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Abstract. Dodis, Kalai and Lovett (STOC 2009) initiated the study
of the Learning Parity with Noise (LPN) problem with (static) expo-
nentially hard-to-invert auxiliary input. In particular, they showed that
under a new assumption (called Learning Subspace with Noise) the above
is quasi-polynomially hard in the high (polynomially close to uniform)
noise regime.

Inspired by the “sampling from subspace” technique by Yu (eprint 2009
/ 467) and Goldwasser et al. (ITCS 2010), we show that standard LPN
can work in a mode (reducible to itself) where the constant-noise LPN
(by sampling its matrix from a random subspace) is robust against sub-
exponentially hard-to-invert auxiliary input with comparable security to
the underlying LPN. Plugging this into the framework of [DKL09], we
obtain the same applications as considered in [DKL09] (i.e., CPA/CCA
secure symmetric encryption schemes, average-case obfuscators, reusable
and robust extractors) with resilience to a more general class of leakages,
improved efficiency and better security under standard assumptions.

As a main contribution, under constant-noise LPN with certain sub-

exponential hardness (i.e., 2ω(n
1/2) for secret size n) we obtain a variant

of the LPN with security on poly-logarithmic entropy sources, which
in turn implies CPA/CCA secure public-key encryption (PKE) schemes
and oblivious transfer (OT) protocols. Prior to this, basing PKE and OT
on constant-noise LPN had been an open problem since Alekhnovich’s
work (FOCS 2003).

1 Introduction

Learning Parity with Noise. The computational version of learning par-
ity with noise (LPN) assumption with parameters n ∈ N (length of secret) and
0 < µ < 1/2 (noise rate) postulates that for any q = poly(n) (number of queries)
it is computationally infeasible for any probabilistic polynomial-time (PPT) al-

gorithm to recover the random secret x
$←− {0, 1}n given (A, A·x+e), where a is



a random q×n Boolean matrix, e follows Bqµ = (Bµ)q, Bµ denotes the Bernoulli
distribution with parameter µ (i.e., Pr[Bµ = 1] = µ and Pr[Bµ = 0] = 1− µ), ‘·’
denotes matrix vector multiplication over GF(2) and ‘+’ denotes bitwise addition
over GF(2). The decisional version of LPN simply assumes that (A, A · x + e)
is pseudorandom. The two versions are polynomially equivalent [8,34,4].

Hardness of LPN. The computational LPN problem represents a well-known
NP-complete problem “decoding random linear codes” [6] whose worst-case
hardness is well-investigated. LPN was also extensively studied in learning the-
ory, and it was shown in [21] that an efficient algorithm for LPN would allow to
learn several important function classes such as 2-DNF formulas, juntas, and any
function with a sparse Fourier spectrum. Under a constant noise rate, the best
known LPN solvers [9,39] require time and query complexity both 2O(n/ logn).
The time complexity goes up to 2O(n/ log logn) when restricted to q = poly(n)
queries [40], or even 2O(n) given only q = O(n) queries [42]. Under low noise
rate µ = n−c (for constant 0 < c < 1), the best attacks [48,12,7,38,5] solve

LPN with time complexity 2O(n1−c) and query complexity q = O(n) or more5.
The low-noise LPN is mostly believed a stronger assumption than constant-
noise LPN. In noise regime µ = O(1/

√
n), LPN can be used to build public-key

encryption (PKE) schemes and oblivious transfer (OT) protocols (more discus-
sions below). Quantum algorithms are not known to have any advantages over
classic ones in solving LPN, which makes LPN a promising candidate for “post-
quantum cryptography”. Furthermore, LPN enjoys simplicity and is more suited
for weak-power devices (e.g., RFID tags) than other quantum-secure candidates
such as LWE [46].

Cryptography in minicrypt. LPN was used as a basis for building lightweight
authentication schemes against passive [29] and even active adversaries (e.g.
[32,34], see [1] for a more complete literature). Kiltz et al. [37] and Dodis et al.
[18] constructed randomized MACs from LPN, which implies a two-round au-
thentication scheme with man-in-the-middle security. Lyubashevsky and Masny
[41] gave an more efficient three-round authentication scheme from LPN (without
going through the MAC transformation) and recently Cash, Kiltz, and Tessaro
[13] reduced the round complexity to 2 rounds. Applebaum et al. [3] used LPN
to construct efficient symmetric encryption schemes with certain key-dependent
message (KDM) security. Jain et al. [30] constructed an efficient perfectly bind-
ing string commitment scheme from LPN. We refer to a recent survey [45] on
the current state-of-the-art about LPN.

Cryptography beyond minicrypt. Alekhnovich [2] constructed the first (CPA
secure) public-key encryption scheme from LPN with noise rate6 µ = 1/

√
n.

By plugging the correlated products approach of [47] into Alekhnovich’s CPA

5 We are not aware of any non-trivial time-query tradeoff results to break low-noise

LPN in time 2o(n
1−c) even with super-polynomial number of queries.

6 More precisely, Alekhnovich’s PKE is based on a variant called the Exact LPN whose
noise vector is sampled from χqµq for µ = 1√

n
(i.e., uniform random distribution over

q-bit strings of Hamming weight µq), which is implied by LPN with noise rate µ.



Alice Bob: m ∈ {0, 1}

A← Un×n

s← Bnµ
e← Bnµ

pk
def
=
(
A,b

def
= As+e

) s1 ← Bnµ
e1 ← Bnµ

c1 := ATs1+e1

c2 := sT1 ·b+m
C

def
= (c1, c2)

m′ := cT1 ·s⊕c2

Fig. 1. A two-pass protocol by which Bob transmits a message bit m to Alice with
passive security and noticeable correctness (for proper choice of µ), where Bob receives
m′ = m+(sT1 ·e)+(eT

1 ·s) .

secure PKE scheme, Döttling et al. [20] constructed the first CCA secure PKE
scheme from low-noise LPN. After observing that the complexity of the scheme
in [20] was hundreds of times worse than Alekhnovich’s original scheme, Kiltz et
al. [36] proposed a neat and more efficient CCA secure construction by adapting
the techniques from LWE-based encryption in [44] to the case of LPN. More
recently, Döttling [19] constructed a PKE with KDM security. All the above
schemes are based on LPN of noise rate O(1/

√
n). To see that noise rate 1/

√
n

is inherently essential for PKE, we illustrate the (weakly correct) single-bit PKE
protocol by Döttling et al. [20] in Figure 1, which is inspired by the counterparts
based on LWE [46,23]. First, the decisional LPNµ,n assumption implies that
(A,Ax + e) is pseudorandom even when x is drawn from X∼Bnµ (instead of
X∼Un), which can be shown by a simple reduction [20]. Second, the passive
security of the protocol is straightforward as (pk, c1) is pseudorandom even when
concatenated with the Goldreich-Levin7 hardcore bit sT1 ·b (replacing b with
Un by a hybrid argument). The final and most challenging part is correctness,
i.e., m′ needs to correlate with m at least noticeably. It is not hard to see for
nµ2 = O(1) and e, s ← Bnµ we have Pr[〈e, s〉 = 0] ≥ 1/2 +Ω(1), and thus noise
rate µ = O(1/

√
n) seems an inherent barrier8 for the PKE to be correct. The

scheme is “weak” in the sense that correctness is only 1/2 +Ω(1) and it can be
transformed into a standard CPA scheme (that encrypts multiple-bit messages
with overwhelming correctness) using standard techniques (e.g., [20,15]). Notice
a correct PKE scheme (with certain properties) yields also a (weak form of)
2-round oblivious transfer protocol against honest-but-curious receiver. Suppose
that Alice has a choice i ∈ {0, 1}, and she samples pki with trapdoor s (as
described in the protocol) and a uniformly random pk1−i without trapdoor.

7 Typically (in the context of one-way functions), the Goldreich-Levin Theorem [25]
assumes a uniformly random secret s, which is however not necessary. A Markov
argument suggests that s can follow any polynomial-time sampleable distribution,
as long as f on s is hard to invert.

8 In fact, µ = O(
√

logn/n) is sufficient to have a noticeable correctness, i.e.,
1/2+1/poly(n), but known PKE constructions avoid the strong noise by assuming
noise rate n−1/2 [36] or even lower rate n−1/2−ε [2,20].



Upon receiving pk0 and pk1, Bob uses the scheme to encrypt two bits σ0 and σ1
under pk0 and pk1 respectively, and sends them to Alice. Alice can then recover
σi and but knows nothing about σ1−i. David et al. [16] constructed a universally
composable OT under LPN with noise rate 1/

√
n. Therefore, basing PKE (and

OT) on LPN with noise rate µ = n−1/2+ε (and ideally a constant 0 < µ < 1/2)
remains an open problem for the past decade.

LPN with auxiliary input. Despite being only sub-exponentially secure,
LPN is known to be robust against any constant-fraction of static linear leakages,
i.e., for any constant 0 < α < 1 and any f(x; Z) = (Z,Zx) it holds that(

f(x),A,Ax + e
) c∼

(
f(x),A, Uq

)
, (1)

where Z is any (1 − α)n × n matrix (that can be sampled in polynomial time
and independent of A). The above can be seen by a change of basis so that the
security is reducible from the LPN assumption with the same noise rate on a
uniform secret of size αn. Motivated by this, Dodis, Kalai and Lovett [17] further
conjectured that LPN is secure against any polynomial-time computable f such
that 1) x given f(x) has average min-entropy αn; or even 2) any f that is 2−αn-
hard-to-invert for PPT algorithms (see Definition 2 for a formal definition). Note
the distinction between the two types of leakages: the former f is a lossy function
and the latter can be even injective (the leakage f(x) may already determine
x in an information theoretical sense). However, they didn’t manage to prove
the above claim (i.e., LPN with auxiliary input) under standard LPN. Instead,
they introduced a new assumption called Learning Subspace with Noise (LSN)
as below, where the secret to be learned is the random subspace V.

