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Abstract. The subfield attack exploits the presence of a subfield to
solve overstretched versions of the NTRU assumption: norming the pub-
lic key h down to a subfield may lead to an easier lattice problem and
any sufficiently good solution may be lifted to a short vector in the full
NTRU-lattice. This approach was originally sketched in a paper of Gen-
try and Szydlo at Eurocrypt’02 and there also attributed to Jonsson,
Nguyen and Stern. However, because it does not apply for small mod-
uli and hence NTRUEncrypt, it seems to have been forgotten. In this
work, we resurrect this approach, fill some gaps, analyze and generalize
it to any subfields and apply it to more recent schemes. We show that
for significantly larger moduli —a case we call overstretched— the sub-
field attack is applicable and asymptotically outperforms other known
attacks.

This directly affects the asymptotic security of the bootstrappable ho-
momorphic encryption schemes LTV and YASHE which rely on a mildly
overstretched NTRU assumption: the subfield lattice attack runs in sub-
exponential time 20/ log!/% %) invalidating the security claim of 2000
The effect is more dramatic on GGH-like Multilinear Maps: this attack
can run in polynomial time without encodings of zero nor the zero-testing
parameter, yet requiring an additional quantum step to recover the secret
parameters exactly.

We also report on practical experiments. Running LLL in dimension 512
we obtain vectors that would have otherwise required running BKZ with
block-size 130 in dimension 8192. Finally, we discuss concrete aspects of
this attack, the condition on the modulus ¢ to guarantee full immunity,
discuss countermeasures and propose open questions.
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1 Introduction

Lattice-based cryptography relies on the presumed hardness of lattice
problems such as the shortest vector problem (SVP) and its variants. For
efficiency, many practical lattice-based cryptosystems are based on as-
sumptions on structured lattices such as the NTRU lattice. Introduced
by Hoffstein, Pipher and Silverman [HPS96/HPS98], the NTRU assump-
tion states that it is hard to find a short vector in the R-module

Al = {(z,y) € R? s.t. ha —y = 0 mod ¢}

with the promise that a very short solution —the private key— (f, g)
exists. The ring R = Z[X]/(P(X)) is a polynomial ring of rank n over
Z, typically a circular convolution ring (P(X) = X™ — 1) or the ring of
integers in a cyclotomic number field (P(X) = @,,(X) and n = ¢(m)).

Following the pioneer scheme NTRUENCRYPT [HPSO8|, the NTRU
assumption has been re-used in various cryptographic constructions such
as signatures schemes [HHGPT03/DDILLI13], fully homomorphic encryp-
tion [LTVI2IBLLN13] and a candidate construction for cryptographic
multi-linear maps |[GGH13al[LSST4JACLL15]. After two decades of crypt-
analysis, the NTRUENCRYPT scheme remains essentially unbroken, and
is one of the fastest candidates for the public-key cryptosystems in the
post-quantum era.

Coppersmith and Shamir [CS97] noticed that recovering a short enough
vector, may it be different from the actual secret key (f,g), may be suf-
ficient for an attack and claimed that the celebrated LLL algorithm of
Lenstra, Lenstra and Lovasz [LLL82] would lead to such an attack. How-
ever, it turned out [HPS98] that for sufficiently large dimension n, a much
stronger lattice reduction is required and that the NTRUENCRYPT is
asymptotically secure. Meanwhile, parameters have been updated to take
account for progress in lattice reduction algorithms and potential quan-
tum speed-ups [HPS™15].

Other types of attacks have been considered, such as Odlyzko’s meet-
in-the-middle attack described in [HSWOG]. In practice, the best known
algorithm for attacking NTRU lattices is the combined lattice-reduction

The full version of the paper is available on http://eprint.iacr.org/2016/127.
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and meet-in-the-middle attack of Howgrave-Graham [HGO07]. Asymptot-
ically, a slightly sub-exponential attack against the ternary-NTRU prob-
lem was proposed by Kirchner and Fouque [KF15], with a heuristic com-
plexity 2€(n/loglogd) which is to our knowledge the only sub-exponential
attack when ¢ is polynomial in n.

It is typically assumed that NTRU lattices are essentially as intractable
as unstructured lattices with similar parameters@, but without the struc-
ture of R-module.

In the present work, we consider the application of lattice reduction
in a subfield to attack the NTRU assumption for large moduli g. This
subfield lattice attack is asymptotically faster than the direct lattice
attack as soon as ¢ is super-polynomial, and may also be relevant for
polynomially-sized q. We call the problemﬁ considered in this work “over-
stretched NTRU” to distinguish it from the original NTRU parameter
choices, which remain secure.

Asymptotics. The subfield attack leads to solving overstreched NTRU in-
stances in time complexity poly(n)-26%) with 8/ log 3 = © (n logn/ log? q)
when ever the relative degree parameter r = ©(log ¢/ log n) is greater than
1. In comparison, the direct lattice attack required setting §/logfp =
6 (n/log q).

We are mostly concerned with overstretched NTRU assumptions when
q is super-polynomial in n, in which case the best known attacks are al-
ready sub-exponential in n. For cryptographic relevance, we will there-
fore state all our asymptotics in terms of what was previously thought
as the security parameter \: given ¢ = ¢(\) we constrain n = n(\) so
that the previously best known attack requires exponential time 260, In
this cryptographic metric, the subfield lattice attack is sub-exponential as

soon as ¢ is super-polynomial, and gets polynomial for larger parameters
q =200 = 90(Vn),

Our contribution. In this work, we resurrectﬁ the subfield lattice attack
sketched in [GS02] Sec. 6], attributed to Gentry, Szydlo, Jonsson, Nguyen
and Stern. It consists of norming down the secret key to a subfield, run-

4 Volume, dimension and length of unusually short vectors.

® The NTRU problem has also been recently been referred to as DSPR (Decisional
Small Polynomial Ratio), but we prefer its historical name for fair attribution of
this invention.

5 A preliminary version of this work qualified the attack considered in this work as
new. We are grateful to John Schanck for pointing us to this prior art.



ning lattice reduction in the subfield to solve a smaller, potentially easier
lattice problem and lifting the solution back to the full field.

While the original sketch [GS02] only considered the maximal real
subfield, we naturally generalize it to any subfield. We also spell out a
different lifting step from arbitrary subfields and prove it applicable even
if only an approximation of the normed-down key is found.

We then show that this algorithm solves the overstretched NTRU
problem in sub-exponential time when the modulus ¢ is quasi-polynomial
in the security parameter A and in polynomial time when the modulus
q is super-exponential in A (equivalently, ¢ = 26(vV™). Applying this al-
gorithm, we show that it gives a subexponential attack on parameter
choices for NTRU-based FHE schemes [LTVI2I/BLLN13] which were be-
lieved secure previously. We also show that this algorithm enables new
attacks on GGH-like graded encoding schemes [GGHI3alLSST4/ACLL15].
These attacks lead to subexponential classical and polynomial-time quan-
tum attacks on GGH-like constructions but do not require encodings of
zero nor do they use the zero-testing parameter in contrast to previous
work [HJ15].

