute (m1,m2) ← (ga, χ−am) ∈ Jn2 for

a
$← Zn/2, so that Jn(m) = (−1)a. Then, choose r

$← Zn/2 and compute
C ← Jn-EG.Enc(m2; r) = (c0 = gr, c1 = m2g

r
1).

Return the ciphertext c← E⊗(m; r) = (C = (c0, c1),m1).
Rand(pk, c) : Parse c = (C = (c0, c1),m1), choose r1

$← Zn/2 and r2
$← Zn/4, output

c′ ← (C′ = (gr1 · c0, χ−2r2gr11 · c1), g2r2 ·m1).
Dec(sk, c) : Parse c = (C = (c0, c1),m1) and check whether Jn(c1) = 1. If not,

return ⊥, otherwise compute m2 ← Jn-EG.Dec(C) = c1/c
s
0 in Z∗n and then m0 ←

(1− v) ·mtp
1 + v ·mtq

1 mod n.
Return m← m0m2 mod n.

E⊕(·) = Zn-P: Paillier Encryption Scheme on Zn
Enc(pk,m) : given m ∈ Zn, for a random r

$← Z∗n, output c← (1 + n)m · rn mod n2.
Rand(pk, c) : choose r $← Z∗n, output c′ ← rn · c mod n2.
Dec(sk, c) : return m← ([cd mod n2]− 1)/n.

Fig. 1. Setup and Encryption Schemes in Z∗n

In the following, we will essentially use QRn-EG and Jn-EG, the ElGamal
encryption schemes in QRn and Jn respectively.

Extension to Z∗
n. However, our main goal is to extend the ElGamal encryption

scheme to Z∗n. The global parameters contain the strong RSA modulus n, with a
generator g of Jn. The global setup and the algorithms are described on Figure 1.

Description. Since the larger space that ElGamal can securely encrypt is Jn, in
order to encrypt a message m ∈ Z∗n, we have to split m into two parts, m1,m2 ∈
Jn: given χ ∈ Z∗n\Jn, a natural encoding ism1 = Jn(m) = (−1)a andm2 = χam,
with an appropriate integer a. But, even if {±1} could be seen as a subgroup of

16 Geoffroy Couteau, Thomas Peters, and David Pointcheval

Jn, ψ : Z2×Jn 7→ Z∗n, ψ(a,m) = χ−am is not an homomorphism when the order
of χ is not 2. But we cannot leave in the clear4 a square root of 1 lying in Z∗n \Jn
(as done in [17]). However, for a generator g of Jn, we can instead encode m
with m1 = ga and m2 = χ−am for any integer a such that Jn(m) = (−1)a, and
encrypt m2 into (C0, C1) using Jn-EG, and appending m1 in clear. The intricate
point in the decryption phase will be to reconstruct χa from m1 = ga: if one
defines v = [p−1 mod q] ·p mod n and χ← (1−v) ·gtp +v ·gtq mod n, for even tp
and odd tq randomly drawn in Zλ, then χ ∈ Z∗n \ Jn. In addition, from m1 = ga,
one gets χa as (1−v)m

tp
1 +vm

tq
1 mod n. The complete description of the scheme

is described on Figure 1.

Properties. The correctness follows from the Chinese Remainder Theorem:
by construction, χ← (1− v) · gtp + v · gtq mod n, with v such that v = 0 mod p
and v = 1 mod q, then, χ = gtp mod p (so that χ ∈ QRp) and χ = gtq mod q

(so that χ 6∈ QRq). Then, from m0 ← (1 − v)m
tp
1 + vm

tq
1 mod n, we also have

m0 = gatp = χa mod p and m0 = gatq = χa mod q, and so m0 = χa mod n.
Hence, m0 ·m2 mod n is indeed the plaintext m in Z∗n.

The multiplicative homomorphism comes from the fact that a does not
need to be in Z2, but just has to satisfy (−1)a = Jn(m) to make both m1 and
m2 in Jn. If one multiplies two ciphertexts c and c′, of m and m′ respectively,
one gets (gr+r

′
, χ−a−a

′
mm′ · gr+r

′

1 , ga+a
′
) = (gr

′′
, χ−a

′′
mm′ · gr′′1 , ga

′′
), which

is statistically indistinguishable from a direct encryption of mm′ since Zn/2 is
statistically close to Zλ.

As usual, the randomization just consists in multiplying by a ciphertext
of m = 1, and so with any random encoding of 1: (m1 = g2a,m2 = χ−2a).
Hence, on input a ciphertext C = (C0, C1, α) and two random integers (r1, r2),
Rand(C; r1, r2) outputs C ′ ← (gr1 · C0, χ

−2r2 · gr11 · C1, g
2r2 · α). Note that this

algorithm returns a ciphertext in which both the random coins and the encoding
of the plaintext are uniform, hence this is a perfect randomization algorithm.

Security. A ciphertext c = (C = (c0, c1),m1) contains m1 in clear but m2 is
encrypted using Jn-EG. While m1 encodes the Jacobi symbol of the plaintext m
(if m1 is a square, m ∈ Jn and if m1 is not a square, m ∈ Z∗n \ Jn), under the
QR assumption in Z∗n, it is infeasible to distinguish squares from non-squares in
Jn: m1 does not leak anything. The choice of χ is completely independent from
the Jn-EG decryption key. This means that the IND-CPA security of the scheme
just relies on the DDH assumption in Jn (Theorem 9) and the QR assumption
in Z∗n.

4.4 Z∗
n-ESP: Encryption Switching Protocols on Z∗

n

For an ESP, the general approach consists of four steps: Alice first randomizes
the ciphertext, Bob gets the decryption and then re-encrypts it under the second
4 Given two square roots of the same element with distinct Jacobi symbols allows
efficiently factoring n.