Assumption 1 (The LSN assumption [17]) For any constant β > 0, there
exists a polynomial p = pβ(n) such that for any polynomial q = poly(n) the
following two distributions are computationally indistinguishable:(

(a1,Va1 +U (1)
n E1), · · · , (aq,Vaq+U (q)

n Eq)
) c∼

(
(a1, U

(1)
n ), · · · , (aq, U (q)

n )
)
,

where V∼ Un×βn is a random n × βn matrix, a1, · · · , aq are vectors i.i.d. to
Uβn, and E1, · · · , Eq are Boolean variables (determining whether the respective
noise is uniform randomness or nothing) i.i.d. to B1− 1

p
.

Then, the authors of [17] showed that LSN with parameters β and pβ = pβ(n)
implies the decisional LPN (as in (1)) under noise rate µ = ( 1

2 −
1

4pβ
) holds with

2−αn-hard-to-invert auxiliary input (for any constant α > β). Further, this yields
many interesting applications such as CPA/CCA secure symmetric encryption
schemes, average-case obfuscators for the class of point functions, reusable and
robust extractors, all remain secure with exponentially hard-to-invert auxiliary
input (see [17] for more details). We note that [17] mainly established the fea-
sibility about cryptography with auxiliary input, and there remain issues to be
addressed or improved. First, to counteract 2−αn-hard-to-invert auxiliary input
one needs to decide in advance the noise rate noise rate 1/2− 1/4pβ (recall the



constraint β < α). Second, Raz showed that for any constant β, pβ = nΩ(1)

is necessary (otherwise LSN can be broken in polynomial-time) and even with
pβ = nΘ(1) there exist quasi-polynomial attacks (see the full version of [17] for
more discussions about Raz’s attacks). Therefore, the security reduction in [17]
is quite loose. As the main end result of [17], one needs a high-noise LPN for
µ = 1/2 − 1/poly(n) (and thus low efficiency due to the redundancy needed to
make a correct scheme) only to achieve quasi-polynomial security (due to Raz’s
attacks) against 2−αn-hard-to-invert leakage for some constant α (i.e., not any
exponentially hard-to-invert leakage). Third, LSN is a new (and less well-studied)
assumption and it was left as an open problem in [17] whether the aforemen-
tioned cryptographic applications can be based on the hardness of standard
LPN, ideally admitting more general class of leakages, such as sub-exponentially
or even quasi-polynomially hard-to-invert auxiliary input.

The main observation. Yu [49] introduced the “sampling from subspace”
technique to prove the above “LPN with auxiliary input” conjecture under stan-
dard LPN but the end result of [49] was invalid due to a flawed intermediate
step. A similar idea was also used by Goldwasser et al. [26] in the setting of LWE,
where the public matrix was drawn from a (noisy) random subspace. Informally,
the observation (in our setting) is that, the decisional LPN with constant noise
rate 0 < µ < 1/2 implies that for any constant 0 < α < 1, any 2−2n

α

-hard-to-
invert f and any q′ = poly(n) it holds that

(f(x),A′,A′·x + e)
c∼ ( f(x),A′, Uq′ ), (2)

where x ∼ Un
9, e ∼ Bq′µ , and A′ is a q′ × n matrix with rows sampled from

a random subspace of dimension λ = nα. Further, if the underlying LPN is

2ω(n
1

1+β )-hard10 for any constant β > 0, then by setting λ = log1+β n, (2) holds

for any q′ = poly(n) and any 2−2 log1+β n-hard-to-invert f . The rationale is that
distribution A′ can be considered as the multiplication of two random matrices

A
$←− {0, 1}q′×λ and V

$←− {0, 1}λ×n, i.e., A′ ∼ (A·V), where V constitutes the
basis of the λ-dimensional random subspace and A is the random coin for sam-
pling from V. Unlike the LSN assumption whose subspace V is secret, the V and
A in (2) are public coins (implied by A′, see Remark 1). We have by the associa-
tive law A′·x = A(V ·x) and by the Goldreich-Levin theorem V ·x is a pseudo-
random secret (even conditioned on V and f(x)), and thus (2) is reducible from
the standard decisional LPN on noise rate µ, secret size λ and query complexity

q′. Concretely, assume that the LPN problem is 2ω(n
3/4)-hard then by setting

λ = n2/3 (resp., λ = log4/3 n) we have that (2) is 2Ω(n1/2)-secure (resp., nω(1)-

secure) with any auxiliary input that is 2−2n
2/3

-hard (resp., 2−2 log4/3 n-hard) to

9 We assume x ∼ Un to be in line with [17], but actually our results hold for any
efficiently sampleable x as long as x given f(x) is 2−2λ-hard-to-invert.

10 Informally, we say that a cryptographic scheme/problem Π is T -secure/hard if ev-
ery probabilistic adversary of time (and query, if applicable) complexity T achieve
advantage no more than 1/T in breaking/solving Π.



invert. Plugging (2) into the framework of [17] we obtain the same applications
(CPA/CCA secure symmetric encryption schemes, average-case obfuscators for
point functions, reusable and robust extractors) under standard (constant-noise)
LPN with improved efficiency (as the noise is constant rather than polynomi-
ally close to uniform) and tighter security against sub-exponentially (or even
quasi-polynomially) hard-to-invert auxiliary input.

PKE from Constant-Noise LPN. More surprisingly, we show a connection
from “LPN with auxiliary input” to “basing PKE on (constant-noise) LPN”.
The feasibility can be understood by the single-bit weak PKE in Figure 1 with

some modifications: assume that LPN is 2ω(n
1
2 )-hard (i.e., β = 1), then for

λ = log2 n/4 we have that (2) holds on any x ∼ X with min-entropy H∞(X) ≥
log2 n/2. Therefore, by replacing the uniform matrix A with A′ ∼ (Un×λ·Uλ×n),
and sampling s,s1← X and e,e1← Bnµ for constant µ and X ∼ χnlogn

11, we get

that sT1 e and eT
1 s are both (1/2 + 1/poly(n))-biased to 0 independently, and

thus the PKE scheme has noticeable correctness. We then transform the weak
PKE into a full-fledged CPA secure scheme, where the extension is not trivial
(more than a straightforward parallel repetition plus error-correction codes).
In particular, neither X ∼ χnlogn or X ∼ Bnlogn/n can guarantee security and

correctness simultaneously and thus additional ideas are needed (more details
deferred to Section 4.3).

PKE with CCA Security. Once we have a CPA scheme based on constant-
noise LPN, we can easily extend it to a CCA one by using the techniques in [20],
and thus suffer from the same performance slowdown as that in [20]. A natural
question is whether we can construct a simpler and more efficient CCA scheme
as that in [36]. Unfortunately, the techniques in [36] do not immediately apply
to the case of constant-noise LPN. The reason is that in order to employ the
ideas from the LWE-based encryption scheme [44], the scheme in [36] has to
use a variant of LPN (called knapsack LPN), and the corresponding description
key is exactly the secret of some knapsack LPN instances. Even though there is
a polynomial time reduction [43] from the LPN problem to the knapsack LPN
problem, such a reduction will map the noise distribution of the LPN problem
into the secret distribution of the knapsack LPN problem. If we directly apply the
techniques in [36], the resulting scheme will not have any guarantee of correctness
because the corresponding decryption key follows the Bernoulli distribution with
constant parameter µ. Recall that for the correctness of our CPA secure PKE
scheme, the decryption key cannot simply be chosen from either χnlogn or Bnlogn/n.
Fortunately, based on several new observations and some new technical lemmas,
we mange to adapt the idea of [44,36] to construct a simpler and efficient CCA
secure PKE scheme from constant-noise LPN.

OT from constant-noise LPN. PKE and OT are incomparable in gen-
eral [24]. But if the considered PKE scheme has some additional properties, then

11 Recall that for m�n we have by Stirling’s approximation that
(
n
m

)
≈ nm/m! and

thus χnlogn (uniform distribution over n-bit strings of Hamming weight logn) is of
min-entropy roughly log2 n− logn log log n ≥ log2 n/2.



we can build OT protocol from it in a black-box way [24]. Gertner et al. [24]
showed that if the public key of some CPA secure PKE scheme can be indis-
tinguishably sampled (without knowing the corresponding secret key) from the
public key distribution produced by honestly running the key generation algo-
rithm, then we can use it to construct an OT protocol with honest parties (and
thus can be transformed into a standard OT protocol by using zero-knowledge
proof). It is easy to check that our CPA secure PKE scheme satisfies this property
under the LPN assumption. Besides, none of the techniques used in transforming
Alekhnovich’s CPA secure PKE scheme into a universally composable OT pro-
tocol [16] prevent us from obtaining a universally composable OT protocol from
our CPA secure PKE scheme. In summary, our results imply that there exists
(universally composable) OT protocol under constant-noise LPN assumption.
We omit the details, and refer to [24,16] for more information.