We also report on experimental results for the subfield lattice attack
which show that the attack is meaningful in practice. Using LLL in di-
mension 512 we have obtained vectors that would have required running
BKZ with block-size about 130 in dimension 8192. We refer the reader to
the full version of this work for the experimental results.

Related work. As mentioned above, a variant of the attack considered in
this work was sketched in [GS02]. Moreover, the Gentry-Szydlo algorithm
from the same work, which allows to reconstruct an element a given the
ideal (a) as well as the Gram element aa, i.e. the norm Ng g+ (a) of a
relatively to the real subfield, can be seen as a subfield attack. It lead
to an attack of the NSS scheme [HPS01] in which the Gram element aa
was leaked as the covariance of a certain function of the signatures. The
Gentry-Szydlo algorithm was recently revisited [LS14].

This attack is very similar in spirit to an attack of Gentry [Gen0l]
against the NTRU-composite assumption which tackles NTRU problems
over rings R that can be written as direct products R ~ R X Ra. More
specifically [Gen0l] targets circulant convolution rings Z[X]/(X"™ — 1) ~
Z[X]/(X™ —1) x Z[X]/(X™ — 1) where n = nyny. Under such condition,
there exists a projection 7 : R — R that is a ring homomorphism, and
he showed that this projection could only increase the Euclidean length of
secret polynomials by a factor y/ng. This makes this attack very powerful



(even when the modulus ¢ is quite small). Because this projection is a
ring homomorphism, this approach is not limited to NTRU and would
also apply to Ring-SIS or Ring-LWE.

In some sense, the line of work by Lauter et al. [ELOST5/EHL14JCLS15]
against skewed] variants of Ring-LWE falls in this framework, with a
direct factorization of the rings R modulo ¢: (R/qR) ~ (Ri/qR1) X
(R2/qR2). As already noted in [GenOl], this requires the —seemingly
sporadic— property that the projection map m; : (R/qR) — (R1/qR1)
induces only a manageable geometric distortion. Similar ideas are being
explored to attack schemes based on certain quasi-cyclic binary codes in
work [Loil4|LJI4/HT15].

In comparison, this work tackles NTRU when the ring R equals Ok
(the ring of integer of a number field K) and therefore cannot be a direct
product; and when K admits proper subfields. Due to the aforementioned
attack of |Gen0I], direct product rings are now avoided for lattice-based
cryptography, and the typical choice is to use the ring of integers of a cyclo-
tomic number field of the form R = Og(,,) = Z[w]. This setting allows
to argue worst-case hardness of certain problems (Ring-SIS [Mic02], Ideal-
LWE [SSTX09], later improved and renamed to Ring-LWE [LPR10]). Yet
all those number fields admit proper subfields (at least, the maximal real
subfield). Instead of using a projection map , this attack exploits a rela-
tive norm map N1, : Ox — Oy, which is only a multiplicative map. This
induces a significant yet manageable blow-up on the Euclidean length of
secret polynomials and requires a large modulus g. This seems to also
limit this attack to the NTRU setting.

Our work is also strongly inspired by the the logarithm-subfield strat-
egy of Bernstein [Berl4], which anticipated other works towards a loga-
rithm attack [CGSI4JCDPRI16]. While the presence of subfields was in
the end not necessary for the recovery of short generators of principal ide-
als in cyclotomic rings, we show in this work that, indeed, the presence
of proper subfields can be exploited in other specific set-ups.

Concurrently and independently to this work, Cheon, Jeong and Lee
also investigated subfield attacks on GGH-like graded encoding schemes
in work [CJL16]. The general approach is very similar to the one adopted
in this work. In |CJL16], however, the trace map is utilised instead of
the norm and the result is only presented for the case of powers-of-two
cyclotomic rings. Despite using the trace map —which is linear— they

" It was recently shown that these attacks were in fact made possible by an improper
choice of a very skewed error distributions leading to several noise-free linear equa-
tions [CIV16/Peil6].



obtain a growth of the secret that is similar to ours: multiplicative. For
example, when the relative degree of K over L is r = 2, the trace map
Trg 1, sends g/ f to g/ f + g/f = (9f +3f)/ff where - denotes the ade-
quate automorphism. For comparison, the norm N 1, sends g /ftogg/ff.
Using the norm map is therefore slightly better when both f, g have the
same size (the numerator is smaller by a factor ~ 1/r); but the trace map
could be very advantageous when g > f. Furthermore, Cheon, Jeong and
Lee achieve better results for GGH-like graded encoding schemes by mak-
ing use of the zero-testing parameter which leads to a polynomial-time
classical attack for large levels of multilinearity k.

Outline. Section [2] gives preliminaries on the geometry of NTRU lattices
and a brief introduction of the lattice reduction algorithms. Section [3]
then presents the subfield lattice attack with its asymptotic performance
analyzed in Subsection B4l In Section [, we apply this attack to the FHE
and MLM constructions proposed in recent literature. In Section [, we re-
port experimental results for the subfield lattice attack. Finally, Section
presents the conclusions and suggests directions for future research.
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2 Preliminaries

Vectors are presented in row vectors. The notation [ -], denotes reduction
modulo an integer gq.

2.1 Number fields and subfields

We assume some familiarity with basic algebraic number theory. The
reader may refer to [Sam70] for an introduction on the topic.

Let K be a number field of degree n = [K : Q] over Q, and assume
K is a Galois extension of Q with the Galois group G. The fundamental
theorem of Galois Theory states an one-to-one correspondence between
the subgroups G’ of G and the subfields L of K with G’ being the subgroup
of G fixing L. Let therefore IL be a subfield of K and G’ be the subgroup



of G fixing L, and denote n’ = [L : Q], r = [K : L] (so r = n/n’). The
number fields K, L. and therefore the degrees n, n’ and relative degree r
are fixed in the rest of this work.

The relative norm N, : K — L (resp. relative trace Trg ., : K — L)
is a multiplicative (resp. an additive) map defined by

Nk :aw H Y(a), resp. Trg:ar Z Y(a). (1)

PpeG’ ped’

The canonical inclusion . C K will be written explicitly as L : L. — K.
The ring of integers of K and L are denoted by Ok and Of..

A number field of degree n admits n embeddings —i.e. field morphisms—
to the complex numbers. Writing K = Q(X)/(P(X)) for some monic irre-
ducible polynomial P, and letting «q, ..., a, € C be the distinct complex
roots of P, each embedding e; : K — C consists of evaluating a € K at a
root «;, formally e; : a — a(a;). The Galois group acts by permutation
on the set of embeddings.

