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Abstract. We prove that a balanced 8-round Feistel network is indif-
ferentiable from a random permutation, improving on previous 10-round
results by Dachman-Soled et al. and Dai et al. Our simulator achieves
security O(q8/2n), similarly to the security of Dai et al. For further com-
parison, Dachman-Soled et al. achieve security O(q12/2n), while the orig-
inal 14-round simulator of Holenstein et al. achieves security O(q10/2n).
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1 Introduction

For many cryptographic protocols the only known analyses are in a so-called ideal
primitive model. In such a model, a cryptographic component is replaced by an
idealized information-theoretic counterpart (e.g., a random oracle takes the part
of a hash function, or an ideal cipher substitutes for a concrete blockcipher such
as AES) and security bounds are given as functions of the query complexity of
an information-theoretic adversary with oracle access to the idealized primitive.
Early uses of such ideal models include Winternitz [33], Fiat and Shamir [19]
(see proof in [28]) and Bellare and Rogaway [2], with such analyses rapidly
proliferating after the latter paper.

Given the popularity of such analyses a natural question that arises is to
determine the relative “power” of different classes of primitives and, more pre-
cisely, whether one class of primitives can be used to “implement” another. E.g.,
is a random function always sufficient to implement an ideal cipher, in security
games where oracle access to the ideal cipher/random function is granted to all
parties? The challenge of such a question is partly definitional, since the different
primitives have syntactically distinct interfaces. (Indeed, it seems that it was not
immediately obvious to researchers that such a question made sense at all [7].)

A sensible definitional framework, however, was proposed by Maurer et al.
[23], who introduce a simulation-based notion of indifferentiability. This frame-
work allows to meaningfully discuss the instantiation of one ideal primitive
by a syntactically different primitive, and to compose such results. (Similar
simulation-based definitions appear in [4, 5, 26, 27].) Coron et al. [7] are early
adopters of the framework, and give additional insights.

Informally, given ideal primitives Z and Q, a construction CQ (where C is
some stateless algorithm making queries to Q) is indifferentiable from Z if there
exists a simulator S (a stateful, randomized algorithm) with oracle access to Z



such that the pair (CQ, Q) is statistically indistinguishable from the pair (Z, SZ).
The more efficient the simulator, the lower its query complexity, and the better
the statistical indistinguishability, the more practically meaningful the result.

The present paper focuses on the natural question of implementing a permu-
tation from one or more random functions (a small number of distinct random
functions can be emulated by a single random function with a slightly larger
domain) such that the resulting construction is indifferentiable from a random
permutation. This means building a permutation C : {0, 1}m(n) → {0, 1}m(n)

where
C = C[F1, . . . , Fr]

depends on a small collection of random functions F1, . . . , Fr : {0, 1}n → {0, 1}n

such that the vector of r + 1 oracles

(C[F1, . . . , Fr], F1, . . . , Fr)

is statistically indistinguishable from a pair

(Z, SZ)

where Z : {0, 1}m(n) → {0, 1}m(n) is a random permutation from m(n) bits
to m(n) bits, for some efficient simulator S. Thus, in this case, the simulator
emulates the random functions F1, . . . , Fr, and it must use its oracle access
to Z to invent answers that make the (fake) random functions F1, . . . , Fr look
“compatible” with Z, as if Z where really C[F1, . . . , Fr]. (On the other hand, the
simulator does not know what queries the distinguisher might be making to Z.)
Here m(n) is polynomially related to n: concretely, the current paper discusses
a construction with m = 2n.

The construction C[F1, . . . , Fr] that we consider in this paper, and as consid-
ered in previous papers with the same goal as ours (see discussion below), is an
r-round (balanced, unkeyed) Feistel network. To wit, given arbitrary functions
F1, . . . , Fr : {0, 1}n → {0, 1}n, we define a permutation

C[F1, . . . , Fr] : {0, 1}
2n → {0, 1}2n

by the following application: for an input (x0, x1) ∈ {0, 1}
2n, values x2, . . . , xr+1

are defined by setting

xi+1 = xi−1 ⊕ Fi(xi) (1)

for i = 1, . . . , r; then (xr , xr+1) ∈ {0, 1}
2n is the output of C on input (x0, x1).

One can observe that C is a permutation since xi−1 can be computed from xi

and xi+1, by (1). The value r is the number of rounds of the Feistel network.
(See, e.g., Fig. 1.)

The question of showing that a Feistel network with a sufficient number of
rounds is indifferentiable from a random permutation already has a growing
history. Coron, Patarin and Seurin [9] show that an r-round Feistel network
cannot be indifferentiable from a random permutation for r ≤ 5, due to explicit



attacks. They also give a proof that indifferentiability is achieved at r = 6,
but this latter result was found to have a serious flaw by Holenstein et al. [20],
who could only prove, as a replacement, that indifferentiability is achieved at
r = 14 rounds. At the same time, Holenstein et al. found a flaw in the proof of
indifferentiability of a 10-round simulator of Seurin’s [31] (a simplified alternative
to the 6-round simulator of [9]), after which Seurin himself found an explicit
attack against his own simulator, showing that the proof could not be patched
[32]. More recently, Dachman-Soled et al. [10] and the authors of the present
paper [11] have presented independent indifferentiability proofs at 10 rounds.

In [11] we achieve slightly better security than other proofs (O(q8/2n), com-
pared to O(q10/2n) for Holenstein et al. and O(q12/2n) for Dachman-Soled et
al.), and their work also introduces an interesting “last-in-first-out” simulator
paradigm. In fact, the simulator of [11] is essentially Seurin’s (flawed) 10-round
simulator, only with “first-in-first-out” path completion replaced by “last-in-
first-out” path completion. This change, as it turns out, is sufficient to repair
the flaw discovered by Holenstein et al. [20].

In the current work we prove that an 8-round Feistel network is indifferen-
tiable from a random permutation. The security, query complexity and runtime
of our 8-round simulator are O(q8/2n), O(q4) and O(q4) respectively, just like
our previous 10-round simulator [11]. (The query complexity of previous simu-
lators of Dachman-Soled et al. and Holenstein et al. can apparently be reduced
to O(q4) as well with suitable optimizations [11], though higher numbers are
quoted in the original papers.) In fact our work closely follows the ideas [11],
and is obtained by making a number of small optimizations to that simulator
in order to reduce it to 8 rounds. It remains open whether 6 or 7 rounds might
suffice for indifferentiability.