Encryption Switching Protocols 17

2-Party ESP×+ from C = E⊕(m) into C′ = E⊗(m)

RA
$← Z∗n, C′A ← E⊗(R

−1
A)

CA← Zn-P.Rand(RA • C)

C1← CdAA mod n2 C′A, CA, C1−−−−−−−−→ x← ([C1 × CdBA mod n2]− 1)/n

C′←−−−−−−−−C′← Z∗n-EG.Rand(x • C′A)

2-Party ESP+
× from C = E⊗(m) into C′ = E⊕(m)

RA
$← Z∗n, C′A ← E⊕(R

−1
A)

CA← Z∗n-EG.Rand(RA • C)
= (C0, C1, α)

C2← CsA0
C′A, CA, C2−−−−−−−−→ C3← CsB0 , β ← C1/C2C3

r1
$← Zn/2, B ← αgr1 , B′ ← χ−r1

(u1, u2)← ([vBB
′ mod n], [B′ mod n])

B,B1, B2←−−−−−−−− (B1, B2)← (BtpB , BtqB)

A1← (1− vA)BtpA
A2← vAB

tqA

A3← −BtpAB1 +BtqAB2

A4← A1B1 +A2B2

(r3, r4, k)
$← Z∗N 2 × Z2κ+1n

E3← ZN -P.Enc(A3; r3)

E4← ZN -P.Enc(A4; r4)
E3, E4−−−−−−−−→ r5

$← Z∗N
E6← ZN -P.Rand(kn� E5)

E5←−−−−−−−− E5← Eu1
3 Eu2

4 × rN5 mod N2

F6← EDA6 mod N2 E6, F6−−−−−−−−→ m6← ([F6E
DB
6 mod N2]− 1)/N

x← β[m6 mod n] mod n

C′←−−−−−−−− C′← Zn-P.Rand(x • C′A)

Fig. 2. Interactive Protocols for Encryption Switching in Z∗n

encryption scheme, and Alice eventually de-randomizes it. Figure 2 contains
the full description of the two protocols, from Zn-P to Z∗n-EG and from Z∗n-EG
to Zn-P. The former is easy because of the simple 2-party Zn-P decryption.
The latter requires a more intricate 2-party Z∗n-EG decryption, that needs to
interactively compute χa from ga. It requires a second Paillier encryption scheme
in Z∗N2 for a larger modulus N > (2 + 2κ+1)n2 to make the computations in Z
but masking the number of loops in the reduction modulo n.

Proof of Security of Z∗
n-ESP. About the correctness, C encrypts m, C ′A

encrypts R−1A , and CA encrypts x = RA ·m, in both directions. Then x • C ′A is
a ciphertext of m under the second encryption scheme. In the multiplicative to
additive direction, this is a bit more intricate, but A3 = −BtpAB1 + BtqAB2 =
−Btp + Btq and A4 = A1B1 + A2B2 = (1− vA)Btp + vAB

tq , hence E5 and E6

contain encryption of B′× (vB(Btq −Btp)+((1−vA)Btp +vAB
tq +kn)) = B′×

((1−v)Btp +vBtp). But as already remarked, (1−v)Btp +vBtp = χa+r1 mod n
if α = ga. Hence, the plaintext m6 = χa, and x is the expected value. (The

18 Geoffroy Couteau, Thomas Peters, and David Pointcheval

blinding factor kn added in E6, which masks the number of reductions modulo
n, disappears in the end.)

About the zero-knowledge, the full and detailed proof in the honest-but-
curious setting of Theorem 10 can be found in the full version [6]. But in short,
the proof is done in two steps, for Alice and for Bob. For each player, we exhibit
a simulator which, essentially, generates the key share of its opponent from the
public key without having any information on the key of the player it emulates,
and is given for each switch a target output of the protocol. The simulator forces
the output of the switch to be a re-randomization of its target output. He does
so by sending random ciphertexts instead of correct ciphertexts and computing
some intermediate values using either its input or its target output (both being
a twin-ciphertext pair). The Paillier scheme with a second larger modulus N is
necessary to hide some redundancy in the flows sent by the player that a simu-
lator could not have sampled without the knowledge of the keys. The full proof
involves several subtleties (typically, ensuring that indistinguishability between
two situations involving values over Jn is implied by the DDH assumption over
QRn).

Theorem 10. When instantiated with the Paillier encryption scheme and the
Z∗n-EG encryption scheme, both over Z∗n, the Z∗n−ESP are zero-knowledge under
the DDH assumption in QRn, the QR assumption in Z∗n, the DCR assumption
over Z∗n, and the DCR assumption over Z∗N .

Using our two complementary homomorphic schemes and Z∗n−ESP allows
to evaluate functions over Z∗n, but no information leaks only if no intermediate
computation will evaluate to 0 during the protocol. This is the goal of the next
section to extend the message space of our ElGamal variant to Z∗n ∪ {0}, which
can be shown to be computationally equal to Zn.

5 An Encryption Switching Protocol over the Ring Zn

In order to allow computations over encrypted data in the full ring (Zn,+,×),
we need to extend Z∗n-EG to a message space that is computationally equal to
Zn. To this aim, we just have to handle zero. This will indeed make the two sets
M1 = Zn and M2 = Z∗n ∪ {0} computationally equal: finding an element in the
symmetric difference provides a non-trivial non-invertible element, which breaks
the factorization of n.