Cyclotomic Number Field. We denote by wy, an arbitrary primitive m-
th root of unity. For cryptanalytic purposes, we are mostly interested in
the case when K = Q(wy,) is the m-th cyclotomic number field; But we
may also want to instantiate the attack for subfields L of K that are not
necessarily cyclotomic number fields.

The number field L = Q(w,,) has degree n = ¢(m), and has a Galois
group isomorphic to Z},: explicitly ¢ € Z}, corresponds to the automor-
phism 9); : wy, = w?,. Any number field Q(w,,/) for m’|m is a subfield of
Q(wm), but there are other proper subfields. In particular, the maximal
real subfield Q(wy, + @p,) is a proper subfield of degree n/2, and more
generally, K = Q(w,) admits a subfield of degree n’ for any divisor n’ \nﬁ

We recall (see [Was97], Theorem 2.6) that the ring of integers Ok of
K = Q(wy,) is exactly Z[w,y,].

2.2 Coprimality in O,

To argue below that we can lift solutions in the subfield to the full field,
we rely on two randomly chosen elements in O, being coprime. We use
density results to estimate such probability. The density of coprime pairs
of ideals [Sit10] and elements [FM14] in O, is 1/¢1(2) where (1, denotes
the Dedekind zeta function over K.

8 For example, 7 is prime, so Q(wr) admits no cyclotomic number fields as proper

subfields, yet it admits two proper subfields: Q(wr 4+ @) of degree 3 and Q(wr + w? +
w?) of degree 2.



We consider (g, for cyclotomic number fields K = Q(w,,) where m = p¥
for some prime p. The next lemma shows that limy_,~ (1.(s) = 1/(1—p~%)
for real s > 3/2.

Lemma 1. Let L be a cyclotomic number field Q(wy,) for m' = p*. Then
for any real s > 3/2 we have

lim G(s) = 1/(1—p7).

In particular limg_,o, (1.(2) = 4/3 for cyclotomic number fields of conduc-
tor m' = 2F.

Proof. Please refer to the full version of this work for the proof. a

Further, we numerically approximated ¢ '(2) for L = Q[z]/(2" +
1) for n = 128 and n = 256 by computing the first 222 terms of the
Dirichlet series of the Dedekind zeta function for I and then evaluated
the truncated series at 2. In both cases we get a density ~ 0.75.

We stress that our pairs f’, ¢’ are random elements obtained as rel-
ative norms Ny, (f),Ng/(g) of random short f and g, and under the
additional condition that f is invertible modulo ¢q. However, our experi-
ments indicate that 3/4 is a good approximation of the actual probability
of coprimality. Additionally, it seems that this requirement is an artifact
of our proof, as experiments succeeded even when those elements had a
common factor.

2.3 Euclidean geometry

The number field K (or L) is viewed as a Euclidean Q-vector space by
endowing it with the inner product

(a,b) = e(a)e(b) (2)

where e ranges over all the n (or n’) embeddings K — C. This defines a

Euclidean norm denoted by | - ||. In addition to the Euclidean norm, we
will make use of the operator norm | - | defined by:
la| = sup [laxl]/[]]. (3)
zeK*

It is easy to check that the operator norm |a| of a equals to the maximal
absolute complex embedding of a:

|a] = maxe(a)] (4)



where e ranges over all the embeddings e : K — C. We note that if w € K
is a root of unity, then |w| = 1. The operator’s norm is sub-multiplicative:
lab] < |a||b], and we have the inequality |a| < ||a||. The Euclidean norm
and the operator norm are invariant under automorphisms v : K — K,

lall = [l (a)ll,  lal = [¢(a)l ()

since the group of automorphisms acts by permutation on the set of em-
beddings. One also verifies that |L(a)||*> = r|la||* and |L(a)| = |a| for
all @ € L. Additionally, the algebraic norm can be bounded in term of
geometric norms:

Nk/q(a) < la[* <fla]™. (6)

The inner product (and therefore the Euclidean norm) are extended
in a coefficient-wise manner to vectors of K%: ((ay, ..., aq), (b1,...,bq)) =

> {ai, bi).

Definition 1. A distribution D over K¢ is said to be isotropic of variance
o2 >0 if, for any y € K it hold that

Ezep [(2,9)?] = o*|lyl”

where E[-] denotes the expectation of a random variable.

Remark. In most theoretical work, the distributions of secrets or errors are
spherical discrete Gaussian distribution over O which are isotropic —up
to negligible statistical distance. For simplicity, some practically oriented
work instead chose random ternary coefficients. In the typical power-of-
two case cyclotomic case, such distribution is isotropic of variance 2n/3.
Yet, for more general choices K = Q(wy,), in the worse case (when m is
composed of many small distinct prime factor), this may induce up to
quasi-polynomial distortion n'°8(") (see [LPRI0]). Such choice of set-up
should only marginally affect our asymptotic results.

2.4 Ok modules and lattices

To avoid confusion, we shall speak of the rank of Og-modules and of
K-vectors-spaces when K # Q, and restrict the term of dimension to
Z-modules and Q-vector spaces.

The dimension dim(A) of a lattice A is the dimension over Q of the Q-
vector space it spansg?]. We recall that the minimal distance of a lattice A

9 Or equivalently, the size of a minimal sets of Z-generators, since Z is a principal
ideal domain.



is defined as A1 (A4) = min,e 1\ 0y [|v]|- Also, the volume of a lattice Vol(A)
is defined as the square root of the absolute determinant of the Gram

matrix of any basis {b1...bgim(a)} of 4 Vol(A) = /det([(b;, )], ;). For
any set of Q-linearly independent vectors {v1, ..., vgim(1)} C 4, we have
the inequality:

Vol(4) < [T fluil. (7)

The rank of an Og module M C K% can be defined as the rank over K
of the K vector-space it spans, but it does not necessarily equal the size of
a minimal set of OK—generator@. The Euclidean vector space structure
of K¢ allows to view any discrete Og-module M C K% as a lattice. The

discriminant Ag of a number field relates to the volume of its ring of
integers /|Ak| = Vol(Oxk). More generally, we have the identity:

VOI(GOK) = NK/Q(G)\/ ‘AK’ (8)
This gives rise to a lower bound on the volume Og-modules of rank 1 in
term of its minimal distance:

Lemma 2. Let M C K¢ be a discrete Og-module of rank 1. It follows
that Vol(M) < A\ (M)" /| Ak].