2 Preliminaries

Notations and definitions. We use capital letters (e.g., X, Y ) for random
variables and distributions, standard letters (e.g., x, y) for values, and calli-
graphic letters (e.g. X , E) for sets and events. Vectors are used in the column
form and denoted by bold lower-case letters (e.g., a). We treat matrices as the
sets of its column vectors and denoted by bold capital letters (e.g., A). The
support of a random variable X, denoted by Supp(X), refers to the set of val-
ues on which X takes with non-zero probability, i.e., {x : Pr[X = x] > 0}.
For set § and binary string s, |§| denotes the cardinality of § and |s| refers to
the Hamming weight of s. We use Bµ to denote the Bernoulli distribution with
parameter µ, i.e., Pr[Bµ = 1] = µ, Pr[Bµ = 0] = 1 − µ, while Bqµ denotes the
concatenation of q independent copies of Bµ. We use χni to denote a uniform

distribution over {e ∈ {0, 1}n : |e| = i}. We denote by Dn1×n
λ

def
= (Un1×λ·Uλ×n)

to be a matrix distribution induced by multiplying two random matrices. For
n, q ∈ N, Un (resp., Uq×n) denotes the uniform distribution over {0, 1}n (resp.,
{0, 1}q×n) and independent of any other random variables in consideration, and
f(Un) (resp., f(Uq×n)) denotes the distribution induced by applying function f
to Un (resp., Uq×n). X∼D denotes that random variable X follows distribution
D. We use s← S to denote sampling an element s according to distribution S,

and let s
$←− § denote sampling s uniformly from set §.

Entropy notions. For 0 < µ < 1/2, the binary entropy function is defined as

H(µ)
def
= µ log(1/µ) + (1−µ) log(1/(1−µ)). We define the Shannon entropy and

min-entropy of a random variable X respectively, i.e.,

H1(X)
def
=

∑
x∈Supp(X)

Pr[X = x] log
1

Pr[X = x]
, H∞(X)

def
= min
x∈Supp(X)

log(1/Pr[X = x]) .

Note that H1(Bµ) = H(µ). The average min-entropy of a random variable X
conditioned on another random variable Z is defined as

H∞(X|Z)
def
= − log

(
Ez←Z

[
2−H∞(X|Z=z)

])
.



Indistinguishability and statistical distance. We define the (t,ε)- com-
putational distance between random variables X and Y , denoted by X ∼

(t,ε)
Y ,

if for every probabilistic distinguisher D of running time t it holds that

| Pr[D(X) = 1]− Pr[D(Y ) = 1] | ≤ ε .

The statistical distance between X and Y , denoted by SD(X,Y ), is defined by

SD(X,Y )
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| .

Computational/statistical indistinguishability is defined with respect to distribu-

tion ensembles (indexed by a security parameter). For example, X
def
= {Xn}n∈N

and Y
def
= {Yn}n∈N are computationally indistinguishable, denoted by X

c∼ Y , if
for every t = poly(n) there exists ε = negl(n) such that X ∼

(t,ε)
Y . X and Y are

statistically indistinguishable, denoted by X
s∼ Y , if SD(X,Y ) = negl(n).

Simplifying Notations. To simplify the presentation, we use the following
simplified notations. Throughout, n is the security parameter and most other
parameters are functions of n, and we often omit n when clear from the context.
For example, q = q(n) ∈ N, t = t(n) > 0, ε = ε(n) ∈ (0, 1), and m = m(n) =
poly(n), where poly refers to some polynomial.

Definition 1 (Learning Parity with Noise). The decisional LPNµ,n prob-
lem (with secret length n and noise rate 0 < µ < 1/2) is hard if for every
q = poly(n) we have

(A, A·x+e)
c∼ (A, Uq) , (3)

where q×n matrix A ∼ Uq×n, x ∼ Un and e ∼ Bqµ. The computational LPNµ,n
problem is hard if for every q = poly(n) and every PPT algorithm D we have

Pr[ D(A, A·x+e) = x ] = negl(n) , (4)

where A ∼ Uq×n, x ∼ Un and e ∼ Bqµ.

LPN with specific hardness. We say that the decisional (resp., computa-
tional) LPNµ,n is T -hard if for every q≤T and every probabilistic adversary of
running time T the distinguishing (resp., inverting) advantage in (3) (resp., (4))
is upper bounded by 1/T .

Definition 2 (Hard-to-invert function). Let n be the security parameter and
let κ = ω(log n). A polynomial-time computable function f : {0, 1}n → {0, 1}l is
2−κ-hard-to-invert if for every PPT adversary A

Pr
x∼Un

[ A(f(x)) = x ] ≤ 2−κ .



Lemma 1 (Union bound). Let E1, · · · , El be any (not necessarily indepen-
dent) events such that Pr[Ei] ≥ (1− εi) for every 1≤i≤l, then we have

Pr[ E1 ∧ · · · ∧ El ] ≥ 1− (ε1 + · · ·+ εl) .

We will use the following (essentially the Hoeffding’s) bound on the Hamming
weight of a high-noise Bernoulli vector.

Lemma 2. For any 0 < p < 1/2 and δ ≤ ( 1
2 − p), we have

Pr[ |Bqδ | > (
1

2
− p

2
)q ] < exp−

p2q
8 .

3 Learning Parity with Noise with Auxiliary Input

3.1 Leaky Sources and (Pseudo)randomness Extraction

We define below two types of leaky sources and recall two technical lemmas for
(pseudo)randomness extraction from the respective sources, where x for TYPE-
II source is assumed to be uniform only for alignment with [17] (see Footnote 7).

Definition 3 (Leaky sources). Let x be any random variable over {0, 1}n and
let f : {0, 1}n → {0, 1}l be any polynomial-time computable function. (x, f(x))
is called an (n,κ) TYPE-I (resp., TYPE-II) leaky source if it satisfies condition
1 (resp., condition 2) below:

1. Min-entropy leaky sources. H∞(x|f(x)) ≥ κ and f(x) is polynomial-
time sampleable.

2. Hard-to-invert leaky sources. x ∼ Un and f is 2−κ-hard-to-invert.

Lemma 3 (Goldreich-Levin Theorem [25]). Let n be a security parameter,
let κ = ω(log n) be polynomial-time computable from n, and let f : {0, 1}n →
{0, 1}l be any polynomial-time computable function that is 2−κ-hard-to-invert.
Then, for any constant 0 < β < 1 and λ = dβκe, it holds that

(f(x),V,V·x)
c∼ (f(x),V, Uλ) ,

where x ∼ Un and V∼Uλ×n is a random λ× n Boolean matrix.

Lemma 4 (Leftover hash lemma [28]). Let (X,Z) ∈ X × Z be any joint
random variable with H∞(X|Z) ≥ k, and let H = {hV : X → {0, 1}l,V ∈
{0, 1}s} be a family of universal hash functions, i.e., for any x1 6= x2 ∈ X ,
Pr

V
$←−{0,1}s [hV(x1) = hV(x2)] ≤ 2−l. Then, it holds that

SD

(
(Z,V, hV(X)) , (Z,V, Ul )

)
≤ 2l−k ,

where V ∼ Us.



3.2 The Main Technical Lemma and Immediate Applications

Inspired by [49,26], we state a technical lemma below where the main difference
is that we sample from a random subspace of sublinear-sized dimension (rather
than linear-sized one [49] or from a noisy subspace in the LWE setting [26]).

Theorem 1 (LPN with hard-to-invert auxiliary input). Let n be a secu-
rity parameter and let 0 < µ < 1/2 be any constant. Assume that the decisional
LPNµ,n problem is hard, then for every constant 0 < α < 1, λ = nα, q′ = poly(n),
and every (n, 2λ) TYPE-I or TYPE-II leaky source (x, f(x)), we have

(f(x),A′,A′·x + e)
c∼ ( f(x),A′, Uq′ ), (5)

where e ∼ Bq′µ , and A′ ∼ Dq
′×n
λ is a q′×n matrix, i.e., A′ ∼ (A·V) for random

matrices A
$←− {0, 1}q′×λ and V

$←− {0, 1}λ×n.

Furthermore, if the LPNµ,n problem is 2ω(n
1

1+β )-hard for any constant β > 0 and

any superconstant hidden by ω(·) then the above holds for any λ = Θ(log1+β n),
any q′ = poly(n) and any (n, 2λ) TYPE-I/TYPE-II leaky source.

Remark 1 (Closure under composition). The random subspace V and the ran-
dom coin A can be public as well, which is seen from the proof below but omitted
from (5) to avoid redundancy (since they are implied by A′). That is, there exists
a PPT Simu such that (A′, Simu(A′)) is 2−Ω(n)-close to (A′, (A,V) ). Therefore,
(5) can be written in an equivalent form that is closed under composition, i.e.,
for any q′ = poly(n) and l = poly(n)(

f(x),V,
(
Ai, (Ai·V)·x + ei

)l
i=1

)
c∼
(
f(x),V,

(
Ai, U

(i)
q′

)l
i=1

)
,

where A1, · · · ,Al
$←− {0, 1}q′×λ, e1, · · · , el ∼ Bq

′

µ and V
$←− {0, 1}λ×n. This

will be a useful property for constructing symmetric encryption schemes w.r.t.
hard-to-invert auxiliary input (see more details in [17]).

Proof of Theorem 1. We have by the assumption of (x, f(x)) and Lemma 3 or
Lemma 4 that

(f(x),V,V·x)
c∼ (f(x),V,y)

⇒ (f(x), (A,V), (A·V)·x+e)
c∼ (f(x), (A,V),A·y + e) .

where y∼Uλ. Next, consider T -hard decisional LPNµ,λ problem on uniform secret
y of length λ (instead of n), which postulates that for any q′≤T

(A,A·y+e) ∼
T,1/T

(A, Uq′)

⇒ (f(x), (A,V),A·y+e) ∼
T−poly(n), 1/T

(f(x), (A,V), Uq′) .