In the following, we use the notation E⊗(·) for our above Z∗n-EG, and still
E⊕(·) for the Paillier encryption scheme Zn-P, both homomorphic on (Z∗n,×)
and (Zn,+) respectively, with the same strong RSA modulus n. We will also
denote QRn-EG and QRn-EG′, two ElGamal encryption schemes over QRn, and
so with additional secret keys s2, s3, and g2 = g2s2 , g3 = g2s3 . QRn-EG and
QRn-EG′ are clearly homomorphic in (QRn,×), and the IND-CPA security just
relies on the DDH assumption in QRn, which is independent of the factorization
of n. Note however that QRn-EG′ will be used as an extractable commitment and
not an encryption scheme: the secret key s3 is not kept by anybody (excepted
the simulator in the security proof).

Encryption Switching Protocols 19

5.1 Zn-EG: Zero-Handling ElGamal Encryption Scheme in Zn

The global setup and the algorithms are represented in Figure 3, but our Zn-EG
encryption scheme essentially uses Z∗n-EG to encrypt m+b, where b = 0 if m 6= 0
and b = 1 otherwise, in C1 ← E⊗(m+ b), and is completed with two ciphertexts
of b: C2 ← QRn-EG.Enc(T b) and C3 ← QRn-EG′.Enc(T ′b), with two random
squares T and T ′.

The decryption algorithm is in two steps: one first decrypts C2 to check
whether the plaintext is 1, in which case b = 0 and so C1 can be decrypted to
get m, otherwise b = 1 and so one does not need to decrypt C1 since m = 0. The
purpose of C3 will be for the simulation of the ESP (and namely of the encrypted
zero-test, see below, in which the simulator is given a twin-ciphertext pair). This
is reason why the decryption key s3 will just be known to the simulator.

Properties. This scheme is correct, although the decryption is only statistically
correct since the random square T can be equal to 1 with negligible probability.
Since this is a combination of ElGamal encryption schemes, the resulting scheme
is also IND-CPA. The 2-party decryption algorithms of Z∗n-EG and QRn-EG im-
mediately give rise to a 2-party decryption algorithm for Zn-EG: this is in two
steps, as above, since the decryption of C2 leads to either 1 or a random value.

Homomorphism. The multiplicativity of Z∗n-EG makes this scheme homomor-
phic until a zero is involved. And thanks to the absorbing property of random
values T , it also captures the absorbing property of the zero value in the ring Zn:
the multiplication is thus performed component-wise. In Figure 3, we propose a
randomization algorithm. One could note that C1 will keep track of the oper-
ations performed on the ciphertexts when the global ciphertext encrypts zero,
even after randomization. We will limit the decryption of C1 only if C2 contains
1, and then C1 contains the plaintext, independent of the previous steps.

Computational Equality of Message Spaces. The message space of Zn-EG is now
Z∗n∪{0}, which is computationally equal to Zn, the message space of the Paillier
encryption scheme: elements in the symmetric difference are non-trivial multiples
of p or q, which lead to the factorization of the modulus n.

5.2 Encrypted Zero Test

To switch between encryption schemes over Zn, we have to obliviously detect the
zeroes during the switch; this will be done by a sub-protocol, the encrypted zero-
test (EZT). An EZT is a protocol in which two players share a decryption key,
with an encryption C of a message m as input, and wish to get an encryption
C ′ of a bit b as output, where b = 1 if m = 0, and b = 0 otherwise. An
EZT is zero-knowledge if there is an efficient simulator for each player which is
indistinguishable from an honest player, and runs on input (C,C ′), where C ′ is
a twin ciphertext of C, without the knowledge of the share of the secret key of
the player it emulates, but just the share of the other player.

20 Geoffroy Couteau, Thomas Peters, and David Pointcheval

Setup and Key Generation
– The main strong RSA modulus n:
• p, q two safe primes, n← pq;
• g0

$← Z∗n, g ← −g20 (a generator of Jn, of order λ);
• d← [λ−1 mod n] · λ mod nλ: d = 0 mod λ and d = 1 mod n;
• v ← [p−1 mod q] · p mod n: v = 0 mod p and v = 1 mod q;
• an even tp

$← Zλ and an odd tq
$← Zλ: χ← (1− v) · gtp + v · gtq mod n;

• s $← Zλ, and set g1 ← gs mod n (for Jn-EG).
• s2, s3

$← Z2
λ/2, and set g2 ← g2s2 mod n (for QRn-EG) and g3 ← g2s3 mod n

(for QRn-EG′).
– The additional modulus N :
• P,Q two strong primes, N ← PQ (such that N > (2 + 2κ+1)n2);
• D ← [Λ−1 mod N] · Λ mod NΛ, where Λ is the order of JN .

– Keys: pk← (n, g, χ, g1, g2, g3, N) and sk← (d, v, tp, tq, s, s2, D).
– Partial keys: (dA, vA, tpA, tqA, sA, s2A, DA)

$← Znλ × Zn × Z3
λ × Zλ/2 × ZNΛ,

and dB ← d − dA mod nλ, vB ← v − vA mod n, tpB ← tp − tpA mod λ, tqB ←
tq − tqA mod λ, sB ← s − sA mod λ, s2B ← s2 − s2A mod λ/2, and DB ← D −
DA mod NΛ.

E 0
⊗(·) = Zn-EG: ElGamal Encryption Scheme in Zn

Enc(pk,m) : On input m ∈ Zn, if m = 0, then set b = 1 else set b = 0. Then,
choose T, T ′ $← QRn and compute C1 ← E⊗(m + b), C2 ← QRn-EG.Enc(T b),
C3 ← QRn-EG′.Enc(T ′b).
Return the ciphertext C = E 0

⊗(m) = (C1, C2, C3).
Rand(pk, C = (C1, C2, C3)) : Choose random r2, r3

$← Zn/4, and compute C′1 ←
Z∗n-EG.Rand(C1), C′2 ← QRn-EG.Rand(Cr22), and C′3 ← QRn-EG′.Rand(Cr33). Out-
put C′ ← (C′1, C

′
2, C

′
3).