Proof. Without loss of generality, we may assume that d = 1 (by con-
structing a K-linear isometry ¢ : Spang (M) - K ®g R). Let a € K®g R
be a shortest vector of M, we have M DO aOk, therefore Vol(M) <
Vol(aOk) = Ng/g(a)y/|Ak|, and we conclude noting that Nk g(a) <
™. 0

2.5 NTRU assumption
Let us first describe the NTRU problem as follows.

Definition 2 (NTRU problem, a.k.a. DSPR). The NTRU problem is
defined by four parameters: a ring R (of rank n and endowed with an inner
product), a modulus q, a distribution D, and a target norm 7. Precisely,
NTRU(R,q,D, ) is the problem of, given h = [gffl]q (conditioned on f
being invertible mod q) for f,g + D, finding a vector (z,y) € R? such
that (x,y) # (0,0) mod q and of Euclidean norm less than 7+/2n in the
lattice

A = {(z,y) € R? s.t. hx —y = 0 mod q}. 9)

10 Non-principal ideals of K being a counter-example.



We may abuse notation and denote NTRU(R, q,0,7) for NTRU(R, ¢, D, )

where D is any reasonable isotropic distribution of variance o?.

Note that NTRU(R, ¢, 0, o) is essentially the problem of recovering the
secret key (f,g). Yet, in many cases, solving NTRU(R, ¢q,0,7) for some
T > o is enough to break NTRU-like cryptosystems.

The NTRU lattice Af. The lattice A} defined by the instance h <
NTRU(Ok, ¢, o, 7) has dimension 2n and volume VOI(R)Zq”. Consequently,
if h were to be uniformly random, the Gaussian heuristic predicts that
the shortest vectors of A} have norm VOI(R)I/ "\/ngq/me. Therefore, when-
ever o < Vol(R)l/"\/q/Qwe, the lattice A} admits an unusually short vec-
tor. This vector is not formally a unique shortest vector: for example, if
K = Q(wm), R = Ok, all rotations (w?, f,w!,g) of that vector have the
same norm.

Target parameter T for attacks. Because no solution would be expected
if h was uniformly random, note that solving h < NTRU(R, ¢, o, 7) for
7 < Vol(R)Y™\/q/2me already constitutes a distinguishing attack on the
NTRU problem. As we discuss in Section Ml solving NTRU for such 7
would break the FHE scheme based on NTRU from [LTV12] and typical
parameter choices for the scheme presented in [BLLNT3].

2.6 Lattice reduction algorithms

Lattice reduction algorithms have been studied for many years in work
such as [LLL82JSch87JGNOS/HPS11]. From a theoretical perspective, one
of the best lattice reduction algorithm is the slide reduction algorithm
from |[GNOS].

Theorem 1 (|[GNOS8|). There is an algorithm that, given € > 0, the
basis B of a lattice L of dimension d, and performing at most

poly(d, 1/¢, bitsize(B))

many operations and calls to an SVP oracle in dimension 3, outputs a
vector v € L whose length satisfies the following bounds:

— the approximation-factor bound:

d—

[ol < (1 +€)ys)7=1 - Au(L) (10)

where A1 (L) is the length of a shortest vector in L and g = [3 is the
B-dimensional Hermite constant.



— the Hermite-factor bound:
v < ((1+¢€)y 2(]f’_‘IQ'VolL 1/d 11
B

Alternatively, one may use the BKZ algorithm [Sch87] and its termi-
nated variant [HPS11]. Similar to slide reduction, the terminated BKZ
performs at most poly(d, 1/¢, bitsize(B)) many operations and calls to an
SVP oracle in dimension f; and outputs a vector v € L whose length has
order 3°(n/B) ~V01(L)1/d. Using [Lov8T7, p. 25], the terminated BKZ also
provides an algorithm to find an approximated shortest vector of length
BM/B) . \{(L) in similar time.

It is well known [CN11] that in practice lattice reduction algorithms
achieve much shorter results and are more efficient, but the approximation
and Hermite factors remain of the order of 82("/#) asymptotically, for a
computational cost in poly () - 20(8) . We will use such estimate in the
following analysis.

3 The subfield lattice attack

The subfield lattice attack works in three steps. First, we map the NTRU
instance to the chosen subfield, then we apply lattice reduction, and finally
we lift the solution to the full field. We first describe the three steps of the
attacks in Sections B.1] and B3l In Section B4l we then analyze the
asymptotic performances compared to direct reduction in the full field for
cryptographically relevant asymptotic parameters.

We are given an instance h < NTRU(Ok,q,0,7), and (f,g) € Ok is
the associated secret. We wish to recover a short vector of A%.

3.1 Norming down

We define f = Ng/.(f), ¢ = Ng/(g), and b’ = N, (h). The subfield
attack follows from the following observation: (f’,g¢’) is a vector of A7,
and depending on the parameters it may be an unusually short one.

Lemma 3. Let f,g € Ox ®q R be sampled from continuous spherical
Gaussians of variance o?. For any constant ¢ > 0, there exists a constant
C, such that,

lg'll < (en©)"s I < (0n9)", IF1< (0n€)"s 7Y < (n/0)

except with probability O(n™°).



Proof. For all embeddings e : K — C, it simultaneously holds that
o/n < le(f)] < on® (12)

except with polynomially small probability O(n~¢). Once this is estab-
lished, the conclusion follows using the invariant |¢(a)| = |a| since f' =
[T1#(f), where 9 ranges over r automorphisms of K.

To prove inequality (I2), note that for each embedding e, the R(e(f))
and (e(f)) follow a Gaussian distribution of parameter ©(n)o. Classical
tails inequality gives the upper bound |e(f)| < on®. For the lower bound,
we remark that the probability density function of a Gaussian of param-
eter ©(n)o is bounded by 1/(©(n)o). This implies that the probability
that a sample falls in the range ﬁ[—e, €] is less than 2e. It remains to

7071)

choose € = O(n which gives the conclusion by the union-bound. 0O

In this work, we assume that Lemma Bl holds also for all reasonable
distributions considered in cryptographic constructions.

Heuristic 1 For any m and any f,g € Ok with reasonable isotropic
distribution of variance o2, and any constant ¢ > 0, there exists a constant
C, such that,

gl < (an®)", 11 < (on)",  |F1 < (on®)", |f7H < (n9)0)"

except with probability O(n=°).

3.2 Lattice reduction in the subfield

We now apply a lattice reduction algorithm with block-size [ to the lattice
Aj,, and according to the approximation factor bound (I0) we obtain a
vector (2/,y) € A}, of norm:

(', )| < BECM/BY X (AL) < BEWET L 1(f, )] (13)
< BOM/BN) . (1)) (14)

Next, we argue that if the vector (2',y) is short enough, then it must be
an Og-multiple of (f’,¢’). In turn, this will allow us to lift (z/,%’) to a
short vector in the full lattice Af.

Theorem 2. Let f',g' € O be such that (f') and (g') are coprime ideals
and that I f' = g’ mod qOy, for some h' € O. If (a',y') € A}, has length
satisfying
q
1@y < v (15)
1)l

then (2',y") =v(f',g") for some v € OL.