Concerning our optimizations, more specifically, in [11,20,31] the “outer de-
tect zone” requires four-out-of-four queries in order to trigger a path completion
(the outer detect zone consists of four rounds, these being rounds 1, 2 and r− 1,
r). In the current paper, we optimize by always making the outer detect zone
trigger a path completion as soon as possible, i.e., by completing a path whenever
three-out-of-four matching queries occur in the outer detect zone. (This is simi-
lar to an idea of Dachman-Soled et al. [10].) By detecting a little earlier in this
fashion, we can move the “adapt zones” on either side by one position towards
the left and right edges of the network, effectively removing one round at either
end, but this creates a fresh difficulty, as two of the four different types of paths
detected by the outer detect zone cannot make use of the new translated adapt
zones because the translated adapt zones overlap with the query that triggers
the path. For these two types of paths (which are triggered by queries at round
2 or at round r − 1), we use a brand new adapt zone instead, consisting of the
middle two rounds of the network. (Rounds 4 and 5, in our 8-round design.) This
itself creates another complication, since an adapted query should not trigger a
path completion, lest the proof blow up, and since the “middle detect zone” is
traditionally made up of rounds 4 and 5 precisely. We circumvent this problem
with a fresh trick: We split the middle detect zone into two separate overlapping



zones, each of which has three rounds: rounds 3, 4, 5 for one zone, rounds 4, 5,
6 for the other; after this change, adapted queries at rounds 4, 5 (and as argued
within the proof) do not trigger either of the middle detect zones. The simula-
tor’s “termination argument” is slightly affected by the presence of two separate
middle detect zones, but not much: one can observe that neither type of middle
path detection adds queries at rounds 4 and 5, even though paths triggered by
one middle detect zone can trigger a path in the other middle detect zone. Hence,
the original termination argument of Coron et al. [9] (used in [11, 14, 20] and in
many other places since) goes through practically unchanged.

The resulting 8-round simulator ends up having a highly symmetric structure:
It can be abstracted as having four detect zones of three consecutive rounds each,
with two “inner zones” (rounds 3, 4, 5 and 4, 5, 6) and two “outer zones” (rounds
1, 2, 8 and 1, 7, 8); each detect zone of three consecutive rounds detects “at either
end” (e.g., the detect zone with rounds 3, 4, 5 detects at rounds 3 and 5, etc);
the upshot is that each of rounds 1, . . . , 8 ends up being a detection point for
exactly one of the four three-round detect zones. We refer to Fig. 2 in Section 3.
A much more leisurely description of our simulator can be found in Section 3.

Other Related Work. Before [9], Dodis and Puniya [13] investigated the
indifferentiability of Feistel networks in the so-called honest-but-curious model,
which is incomparable to the standard notion of indifferentiability. They found
that in this case, a super-logarithmic number of rounds is sufficient to achieve
indifferentiability. Moreover, [9] later showed that super-logarithmically many
rounds are also necessary.

Besides Feistel networks, the indifferentiability of many other types of con-
structions (and particularly hash functions and compression functions) have been
investigated. More specifically on the blockcipher side, [1] and [21] investigate
the indifferentiability of key-alternating ciphers (with and without an idealized
key scheduler, respectively). In a recent eprint note, Dodis et al. [14] investi-
gate the indifferentiability of substitution-permutation networks, treating the
S-boxes as independent idealized permutations. Moreover, the “LIFO” design
philosophy of [11]—that also carries over to this work—is partly inspired by the
latter simulator, as explained in [11].

It should be recalled that indifferentiability does not apply to a cryptographic
game for which the adversary is stipulated to come from a special class that does
not contain the computational class to which the simulator belongs (the latter
class being typically “probabilistic polynomial-time”). See [29].

Finally, Feistel networks have been the subject of a very large body of work
in the secret-key (or “indistinguishability”) setting, such as in [22,24,25,30] and
the references therein.

2 Definitions and Main Result

Feistel Networks. Let r ≥ 0 and let F1, . . . , Fr : {0, 1}n → {0, 1}n. Given



values x0, x1 ∈ {0, 1}
n we define values x2, . . . , xr+1 by

xi+1 = Fi(xi)⊕ xi−1

for 1 ≤ i ≤ r. As noted in the introduction, the application

(x0, x1)→ (xr , xr+1)

defines a permutation of {0, 1}2n. We let

Ψ [F1, . . . , Fr]

denote this permutation. We say that Ψ is an r-round Feistel network and that
Fi is the i-th round function of Ψ .

In this paper, whenever a permutation is given as an oracle, our meaning
is that both forward and inverse queries can be made to the permutation. This
applies in particular to Feistel networks.

Indifferentiability. A construction is a stateless deterministic algorithm that
evaluates by making calls to an external set of primitives. The latter are functions
that conform to a syntax that is specified by the construction. Thus Ψ [F1, . . . , Fr]
can be seen as a construction with primitives F1, . . . , Fr. In the general case we
notate a construction C with oracle access to a set of primitives Q as CQ.

A primitive is ideal if it is drawn uniformly at random from the set of all
functions meeting the specified syntax. A random function F : {0, 1}n → {0, 1}n

is a particular case of an ideal primitive. Such a function is drawn uniformly at
random from the set of all functions of domain {0, 1}n and of range {0, 1}n.

A simulator is a stateful randomized algorithm that receives and answer
queries, possibly being given oracles of its own. We assume that a simulator
is initialized to some default state (which constitutes part of the simulator’s
description) at the start of each experiment. A simulator S with oracle access
to an ideal primitive Z is notated as SZ .

A distinguisher is an algorithm that initiates a query-response session with
a set of oracles, that has a limited total number of queries, and that out-
puts 0 or 1 when the query-response session is over. In our case distinguishers
are information-theoretic; this implies, in particular, that the distinguisher can
“know by heart” the (adaptive) sequence of questions that will maximize its dis-
tinguishing advantage. In particular, one may assume without loss of generality
that a distinguisher is deterministic.

Indifferentability seeks to determine when a construction CQ, where Q is a
set of ideal primitives, is “as good as” an ideal primitive Z that has the same
syntax (interface) as CQ. In brief, there must exist a simulator S such that
having oracle access to the pair (CQ, Q) (often referred to as the “real world”)
is indistinguishable from the pair (Z, SZ) (often referred to as the “simulated
world”).

In more detail we refer to the following definition, which is due to Maurer et
al. [23].



Definition 1. A construction C with access to a set of ideal primitives Q is
(tS , qS , ε)-indifferentiable from an ideal primitive Z if there exists a simulator
S = S(q) such that

Pr
[

DCQ,Q = 1
]

− Pr
[

DZ,SZ

= 1
]

≤ ε

for every distinguisher D making at most q queries in total, and such that S
runs in total time tS and makes at most qS queries to Z. Here tS , qS and ε are
functions of q, and the probabilities are taken over the randomness in Q, Z, S
and (if any) in D.

As indicated, we allow S to depend on q.1 The notation

DCQ,Q

indicates that D has oracle access to CQ as well as to each of the primitives in
the set Q. We also note that the oracle

SZ

offers one interface for D to query for each of the primitives in Q; however the
simulator S is “monolithic” and treats each of these queries with knowledge of
the others.