Dec(sk, C) : Parse C = (C1, C2, C3) and first decrypt T ′′ ← QRn-EG.Dec(C2). If T ′′ =
⊥, return ⊥; if T ′′ = 1, return 0; otherwise compute m← D⊗(C1) and return m.

E⊕(·) = Zn-P: Paillier Encryption Scheme on Zn
Enc(pk,m) : given m ∈ Zn, for a random r

$← Z∗n, compute c← (1+n)m · rn mod n2.
Output c ∈ Z∗n2 ;

Rand(pk, c) : choose r $← Z∗n, output c′ ← rn · c mod n2.
Dec(sk, c) : return m← ([cd mod n2]− 1)/n.

Fig. 3. Setup and Encryption Schemes in Zn

We stress that the EZT takes as input a Paillier ciphertext C of a message m
and outputs a Paillier ciphertext of b, that is 1 ifm = 0 and 0 otherwise. However,
for our ESP protocols, the simulators of the ESP are given twin-ciphertext pairs
(the input C of the ESP and an expected output C ′), the simulator of the EZT
can also take advantage of such a pair: thanks to C3 in C ′ and the trapdoor s3,
the simulator can learn the value of b.

Various protocols have been proposed for this functionality (or closely related
functionalities), such as [19, 30, 43]. Garbled circuits for testing the equality of

Encryption Switching Protocols 21

strings, as proposed in [25], can also be used to construct an EZT with a better
communication: given a ciphertext C encrypting a plaintext m,

– Alice picks x $← Zn and sends CA
$← Rand(C � x) = Enc(mx) to Bob. Both

players jointly decrypt CA; Bob gets the result y. Let x′ ← x mod 2κ (that
Alice computes) and y′ ← y mod 2κ (that Bob computes).

– Let f(u, v) be the function which returns 1 if u = v, and 0 else. Alice picks
bA

$← {0, 1} and builds a garbled circuit computing bA xor f(x′, y′). Us-
ing [25], the resulting circuit has 2κ gates.

– Bob gets a bit bB from evaluating the garbled circuit with Yao’s protocol.
He sends an encryption CB of bB to Alice.

– Alice outputs C ′ ← Rand(bA�CB � (2bA) •CB) = Enc(bA + bB − 2bAbB) =
Enc(bA ⊕ bB) = Enc(f(x′, y′)).

The correctness follows from the fact that x′ = y′ implies, with overwhelming
probability, that x− y = m = 0, which is the plaintext of C.

Figure 4 sums up the efficiency the protocol of [25], and of the protocol
of [30], which is the most efficient solution based on homomorphic encryption.
Both protocols involve three rounds of on-line communication.

5.3 Encryption Switching Protocols on Zn

Our ESP on Zn is described on Figure 5, where the double arrows indicate an
execution of an interactive sub-protocol, either a Z∗n-ESP or an EZT, and com
is any extractable commitment (for the simulation). In the full version [6], we
prove:

Theorem 11. When instantiated with the Zn-P and Zn-EG encryption schemes,
both over Zn, if both Z∗n−ESP and EZT are zero-knowledge and if com is hiding,
then the Zn−ESP given in Figure 5 is zero-knowledge under the DDH assumption
in QRn, the QR assumption in Z∗n and the DCR assumption over Z∗n.

Instantiating the Z∗n−ESP with our construction of Section 4, we additionally
require the DCR assumption over Z∗N .

6 Security Against Malicious Adversaries

In the previous sections, we built two homomorphic encryption schemes with
zero-knowledge ESPs that achieve our goal of secure two-party computation from

Authors Preprocessing Communication Assumptions
[30] 2κ ciphertexts 3 ciphertexts DCR
[25] 8κ2 bits κ2 bits + κ oblivious transfers Oblivious transfers

Fig. 4. Comparison of two EZT protocols

22 Geoffroy Couteau, Thomas Peters, and David Pointcheval

2-Party ESP×+ from C = E⊕(m) into (C1×, C2×, C3×) = E 0
⊗(m)

Alice gets CEZT = E⊕(b)
CEZT ← EZT(C)

←−−−−−−−−−−−−−−−−−−−−→ Bob gets nothing

C1+← C � CEZT
C1+−−−−−−−−−−−−−−−−−−−−→

Alice gets C1×
C1× ← Z∗n-ESP(C1+)

←−−−−−−−−−−−−−−−−−−−−→ Bob gets C1×

T, T ′, R2, R3, k
$← QRn

c← com(k)
C2+← E⊕(1) � (T − 1) • CEZT
C3+← E⊕(1) � (T ′ − 1) • CEZT
C2← Zn-P.Rand(R2 • C2+)

C′2← QRn-EG.Enc(R−1
2)

C3← Zn-P.Rand(k · R3 • C3+)

C′3← QRn-EG′.Enc(R−1
3)

D2← C
dA
2 mod n2

D3← C
dA
3 mod n2 c, C2, C

′
2, D2, C3, C

′
3, D3−−−−−−−−−−−−−−−−−−−−→ x2← ([C

dB
2 D2 mod n2]− 1)/n

x3← ([C
dB
3 D3 mod n2]− 1)/n

C2×← QRn-EG.Rand(x2 • C′2)

C′′3×← k−1 • C′3×
C2×, C

′
3×←−−−−−−−−−−−−−−−−−−−− C′3×← QRn-EG′.Rand(x3 • C′3)

k′
$← Zn/4

C3×← QRn-EG′.Rand(C′′3×
k′)