Under the LPN assumption with standard asymptotic hardness (i.e., T = λω(1))
and by setting parameter λ = nα we have T = nω(1), which suffices for our
purpose since for any q′ = poly(n), any PPT adversary wins the above distin-
guishing game with advantage no greater than n−ω(1). In case that LPNµ,λ is

2ω(n
1

1+β )-hard, substitution of λ = Θ(log1+β n) into T = 2ω(λ
1

1+β ) also yields
T = nω(1). Therefore, in both cases the above two ensembles are computation-
ally indistinguishable in security parameter n. The conclusion then follows by a
triangle inequality. �

A comparison with [17]. The work of [17] proved results similar to Theorem 1.
In particular, [17] showed that the LSN assumption with parameters β and
p = polyβ(n) implies LPN with 2−αn-hard auxiliary input (for constant α > β),
noise rate µ = 1/2−1/4p and quasi-polynomial security (in essentially the same
form as (5) except for a uniform matrix A′). In comparison, by sampling A′ from
a random subspace of sublinear dimension λ = nα (for 0 < α < 1), constant-noise
LPN implies that (5) holds with 2−Ω(nα)-hard auxiliary input, constant noise
and comparable security to the underlying LPN. Furthermore, assume constant-

noise LPN with 2ω(n
1

1+β )-hardness (for constant β > 0), then (2) holds for

2−Ω(log1+β)-hard auxiliary input, constant noise and quasi-polynomial security.

Immediate applications. This yields the same applications as considered
in [17], such as CPA/CCA secure symmetric encryption schemes, average-case
obfuscators for point functions, reusable and robust extractors, all under stan-
dard (constant-noise) LPN with improved efficiency (by bringing down the noise
rate) and tighter security against sub-exponentially (or even quasi-polynomially)
hard-to-invert auxiliary input. The proofs simply follow the route of [17] and can
be informally explained as: the technique (by sampling from random subspace)
implicitly applies pseudorandomness extraction (i.e., y = V · x) so that the rest
of the scheme is built upon the security of (A,Ay + e) on secret y (which is
pseudorandom even conditioned on the leakage), and thus the task is essentially
to obtain the aforementioned applications from standard LPN (without auxil-
iary input). In other words, our technique allows to transform any applications
based on constant-noise LPN into the counterparts with auxiliary input under
the same assumption. Therefore, we only sketch some applications in the full
version of this work and refer to [17] for the redundancy.

4 CPA Secure PKE from Constant-Noise LPN

We show a more interesting application, namely, to build public-key encryption
schemes from constant-noise LPN, which has been an open problem since the
work of [2]. We refer to Appendix A.2 for standard definitions of public-key
encryption schemes, correctness and CPA/CCA security.



4.1 Technical Lemmas

We use the following technical tool to build PKE scheme from constant-noise
LPN. It would have been an immediate corollary of Theorem 1 for sub-exponential
hard LPN on squared-logarithmic min-entropy sources (i.e., β = 1), except for
the fact that the leakage is also correlated with noise. Notice that we lose the
“closure under composition” property by allowing leakage to be correlated with
noise, and thus our PKE scheme will avoid this property.

Theorem 2 (LPN on squared-log entropy). Let n be a security parameter
and let 0 < µ < 1/2 be any constant. Assume that the computational LPNµ,n

problem is 2ω(n
1
2 )-hard (for any superconstant hidden by ω(·)), then for every

λ = Θ(log2 n), q′ = poly(n), and every polynomial-time sampleable x ∈ {0, 1}n
with H∞(x) ≥ 2λ and every probabilistic polynomial-time computable function
f : {0, 1}n+q′ ×Z → {0, 1}O(logn) with public coin Z, we have(

f(x, e;Z), Z,A′,A′·x + e
) c∼

(
f(x, e;Z), Z,A′, Uq′

)
,

where noise vector e ∼ Bq′µ and q′ × n matrix A′ ∼ Dq
′×n
λ .

Proof sketch. It suffices to adapt the proof of Theorem 1 as follows. First, observe
that (by the chain rule of min-entropy)

H∞(x|f(x, e;Z), Z, e) ≥ H∞(x|Z, e)−O(log n) = H∞(x)−O(log n)≥2λ−O(log n).

For our convenience, write A′ ∼ (A · V) for A∼Uq′×λ, V ∼ Uλ×n, and let
y, r ∼ Uλ. Then, we have by Lemma 4

(f(x, e;Z), Z, e,V,V·x)
s∼ (f(x, e;Z), Z, e,V,y)

⇒ (f(x, e;Z), Z, (A·V), (A·V)·x+e)
s∼ ( f(x, e;Z), Z, (A·V),A·y + e ) .

Next, 2ω(λ
1
2 )-hard computational LPNµ,λ problem with secret size λ postulates

that for any q′≤2ω(λ
1
2 ) = nω(1) (recall λ = Θ(log2 n)) and any probabilistic D,

D′ of running time nω(1)

Pr[ D′(A, A·y+e) = y ] = n−ω(1)

⇒ Pr[ D′(f(x, e;Z), Z,A,A·y+e) = y ] = n−ω(1)

⇒ (f(x, e;Z), Z,A,A·y+e, r, rT · y)
c∼ (f(x, e;Z), Z,A,A·y+e, r, U1)

⇒ (f(x, e;Z), Z,A,A·y+e)
c∼ (f(x, e;Z), Z,A, Uq′)

⇒ (f(x, e;Z), Z, (A·V),A·y+e)
c∼ (f(x, e;Z), Z, (A ·V), Uq′) ,

where the first implication is trivial since Z is independent of (A,y,e) and any
O(log n) bits of leakage affects unpredictability by a fact of poly(n), the second
step is the Goldreich-Levin theorem [25] with r ∼ Uλ, and the third implication



uses the sample-preserving reduction from [4] and is reproduced as Lemma 18.
The conclusion follows by a triangle inequality. �

We will use Lemma 5 to estimate the noise rate of an inner product between
Bernoulli-like vectors .

Lemma 5. For any 0 < µ≤1/8 and ` ∈ N, let E1, · · · , E` be Boolean random

variables i.i.d. to Bµ, then Pr[
⊕`

i=1Ei = 0 ] > 1
2 + 2−(4µ`+1).

Proof. We complete the proof by Fact 1 and Fact 2

Pr[
⊕̀
i=1

Ei = 1 ] =
1

2
(1− (1− 2µ)`) <

1

2
(1− 2−4µ`) =

1

2
− 2−(4µ`+1) .

Fact 1 (Piling-up lemma) For 0 < µ < 1/2 and random variables E1, E2,

· · · , E` that are i.i.d. to Bµ we have
⊕`

i=1Ei ∼ Bσ with σ = 1
2 (1− (1− 2µ)`).

Fact 2 (Mean value theorem) For any 0 < x≤1/4 we have 1− x > 2−2x.

We recall the following facts about the entropy of Bernoulli-like distributions.
In general, there’s no closed formula for binomial coefficient, but an asymptotic
estimation like Fact 3 already suffices for our purpose, where the binary entropy
function can be further bounded by Fact 4 (see also Footnote 11).

Fact 3 (Asymptotics for binomial coefficients (e.g. [27], p.492)) For any

0 < µ < 1/2, and any n ∈ N we have
(
n
µn

)
= 2nH(µ)− logn

2 +O(1).

Fact 4 For any 0 < µ < 1/2, we have µ log(1/µ) < H(µ) < µ(log(1/µ) + 3
2 ).

4.2 Weakly Correct 1-bit PKE from Constant-Noise LPN

As stated in Theorem 2, for any constant 0 < µ < 1/2, 2ω(n
1
2 )-hard LPNµ,n im-

plies that (A′·x+e) is pseudorandom conditioned on A′ for x∼X with squared-
log entropy, where the leakage due to f can be omitted for now as it is only
needed for CCA security. If there exists X satisfying the following three condi-
tions at the same time then the 1-bit PKE as in Figure 1 instantiated with the
square matrix A′ ← Dn×nλ , s,s1← X and e,e1← Bnµ will be secure and noticeably

correct (since sT1 e and eT
1 s are both (1/2+1/poly(n))-biased to 0 independently).

1. (Efficiency) X ∈ {0, 1}n can be sampled in polynomial time.
2. (Security) H∞(X) = Ω(log2 n) as required by Theorem 2.
3. (Correctness) |X| = O(log n) such that Pr[〈X,Bnµ〉 = 0]≥1/2 + 1/poly(n).

Note that any distribution X ∈ {0, 1}n satisfying |X| = O(log n) implies that
H∞(X) = O(log2 n) (as the set {x ∈ {0, 1}n : |x| = O(log n)} is of size

2O(log2 n)), so the job is to maximize the entropy of X under constraint |X| =
O(log n). The first candidate seems X ∼ Bnµ′ for µ′ = Θ( logn

n ), but it does not



meet the security condition because the noise rate µ′ is so small that a Chernoff
bound only ensures (see Lemma 19) that Bnµ′ is (2−O(µ′n) = 1/poly(n))-close to

having min-entropy Θ(nH(µ′)) = Θ(log2 n). In fact, we can avoid the lower-tail
issue by letting X ∼ χnlogn, namely, a uniform distribution of Hamming weight

exact log n, which is of min-entropy Θ(log2 n) by Fact 3. Thus, X ∼ χnlogn is a
valid option to obtain a single-bit PKE with noticeable correctness.

4.3 CPA Secure PKE from Constant-Noise LPN

Unlike [20] where the extension from the weak single-bit PKE to a fully correct
scheme is almost immediate (by a parallel repetition and using error correcting
codes), it is not trivial to amplify the noticeable correctness of the single-bit
scheme to an overwhelming probability, in particular, the scheme instantiated
with distribution X ∼ χnlogn would no longer work. To see the difficulty, we
define below our CPA secure scheme ΠX = (KeyGen,Enc,Dec) that resembles
the counterpart for low-noise LPN (e.g., [20,15]), where distribution X is left
undefined (apart from the entropy constraint).