Thus, S’s job is to make Z look like CQ by inventing appropriate answers for
D’s queries to the primitives in Q. In order to do this, S requires oracle access
to Z. On the other hand, S doesn’t know which queries D is making to Z.

Informally, CQ is indifferentiable from Z if it is (tS , qS , ε)-indifferentiable for
“reasonable” values of tS , qS and for ε negligibly small in the security parameter
n. The value qS in Definition 1 is called the query complexity of the simulator.

In our setting C will be the 8-round Feistel network Ψ and Q will be the set
{F1, . . . , F8} of round functions, with each round function being an independent
random function. Consequently, Z (matching CQ’s syntax) will be a random
permutation from {0, 1}2n to {0, 1}2n, queriable (like CQ) in both directions;
this random permutation is notated P in the body of the proof.

Main Result. The following theorem is our main result. In this theorem, Ψ
plays the role of the construction C, while {F1, . . . , F8} (where each Fi is an
independent random function) plays the role of Q, the set of ideal primitives
called by C.

1 This introduces a small amount of non-uniformity into the simulator, but which
seems not to matter in practice. While in our case the dependence of S on q is
made mainly for the sake of simplicity and could as well be avoided (with a more
convoluted proof and a simulator that runs efficiently only with high probability),
we note, interestingly, that there is one indifferentiabiliy result that we are aware
of—namely that of [16]—for which the simulator crucially needs to know the number
of distinguisher queries in advance.



Theorem 1. The Feistel network Ψ [F1, . . . , F8] is (tS , qS , ε)-indifferentiable from
a random 2n-bit to 2n-bit permutation with tS = O(q4), qS = 32q4 + 8q3 and
ε = 7400448q8/2n. Moreover, these bounds hold even if the distinguisher is al-
lowed to make q queries to each of its 9 (= 8 + 1) oracles.

The simulator that we use to establish Theorem 1 is described in the next
section. The proof of Theorem 1 can be found in the full version of this paper [12].

Miscellaneous Notations. We write [k] for the set {1, . . . , k}, k ∈ N.
The symbol ⊥ denotes an uninitialized or null value and can be taken to be

synonymous with a programming language’s null value, though we reserve the
latter for uninitialized object fields. If T is a table, moreover, we write x ∈ T to
mean that T (x) 6= ⊥. Correspondingly, x /∈ T means T (x) = ⊥.

3 High-Level Simulator Overview

In this section we give a somewhat non-technical overview of our 8-round sim-
ulator which, like [20] and [11], is a modification of a 10-round simulator by
Seurin [31].

Round Function Tables. We recall that the simulator is responsible for 8
interfaces, i.e., one for each of the rounds functions. These interfaces are available
to the adversary through a single function, named

F

and which takes two inputs: an integer i ∈ [8] and an input x ∈ {0, 1}n.
Correspondingly to these 8 interfaces, the simulator maintains 8 tables, no-

tated F1, . . . , F8, whose fields are initialized to ⊥: initially, Fi(x) = ⊥ for all
x ∈ {0, 1}n, all i ∈ [8]. (Hence we note that Fi is no longer the name of a round
function, but the name of a table. The i-th round function is now F(i, ·).) The
table Fi encodes “what the simulator has decided so far” about the i-th round
function. For instance, if Fi(x) = y 6= ⊥, then any subsequent distinguisher
query of the form F(i, x) will simply return y = Fi(x). Entries in the tables
F1, . . . , F8 are not overwritten once they have been set to non-⊥ values.

The 2n-bit Random Permutation. Additionally, the distinguisher and the
simulator both have oracle access to a random permutation on 2n bits, notated

P

and which plays the role of the ideal primitive Z in Definition 1. Thus P ac-
cepts an input of the form (x0, x1) ∈ {0, 1}

n × {0, 1}n and produces an output
(x8, x9) ∈ {0, 1}

n×{0, 1}n. P’s inverse P−1 is also available as an oracle to both
the distinguisher and the simulator.

Distinguisher Intuition and Completed Paths. One can think of the dis-
tinguisher as checking the consistency of the oracles F(1, ·), . . ., F(8, ·) with



P/P−1. For instance, the distinguisher could choose random values x0, x1 ∈
{0, 1}n, construct the values x2, . . . , x9 by setting

xi+1 ← F(i, xi)⊕ xi−1

for i = 2, . . . , 9, and finally check if (x8, x9) = P(x0, x1). (In the real world, this
will always be the case; if the simulator is doing its job, it should also be the
case in the simulated world.) In this case we also say that the values

x1, . . . , x8

queried by the distinguisher form a completed path. (The definition of a “com-
pleted path” will be made more precise in the next section.)

It should be observed that the distinguisher has multiple options for complet-
ing paths; e.g., “left-to-right” (as above), “right-to-left” (starting from values x8,
x9 and evaluating the Feistel network backwards), “middle-out” (starting with
some values xi, xi+1 in the middle of the network, and growing a path outwards
to the left and to the right), “outward-in” (starting from the endpoints x0, x1,
x8, x9 and going right from x0, x1 and left from x8, x9), etc. Moreover, the
distinguisher can try to reuse the same query for several different paths, can
interleave the completion of several paths in a complex manner, and so on.

To summarize, and for the purpose of intuition, one can picture the distin-
guisher as trying to complete all sorts of paths in a convoluted fashion in order
to confuse and/or “trap” the simulator in a contradiction.

The Simulator’s Dilemma. Clearly a simulator must to some extent detect
which paths a distinguisher is trying to complete, and “adapt” the values along
these paths such as to make the (simulated) Feistel network compatible with P.
Concerning the latter, one can observe that a pair of missing consecutive queries
is sufficient to adapt the two ends of a path to one another; thus if, say,

x0, x1, x4, x5, x6, x7, x8, x9

are values such that
Fi(xi) 6= ⊥

for i ∈ {1, 4, 5, 6, 7, 8}, and such that

xi+1 = xi−1 ⊕ Fi(xi)

for i ∈ {5, 6, 7, 8}, and such that

P(x0, x1) = (x8, x9)

and such that
F2(x2) = F3(x3) = ⊥

where x2 := x0 ⊕ F1(x1), x3 := F4(x4)⊕ x5, then by making the assignments

F2(x2)← x1 ⊕ x3 (2)

F3(x3)← x2 ⊕ x4 (3)



the simulator turns x1, . . . , x8 into a completed path that is compatible with P.
In such a case, we say that the simulator adapts a path. The values F2(x2) and
F3(x3) are also said to be adapted.

In general, however, if the simulator always waits until the last minute (e.g.,
until only two adjacent undefined queries are left) before adapting a path, it can
become caught in an over-constrained situation whereby several different paths
request different adapted values for the same table entry. Hence, it is usual for
simulators to give themselves a “safety margin” and to pre-emptively complete
paths some time in advance. When pre-emptively completing a path, typical
simulators sample all but two values along the path randomly, while “adapting”
the last two values as above.