C3×−−−−−−−−−−−−−−−−−−−−→

2-Party ESP+
× from (C1×, C2×, C3×) = E 0

⊗(m) into C′ = E⊕(m)

Alice gets C1+

C1+ ← Z∗n-ESP(C1×)←−−−−−−−−−−−−−−−−−−−−→ Bob gets C1+

R2
$← QRn,

k′
$← Zn/4

C2← QRn-EG.Rand(R2 • Ck
′

2×)
= (c0, c1)

C′2← E⊕(R
−1
2)

d1← c
s2A
0

C2, C
′
2, d1−−−−−−−−−−−−−−−−−−−−→ x2← c1/d1c

s2B
0

k
$← Z∗n

C
′
2+←−−−−−−−−−−−−−−−−−−−− C′2+← k • (x2 • C′2 � E⊕(1))

Alice gets nothing
CEZT ← EZT(C

′
2+)

←−−−−−−−−−−−−−−−−−−−−→ Bob gets CEZT = E⊕(b
′)

(ρ0, ρ1)
$← Z2

n
B1← C1+ � E⊕(ρ0)
B2← E⊕(ρ1) � CEZT
B3← ρ0 • CEZT
B4← ρ1 • C1+

B5← E⊕(ρ0ρ1)
B6← B3 � B4 � B5

A′1← B
dB
1 mod n2

A1← ([B
dA
1 A′1 mod n2]− 1)/n

B1, B2, A
′
1, A

′
2, B6←−−−−−−−−−−−−−−−−−−−− A′2← B

dB
2 mod n2

A2← ([B
dA
2 A′2 mod n2]− 1)/n

C′← E⊕(A1 · A2) � B6
C
′

−−−−−−−−−−−−−−−−−−−−→

Fig. 5. Interactive Encryption Switching in Zn

Encryption Switching Protocols 23

ESP: namely, at the end of the ESP executions, the semi-honest users do not
know more than before about the input plaintexts. To prevent malicious behav-
iors, and move from the semi-honest setting to the malicious setting, additional
validity checks are required. They are performed with zero-knowledge proofs.

Indeed, the last step toward secure ESPs is to ensure its soundness, so that
malicious adversaries will not gain more information than an honest adversary
would do. Moreover, the use of the simulators of the additional proofs will pre-
serve the zero-knowledge of our ESPs. In this section, we provide this final build-
ing block.

Unfortunately, ESPs are essentially non-arithmetic protocols, and namely the
internal decryptions and re-encryptions. Hence, ensuring honest behavior might
require garbled circuits-based zero-knowledge proofs such as [15, 23, 35], or cut-
and-choose techniques, both at a very high computational cost, but also from
the communication point of view, which we cannot afford.

In this section, we present a more efficient technique for such zero-knowledge
proofs, based on a particular pre-processing phase. We first explain how a pool
of random twin-ciphertext pairs allows designing efficient (amortized) proofs of
honest behavior in our ESPs.

6.1 Refreshable Twin-Ciphertext Pool

First, we set up a perfectly hiding commitment scheme com⊕ over a group of
order n: let k be a small integer such that t ← 2kn + 1 is prime. Let (gt, ht)
be two generators of the subgroup of Z∗t of order n. On input m ∈ Zn and a
randomness r ∈ Zn, the scheme outputs com⊕(m; r) = gmt h

r
t .

Pre-processing Random Twin-Ciphertext Pairs. Our starting point is a
protocol that allows a prover to convince a verifier that two ciphertexts, from two
different cryptosystems, do indeed encrypt the same value. This means they form
a twin-ciphertext pair. Such a proof will be denoted TCP, for Twin-Ciphertext
Proof. It comes at a cost of the cut-and-choose technique and thus requires O(κ)
communication. However, we show in the full version [6] how to amortize ` TCPs
using only a single cut-and-choose protocol, for any arbitrarily large `. It relies
on the techniques developed by Groth and Bayer on generalized Pedersen com-
mitments [3,34]. But we use a new zero-knowledge proof on multi-exponentiation
with committed base, of independent interest: we can create a pool of ` proven
twin-ciphertext pairs in O(`+κ). We then show several applications to speed-up
various zero-knowledge arguments.

In order to generate an arbitrary number of twin-ciphertext pairs (Ci, C
′
i)i =

(E⊕(mi),E⊗(mi))i of random plaintexts mi, under two homomorphic encryption
schemes, we first show how to generate a first pair: Alice has a pair of ciphertexts
(C,C ′) = (E⊕(m, r),E⊗(m′, s)) for which she knows both the plaintexts and the
random coins. She wants to prove that m = m′ to Bob:

– Alice generates κ twin-ciphertext pairs (Ci, C
′
i)i = (E⊕(µi; ri),E⊗(µi; si))i,

for values µi picked at random over Zn, and commits to those pairs (using
any commitment scheme);

24 Geoffroy Couteau, Thomas Peters, and David Pointcheval

– Bob sends a challenge c = c1 · · · cκ
$← {0, 1}κ;

– Alice opens the κ commitments on the twin-ciphertext pairs, and for each
i ≤ κ, she sends
• the plaintext µi and the random coins (ri, si), if ci = 0;
• the ratio Ri = m/µi and the random coins ρi ← (Ri · ri) � ((−1) · r)

according to the additive case, and σi ← (Ri · si)� ((−1) · s) according
to the multiplicative case — using the notations from Section 2.4;

– Bob checks the openings of commitments and
• either checks the validity of (Ci, C

′
i) with µi and the random coins;

• or computes Di = Ri • Ci � (−1) • C and D′i = Ri • C ′i � (−1) • C ′,
according to the relations (1) and (2). Bod then checks whether both
Di = E⊕(0; ρi) and D′i = E⊗(1;σi) hold.