Proof. We first prove that that B = {(f’,¢'),(F',G')} is a basis of
the Op-module A, for some (F',G’) € O?. The argument is adapted
from [HHGP™03], Section 4.1. By coprimality, there exists (F’, G’) such
that f'G’ — ¢'F' = q € Op. We note that:

F(F,G) = F'(f.g) = (0,q):
J(F.G) = G(f.q) = (~q.0):
F,(F9) = (1L,W) mod q.

'y
g

That is, the module M generated by B contains ¢O? and (1,h'): we
have proved that A, C M. Because dety(B) = f'G' — ¢F' = q =
dety,({(1,4/),(0,¢)}) we have Vol(M) = |ALl¢" = Vol(Aj,) and there-
fore M = Az,.

We denote A = (f',¢")OL and A* the projection of (F',G")Or or-
thogonally to A. Let s* of length A} be a shortest vector of A*. We will
conclude using the fact that any vector of A7, of length less than A} must
belong to the sublattice A. It remains to give an lower bound for Aj.

We will rely on the identity Vol(A) - Vol(A*) = Vol(Af,) = |Ap|¢" . By
Lemma [2, we have

Vol(A4) < |AL2|[(f, )™ and Vol(4%) < [AL[Y?||s*™.  (16)

([I5) ensures that ||(z/,y')|]| < A}, and we conclude that (2/,y') € A =
(f',9")OL. 0

We deduce that Af = ||s*|| > q/||(f",¢')||. Therefore, the hypothesis

We note that according to Heuristic [I], the length condition of Theo-
rem [2] are satisfied asymptotically when

BQ(H/BT) . (na)@(”) <q. (17)

The probability of satisfying the coprimality condition for random
1’y ¢’ is discussed in Section [Z2] where we argue it to be larger than a
constant. On the other hand, experiments (cf. Section[fl) show that the co-
primality condition does not seems necessary in practice for the subfield
lattice attack to succeed.

The partial conclusion is that, one may recover non-trivial informa-
tion about f and g — namely, a small multiple of (f’,¢’) — by solving
an NTRU instance in a subfield. Depending on the parameters, this new
problem is potentially easier since the dimension n’ = n/r of Oy, is signif-
icantly smaller than the dimension 2n of the full lattice A‘}IL.



3.3 Lifting the short vector

It remains to lift the solution from the sub-ring O, to Ok. Simply compute
the vector (z,y) where

r=1L(z') and y=L(y)-h/L(h") modq (18)

where L : L — K is the canonical inclusion map of . C K.

Recall from Theorem B that (2',v/) = v(f’,¢'). We set f = L(f")/f,
§=L(g")/g and h = L(h')/h. Note that f,§ and h are integers of K. We
rewrite

I
h

T (v) - f - f mod q.

L(v)- L(g")/h = L(v) - gg/h mod q

L(v) - f-g mod q.

)

That is, under condition (I7) we have found a short multiple of (f, g):

(z,y) =u-(f,g9) € A} with u = L(v) - f € Ok
1 )l < Jol - A7 19

< || AT 9
< BOM/B) . ()P,

The first inequality is established by writing f as the product of r — 1
many 9 (f) where the ¢’s are automorphisms of K. The second inequality
decomposes v = 2’/ f’, and the last follows from Lemma [B] or Heuristic [II

Not only we have found a short vector of Aj, but also have the
guarantee that it is an Og-multiple of the secret key (f,g). This sec-
ond property will prove useful to mount attacks on the graded encoding
schemes [GGH13a].

3.4 Asymptotic performance

For the subfield attack to be successful, we require
Vi = B/ (B7)) DYV I O/ (Br) . pO(r)

when o = poly(n). Hence, asymptotically we get

I5} _ 0 4n
log8 rlogg —2r2logn )’



where we require rlog ¢ — 272logn > 0. Setting r = 1 roughly recovers
the lattice attack in the full field. Setting r = log¢/(4 logn) minimizes
the expression.

We illustrate the complexity for two extreme cases, where all parame-
ters are expressed in term of a security parameter A\, and are such that the
previously best known attack required time greater than 2*. Additionally,
it is assumed that K contains adequate subfields so that a subfield L of the
desired relative degree r exists. This condition is satisfied asymptotically
for the typical choice K = Q(wqr ).

In the first case, we set ¢ = 29V and the subfield attack is polynomial
in the security parameter. For the second case, we show that as soon as ¢
gets super-polynomial, the subfield attack can be made sub-exponential.

Remark. Our analysis does not rule out that the attack may even be rele-
vant even for polynomial gaps ¢/o: it could be that it remains exponential
but with a better constant than the direct attack.

Exponential and super-exponential g. We set:
n =0\ log?)), ¢=exp(@(Alog?))), o =poly(\). (19)

Complezity of the direct lattice attack. With such parameters, using 2
operations, we argue that one may not find any vector shorter than
A1(qOk) = ¢y/n. Indeed, one may run lattice reduction up to block-size
B = ©O()\). Either from approximation bound or Hermite bound, the vec-
tor found should not be shorter than:

BONB) = exp (B(A\2log®(\)/N)) > A1 (qOk). (20)

We verify that having such choice of super-quadratic n makes the Kirchner-
Fouque [KF15| attack at least exponential in \: exp(@(n/loglogq)) =
exp(©(A\%log?(\)/log \)) > exp(O(N)).

Complexity of the subfield attack. In contrast, the same parameters allow
the subfield attack to recover a vector of norm less than ,/q in polynomial
time: set » = O(\) and 5 = O(log A). Then, the vector found will have
norm

2
FOM/BN) . p00) _ oy (@ (A10BAIBlOBA L\ (21)
Alog A

= exp (O(Alog Aloglog \)) < \/q. (22)



Similarly, setting n = © ()\2), qg=-exp(B(N), g =06 (logH‘E )\), r=
O (A/ (log Aloglog A)) leads to a quasi-polynomial version of the subfield
attack for exponential q.

Quasi-polynomial q. We set
n = O (Mog® Moglog (\)), ¢ =-exp(@(log*® 1)), o =poly(\).

Complexity of the direct lattice attack. With such parameters, using 2*
operations, we argue that one may not find any vector shorter than
A1(qO0k) = ¢+/n. Indeed, one may run lattice reduction up to block-size
B = ©O()\). Either from approximation bound or Hermite bound, the vec-
tor found should not be shorter than:

BEM/B) = exp (© (log'** Aloglog A)) > A1 (¢Ok). (23)

We verify that having such choice of super-linear n makes the Kirshner-
Fouque [KE15| attack at least exponential in A: exp(©(n/loglogq)) =
exp(O (Mog® Moglog A/ loglog! ™ X)) > exp(O(N)).