It should be emphasized that our simulator, like previous simulators [9,20,31],
makes no distinction between a non-null value Fi(xi) that is non-null because
the distinguisher has made the query F(i, xi) or that is non-null because the
simulator has set the value Fi(xi) during a pre-emptive path completion. (Such a
distinction seems tricky to leverage, particularly since the distinguisher can know
a value Fi(xi) without making the query F(i, xi), simply by knowing adjacent
values and by knowing how the simulator operates.) Moreover, the simulator
routinely calls its own interface

F(·, ·)

during the process of path completion, and it should be noted that our simulator,
again like previous simulators, makes no difference between distinguisher calls
to F and its own calls to F.

One of the basic dilemmas, then, is to decide at which point it is worth it
to complete a path; if the simulator waits too long, it is prone to finding itself
in an over-constrained situation; if it is too trigger-happy, on the other hand, it
runs the danger of creating out-of-control chain reactions of path completions,
whereby the process of completing a path sets off another path, and so on. We
refer to the latter problem (that is, avoiding out-of-control chain reactions) as
the problem of simulator termination.

Seurin’s 10-Round Simulator. Our 8-round simulator is based on “tweak-
ing” a previous 10-round simulator of ours [11] which is itself based on Seurin’s
(flawed) 10-round simulator [31]. Unfortunately (and after some failed efforts of
ours to find shortcuts) it seems that the best way to understand our 8-round
simulator is to start back with Seurin’s 10-round simulator, followed by the mod-
ifications of [11] and by the “tweaks” that bring the network down to 8 rounds.

In a nutshell, Seurin’s simulator completes a path for every pair of values
(x5, x6) such that F5(x5) and F6(x6) are defined, as well as for every 4-tuple of
values

x1, x2, x9, x10

such that
F1(x1), F2(x2), F9(x9), F10(x10)

are all defined, and such that

P(x0, x1) = (x10, x11)



where x0 := F1(x1)⊕ x2, x11 := x9 ⊕ F10(x10). By virtue of this, rounds 5 and
6 are called the middle detect zone of the simulator, while rounds 1, 2, 9, 10
are called the outer detect zone. (Thus whenever a detect zone “fills up” with
matching queries, a path is completed.) Paths are adapted either at positions 3,
4 or else at positions 7, 8, as depicted in Fig. 1.

In a little more detail, a function call F(5, x5) for which F5(x5) = ⊥ triggers a
path completion for every value x6 such that F6(x6) 6= ⊥; such paths are adapted
at positions 3 and 4. Symmetrically, a function call F(6, x6) for which F6(x6) = ⊥
triggers a path completion for every value x5 such that F5(x5) 6= ⊥; such paths
are adapted at positions 7 and 8. For the outer detect zone, a call F(2, x2) such
that F2(x2) = ⊥ triggers a path completion for every tuple of values x1, x9, x10

such that F1(x1), F9(x9) and F10(x10) are defined, and such that the constraints
listed above are satisfied (verifying these constraints thus requires a call to P
or P−1); such paths are adapted at positions 3, 4. Paths that are symmetrically
triggered by a query F(9, x9) are adapted at positions 7, 8. Function calls to
F(2, ·), F(5, ·), F(6, ·) and F(9, ·) are the only ones to trigger path completions.
(Indeed, one can easily convince oneself that sampling a new value F1(x1) or
F10(x10) can only trigger the outer detect zone with negligible probability; hence,
this possibility is entirely ignored by the simulator.) To summarize, in all cases
the completed path is adapted at positions that are immediately next to the
query that triggers the path completion.

To more precisely visualize the process of path completion, imagine that a
query

F(2, x2)

has just triggered the second type of path completion, for some corresponding
values x1, x9 and x10; then Seurin’s simulator (which would immediately lazy
sample the value F2(x2) even before checking if this query triggers any path
completions) would (a) make the queries

F(8, x8), . . . ,F(6, x6),F(5, x5)

to itself in that order, where xi−1 := Fi(xi) ⊕ xi+1 = F(i, xi) ⊕ xi+1 for i =
9, . . . , 6, and (b) adapt the values F3(x3), F4(x4) as in (2), (3) where x3 :=
x1 ⊕ F2(x2), x4 := F5(x5)⊕ x6. In general, some subset of the table entries

F8(x8), . . . , F5(x5)

(and more exactly, a prefix of this sequence) may be defined even before the
queries F(8, x8), . . . ,F(5, x5) are made. The crucial fact to argue, however, is
that F3(x3) = F4(x4) = ⊥ right before these table entries are adapted.

Extending this example a little, say moreover that F6(x6) = ⊥ at the moment
when the above-mentioned query

F(6, x6)

is made. This will trigger another path completion for every value x∗

5 such that



F5(x
∗

5) 6= ⊥ at the moment when the query F(6, x6) occurs. Analogously, such a
path completion would proceed by making (possibly redundant) queries

F(4, x∗

4), . . . ,F(1, x
∗

1),F(10, x
∗

10),F(9, x
∗

9)

for values x∗

4, . . . , x
∗

1, x
∗

0, x
∗

11, x
∗

10, x
∗

9 that are computed in the obvious way (with
a query to P to go from (x∗

0, x
∗

1) to (x∗

10, x
∗

11), where x∗

0 := F1(x
∗

1)⊕ x∗

2), before
adapting the path at positions 7, 8. The crucial fact to argue would again be
that F7(x

∗

7) = F8(x
∗

8) = ⊥ when the time comes to adapt these table values,
where x∗

8 := F9(x
∗

9)⊕ x∗

10, x
∗

7 := x∗

5 ⊕ F6(x6).
In Seurin’s simulator, moreover, paths are completed on a first-come-first-

serve (or FIFO2) basis: while paths are “detected” immediately when the query
that triggers the path completion is made, this information is shelved for later,
and the actual path completion only occurs after all previously detected paths
have been completed. In our example, for instance, the path triggered by the
query F(2, x2) would be adapted before the path triggered by the query F(6, x6).
The imbroglio of semi-completed paths is rather difficult to keep track of, how-
ever, and indeed Seurin’s simulator was later found to suffer from a real “bug”
related to the simultaneous completion of multiple paths [20, 32].

Modifications of [11]. For the following discussion, we will say that x2, x5

constitute the endpoints of a path that is adapted at positions 3, 4; likewise, x6,
x9 constitute the endpoints of a path that is adapted at positions 7, 8. Hence,
the endpoints of a path are the two values that flank the adapt zone. We say that
an endpoint xi is unsampled if Fi(xi) = ⊥ and sampled otherwise. Succinctly,
the philosophy espoused in [11] is to not sample the endpoints of a path until
right before the path is about to be adapted or, even more succinctly, “to sample
randomness at the moment it is needed”. This essentially results in two main
differences with Seurin’s simulator, which are (i) changing the order in which
paths are completed and (ii) doing “batch adaptations” of paths, i.e., adapting
several paths at once, for paths that happen to share endpoints.