We prove the security of TCP in the full version [6].

Using com⊕ Instead of Paillier. The Paillier encryption scheme E⊕() in the
twin-ciphertext proof can be replaced by the above perfectly hiding commitment
scheme com⊕ : (m; r) 7→ gmt h

r
t , that is also additively homomorphic. But then

the proofs become arguments. Alice generates κ pairs, each pair consisting of
an additive commitment and a Z∗n-EG ciphertext, and the rest of the proof is
exactly the same. We keep using the notation E⊕() below.

Efficient Online TCP. Let us assume that we have already proven that a
random twin-ciphertext pair Pi = (E⊕(mi; ri),E⊗(mi; si)) is correct. When one
wants to perform a TCP during a protocol on a new twin-ciphertext pair P =
(E⊕(m; r),E⊗(m; s)), it is enough to reveal some relations between the random
coins of the pairs P and Pi, in order to show that the plaintexts are co-linear: if
one of them is correct, so is the other. And this can be done without disclosingm
(as mi is random, disclosing m/mi will not reveal m). Thereby, all our protocols
are described in the following model: first, in a pre-processing phase, a large
pool of random twin-ciphertext pairs are generated and proven correct with a
batch argument. Then, in the on-line phase, each time a TCP is required, a twin-
ciphertext pair from the pool is used and the player performs a cheap co-linearity
proof. This proof consumes Pi and ensures the correctness of the switch.

Refreshing the Twin-Ciphertext Pool. The expected number of TCPs
might not be known to the players; however, once a pool of twin-ciphertext
pairs has been set up, the same batch technique that we describe in the full
version [6] can be used to generate ` new random twin-ciphertext pairs, while
consuming a single pair of the pool. The batch argument transmits O(` + κ)
group elements but does not rely on cut-and-choose, hence cut-and-choose in
only needed once, when generating the very first element of the pool.

6.2 Zero-Knowledge Proofs

The pool of twin-ciphertext pairs allows the players to perform TCPs efficiently.
Apart from TCPs, the zero-knowledge proofs needed to enhance ESPs to the

Encryption Switching Protocols 25

malicious setting are classical protocols. For zero-knowledge proofs involving
the decryption keys, we have to add the corresponding verification keys in the
public key: first, we pick h0, r0

$← Z∗n, R0
$← Z∗N and set h← −h20, then we add

(hp, hq) = (htp , htq) and (u, U)← ((1+n) ·r2n0 mod n2, (1+N) ·R2N
0 mod N2) ∈

QRn2 × QRN2 to the public key. The latter pair satisfies ud = 1 + n mod n2

and UD = 1 + N mod N2. Second, we set up the commitment scheme com⊕
previously described. Each time a player performs computations, he commits to
the operands if they are not already encrypted, and proves his honest behavior,
with a zero-knowledge proof, using the above elements in the public key. Note
that in our generic 2-PC from ESP, the switches run either sequentially or in
parallel, but they are never intertwined; hence, we do not need to use zero-
knowledge proofs secure in the concurrent setting (which would be less efficient).

Range Proofs. In the multiplicative to additive direction, a second Paillier en-
cryption scheme is used, with a different modulus N . The plaintext space of this
scheme is large enough to ensure that no modular reduction occurs during com-
putations over input ciphertexts encrypting values in {0, · · · , n−1}. Thereby, it is
necessary to prove that these values are indeed in that range, which is handled by
range proofs. The method of [4] provides an efficient (constant-communication)
proof. Hence, we first have to commit to the encrypted value, using a generator
of a space with a different modulus n′ > n whose factorization is unknown as
in [8,16]: the plaintext is thus committed over Zλ(n′), a space of unknown order.
Then, equality between the encrypted value (over ZN) and the committed value
(over Zλ(n′), whose order is unknown) can be proven using [9], and the range
proof is performed on the committed value. The soundness of this proof relies
on the strong RSA assumption [2,16] modulo n′ > n. We stress that it is neces-
sary that the factorization of n′ is not known by anyone nor shared between the
parties, as the strong soundness requirement of our proof of 2-PC states that the
adversary is given the full secret key; hence, unlike [9], we cannot use n′ = N .
Note also that n′ can be taken way smaller than N (which has to be large enough
to allow for some multiplications without overflow).

We stress that the need of the strong RSA assumption in the security of our
constant-size on-line ESP comes from the range proof, only. To date, there is
no constant-size range proof over Zn in the literature whose soundness does not
rely on this assumption.

Classical Zero-Knowledge Proofs. Appart from TCP and range proofs, all
the proofs are classical zero-knowledge proofs à la Schnorr [36]: Proof of re-
randomization of ciphertexts and proof of correct computation of R • C given
com⊕(R) are just proofs of exponentiations to the same power either in the
same groups or in two groups which one order (Jn) is unknown. It is also easy
to generate E⊗(m−1) from E⊗(m), just inverting all the components in Jn.

26 Geoffroy Couteau, Thomas Peters, and David Pointcheval

6.3 Ensuring Honest Behavior in ESP Protocols

Let us illustrate how TCP are used on the Z∗n-ESP from Paillier to Z∗n-EG (see
Figure 2): Alice sends (CA, C

′
A) and commits to RA: c← com⊕(RA). She makes

a TCP on the pair (c, C ′A
−1

), and a classical proof of product to show that CA
encrypts the product of the value committed in c and the value encrypted in C;
combined together, those proofs are enough to ensure Alice’s honest behavior.
Additional proofs (including range proofs) are needed in the other direction as
it is a more complex case.