Complexity of the subfield attack. In contrast, the same parameters al-
low the subfield attack to recover a vector of norm less than /g in sub-

exponential time exp(A/log”? \): set r = O(log?/? \) and 8 = O(\/ log*/?
Then, the vector found will have norm

1+4¢
gOw/En 0 — o [0 log' "3 ();) loglog()) Floght2/3¢())
logs“(A)
= exp <@ <log1+2/35 (A) loglog (A))) <q. (24)

4 Applications

We apply this attack to the FHE and MLM constructions from the lit-
erature and show that it necessitates to increase parameters for these
schemes to remain secure at level A. In the cryptographic context, we
typically have K = Q(wy,), m a power of 2, and speak of the ring
R = ZyX]/(X™ + 1) ~ Ok endowed with the cannonical inner product
of its coefficients vector. The ring isomorphism p : R — Ok is a scaled
isometry: ||u(x)|| = v/n||z|]. This normalization is quite convenient, for
example ||[1z| = 1.

A).



4.1 Fully Homomorphic Encryption

NTRU-like schemes are used to realise fully homomorphic encryption
starting with the LTV scheme from [LTV12]; the scheme was optimized
and implemented in [DHS15].

LTV is motivated by [SS11] which shows that under certain choices
of parameters the security of an NTRU-like scheme can be reduced to
security of Ring-LWE. That is, [SS11] shows that if f and g have norms
> \/q - poly(A), then h = [g/f], € Zy[X]/(X™ + 1) — with n a power of
two — is statistically indistinguishable from a uniformly sampled element.
Note that under this choice of parameters the subfield lattice attack does
not apply.

However, this choice of parameters rules out even performing one poly-
nomial multiplication and hence the schemes in [LTVI2JDHS15] are based
on an additional assumption that [g/ f] 4 1s computationally indistinguish-
able from random even when f and g are small. This assumption — which
essentially states that Decisional-NTRU is hard — is called the Decisional
Small Polynomial Ratio assumption (DSPR) in [LTV12]. Note that this
work shows that DSPR does not hold in the presence of subfields and an
overstretched NTRU assumption.

LTV can evaluate circuits of depth L = O(n/logn) for ¢ = 2™
with € € (0,1) and its decryption circuit can be implemented in depth
O(loglog q + logn). This implies

5+1)

log(n < n/logn,

E+l)

log(n < logq/logn,

i.e. that ¢ must be super-polynomial in n to realise fully homomorphic
encryption from LTV.

A scale-invariant variant of the scheme in [LTV12] called YASHE was
proposed in [BLLN13]. This variant does not require the DSPR assump-
tion by reducing the noise growth during multiplication. This allows f and
g to be sampled from a sufficiently wide Gaussian, such that the reduc-
tion in [SS11] goes through. Sampling f and g this way allows to evaluate
circuits of depth L = O(logq/(loglog g+ logn)) [BLLN13, Theorem 2]
for Zy being the plaintext space.

On the other hand, setting the bounds on f,g to ||fllcc = [|9llcc =
Brey = 1, the plaintext space to Zg via t = 2, the multiplicative ex-
pansion factor of the ring to 6 = n by assuming n is a power of two
and w = O(1), then the multiplicative expansion factor of YASHE is
O(nQ). For correctness, it is required that the noise be less than ¢/4.



Hence, to evaluate a circuit of depth L, YASHE requires ¢/4 > O (nQL)
or L = O(logq/logn) under this choice of parameters. As a consequence,
YASHE is usually instantiated with f and g very short, cf. [LN14].

Following [BV1I, Lemma 4.5], Appendix H of [BLLN13] shows that
YASHE is bootstrapable if it can evaluat depth L = O (loglogq + logn)
circuits. For || f|lcoc = ||g/locc = Brey = 1 this implies

loglog ¢ + log(n) < logq/logn,
log(nlogq) < logq/logn,

i.e. ¢ must be super-polynomial in n for YASHE to provide fully homo-
morphic encryption.

To establish a target size, recall that NTRU-like encryption of a binary
message (L € Zgy is given by ¢ = h - e 4+ e2 + plq/2] for random errors
of variance ¢2. To decrypt from a solution (F,G) to the instance h <
NTRU(R,q, 0, T), simply compute Fc = G-e;+F-ea+F-1|q/2|. The error
term G -e1 + F - eg will have entries of magnitudes ¢71/n which we require
to be < ¢/2 to decrypt correctly. Hence, we require F,G < q/(2¢y/n).
In [LTVI12/BLLN13] like in other FHE schemes, ¢ is chosen to be bounded
by a very small, constant value.

In [CS15] several Ring-based FHE schemes are compared. For com-
parability amongst the considered schemes and performance, the authors
chose the coefficients of f, g from {—1,0,1} with the additional guarantee
that only 64 coefficients are non-zero in f or g. Then, to establish hard-
ness they assume that an adversary who can find an element < ¢ in a
g-ary lattice with dimension m and volume ¢" wins for all schemes con-
sidered. Now, to achieve security against lattice attacks, the root Hermite
factor 0y in g = 56”q"/ ™ should be small enough, where “small enough”
depends on which prediction for lattice reduction is used. In [DHS15] the
same approach is used to pick parameters, but for a slightly smaller target
norm of ¢/4.

The attack presented in this work results in a subexponential attack
in the security parameter A for LTV and YASHE, if L is sufficiently large
to enable fully homomorphic encryption and if n is chosen to be minimal
such that a lattice attack on the full field does not succeed. Set

q=-exp (O ((e+1)log®n))
to satisfy correctness. Now, to rule out lattice attacks on the full field set
n=06 ()\ log A log log? )\). Hence, for § = \ we have

ﬁ@(n/ﬁ) > /4,
] (log2 Alog log? )\) >0 (log2 )\) .



For the subfield attack, pick 3 = © ()\/logl/?’ /\) and r = © (log2/3 A)
and we get

BOMIBT) . O0) < /o
6 (1og% Alog log? A) <6 (log2 \).

4.2 Graded Encoding Schemes

In [GGHI13a|] a candidate construction for graded encoding schemes ap-
proximating multilinear maps was proposed. The GGH construction was
improved in [LSS14] and implemented and improved further in [ACLL15].
In these schemes, short elements m; € Z[X]/(X™ + 1) are encoded as
[(ri - g +m;)/z], € R/qR for some r;, g with norms of size poly(\) and
some random z. For correctness, the latest improvements [ACLLI15] re-
quire a modulus ¢ = poly (\)", where & is the multi-linearity level. The
subfield attack is therefore applicable in sub-exponential time for any
x = log® \, according to Section B.4, and would become polynomial for
k > O(Alog A). In practice, the fact that the constants in the exponent
g = A9 ig quite large could make this attack quite powerful even for
small degrees of multi-linearity.

While initially these constructions permitted the inclusion of encod-
ings of zero (m; = 0) to achieve multilinear maps, it was shown that
these encodings break security [HJ15]. Without such encodings, the con-
struction still serves as building-block for realizing Indistinguishability
Obfuscation [GGH™13b).