Distribution X: X is a polynomial-time sampleable distribution satisfying
H∞(X) = Ω(log2 n) and we set λ = Θ(log2 n) such that 2λ ≤ H∞(X).

KeyGen(1n): Given a security parameter 1n, it samples matrix A ∼ Dn×nλ , col-
umn vectors s ∼ X, e ∼ Bnµ , computes b = As + e and sets (pk, sk) :=
((A,b), s).

Encpk(m): Given the public key pk = (A,b) and a plaintext m ∈ {0, 1}n, Encpk
chooses

S1 ∼ (X(1), · · · , X(q)) ∈ {0, 1}n×q,E1 ∼ Bn×qµ

where X(1), · · · , X(q) are i.i.d. to X. Then, it outputs C = (C1, c2) as ci-
phertext, where

C1 := ATS1 + E1 ∈ {0, 1}n×q,
c2 := ST

1b + G·m ∈ {0, 1}q,

and G ∈ {0, 1}q×n is a generator matrix for an efficiently decodable code
(with error correction capacity to be defined and analyzed in Section 4.4).

Decsk(C1, c2): On secret key sk = s, ciphertext (C1, c2), it computes

c̃0 := c2 −CT
1 s = G·m + ST

1 e−ET
1 s

and reconstructs m from the error ST
1 e − ET

1 s using the error correction
property of G.

We can see that the CPA security ofΠX , for anyX with H∞(X) = Ω(log2 n),
follows from applying Theorem 2 twice (once for replacing the pubic key b with
uniform randomness, and again together with the Goldreich Levin Theorem for
encrypting a single bit) and a hybrid argument (to encrypt many bits).

Theorem 3 (CPA Security). Assume that the decisional LPNµ,n problem is

2ω(n
1
2 )-hard for any constant 0 < µ < 1/2, then ΠX is IND-CPA secure.



4.4 Which X Makes a Correct Scheme?

X ∼ χnlogn may not work. To make a correct scheme, we need to upper

bound |ST
1 e − ET

1 s| by q(1/2 − 1/poly(n)), but in fact we do not have any
useful bound even for |ST

1 e|. Recall that ST
1 is now a q×n matrix and parse

ST
1 e as Boolean random variables W1, · · · ,Wq. First, although every Wi satisfies

Pr[Wi = 0]≥1/2 + 1/poly(n), they are not independent (correlated through e).
Second, if we fix any |e| = Θ(n), allW1, · · · ,Wq are now independent conditioned
on e, but then we could no longer guarantee that Pr[Wi = 0|e] ≥ 1/2 + poly(n)
as S1 follows (χnlogn)q rather than (Bnlogn/n)q. Otherwise said, condition #3 (as

in Section 4.2) is not sufficient for overwhelming correctness. We introduced a
tailored version of Bernoulli distribution (with upper/lower tails chopped off).

Definition 4 (Distribution B̃nµ1
). Define B̃nµ1

to be distributed to Bnµ1
con-

ditioned on (1 −
√
6
3 )µ1n ≤ |Bnµ1

| ≤ 2µ1n. Further, we define an n×q matrix

distribution, denoted by (B̃nµ1
)q, where every column is i.i.d. to B̃nµ1

.

B̃nµ1
is efficiently sampleable. B̃nµ1

can be sampled in polynomial-time
with exponentially small error, e.g., simply sample e ← Bnµ1

and outputs e if

(1 −
√
6
3 )µ1n≤|e|≤2µ1n. Otherwise, repeat the above until such e within the

Hamming weight range is obtained or the experiment failed (then output ⊥ in
this case) for a predefined number of times (e.g., n).

B̃nµ1
is of min-entropy Ω(log2 n). For µ1 = Ω(log n/n), it is not hard to

see that B̃nµ1
is a convex combination of χn

(1−
√

6
3 )µ1n

, · · · , χn2µ1n, and thus of

min-entropy Ω(log2 n) by Fact 3.

Therefore, ΠX when instantiated with X ∼ B̃nµ1
is CPA secure by Theorem 4,

and we proceed to the correctness of the scheme.

Lemma 6. For constants α > 0, 0 < µ≤1/10 and µ1 = α log n/n , let S1 ∼
(B̃nµ1

)q, e ∼ Bnµ, E1 ∼ Bn×qµ and s ∼ B̃nµ1
, we have

Pr
[ ∣∣ST

1 e−ET
1 s
∣∣ ≤ (1

2
− 1

2n3α/2
)
q
]
≥ 1− 2−Ω(n−3αq) .

Proof. It is more convenient to consider
∣∣ST

1 e−ET
1 s
∣∣ conditioned on |e| ≤ 1.01µn

(except for a 2−Ω(n)-fraction) and |s| ≤ 2µn. We have by Lemma 7 and Lemma 8
that ST

1 e and ET
1 s are identical distributed to Bqδ1 and Bqδ2 respectively, where

δ1≤1/2−n−α/2 and δ2≤1/2−n−α/2. Thus, (ST
1 e−ET

1 s) follows Bqδ for δ≤1/2−
n−3α/2 by the Piling-up lemma, and then we complete the proof with Lemma 2.

Concrete parameters. Encpk simply uses a generator matrix G : {0, 1}q×n
that efficiently corrects up to a (1/2− n−3α/2/2)-fraction of bit flipping errors,
which exists for q = O(n3α+1) (e.g., [22]). We can now conclude the correctness of
the scheme since every encryption will be correctly decrypted with overwhelming
probability and thus so is the event that polynomially many of them occur
simultaneously (even when they are not independent, see Lemma 1).



Theorem 4 (Correctness). Let 0 < µ ≤ 1/10 and α > 0 be any constants, let

q = Θ(n3α+1) and µ1 = α log n/n, and let X ∼ B̃nµ1
. Assume that the decisional

LPNµ,n problem is 2ω(n
1
2 )-hard, then ΠX is a correct scheme.

Lemma 7. For any 0 < µ≤1/10, µ1 = O(log n/n)≤1/8 and any e ∈ {0, 1}n
with |e| ≤ 1.01µn,

Pr[〈B̃nµ1
, e〉 = 0] ≥ 1/2 + 2−

µ1n
2 .

Proof. Denote by E the event (1−
√
6
3 )µ1n≤|Bnµ1

|≤2µ1n and thus Pr[E ] ≥ (1−
2 exp−µ1n/3) by the Chernoff bound. We have by Lemma 5

1

2
+ 2−(4.04µµ1n+1) ≤ Pr[〈Bnµ1

, e〉 = 0]

≤ Pr[E ] · Pr[〈B̃nµ1
, e〉 = 0] + Pr[¬E ] · Pr[〈Bnµ1

, e〉 = 0|¬E ]

≤ Pr[〈B̃nµ1
, e〉 = 0] + Pr[¬E ] .

For 0 < µ ≤ 1/10, Pr[〈B̃nµ1
, e〉 = 0] ≥ 1/2 + 2−(4.04µµ1n+1) − 2 exp−µ1n/3 >

1/2 + 2−µ1n/2.

Lemma 8. For any 0 < µ≤1/8, µ1 = O(log n/n), and any s ∈ {0, 1}n with
|s| ≤ 2µ1n, we have by Lemma 5

Pr[〈Bnµ , s〉 = 0] ≥ 1/2 + 2−(8µµ1n+1) ≥ 1/2 + 2−(µ1n+1) .

5 CCA-Secure PKE from Constant-Noise LPN

In this section, we show how to construct CCA-secure PKE from constant-noise
LPN. Our starting point is the construction of a tag-based PKE against selective
tag and chosen ciphertext attacks from LPN, which can be transformed into a
standard CCA-secure PKE by using known techniques [11,35]. We begin by first
recalling the definitions of tag-based PKE.

5.1 Tag-Based Encryption

A tag-based encryption (TBE) scheme with tag-space T and message-space M
consists of three PPT algorithms T BE = (KeyGen,Enc, Dec). The randomized
key generation algorithm KeyGen takes the security parameter n as input, out-
puts a public key pk and a secret key sk, denoted as (pk, sk) ← KeyGen(1n).
The randomized encryption algorithm Enc takes pk, a tag t ∈ T , and a plaintext
m ∈ M as inputs, outputs a ciphertext C, denoted as C ← Enc(pk, t,m). The
deterministic algorithm Dec takes sk and C as inputs, outputs a plaintext m, or
a special symbol ⊥, which is denoted as m← Dec(sk, t, C). For correctness, we
require that for all (pk, sk)← KeyGen(1n), any tag t, any plaintext m and any
C ← Enc(pk, t,m), the equation Dec(sk, t, C) = m holds with overwhelming
probability.

We consider the following game between a challenger C and an adversary A
given in [35].



Init. The adversary A takes the security parameter n as inputs, and outputs a
target tag t∗ to the challenger C.

KeyGen. The challenger C computes (pk, sk) ← KeyGen(1n), gives the public
key pk to the adversary A, and keeps the secret key sk to itself.

Phase 1. The adversary A can make decryption queries for any pair (t, C) for
any polynomial time, with a restriction that t 6= t∗, and the challenger C
returns m← Dec(sk, t, C) to A accordingly.

Challenge. The adversary A outputs two equal length plaintexts m0,m1 ∈
M. The challenger C randomly chooses a bit b∗

$←− {0, 1}, and returns the
challenge ciphertext C∗ ← Enc(pk, t∗,mb∗) to the adversary A.

Phase 2. The adversary can make more decryption queries as in Phase 1.
Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs

1, else outputs 0.