Sketch of the Proof of Security. In our full proof of security of the semi-
honest protocols, we have already included the generation of the verification keys
by the simulator. Hence, the enhanced protocol only adds zero-knowledge proofs
and perfectly hiding commitments to the semi-honest proof. The zero-knowledge
property of these proofs states that a simulator can fake them, i.e. convince a
verifier of the truth of the associated statement, even if the statement is not true.
Thereby, we add the two following games to our game-based proof of security in
the semi-honest model, right after the very first game (in which the simulator
plays honestly, using the secret keys):

1. from this game, each time the simulator is asked to perform a zero-knowledge
proof, it fakes it instead. This game is indistinguishable from the honest game
due to the zero-knowledge property of the proofs;

2. from this game, each time the simulator has to commit, the simulator sends
a uniformly random commitment. As com⊕ is perfectly hiding, this game is
perfectly indistinguishable from the previous one.

The rest of the game-based proof is exactly the same as the semi-honest proof.

6.4 From Secure ESP to Secure 2-PC

We stress that our 2-PC protocol is made fully secure as soon as ESPs is secure
against malicious adversaries (as well as the 2-party decryption procedure at the
end of the protocol). This comes from the fact, that apart from ESPs and the
final decryption, all the operations are local homomorphic evaluations of public
functions on ciphertexts known by both players. The homomorphic operations
themselves are deterministic and performed by both players.

A sequence of public operations is followed by either an ESP or, at the very
end of the protocol, a 2-party decryption. From the strong soundness of the
ESP, any honest player is guaranteed that his output of the ESP is necessarily
a twin ciphertext of his input, or an abort is triggered. Similarly, in the 2-
party decryption protocol, an honest player is guaranteed that the output is the
plaintext of his input ciphertext, unless an error is raised.

Therefore, an honest player that correctly performs his (local) homomorphic
evaluations is also guaranteed of the correct evaluation of the switches and of
the decryption: the final answer is necessarily correct, or an error is raised in
case of a misbehaving partner.

Encryption Switching Protocols 27

6.5 Exponential Relations among Committed Values

We describe several applications of our preprocessing technique. In the following
applications, we use a commitment scheme com(·) we assume to be additively ho-
momorphic. This can either be E⊕(·) (perfectly binding) or the previous com⊕(·)
(perfectly hiding).

Proof of Knowledge of an Exponential Relation over Committed Val-
ues. A prover has sent a tuple (Ca = com(a), Cb = com(b), d) and wishes to
prove that b = ad. Let C ′a and C ′b be twin ciphertexts under E⊗() of Ca and
Cb; the prover sends them and proves them with two TCPs. Both players can
compute D ← �dC ′a = E⊗(ad). She then proves that D encrypts the same value
as C ′b, which can be done since she knows all the random coins.

Extension to the Case of a Committed Exponent. Let us now suppose d
has also been committed in Cd = com(d). The prover sends C ′a = (C ′a0, C

′
a1, α),

C ′b, and C
′
d, twin ciphertexts of Ca and Cd respectively, and proves them with two

TCPs. The prover computes D = (D0, D1, D2) ← �dC ′a = E⊗(ad), and proves
its knowledge of (b, r) such that Cb = com(b; r), D0 = (C ′a0)d, D1 = (C ′a1)d, and
D2 = αd. She then proves that C ′b and D encrypt the same plaintext.

Proof of Knowledge of a Double Logarithm (or Double Decker Expo-
nentiation). In this case, the prover wants to prove her knowledge of x that
satisfies X = g(h

x), for public values (g, h,X). Such proofs are required for ex-
ample in some publicly verifiable secret sharing schemes [38], in group signature
or group encryption [24]. Let n = pq be an RSA modulus such that π = 2n+ 1
is a prime. Let g be a generator of a subgroup of Z∗π of order n. Let h be a
generator of Jn and x be an element of Zλ. The prover computes H ← hx,
C ← Zn-P.Enc(H), and C ′ ← Jn-EG.Enc(H). She sends (C,C ′), proves that
she knows the discrete log of this encrypted value in C ′ (a classical Schnorr-like
proof), and makes a TCP on (C,C ′). She then proves her knowledge of H and r
such that X = gH mod π and C = Zn-P.Enc(H; r) (again a Schnorr-like proof).

Proof that a Committed Value is Prime. In [5], the authors design a zero-
knowledge proof that a committed value is a product of two safe primes, which
has applications in numerous RSA-based protocols. The idea is the following:
to prove that a committed number π is a prime, one proves that it passed each
step of the Lehmann’s primality test [26,37], i.e. commit to κ random numbers
(in an interactive way to ensure they are random) and for each of the κ random
committed a, prove that a(π−1)/2 = ±1 mod π by committing to each bit of
(π − 1)/2, and by using a zero-knowledge proof for each step of the square-and-
multiply algorithm. This can be done way more efficiently with our above proof
of knowledge of an exponential relation over a committed exponent, enhanced
using the technique from [29] to work modulo a committed value. Overall, we
improve [5] by a factor of O(log(π)). In typical applications, π will be 1024 to
2048 bit-long.