To estimate parameters, [ACLL15] proceeds as follow. Given en-
codings o = [(ro - g + mo)/z], and 21 = [(r1 - g +m1)/z], for unknown
mo,m1 # 0 we may consider the NTRU lattice A] where h = [zg/z1] ”
This lattice contains a short vector (ro - g+ mo,r1 - g+ my). In [ACLL15]
all elements of norm = ||rg-g-+mg|| = o} are considered “interesting” and
recovering any such element is considered an attack. This is motivated by
the fact that if an attacker recovers rg - g+ mg exactly, then it can recover
z. This completely breaks the scheme.

The subfield lattice attack does not yield the vector (rg-g+mg,r1-g+
m1) exactly but only a relatively small multiple of it u(rq-g+mg, ri-g+m1).
We provide two approaches to completely break the scheme from this
small multiple. The first approach consists of solving a principal ideal
problem and leads to a quantum polynomial-time and classical subexpo-
nential attack. The second approach relies on a statistical leak using the

' The attack is attributed to Steven Galbraith in [ACLLI5].



Gentry-Szydlo algorithm |[GS02IL.S14], but is just outside reach with our
current tools [GGHI3al. This approach is arguably worrisome, and the
authors of [GGHI13a] spent significant efforts to rule this approach out
completely.

We remark that unlike previous cryptanalysis advances of multi-linear
maps [HJ15] this attack does not rely either on the zero testing parame-
ter, neither on encodings of zero. Our cryptanalytic result therefore im-
pacts all applications of multilinear maps, from multi-party key exchange
to jigsaw puzzles and Indistinguishability Obfuscation |[GGH™13b|. For
completeness, we note that the CLT construction [CLT13] of Graded En-
coding Schemes is also subject to a quantum polynomial-time attack,
because it relies on the hardness of factoring large integers.

The principal ideal problem and short generator recovery. The
problem of recovering a short principal ideal generator from any gener-
ator received a lot of attention recently, and a series of works has lead
to subexponential classical and polynomial-time quantum attacks against
principal ideal lattices [EHKS14JCGS14|CDPR16/BS16]. Precisely, given
the ideal J = (g), Biasse and Song [BS16] showed how to recover an arbi-
trary generator ug of J in quantum polynomial time, extending the recent
breakthrough of Eisentrager et al. [EHKS14] on quantum algorithms over
large degree number fields. Such results were conjectured already in a
note of Cambell et al. [CGS14], where a classical polynomial time algo-
rithm is also suggested to recover the original g from ug (namely, LLL in
the log-unit lattice). The correctness of a similar algorithm was formally
established using analytical number theory by Cramer et al. [CDPR16].

In combination with this subfield lattice attack, this directly implies
a polynomial quantum attack. Indeed, the subfield lattice attack allows
to recover u(rg- g+ myg) for some relatively short u. Repeating this attack
several time, and obtaining u(rg - g + mg) for various u eventually leads
to the reconstruction of the ideal (ry- g+ mg). Because r( - g+ mg follows
exactly a discrete Gaussian distribution, the approach sketched above can
be applied, and reveals 1 - g + mg exactly, and therefore z.

In conclusion, for any degree of multi-linearity x, the subfield at-
tack can be complemented with a quantum polynomial step to a com-
plete break. Alternatively, when x = O(X°) for any ¢ < 1/2, — lead-
ing according to the previous best known attacks to a choice of dimen-
sion n = O(AT¢)— the 20(n*’?) algorithms of Biasse and Biasse and
Fiecker [Bial4/BF14] combined lead to a classical attack in time sub-
exponential in \.



The statistical attack. This attack consists in recovering vz and (u)
and using the Gentry-Szydlo algorithm [GS02ILST4] to recover w.

To recover (u), note that we are given u(ag,a1). We will assume that
(ap), {a1) are coprime with constant probability, cf. Section Under
this assumption, (u) can be recovered as (u) = (uag) + <ua1)

To recover more information on u, we can compute uag - [x; /o] g = ua;
for other ¢ > 1, and the equation hold over R because u and a; are small.
For ¢ > 1, a; is a independent of u and follows a spherical Gaussian of
parameter o. It follows that the variance of ua; leaks wu: Elua; - ua;] =
o2l

Given polynomially many samples x; one can therefore recover uu up
to a 14 1/poly(\) approximation factor. The original attack of Gentry-
Szydlo algorithm [GS02IL.S14] requires the exact knowledge of uu that
could be obtained by rounding when u has poly-sized coefficient. However,
the u provided by the subfield lattice attack is much larger. In [GGHI13a
this algorithm is revisited and extended to when u# is only known up to
a 1+ (log n)fe(log ") approximation factor.

In conclusion, with the current algorithmic tools this approach is
asymptotically inapplicable if we assume only a polynomial number of
available samples, but only barely so. This raises the question of how
to improve the tolerance of the Gentry-Szydlo algorith 13, Yet, because
(log n)®(°8™) is arguably not so large, it is unclear whether this approach
is really infeasible in practice.

We concur with the decision made in [GGHI3a], to attempt to rule
out such an attack by design even if it is not yet known how to fully
exploit it.

5 Experimental Verification

Please refer to the full version of this work for experiments.

6 Conclusions

Practicality of the attack. The largest instance we broke in practice is for
the set of parameter n = 22 and ¢ ~ 2. Choosing a relative degree

12 Note that the subfield lattice attack may be tweaked to obtain a triplet u(ao, a1, as)
(or more) increasing the probability to recover (u).

13 Asymptotically, the natural idea of replacing LLL by slightly stronger lattice reduc-
tion does not seems to help, but should help in practice. The quasi-polynomial factor
relates to a number theoretic heuristic. See Section 7.6 of [GGHI3al.



r = 16, the attack required to run LLL in dimension 512, which took
about 120 hours, single-threaded, using SAGE [Dev15] and FpLLL [ABCT].
The direct, full field lattice reduction attack, according to root-Hermite-
factor based predictions [CNII], would have required running BKZ in
block-size =~ 130, and in dimension 8192, which is hardly feasible with
the current state-of-the art [CNTI] (requiring more than 270 CPU cycles).
We conclude that the subfield attack proposed in this work is not only
theoretical but also practical.

Obstructions to concrete predictions. We are currently unable to predict
precisely how a given set of parameters would be affected, for example
to predict the power of this attack against concrete parameter choices of
NTRU-based FHE [LTVI2|BLLN13] and Multilinear Maps [GGH13a].

There are two issues for those predictions. The first issue is that we
make use of LLL/BKZ in the approximation-factor regime, not in the
Hermite-factor regime. While the behavior of LLL/BKZ is quite well mod-
eled in the latter regime, we are not aware of precise models for the former
for NTRU lattices. Unlike the Hermite-factor regime, this case could very
well be influenced by the presence of many short vectors rather than just
a few.