To illustrate the first point, return to the above example of a query

F(2, x2)

that triggers a path completion of the second type with respect to some values
x1, x9, x10. Then by definition

F2(x2) = ⊥

at the moment when the call F(2, x2) is made. Instead of immediately sampling
F2(x2), as in the original simulator, this value is kept “pending” (the technical
term is “pending query”) until it comes time to adapt the path. Moreover, and
keeping the notations from the previous example, note that the query

F(6, x6)

2 FIFO: First-In-First-Out. LIFO: Last-In-First-Out.



will not result in F6(x6) being immediately lazy sampled either (assuming, that
is, F6(x6) = ⊥) as long as there is at least one value x∗

5 such that F5(x
∗

5) 6= ⊥,
since in such a case x6 is the endpoint of a path-to-be-completed (namely, the
path which we notated as x∗

1, . . . , x
∗

5, x6, x
∗

7, . . . , x
∗

10 above), and, according to the
new policy, this endpoint must be kept unsampled until that path is adapted.
In particular, the value x5 = F6(x6) ⊕ x7 from the “original” path cannot be
computed until the “secondary” path containing x∗

5 and x6 has been completed
(or even more: until all secondary paths triggered by the query F(6, x6) have
been completed). In other words, the query F(6, x6) “holds up” the completion of
the first path. In practical terms, paths that are detected during the completion
of another path take precedence over the original path, so that path completion
becomes a LIFO process.

Implicitly, the requirement that both endpoints of a path remain unsampled
until further notice means that both endpoints are initially unsampled. For the
“starting” endpoint of the path (i.e., where the path is detected) this is obvious,
since the path cannot be triggered otherwise, while for the “far” endpoint of the
path one can argue that it holds with high probability.

As for “batch adaptations” the intuitive idea is that paths that share un-
sampled endpoints must be adapted (and in particular have their endpoints lazy
sampled) simultaneously. In this event, the group of paths that are collectively
sampled3 and adapted will be an equivalence class in the transitive closure of
the relation “shares an endpoint with”. Note that paths adapted at 3, 4 can only
share their endpoints4 with other paths adapted at 3, 4, while paths adapted at
7, 8 can only share their endpoints with other paths adapted at 7, 8. Hence the
paths in such an equivalence class will, in particular, all have the same adapt
zone. Moreover, the batch adaptation of such a group of paths cannot happen at
any point in time, but must happen when the group of paths is “stable”: none
of the endpoints of the paths in the group should currently be a trigger for a
path completion that has not yet been detected, or that has started to complete
but that has not yet reached its far endpoint. It so turns out, moreover, that
the topological structure of such an equivalence class (with endpoints as nodes
and paths as edges) will be a tree with all but negligible probability, simplifying
many aspects of the simulator and of the proof.

While this describes the (simple) high-level idea of batch adaptations, the
implementation details are more tedious. In fact, at this point it is useful to
focus on these details.

Further Details: Pending Queries, Trees, Etc. Keeping with the 10-
round simulator of [11], if a query F(i, xi) occurs with Fi(xi) = ⊥ and i ∈
{2, 5, 6, 9} the simulator creates a so-called pending query at that position, and
for that value of xi. (Strictly speaking, the pending query is the pair (i, xi).) One

3 In this context we use the verb “sampled” as a euphemism for “have their endpoints
sampled”.

4 Recall that the endpoints of a path with adapt zone 3, 4 are x2 and x5, and that
the endpoints of a path with adapt zone 7, 8 are x6 and x9.
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Fig. 1. A sketch of the 10-round simulator from [11] (and also Seurin’s 10-round simu-
lator). Rounds 5 and 6 form one detect zone; rounds 1, 2, 9 and 10 form another detect
zone; rounds 3 and 4 constitute the left adapt zone, 7 and 8 constitute the right adapt
zone; red arrows point from the position where a path is detected (a.k.a., “pending
query”) to the adapt zone for that path.
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Fig. 2. A sketch of our 8-round simulator drawn in the same style as Fig. 1. Red
groups of three queries are detect zones; when a query completing a detect zone (a.k.a.,
“pending query”) occurs at one of the endpoints of the zone, a path completion is
triggered; the adapt zone for that path completion is shown in blue; the four quadrants
correspond to the four possible adapt zones. (The adapt zone at positions F1, F2 in
the upper right quadrant could equivalently be moved to F7, F8.)



can think of a pending query as a kind of “beacon” that periodically5 checks for
new paths to trigger, as per the rules of Fig. 1. E.g., a pending query

(2, x2)

will trigger a new path to complete for any tuple of values x1, x9, x10 such that
(same old!)

F1(x1) 6= ⊥, F9(x9) 6= ⊥, F10(x10) 6= ⊥

and such that
P(x0, x1) = (x10, x11)

where x0 := F1(x1)⊕x2, x11 := x9⊕F10(x10). The tuple of queries x1, x9, x10 is
also called a trigger for the pending query (2, x2). For a pending query (9, x9), a
trigger is a tuple x1, x2, x10 subject to the symmetric constraints. For a pending
query (5, x5), a trigger is any value x6 such that F6(x6) 6= ⊥, and likewise any
value x5 such that F5(x5) 6= ⊥ is a trigger for any pending query (6, x6). We
note that a pending query triggers a path when there exists a trigger for the
pending query. Hence there the word “trigger” has two slightly different uses (as
a noun and as a verb).

We differentiate the endpoints of a path according to which one triggered the
path: the pending query that triggered the path is called the origin of the path,
while the other endpoint (if and when present) is the terminal of the path.

While pending queries are automatically created each time a function call
F(i, xi) occurs with Fi(xi) = ⊥ and with i ∈ {2, 5, 6, 9}, the simulator also has a
separate mechanism6 at its disposal for directly creating pending queries without
calling F(·, ·) by this mechanism. In particular, whenever the simulator reaches
the terminal of a path, the simulator turns the terminal into a pending query.

In short: (i) all path endpoints are pending queries, so long as the path has
not been sampled and adapted; (ii) pending queries keep triggering paths as long
as there are paths to trigger.

For the following, we will use the following extra terminology from [11]:

- A path is ready when it has been extended to the terminal, and the terminal
has been made pending.

- A ready path with endpoints 2, 5 is called a “(2, 5)-path”, and a ready path
with endpoints 6, 9 is called a “(6, 9)-path”.

- Two ready paths are neighbors if they share an endpoint; let a neighborhood
be an equivalence class of ready paths under the transitive closure of the
neighbor relation. We note that a neighborhood consists either of all (2, 5)-
paths or consists all of (6, 9)-paths.