Advantage. A’s advantage is defined as Advind-stag-cca
T BE,A (1n)

def
= |Pr[b = b∗]− 1

2 |.

Definition 5 (IND-sTag-CCA). We say that a TBE scheme T BE is IND-

sTag-CCA secure if for any PPT adversary A, its advantage Advind-stag-cca
T BE,A (1n)

is negligible in n.

For our convenience, we will use the following corollary, which is essentially
a q-fold12 (transposed) version of Theorem 2 with q′ = n and 2 bits of linear
leakage (rather than O(log n) bits of arbitrary leakage) per copy. Following [36],
the leakage is crucial for the CCA security proof.

Corollary 1. Let n be a security parameter and let 0 < µ < 1/2 be any constant.

Assume that the computational LPNµ,n problem is 2ω(n
1
2 )-hard (for any super-

constant hidden by ω(·)). Then, for every µ1 = Ω(logn/n) and λ = Θ(log2 n)

such that 2λ ≤ H∞(B̃nµ1
), and every q = poly(n), we have(

(ST
0 e,ET

0 s), e, s,A,ST
0A + ET

0

) c∼
(

(ST
0 e,ET

0 s), e, s,A, Uq×n
)
,

where the probability is taken over S0 ∼ (B̃nµ1
)q, E0 ∼ Bn×qµ , A ∼ Dn×nλ , Uq×n,

s← B̃nµ1
, e← Bnµ and internal random coins of the distinguisher.

5.2 Our Construction

Our construction is built upon previous works in [44,36]. A couple of modifica-
tions are made to adapt the ideas of [44,36], which seems necessary due to the
absence of a meaningful knapsack version for our LPN (with poly-log entropy and
non-uniform matrix). Let n be the security parameter, let α > 0, 0 < µ≤1/10
be any constants, let µ1 = α log n/n, β = ( 1

2 −
1
n3α ), γ = ( 1

2 −
1

2n3α/2 ) and choose

12 Please do not confuse q′ with q, where q′ is the number of samples in LPN (see
Theorem 2) and is set to n (for a square matrix), and q is the number of parallel
repetitions of LPN on independent secrets and noise vectors.



λ = Θ(log2 n) such that 2λ ≤ H∞(B̃nµ1
). Let the plaintext-space M = {0, 1}n,

and let G ∈ {0, 1}q×n and G2 ∈ {0, 1}`×n be the generator matrices that can
correct at least βq and 2µ` bit flipping errors in the codeword respectively, where
q = O(n6α+1), ` = O(n) and we refer to [22] and [33] for explicit constructions
of the two codes respectively. Let the tag-space T = F2n . We use a matrix rep-
resentation Ht ∈ {0, 1}n×n for finite field elements t ∈ F2n [14,10,36] such that
H0 = 0, Ht is invertible for any t 6= 0, and Ht1 + Ht2 = Ht1+t2 . Our TBE
scheme T BE is defined as follows:

KeyGen(1n): Given a security parameter n, first uniformly choose matrices A
$←−

Dn×nλ ,C
$←− D`×nλ , S0,S1

$←− (B̃nµ1
)q and E0,E1

$←− Bn×qµ . Then, compute

B0 = ST
0A + ET

0 ,B1 = ST
1A + ET

1 ∈ {0, 1}q×n, and set (pk, sk) = ( (A, B0,
B1, C), (S0,S1)).

Enc(pk, t,m): Given the public key pk = (A,B0,B1,C), a tag t ∈ F2n , and a
plaintext m ∈ {0, 1}n, randomly choose

s
$←− B̃nµ1

, e1
$←− Bnµ , e2

$←− B`µ,S′0,S′1
$←− (B̃nµ1

)q,E′0,E
′
1

$←− Bn×qµ

and define

c := As + e1 ∈ {0, 1}n
c0 := (GHt + B0)s + (S′0)Te1 − (E′0)Ts ∈ {0, 1}q
c1 := (GHt + B1)s + (S′1)Te1 − (E′1)Ts ∈ {0, 1}q
c2 := Cs + e2 + G2m ∈ {0, 1}`.

Finally, return the ciphertext C = (c, c0, c1, c2).
Dec(sk, t, C): Given the secret key sk = (S0,S1), tag t ∈ F2n and ciphertext

C = (c, c0, c1, c2), first compute

c̃0 := c0 − ST
0 c = GHts + (S′0 − S0)Te1 + (E0 −E′0)Ts.

Then, reconstruct b = Hts from the error (S′0 − S0)Te1 + (E0 − E′0)Ts by
using the error correction property of G, and compute s = H−1t b. If it holds
that

| c−As︸ ︷︷ ︸
=e1

| ≤ 2µn ∧ | c0 − (GHt + B0)s︸ ︷︷ ︸
=(S′0)

Te1−(E′0)Ts

| ≤ γq ∧ | c1 − (GHt + B1)s︸ ︷︷ ︸
=(S′1)

Te1−(E′1)Ts

| ≤ γq

then reconstruct m from c2 −Cs = G2m + e2 by using the error correction
property of G2, else let m = ⊥. Finally, return the decrypted result m.

Remark 2. As one can see, the matrix S1 in the secret key sk = (S0,S1) can
also be used to decrypt the ciphertext, i.e., compute c̃1 := c1 − ST

1 c = GHts +
(S′1 − S1)Te1 + (E1 −E′1)Ts and recover s from c̃1 by using the error correction
property of G. Moreover, the check condition

|c−As| ≤ 2µn ∧ |c0 − (GHt + B0)s| ≤ γq ∧ |c1 − (GHt + B1)s| ≤ γq

guarantees that the decryption results are the same when we use either S0 or
S1 in the decryption. This fact seems not necessary for the correctness, but it is
very important for the security proof. Looking ahead, it allows us to switch the
“exact decryption key” between S0 and S1.



Correctness and Equivalence of the Secret Keys S0, S1. In the following,
we show that for appropriate choice of parameters, the above scheme T BE is
correct, and has the property that both S0 and S1 are equivalent in terms of
decryption.

– The correctness of the scheme requires the following:
1. |(S′0 − S0)Te1 + (E0 −E′0)Ts| ≤ βq (to let G reconstruct s from c̃0).
2. |c−As| ≤ 2µn ∧ |c0 − (GHt + B0)s| ≤ γq ∧ |c1 − (GHt + B1)s| ≤ γq.
3. |e2| ≤ 2µ` (such that G2 can reconstruct m from c2−Cs = G2m+e2).

– For obtaining CCA security, we also need to show that S0 and S1 have the
same decryption ability except with negligible probability, namely,
1. If |c−As| ≤ 2µn ∧ |c0 − (GHt + B0)s| ≤ γq, then G can reconstruct s

from a code within bounded error |(S′0 − S0)e1 + (E0 −E′0)s| ≤ βq.
2. If |c−As| ≤ 2µn ∧ |c1 − (GHt + B1)s| ≤ γq, then G can reconstruct s

from a code within bounded error |(S′1 − S1)e1 + (E1 −E′1)s| ≤ βq.

It suffices to show that each Hamming weight constraint above holds (with
overwhelming probability) individually and thus polynomially many of them
hold simultaneously (with overwhelming probability as well) by Lemma 1. First,
Chernoff bound guarantees that Pr[|e1| ≤ 2µn] = 1 − 2−Ω(n) and Pr[|e2| ≤
2µ`] = 1 − 2−Ω(`). Second, for i ∈ {0, 1} the bound |(S′i)Te1 − (E′i)

Ts| ≤ γq is
ensured by Lemma 6 and we further bound |(S′i−Si)e1 + (Ei−E′i)s| ≤ βq with
Lemma 9 below (proof similar to Lemma 6 and thus deferred to Appendix B).

Lemma 9. For constants α > 0, 0 < µ≤1/10 and µ1 = α log n/n, let S and S′

be i.i.d. to (B̃nµ1
)q, E and E′ be i.i.d. to Bn×qµ , s ∼ B̃nµ1

and e ∼ Bnµ. Then,

Pr
[ ∣∣(S′ − S)Te + (E−E′)Ts

∣∣ ≤ (
1

2
− 1

n3α
)q
]
≥ 1− 2−Ω(n−6αq) .

Security of the TBE Scheme. We now show that under the LPN assumption,
the above scheme T BE is IND-sTag-CCA secure in the standard model.

Theorem 5. Assume that the decisional LPNµ,n problem is 2ω(n
1
2 )-hard for any

constant 0 < µ≤1/10, then our TBE scheme T BE is IND-sTag-CCA secure.

Proof. Let A be any PPT adversary that can attack our TBE scheme T BE
with advantage ε. We show that ε must be negligible in n. We continue the
proof by using a sequence of games, where the first game is the real IND-sTag-
CCA security game, while the last is a random game in which the challenge
ciphertext is independent from the choices of the challenge plaintexts. Since any
PPT adversary A’s advantage in a random game is exactly 0, the security of
T BE can be established by showing that A’s advantage in any two consecutive
games are negligibly close.

Game 0. The challenger C honestly runs the adversary A with the security
parameter n, and obtains a target tag t∗ from A. Then, it simulates the IND-
sTag-CCA security game for A as follows:



KeyGen. First uniformly choose matrices A
$←− Dn×nλ ,C

$←− D`×nλ , S0,S1
$←−

(B̃nµ1
)q and E0,E1

$←− Bn×qµ . Then, compute B0 = ST
0A + ET

0 ,B1 = ST
1A +

ET
1 ∈ {0, 1}q×n. Finally, C sends pk = (A,B0,B1,C) to the adversary A,

and keeps sk = (S0,S1) to itself.
Phase 1. After receiving a decryption query (t, (c, c0, c1, c2)) from the adver-

sary A, the challenger C directly returns ⊥ to A if t = t∗. Otherwise, it first
computes

c̃0 := c0 − ST
0 c = GHts + (S′0 − S0)Te1 + (E0 −E′0)Ts.