28 Geoffroy Couteau, Thomas Peters, and David Pointcheval

Acknowledgments

We thank Fabrice Ben Hamouda for the fruitful discussions on the ElGamal vari-
ant. This work was supported in part by the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013
Grant Agreement no. 339563 – CryptoCloud). The second author is supported
by the F.R.S-FNRS as a postdoctoral researcher.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious trans-
fer extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 673–701. Springer, Hei-
delberg (Apr 2015)

2. Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes
without trees. In: Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 480–494.
Springer, Heidelberg (May 1997)

3. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (Apr 2012)

4. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg
(May 2000)

5. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp.
107–122. Springer, Heidelberg (May 1999)

6. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. Cryptol-
ogy ePrint Archive, Report 2015/990 (2015), http://eprint.iacr.org/2015/990

7. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private
set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.A., Vergnaud, D. (eds.)
ACNS 09. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (Jun 2009)

8. Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (Dec 2002)

9. Damgård, I., Jurik, M.: Client/server tradeoffs for online elections. In: Naccache,
D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 125–140. Springer, Heidelberg
(Feb 2002)

10. Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (Aug 2003)

11. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

12. Damgård, I., Zakarias, S.: Constant-overhead secure computation of boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (Mar 2013)

13. Demmler, D., Schneider, T., Zohner, M.: Aby–a framework for efficient mixed-
protocol secure two-party computation. In: Network and Distributed System Se-
curity, NDSS (2015)

http://eprint.iacr.org/2015/990

Encryption Switching Protocols 29

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

15. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with ap-
plications to efficient zero-knowledge. Cryptology ePrint Archive, Report 2014/598
(2014), http://eprint.iacr.org/2014/598

16. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (Aug 1997)

17. Gavin, G., Minier, M.: Oblivious multi-variate polynomial evaluation. In: Roy,
B.K., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 430–442.
Springer, Heidelberg (Dec 2009)

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC. pp. 169–178. ACM Press (May / Jun 2009)

19. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. Cryptology ePrint Archive, Report 2014/345 (2014),
http://eprint.iacr.org/2014/345

20. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and
threshold Paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (Feb / Mar 2012)

21. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM CCS 10. pp. 451–462. ACM Press (Oct 2010)

22. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS 2012. The Internet Society (Feb 2012)

23. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
How to prove non-algebraic statements efficiently. Cryptology ePrint Archive, Re-
port 2013/073 (2013), http://eprint.iacr.org/2013/073

24. Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. Cryptology ePrint Archive,
Report 2007/015 (2007), http://eprint.iacr.org/2007/015

25. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and appli-
cations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdót-
tir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (Jul 2008)

26. Kranakis, E.: Primality and cryptography. John Wiley & Sons, Inc. (1986)
27. Lim, H.W., Tople, S., Saxena, P., Chang, E.C.: Faster secure arithmetic computa-

tion using switchable homomorphic encryption. Cryptology ePrint Archive, Report
2014/539 (2014), http://eprint.iacr.org/2014/539

28. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (Mar 2011)

29. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
Cryptology ePrint Archive, Report 2003/105 (2003), http://eprint.iacr.org/
2003/105

30. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.Z., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (Jul
2013)

31. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput 35, 1254–
1281 (2006)

http://eprint.iacr.org/2014/598
http://eprint.iacr.org/2014/345
http://eprint.iacr.org/2013/073
http://eprint.iacr.org/2007/015
http://eprint.iacr.org/2014/539
http://eprint.iacr.org/2003/105
http://eprint.iacr.org/2003/105

30 Geoffroy Couteau, Thomas Peters, and David Pointcheval

32. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (Aug 2012)

33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (May 1999)

34. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (Aug 1992)

35. Ranellucci, S., Tapp, A., Zakarias, R.W.: Efficient generic zero-knowledge proofs
from commitments. Cryptology ePrint Archive, Report 2014/934 (2014), http:
//eprint.iacr.org/2014/934

36. Schnorr, C.P.: Efficient identification and signatures for smart cards (abstract)
(rump session). In: Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT’89.
LNCS, vol. 434, pp. 688–689. Springer, Heidelberg (Apr 1990)

37. Solovay, R., Strassen, V.: A fast monte-carlo test for primality. SIAM J. Comput.
6(1), 84–85 (1977)

38. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EURO-
CRYPT’96. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (May 1996)

39. Tassa, T., Jarrous, A., Ben-Ya’akov, Y.: Oblivious evaluation of multivariate poly-
nomials. Journal of Mathematical Cryptology 7, 1–29 (2013)

40. Tople, S., Shinde, S., Chen, Z., Saxena, P.: AUTOCRYPT: enabling homomorphic
computation on servers to protect sensitive web content. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 13. pp. 1297–1310. ACM Press (Nov 2013)

41. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986)

42. Ye, Q., Wang, H., Pieprzyk, J., Zhang, X.M.: Efficient disjointness tests for private
datasets. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 08. LNCS, vol. 5107, pp.
155–169. Springer, Heidelberg (Jul 2008)

43. Yu, C.H., Yang, B.Y.: Probabilistically correct secure arithmetic computation for
modular conversion, zero test, comparison, MOD and exponentiation. In: Visconti,
I., Prisco, R.D. (eds.) SCN 12. LNCS, vol. 7485, pp. 426–444. Springer, Heidelberg
(Sep 2012)

http://eprint.iacr.org/2014/934
http://eprint.iacr.org/2014/934

	Encryption Switching Protocols
	Introduction
	Two-Party Computation from ESPs
	Definitions
	Security Notions
	Computational Equality
	Ring-Homomorphic Encryption Schemes
	General Secure Two-Party Computation

	Applications
	An Encryption Switching Protocol over Zn *
	Computational Assumptions
	Zn-P: The Paillier Encryption Scheme on Zn
	Zn *-EG: An ElGamal Variant in Zn *
	Zn *-ESP : Encryption Switching Protocols on Zn *

	An Encryption Switching Protocol over the Ring Zn
	Zn-EG: Zero-Handling ElGamal Encryption Scheme in Zn
	Encrypted Zero Test
	Encryption Switching Protocols on Zn

	Security Against Malicious Adversaries
	Refreshable Twin-Ciphertext Pool
	Zero-Knowledge Proofs
	Ensuring Honest Behavior in ESP Protocols
	From Secure ESP to Secure 2-PC
	Exponential Relations among Committed Values