- A pending query is stable if it has no “new” triggers (that is, no triggers for
which the simulator hasn’t already started to complete a path), and if paths
already triggered by the pending query are ready.

5 The simulator is not multi-threaded, but this metaphor is still helpful.
6 This might sound a bit ad-hoc right now, but it actually corresponds to the most
natural way of programming the simulator, as will become clearer in the technical
simulator overview.



- A neighborhood is stable if all the endpoints of all the paths that it contains
are stable.

A neighborhood can be visualized as a graph with a node for each endpoint
and an edge for each ready path. As mentioned above, these neighborhoods actu-
ally turn out to be trees with high probability. (The simulator aborts otherwise.)
We will thus speak of a (2, 5)-tree for a neighborhood consisting of (2, 5)-paths
and of a (6, 9)-tree for a neighborhood consisting of (6, 9)-paths. Moreover, the
simulator uses an actual tree data structure to keep track of each (i, j)-tree under
completion, thus adding further structure to the simulation process.

To summarize, when a query F(i, xi) triggers a path completion, the simulator
starts growing a tree that is “rooted” at the pending query (i, xi); for other
endpoints of paths in this tree (i.e., besides (i, xi)), the simulator “plants” a
pending query at that endpoint without making a call to F(·, ·), which pending
query tests for further paths to complete, and which may thus cause the tree to
grow even larger, etc. If and when the tree becomes stable, the simulator samples
all endpoints of all paths in the tree, and adapts all these paths.7

The growth of a (2, 5)-tree may at any moment be interrupted by the appari-
tion of a new (6, 9)-tree (specifically, when a query to F(6, ·) or F(9, ·) triggers
a new path completion), in which case the (2, 5)-tree is put “on hold” while the
(6, 9)-tree is grown, sampled and adapted; vice-versa, a (6, 9)-tree may be inter-
rupted by the apparition of a new (2, 5)-tree. In this fashion, a “stack of trees”
that alternates between (2, 5)- and (6, 9)-trees is created. Any tree that is not
the last tree on the stack contains a non-ready path (the one, that is, that was
interrupted by the next tree on the stack), and so is not stable. For this reason,
in fact, the only tree that can become stable at a given moment is the last tree
on the stack.

We also note that in certain cases (and more specifically for pending queries

7 In more detail, when a tree becomes stable the simulator lazy samples

Fi(xi)

for every endpoint (a.k.a., pending query) in the tree. Then if the tree is, say, a
(2, 5)-tree, the simulator can compute the values

x3 := x1 ⊕ F2(x2)

x4 := F5(x5)⊕ x6

and set

F3(x3) := x2 ⊕ x4

F4(x4) := x3 ⊕ x5

for each path in the tree. If two paths “collide” by having the same value of x3

or x4 the simulator aborts. Likewise the simulator aborts if either F3(x3) 6= ⊥ or
F4(x4) 6= ⊥ for some path, before adapting those values. We call this two-step process
“sampling and adapting” the (2, 5)-tree. The process of sampling and adapting a
(6, 9)-tree is analogous.



at positions 5 and 6), trees higher up in the stack can affect the stability of
nodes of trees lower down in the stack: a node that used to be stable loses its
stability after a higher-up tree has been created, sampled and adapted. Hence,
the simulator always re-checks all nodes of a tree “one last time” before deeming
a tree stable, after a tree stops growing—and such a check will typically, indeed,
uncover new paths to complete that weren’t there before. Moreover, because the
factor that determines when these new paths will be adapted is the timestamp of
the pending query to which they are attached, rather than the timestamp of the
actual last query that completed a trigger for this pending query, it is a matter
of semantic debate whether the simulator of [11] is really “LIFO” or not. (But
conceptually at least, it seems safe to think of the simulator as LIFO.)

Structural vs. Conceptual Changes. Of the main changes introduced
in [11] to Seurin’s simulator, one can note that “batch adaptations” are in some
sense a conceptual convenience. Indeed, one way or another every non-null value

Fj(xj)

for j /∈ {3, 4, 7, 8} ends up being randomly and independently sampled in their
simulator, as well as in Seurin’s; so one might as well load a random value into
Fj(xj) as soon as the query F(j, xj) is made, as in Seurin’s original simulator,
as long as we take care to keep on completing paths in the correct order. While
correct, this approach is conceptually less convenient, because the “freshness”
of the random value Fj(xj) is harder to argue when that randomness is needed
(e.g., to argue that adapted queries do not collide, etc). In fact, our 10-round
simulator is an interesting case where the search for a syntactically convenient
usage of randomness naturally leads to structural changes that turn out to be
critical for correctness.

One should note that the idea of batch adaptations already appears explicitly
in the simulator of [14], which, indeed, formed part of the inspiration for [11].
In [14], however, batch adaptations are purely made for conceptual convenience.

Readers seeking more concrete insights can also consult Seurin’s attack against
his own 10-round simulator [32] and check this attack fails under the LIFO path
completion just outlined.

The 8-round Simulator. In the 10-round simulator, the outer detect zone
is in some sense unnecessarily large: for any set of four matching queries that
complete the outer detect zone, the simulator can “see” the presence of matching
queries already by the third query.

To wit, say the distinguisher chooses random values x0, x1, makes the query

(x10, x11)← P(x0, x1)

to P, then queries F(1, x1) and F(10, x10). At this point, even if the simulator
knows that the values x1 and x10 are related by some query to P, the simulator
has no hope of finding which query to P, because there are exponentially many
possibilities to try for x0 and/or x11. However, as soon as the distinguisher makes
either of the queries

F(2, x2) or F(9, x9)



where x2 := x0⊕F(1, x1), x9 := F(10, x10)⊕x11, then the simulator has enough
information to draw a connection between the queries being made at the left-
and right-hand sides of the network. (E.g., if the query F(2, x2) is made, the
simulator can compute x0 from F1(x1) and x2, can call P(x0, x1), and recognize,
in P’s output, the value x10 for which it has already answered a query.) More
generally, anytime the distinguisher makes three-out-of-four matching queries in
the 10-round outer detect zone, the simulator has enough information to reverse-
engineer the relevant query to P/P−1 and, thus, to see a connection between the
queries being made at either side of the network.

This observation (which is also made by Dachman-Soled et al. [10], though
our work is independent of theirs) motivates the division of the 4-round outer
detect zone into two separate outer detect zones of three (consecutive) rounds
each. In the eight-round simulator, then, these two three-round outer detect
zones are made up of rounds 1, 2, 8 and rounds 1, 7, 8, respectively. Both
of these detect zones detect “at the edges” of the detect zone. I.e., the 1, 7, 8
detect zone might trigger a path completion through queries to F(7, ·) and F(1, ·),
whereas the 1, 2, 8 detect zone might trigger a path completion through queries
to F(2, ·) or to F(8, ·). (Once again the possibility of “completing” a detect zone
by a query at the middle of the detect zone is ignored because this event has
negligible chance of occuring.)