Then, it reconstruct b = Hts from the error (S′0−S0)Te1 + (E0−E′0)Ts by
using the error correction property of G, and compute s = H−1t b. If

|c−As| ≤ 2µn ∧ |c0 − (GHt + B0)s| ≤ γq ∧ |c1 − (GHt + B1)s| ≤ γq

is true, reconstruct M from c2−Cs = G2m+e2 by using the error correction
property of G2, else let m = ⊥. Finally, return the decrypted result m to
the adversary A.

Challenge. After receiving two equal length plaintexts m0,m1 ∈ M from the

adversary A, the challenger C first randomly chooses a bit b∗
$←− {0, 1}, and

s
$←− B̃nµ1

, e1
$←− Bnµ , e2

$←− B`µ,S′0,S′1
$←− (B̃nµ1

)q,E′0,E
′
1

$←− Bn×qµ

Then, it defines

c∗ := As + e1 ∈ {0, 1}n
c∗0 := (GHt∗ + B0)s + (S′0)Te1 − (E′0)Ts ∈ {0, 1}q
c∗1 := (GHt∗ + B1)s + (S′1)Te1 − (E′1)Ts ∈ {0, 1}q
c∗2 := Cs + e2 + G2mb∗ ∈ {0, 1}`,

and returns the challenge ciphertext (c∗, c∗0, c
∗
1, c
∗
2) to the adversary A.

Phase 2. The adversary can adaptively make more decryption queries, and the
challenger C responds as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs
1, else outputs 0.

Event. Let Fi be the event that C outputs 1 in Game i for i ∈ {0, 1, . . . , 6}.

Lemma 10. |Pr[F0]− 1
2 | = ε.

Proof. This lemma immediately follows the fact that C honestly simulates the
attack environment for A, and only outputs 1 if and only if b = b∗.

Game 1. This game is identical to Game 0 except that the challenger C changes
the key generation phase as follows:



KeyGen. First uniformly choose matrices A
$←− Dn×nλ ,C

$←− D`×nλ , S0,S1
$←−

(B̃nµ1
)q, E0,E1

$←− Bn×qµ , and B′1
$←− {0, 1}q×n. Then, compute B0 = ST

0A +

ET
0 ,B1 = ST

1A + ET
1 ∈ {0, 1}q×n. Finally, C sends pk = (A,B0,B

′
1,C) to

the adversary A, and keeps sk = (S0,S1) to itself.

Lemma 11. If the decisional LPNµ,n problem is 2ω(n
1
2 )-hard, then we have

|Pr[F1]− Pr[F0]| ≤ negl(n).

Proof. Since the only difference between Game 0 and Game 1 is that C replaces

B1 = ST
1A+ET

1 ∈ {0, 1}q×n in Game 0 with a randomly chosen B′1
$←− {0, 1}q×n

in Game 1. we have that Game 0 and Game 1 are computationally indistinguish-
able for any PPT adversary A by our assumption and Corollary 1. This means
that |Pr[F1]− Pr[F0]| ≤ negl(n) holds.

Game 2. This game is identical to Game 1 except that the challenger C changes
the key generation phase as follows:

KeyGen. First uniformly choose matrices A
$←− Dn×nλ ,C

$←− D`×nλ , S0,S1
$←−

(B̃nµ1
)q, E0,E1

$←− Bn×qµ , and B′′1
$←− {0, 1}q×n. Then, compute B0 = ST

0A +

ET
0 ,B1 = ST

1A + ET
1 ∈ {0, 1}q×n and B′1 = B′′1 −GHt∗ . Finally, C sends

pk = (A,B0,B
′
1,C) to the adversary A, and keeps sk = (S0,S1) to itself.

Challenge. After receiving two equal length plaintexts m0,m1 ∈ M from the

adversary A, the challenger C first randomly chooses a bit b∗
$←− {0, 1}, and

s
$←− B̃nµ1

, e1
$←− Bnµ , e2

$←− B`µ,S′0,S′1
$←− (B̃nµ1

)q,E′0,E
′
1

$←− Bn×qµ

Then, it defines

c∗ := As + e1 ∈ {0, 1}n
c∗0 := (GHt∗ + B0)s + (S′0)Te1 − (E′0)Ts ∈ {0, 1}q
c∗1 := (GHt∗ + B1)s + (S1)Te1 − (E1)Ts ∈ {0, 1}q
c∗2 := Cs + e2 + G2mb∗ ∈ {0, 1}`,

and returns the challenge ciphertext (c∗, c∗0, c
∗
1, c
∗
2) to the adversary A.

Lemma 12. Pr[F2] = Pr[F1].

Proof. Because of B′′1
$←− {0, 1}q×n, we have that B′1 = B′′1 − GHt∗ is also

uniformly distributed over {0, 1}q×n. This means that the public key in Game 2

has the same distribution as that in Game 1. In addition, since S1
$←− (B̃nµ1

)q and

E1
$←− Bn×qµ are chosen from the same distribution as S′1 and E′1 respectively.

By the fact that B1 = ST
1A + ET

1 ∈ {0, 1}q×n is not included in the public key
pk = (A,B0,B

′
1,C) (and thus A has no information about S1 and E1 before

the challenge phase), we have that the challenge ciphertext in Game 2 also has
the same distribution as that in Game 1. In all, Game 2 is identical to Game 1
in the adversary’s view. Thus, we have Pr[F2] = Pr[F1].



Game 3. This game is identical to Game 2 except that the challenger C changes
the key generation phase as follows:

KeyGen. First uniformly choose matrices A
$←− Dn×nλ ,C

$←− D`×nλ , S0,S1
$←−

(B̃nµ1
)q, and E0,E1

$←− Bn×qµ . Then, compute B0 = ST
0A + ET

0 ,B1 = ST
1A +

ET
1 ∈ {0, 1}q×n and B′1 = B1 −GHt∗ . Finally, C sends pk = (A,B0,B

′
1,C)

to the adversary A, and keeps sk = (S0,S1) to itself.

Lemma 13. If the decisional LPNµ,n problem is 2ω(n
1
2 )-hard, then |Pr[F3] −

Pr[F2]| ≤ negl(n).

Proof. Since the only difference between Game 2 and Game 3 is that C replaces

the randomly chosen B′′1
$←− {0, 1}q×n in Game 2 with B1 = ST

1A + ET
1 ∈

{0, 1}q×n in Game 3, by our assumption and Corollary 1 we have that Game
2 and Game 3 are computationally indistinguishable for any PPT adversary
A seeing (ST

1 e1,E
T
1 s) in the challenge ciphertext. This means that |Pr[F3] −

Pr[F2]| ≤ negl(n) holds.

Remark 3. Note that for the challenge ciphertext (c, c∗0, c
∗
1, c
∗
2) in Game 3, we

have that c∗1 := (GHt∗1
+ B′1)s + ST

1 e1 −ET
1 s = ST

1 c.

Game 4. This game is identical to Game 3 except that the challenger C answers
the decryption queries by using S1 instead of S0.

Lemma 14. |Pr[F4]− Pr[F3]| ≤ negl(n).

Proof. This lemma directly follows from the fact that both S0 and S1 have
equivalent decryption ability except with negligible probability.

Game 5. This game is identical to Game 4 except that the challenger C changes
the key generation phase and the challenge phase as follows:

KeyGen. First uniformly choose matrices A
$←− Dn×nλ ,C

$←− D`×nλ , S0,S1
$←−

(B̃nµ1
)q, and E0,E1

$←− Bn×qµ . Then, compute B0 = ST
0A + ET

0 ,B1 = ST
1A +

ET
1 ∈ {0, 1}q×n, B′0 = B0 −GHt∗ and B′1 = B1 −GHt∗ . Finally, C sends

pk = (A,B′0,B
′
1,C) to the adversary A, and keeps sk = (S0,S1) to itself.

Challenge. After receiving two equal length plaintexts m0,m1 ∈ M from the

adversary A, the challenger C first randomly chooses a bit b∗
$←− {0, 1}, and

s
$←− B̃nµ1

, e1
$←− Bnµ and e2

$←− B`µ. Then, it defines

c∗ := As + e1 ∈ {0, 1}n
c∗0 := (GHt∗ + B′0)s + ST

0 e1 −ET
0 s = ST

0 c∗ ∈ {0, 1}q
c∗1 := (GHt∗ + B′1)s + ST

1 e1 −ET
1 s = ST

1 c∗ ∈ {0, 1}q
c∗2 := Cs + e2 + G2mb∗ ∈ {0, 1}`,

and returns the challenge ciphertext (c, c∗0, c
∗
1, c
∗
2) to the adversary A.



Lemma 15. If the decisional LPNµ,n problem is 2ω(n
1
2 )-hard, then we have that

|Pr[F5]− Pr[F4]| ≤ negl(n).

Proof. One can easily show this lemma holds by using similar proofs from Lemma 10
to Lemma 14. We omit the details.

Game 6. This game is identical to Game 5 except that the challenger C changes
the challenge phase as follows:

Challenge. After receiving two equal length plaintexts m0,m1 ∈ M from the

adversary A, the challenger C first randomly chooses b∗
$←− {0, 1},u $←−

{0, 1}n and v
$←− {0, 1}`. Then, it defines

c∗ := u ∈ {0, 1}n
c∗0 := S0c

∗ ∈ {0, 1}q
c∗1 := S1c

∗ ∈ {0, 1}q
c∗2 := v + G2mb∗ ∈ {0, 1}`,

and returns the challenge ciphertext (c, c∗0, c
∗
1, c
∗
2) to the adversary A.