The second issue is that we do not know the actual size of the shortest
vector of Af,: all we know is that it is no larger than (f’,¢’). In several
cases in the experiments we found vectors (z/,y’) = v(f’,g’) that were
actually shorter than (f’,¢')— the tentative root-approximation factor «
is less than 1. One may expect that (f’,¢’) may still be (or close to) the
shortest vector for small relative degree r as it is the shortest with high
probability in the full field (i.e. when r = 1).

Immunity of NTRU encryption and BLISS signature schemes. If ¢ is
small enough, then the attacks should become inapplicable, even with the
smallest possible relative dimension r = 2. Precisely, if (f’,¢) is not an
unusually short vector of /lz,, then there is little hope that any lattice re-
duction strategy would lead to information on this vector. Quantitatively,
this perfect immunity happens when ||(f/,¢')|| = V2 - 0% - n' > \/n/q/me.
This was the case of the old parameter of NTRU as discussed in [Gen01],
which lead this attack being discarded. This is not the case of all the pa-
rameters of NTRUENCRYPT [HPST15| and Briss [DDLL13], for which
(f',¢) is sometime unusually short vector, but not by a very large factor.
Numerical values are given in Table [Il

When the vulnerability factor F' is less then 1, the parameters achieve
perfect immunity. When F' is greater than 1, the subfield attack consist



Table 1: Vulnerability factor for some parameters of NTRUEN-
CRYPT |[HPS™15] and Briss [DDLLI13].

Scheme n q o +/nq/me/ (V20*0)=F

NTRU-743 743 2048 0.82 298.7 / 349.8 0.85

NTRU-401 401 2048 0.82 219.6 / 189.5 1.16

BLISS-1 51212289 0.55 607.0 / 108.6 = 5.59
/

BLISS-IV 51212289 0.83 607.0 249.8 =243

informally of solving “unusual-SVP” in dimension 2n’ = n, where the
unusually short solutions are a factor F' shorter than predicted by the
Gaussian Heuristic.

According to this table, NTRU-743 should be perfectly immune to
the subfield lattice attacks. For other parameters, it seems likely, despite
imperfect immunity, that the subfield lattice attack will be more costly
than the full attack, but calls for further study, especially for BLISS-I.

Note that the perfect immunity to this attack is achieved asymptoti-
cally around o ~ 8(q1/ 4), parameter for which h does not have enough
entropy to be statistically close to random. For comparison, it was shown
that for o = w(q'/?), h is statistically close to uniform [SSII]. We note
that o > @(ql/ 4) could provide enough entropy for the normed-down
public key A’ to be almost uniform. It would be interesting to see if the
proof of [SS11] can be adapted to h'.

Recommendations. Even if credible predictions were to be made, we
strongly discourage basing a cryptographic scheme on a set-up to which
this attack is applicable. Indeed, it is quite likely that the performance of
the attack may be improved in several ways. For example, after having
found several subfield solutions (z/,y’) = v(f’,¢’), it is possible to run
a lattice reduction algorithm in the lattice (f’,¢’) - OL of dimension n’
rather than 2n’ to obtain significantly shorter vectors. Additionally, the
lifting step may also be improved in the case where O, is a real subfield
using the Gentry-Syzdlo algorithm [GS02ILS14] to obtain shorter vector
in the full field (i.e. recovering z from N ,(z)). More generally, one may
recover = from N () even when L isn’t the real subfield of K: assum-
ing () is prime, it can be recovered as a factor of Nk i (x), which then
leads to x via a short generator recovery; as mentioned before, both steps



are now known to be classically sub-exponential or even polynomial for
quantum computers [Bial4d/[EHKS14]/CGS14/BS16JCDPR16].

Evaluating concrete security against regular lattice attacks is already
a difficult exercise, and leaving open additional algebraic and statistical
attack opportunities will only make security assessment intractable. We
therefore recommend that this set-up —NTRU assumption, presence of
subfields, large modulus— be considered insecure.

Designing Immune Rings. We believe that our work further motivates
the design and the study of number fields without subfields to fit for the
lattice-based cryptographic purposes, as already recommended in [Berl4].
Even for assumptions that are not directly affected by this attack (Ring-
SIS [Mic02], Ideal-LWE [SSTX09], Ring-LWE [LPR10]), it could be con-
sidered desirable to have efficient fallback options ready to use, in case
subfields induce other unforeseen weaknesses. While this work does not
suggest an immediate threat to the Ring-SIS and Ring-LWE, such a pre-
caution is not unreasonable.

An interesting option has been suggested in [Berl4] to use rings of
the form Z[X]/(XP — X — 1). The design rationale seems to be that
Q[X]/(XP — X — 1) has a reasonable expansion facto] which is of-
ten needed for the correctness in cryptographic schemes, but is a non
Galois extension with a very large Galois group for its splitting field,
which is intended to hinder algebraic handles. In particular it contains no
proper subfields. This leads to the design of the NTRUPrime encryption
scheme [BCLvV16]. We note that the security of this scheme is not sup-
ported by a worst-case hardness argument. If such an argument is desired
then we note that the search version of Ideal/Ring-LWE is supported by
worst-case hardness for other choices of number field, and this is actually
sufficient to achieve provable CPA-secure encryption, as already proved
by Stehlé, Steinfeld, Tanka and Xagawa [SSTX09).

Open Problems. Another natural option would be to choose p as a safe
prim and to work with the ring of integer of the totally real number field
K = Q({, + (). The field remains Galois, and its automorphism group
may still allow a quantum worst-case (Ideal-SVP) to average-case (Ring-
LWE) reduction a-la [LPRI10] thanks to a generalization of the search
to decision step presented in [CLSI5|. Nevertheless the Galois group has

14 Multiplication of two small elements remains reasonably small.

15 A safe prime p is an odd prime such that (p—1)/2 is also a prime. The terminology
relates to weaknesses in RSA and Discrete Logarithm Problem introduced by the
smoothness of p — 1 [Pol74].



prime order (p — 1)/2, it has no proper subgroups, and K has no proper
subfields.

But working with K = Q(¢{, + fp) has a drawback: the class num-
ber h(K) = h}t seems quite small (see [Was97, Table 4 pp. 421]), and
this makes the worst-case SIVP problem solvable in quantum polynomial
time for approximation factors 2°(V?) as proved in [CDPRI6/BSI6]: the
reduction of [LPRI10Q] is vacuous for such parameters.

This raises the question of whether NTRU and Ring-LWE are actu-
ally strictly harder than SIVP in the underlying number field, whether
algorithms for SIVP in K can be lifted to modules over K as used in
NTRU, Ideal-LWE or Ring-LWE. In this regard, overstretched NTRU,
and Ideal /Ring-LWE with large approximation factors over the ring Z(¢,+
fp) are very interesting cryptanalytic target: despite those rings not being
used in any proposed schemes so far, such an attack will teach us a great
deal on the asymptotic security of ideal-lattice based cryptography.
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