E.g., a query

F(7, x7)

such that F7(x7) = ⊥ and for which there exists values x0, x1, x8 such that
F8(x8) 6= ⊥, F1(x1) 6= ⊥, and such that P−1(x8, x9) = (x0, x1) where x9 =
x7⊕F8(x8) would trigger the 1, 7, 8 detect zone, and produce a path completion.
Similarly, a query

F(1, x1)

such that F1(x1) = ⊥ and for which there exists values x0, x7, x8 such that
F7(x7) 6= ⊥, F8(x8) 6= ⊥, and such that P−1(x8, x9) = (x0, x1) where x9 =
x7 ⊕ F8(x8) would trigger the 1, 7, 8 detect zone as well.

When a path is detected at position 1 or at position 8, we can respectively
adapt the path at positions 2, 3 or at positions 6, 7—i.e., we adapt the path in
an adapt zone that is immediately adjacent to the position that triggered the
path completion, as in the8 10-round simulator. However, for paths detected at
positions 2 and 7, the same adapt zones cannot be used, and we find it more
convenient to adapt the path at rounds 4, 5, as depicted in the bottom left
quadrant of Fig. 1.

To keep the proof manageable, however, one of the imperatives is that an
“adapted” query should not trigger a new path completion. If we kept the middle
detect zone as rounds 4, 5 only (by analogy with the 10-round simulator, where
the middle detect zone consists of rounds 5 and 6), then the queries that we
adapt at rounds 4, 5 would trigger new path completions of themselves—a mess!
However, this problem can be avoided by splitting the middle detect zone into

8 Henceforth, “the” 10-round simulator refers to the simulator of [11].



two enlarged middle detect zones of three rounds each: one middle detect zone
consisting of rounds 3, 4, 5 and one consisting of rounds 4, 5, 6. As before,
each of these zones detects “at the edges”. After this change, bad dreams are
dissipated, and the 8-round simulator recovers essentially the same functioning
as the 10-round simulator. The sum total of detect and adapt zones, including
which adapt zone is used for paths detected at which point, is shown in Fig. 2.

The 8-round simulator utilizes the same “pending query” mechanism as the
10-round simulator. In particular, now, each query

F(j, xj)

with Fj(xj) = ⊥ creates a new pending query (j, xj), because paths are now de-
tected at all positions, and each pending query will detect for paths as depicted9

in Fig. 2, with there being exactly one type of “trigger” for each position j. A
path triggered by a pending query is first extended to a designated terminal (the
“other” endpoint of the path), the position of which is a function of the pending
query that triggered the path (this position is shortly to be discussed), which
becomes a new pending query of its own, etc. As in the 10-round simulator,
the simulator turns the terminal into a pending query without making a call to
F(·, ·).

For the 10-round simulator, we recall that the possible endpoint positions of a
path are 2, 5 and 6, 9. The 8-round simulator has more variety, as the endpoints
of a path do not always directly flank the adapt zone for that path. Specifically:

– paths detected at positions 1 and 4, as in the top left quadrant of Fig. 2,
have endpoints 1, 4; before such paths are adapted, they include only the
values x1, x4, x5, x6, x7, x8

– paths detected at positions 3 and 6, as in the top right quadrant of Fig. 2,
have endpoints 3, 6; before such paths are adapted, they include only the
values x3, x4, x5, x6

– paths detected at positions 2 and 7, as in the bottom left quadrant of Fig. 2,
have endpoints 2, 7; before such paths are adapted, they include only the
values x1, x2, x7, x8

– paths detected at positions 5 and 8, as in the bottom right quadrant of Fig. 2,
have endpoints 5, 8; before such paths are adapted, they include only the
values x1, x2, x3, x4, x5, x8

Hence, paths with endpoints 1, 4 or 5, 8 are familiar from the 10-round simulator.
(Being the analogues, respectively, of paths with endpoints 2, 5 or 6, 9.) On the
other hand, paths with endpoints 3, 6 or 2, 7 are shorter, containing only four

9 To solidify things with some examples, a “trigger” for a pending query (5, x5) is a pair
values of x3, x4 such that F3(x3) 6= ⊥, F4(x4) 6= ⊥ and such that x3 ⊕ F4(x4) = x5,
corresponding to the rightmost, bottommost diagram of Fig. 2; a “trigger” for a
pending query (1, x1) is pair of values x7, x8 such that F7(x7) 6= ⊥, F8(x8) 6= ⊥,
and such that P−1(x8, x9) = (∗, x1) where x9 := x7 ⊕ F8(x8), corresponding to the
leftmost, topmost diagram of Fig. 2. Etc.



values before adaptation takes place. As in the 10-round simulator, we speak of
an “(i, j)-path” for paths with endpoints i, j. We also say that a path is ready
once it has reached both its endpoints and these have been turned into pending
queries, and that two ready paths are neighbors if they share an endpoint.

Since, by virtue of the endpoint positions, a (1, 4)-path can only share an
endpoint with a (1, 4)-path, a (2, 7)-path can only share an endpoint with a
(2, 7)-path, a (3, 6)-path can only share an endpoint with (3, 6)-path, and a
(5, 8)-path can only share an endpoint with a (5, 8)-path, neighborhoods (which
are the transitive closure of the neighbor relation) are always comprised of the
same kind of (i, j)-path. As in the 10-round simulator, these neighborhoods
are actually topological trees, giving rise, thus, to “(1, 4)-trees”, “(2, 7)-trees”,
“(3, 6)-trees” and “(5, 8)-trees”. Given this, the 8-round simulator functions en-
tirely analogously to the 10-round simulator, only with more different types of
paths and of trees (which does not make an important difference) and with a
slightly modified mechanism for adapting (2, 7)- and (3, 6)-trees, which are the
trees for which the path endpoints are not directly adjacent to the adapt zone
(which does not make an important difference either).

Concerning the latter point, when a (2, 7)- or (3, 6)-tree is adapted, some
additional queries have to be lazy sampled for each path before reaching the
adapt zone. (In the case of a (3, 6)-tree, each path even requires a query to
P−1.) But because the endpoints of each path are lazy sampled as the first
step of the batch adaptation process, there is negligible chance that these extra
queries will trigger a new path completion. So for those queries the 8-round
simulator directly lazy samples the tables Fi without even calling its own F(·, ·)
interface.