Lemma 16. If the decisional LPNµ,n problem is 2ω(n
1
2 )-hard, then we have that

|Pr[F6]− Pr[F5]| ≤ negl(n).

Proof. Since the only difference between Game 5 and Game 6 is that C re-
places c∗ = As + e1 and c∗2 = Cs + e2 + G2mb∗ in Game 5 with c∗ := u

and c∗2 := v + G2mb∗ in Game 6, where u
$←− {0, 1}n and v

$←− {0, 1}`, by our
assumption and Corollary 1 we have that Game 5 and Game 6 are computa-
tionally indistinguishable for any PPT adversary A. Obviously, we have that
|Pr[F6]− Pr[F5]| ≤ negl(n) holds.

Lemma 17. Pr[F6] = 1
2 .

Proof. This claim follows from the fact that the challenge ciphertext (c, c∗0, c
∗
1, c
∗
2)

in Game 6 perfectly hides the information of mb∗ .

In all, by Lemma 10 ∼ Lemma 17, we have that ε = |Pr[F0] = 1
2 | ≤ negl(n).

This completes the proof of Theorem 5.
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A Definitions and Security Notions

A.1 Symmetric-Key Encryption Schemes with Auxiliary Input

Definition 6 (Symmetric-key encryption schemes). A symmetric-key en-
cryption scheme Π is a tuple (KeyGen,Enc,Dec) with message space M, such
that

– KeyGen(1n) is a PPT algorithm that takes a security-parameter 1n and out-
puts a symmetric key k.

– Enck(m) is a PPT algorithm that encrypts a message m ∈ M under key k
and outputs a ciphertext c.

– Deck(c) is a deterministic polynomial-time algorithm that decrypts a cipher-
text c using key k and outputs a plaintext m.

Definition 7 (Correctness). We say that a symmetric-key encryption scheme
Π = (KeyGen, Enc, Dec) is correct, if it holds for every plaintext m ∈M that

Pr
k←KeyGen(1n)

[ Deck(Enck(m)) 6= m ] = negl(n) .

Definition 8 (IND-CPA/IND-CCA SKE w.r.t. auxiliary input). For
X ∈{CPA,CCA}, a symmetric-key encryption scheme Π = (KeyGen,Enc,Dec)
is IND-X secure w.r.t. sub-exponentially hard-to-invert auxiliary input if there
exists a constant 0 < α < 1 such that for any PPT adversary A, any 2−Ω(nα)-
hard-to-invert function f

Pr[ SKEXΠ,f,A(1n, α) = 1 ] ≤ 1

2
+ negl(n) ,

where SKEcpaΠ,f,A(1n,α) is the IND-CPA indistinguishability experiment defined
as below:

1. On k ← KeyGen(1n), the adversary takes as input 1n, f(k), and is given
oracle access to Enck. Then, he outputs a pair of messages m0 and m1 of
the same length.

2. A random bit b
$←− {0, 1} is sampled, and then a challenge ciphertext c ←

Enck(mb) is computed and given to A.
3. A continues to have oracle access to Enck and finally outputs b′ ∈ {0, 1}.
4. The experiment outputs 1 if b′ = b, and 0 otherwise.

and SKEccaΠ,f,A(1n,α) is the IND-CCA indistinguishability experiment defined as
below:

1. On k ← KeyGen(1n), the adversary takes as input 1n, f(k), and is given
oracle access to Enck and Deck. Then, he outputs a pair of messages m0 and
m1 of the same length.

2. A random bit b
$←− {0, 1} is sampled, and then a challenge ciphertext c ←

Enck(mb) is computed and given to A.
3. A continues to have oracle access to Enck and Deck (with the exception

that decryption for challenge ciphertext is not allowed) and finally outputs
b′ ∈ {0, 1}.

4. The experiment outputs 1 if b′ = b, and 0 otherwise.



A.2 Public-Key Encryption Schemes

Definition 9 (Public-key encryption schemes). A public key encryption
scheme Π is a tuple (KeyGen,Enc,Dec) with message space M, such that

– KeyGen(1n) is a PPT algorithm that takes a security-parameter 1n and out-
puts a pair of public and private keys (pk,sk).

– Encpk(m) is a PPT algorithm that encrypts message m ∈ M under public
key pk and outputs a ciphertext c.

– Decsk(c) is a deterministic polynomial-time algorithm that decrypts a cipher-
text c using secret key sk and outputs a plaintext m (or ⊥).

Definition 10 (Correctness). We say that a public-key encryption scheme Π
= (KeyGen,Enc,Dec) is correct, if it holds for every plaintext m ∈M that

Pr
(pk,sk)←KeyGen(1n)

[ Decsk(Encpk(m)) 6= m ] = negl(n) .

Definition 11 (IND-CPA/IND-CCA PKE). For X ∈{CPA,CCA}, a public-
key encryption scheme Π = (KeyGen,Enc,Dec) is IND-X secure if for any PPT
adversary A

Pr[ PKEXΠ,A(1n) = 1 ] ≤ 1

2
+ negl(n) ,

where PKEcpaΠ,A(1n) is the IND-CPA indistinguishability experiment defined as
below:

1. On (pk, sk) ← KeyGen(1n), the adversary takes as input 1n and pk. Then,
he outputs a pair of messages m0 and m1 of the same length.

2. A random bit b
$←− {0, 1} is sampled, and then a challenge ciphertext c ←

Encpk(mb) is computed and given to A.

3. A continues his computation and finally outputs b′ ∈ {0, 1}.
4. The experiment outputs 1 if b′ = b, and 0 otherwise.

and PKEccaΠA(1n) is the IND-CCA indistinguishability experiment defined as be-
low:

1. On (pk, sk) ← KeyGen(1n), the adversary takes as input 1n and pk, and is
given oracle access to Decsk. Then, he outputs a pair of messages m0 and
m1 of the same length.

2. A random bit b
$←− {0, 1} is sampled, and then a challenge ciphertext c ←

Encpk(mb) is computed and given to A.

3. A continues to have oracle access to Decsk (with the exception that decryption
for challenge ciphertext is not allowed) and finally outputs b′ ∈ {0, 1}.

4. The experiment outputs 1 if b′ = b, and 0 otherwise.



B Facts, Lemmas, Inequalities and Proofs Omitted

Lemma 18 (Sample-preserving reduction). For the same assumptions and
notations as in the proof of Theorem 2, we have

(f(x, e;Z), Z,A, A·y+e, rT, rT · y)
c∼ (f(x, e;Z), Z,A, A·y+e, rT, U1)

⇒ (f(x, e;Z), Z,A, A·y+e)
c∼ (f(x, e;Z), Z,A, Uq′) .

Proof. Assume for contradiction that there exists a polynomial p(·) and a PPT
distinguisher D such that

Pr[D(f(x, e;Z), Z,A, A·y+e) = 0]− Pr[D(f(x, e;Z), Z,A, Uq′) = 0] ≥ 1/p(n)

for infinitely many n’s and we recall that y, r ∼Uλ. Given input (z1,z,A,A·y +
e,rT), we use an efficient D′ (which invokes D) to predict the Goldreich-Levin
hardcore bit rT·y with non-negligible probability (and thus a contradiction to the

assumption). D′ chooses a random u
$←− {0, 1}q′ ,computes a new q′×n Boolean

matrix Ã = A− u · rT, applies D on (z1, z, Ã,Ay + e) and outputs his answer.
Note that Ã ∼ Uq′×n and Ay + e = Ãy + e + u · rTy. Therefore, when rTy = 0

we have (z1, z, Ã,Ay + e) follows (f(x, e;Z), Z, Ã, Ã·y+e) and for rTy = 1 it
is distributed according to (f(x, e;Z), Z, Ã, Uq′).

Pr[D′(f(x, e;Z), Z, Ã, Ãy + e, rT) = rT·y]

= Pr[rT·y = 0] · Pr[D′(f(x, e;Z), Z, Ã, Ãy + e, rT) = 0 | rT·y = 0]

+ Pr[rT·y = 1] · Pr[D′(f(x, e;Z), Z, Ã, Ãy + e, rT) = 1 | rT·y = 1]

=
1

2

(
Pr[ D(f(x, e;Z), Z,A, A·y+e) = 0]

+ 1− Pr[ D(f(x, e;Z), Z,A, Uq′) = 0]
)

≥ 1

2
+

1

2p(n)
,

which completes the proof.

Proof of Lemma 9. Consider |(S′0 − S0)Te + (E0 − E′0)Ts
∣∣ conditioned on any

|e| ≤ 1.01µn (except for a 2−Ω(n)-fraction) and |s| ≤ 2µn. We have by Lemma 7

and Lemma 8 that ST
0 e, S′0

T
e are i.i.d. to Bqδ1 , and E0

Ts, E′0
T
s are i.i.d. to Bqδ2 ,

where δ1≤1/2−n−α/2 and δ2≤1/2−n−α/2. Thus,
(
(S′0−S0)Te + (E0−E′0)Ts

)
follows Bqδ for δ≤1/2 − 2n−3α by the Piling-up lemma, and then we complete
the proof with Lemma 2. �

Lemma 19 (Flattening Shannon entropy). For any n ∈ N, 0 < µ < 1/2
and any constant 0 < ∆ < 1, there exists some random variable W ∈ {0, 1}n
such that H∞(W ) ≥ (1−∆)nH(µ) and SD(Bnµ ,W )≤2−Ω(µn).
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