As a small piece of trivia (since it doesn’t really matter to the simulator),
one can check, for instance, that a (1, 4)-tree may be followed either by a (2, 7)-,
(3, 6)-, or a (5, 8)-tree on the stack—i.e., while making a (1, 4)-path ready, we
may trigger any of the other three types of paths—and symmetrically the growth
of a (5, 8)-tree may be interrupted by any of the three other types of trees. On the
other hand, (2, 7)-trees and (3, 6)-trees have shorter paths, and in fact when such
trees are grown no queries to F(·, ·) are made, which means that such trees never
see their growth interrupted by anything. In other words, a (3, 6)- or (2, 7)-tree
will only appear as the last tree in the tree stack, if at all.

Overall, it is imperative that pending queries be kept unsampled until the
relevant tree becomes stable, and is adapted. In particular, the simulator must
not overwrite the pending queries of trees lower down in the tree stack while
working on the current tree.

In fact, and like [11], our simulator cannot overwrite pending queries because
it keeps a list of all pending queries, and aborts rather than overwrite a pending
query. Nonetheless, one must show that the chance of such an event is negligible.
The analysis of this bad event is lengthy but also straightforward. Briefly, this
bad event can only occur if ready and non-ready paths arrange to form a certain
type of cycle, and the occurence of such cycles can be reduced to the occurence
of a few different “local” bad events whose (negligible) probabilities are easily



bounded.

The Termination Argument. The basic idea of Coron et al.’s [9] termination
argument (which only needs to be lightly adapted for our use) is that each path
detected in one of the outer detect zones is associated with high probability to a
P-query previously made by the distinguisher. Since the distinguisher only has q
queries total, this already implies that the number of path completions triggered
by the outer detect zones is at most q with high probability.

Secondly, whenever a path is triggered by one of the middle detect zones,
this path completion does not add any new entries to the tables F4, F5. Hence,
only two mechanisms add entries to the tables F4 and F5: queries directly made
by the distinguisher and path completions triggered by the outer detect zones.
Each of these accounts for at most q table entries in each of F4, F5, so that the
tables F4, F5 do not exceed size 2q. But every completed path corresponds to
a unique pair of entries in F4, F5. (I.e., no two completed paths have the same
x4 and the same x5.) So the total number of paths ever completed is at most
(2q)2 = 4q2.

Further Details. A more technical description of the simulator and the pseu-
docode are given in the full version of this paper [12].

4 Proof Overview

In this section we give an overview of the proof for Theorem 1, using the simulator
described in Section 3 as the indifferentiability simulator. Details of the proof
are given in the full version [12].

In order to prove that our simulator successfully achieves indifferentiability
as defined by Definition 1, we need to upper bound the advantage of any distin-
guisher, as well as the time and query complexity of the simulator; the latter is
related to the termination argument for our simulator, already sketched at the
end of the last section.

Game Sequence. Our proof uses a sequence of five games, G1, . . . , G5, with
G1 being the simulated world and G5 being the real world. Every game offers
the same interface to the distinguisher, consisting of functions F, P and P−1.

In the simulated world G1, P and P−1 are answered by an oracle according to
a random permutation and its inverse; the simulator, as described in Section 3,
is in charge of answering distinguisher queries to F.

The randomness used in the experiment is read from explicit random tapes,
similar to [20]. In particular, the random permutation is encoded by a tape
p : {0, 1}2n → {0, 1}2n (whose inverse is accessible via p−1). The simulator has
access to 8 tapes f1, . . . , f8, which are independent uniform random mappings
from {0, 1}n to {0, 1}n; when randomly sampling the value of a query (i, xi), the
simulator reads the value of fi(xi) and sets Fi(xi)← fi(xi). Since each query is
sampled at most once, the tape entry hasn’t been read before and its value is
uniformly and independently distributed in {0, 1}n. Note that each fi encodes a
random function, and fi will be used as the i-th round function in the real world



G5.
A brief synopsis of the changes that occur in the games is as follows:
In G2: The simulator triggers a path at the outer detect zones only if the

distinguisher has issued the permutation query in the path.
Recall that the outer detect zones consist of rounds 1, 7, 8 or of rounds 1, 2,

8; to check whether three queries in an outer detect zone are in the same path,
the simulator has to call P(x0, x1) or P

−1(x8, x9) in G1. In G2, instead of calling
P(−1), the simulator performs a “peek” operation that accesses the query history
of the permutation oracle10; the path is triggered only if the permutation query
is in the history and the three queries are in the same path. Then, the simulator
queries P or P−1 only when completing a triggered path; therefore, if a permuta-
tion query is issued by the simulator, the path containing the permutation query
must have been completed (and cannot be triggered again).

Although the change may result in “false negatives” when detecting triggered
paths, such false negatives remain unlikely as long as the simulator is efficient.

In G3: The simulator adds a number of checks that may cause it to abort in
places where it did not abort in G2. Some of these checks cannot be included
in G1 because they also (like the modifications in G2) involve the simulator
“peeking” at the distinguisher’s queries to the permutation oracle.

The checks in G3 are added to catch “bad events” at the earliest possible
stage, i.e., at the moment after the relevant randomness has been sampled. If
these checks pass, we can show that the simulator will not abort at further
key points down the line, such as by attempting to overwrite an existing entry
Fi(xi) or by attempting to overwrite a pending query. (I.e., the checks in G3 are
sufficient conditions for the execution to maintain a “good” structure.)

In G4: The most important transition occurs in this game, as the oracles P,
P−1 no longer rely on the random permutation tape p : {0, 1}2n → {0, 1}2n, but
instead evaluate an 8-round Feistel network using the random tapes f1, . . . , f8
(i.e., the same ones used by the simulator) as round functions. Apart from this
change to P, P−1, the simulator remains identical.

In G5: This is the real world, meaning that F(i, x) directly returns the value
fi(x). In particular G5 never aborts, unlike the previous four games.

Definition 2. The advantage of a distinguisher D at distinguishing games Gi

and Gj is defined as

∆D(Gi,Gj) = Pr
Gi

[DF,P,P−1

= 1]− Pr
Gj

[DF,P,P−1

= 1] (4)

where the probabilities are taken over the coins of the relevant game as well as
over D’s coins, if any.

As G5 never aborts, and as the distinguisher’s job is to maximize

∆D(G1,G5) = Pr
G1

[DF,P,P−1

= 1]− Pr
G5

[DF,P,P−1

= 1],

10 This operation cannot be included in G1 as the original simulator is not allowed to
see the distinguisher’s permutation queries.



we can assume without loss of generality that D outputs 1 if the game aborts.
In particular, since G2 is identical to G3 except for the possibility that G3 may
abort when G2 does not, we then have

∆D(G2,G5) ≤ ∆D(G3,G5)

so we can upper bound ∆D(G1,G5) as

∆D(G1,G5) ≤ ∆D(G1,G2) +∆D(G2,G5)

≤ ∆D(G1,G2) +∆D(G3,G5)

≤ ∆D(G1,G2) +∆D(G3,G4) +∆D(G4,G5)

by the triangle inequality. Hence, the proof focuses on the individual transitions
G1 → G2, G3 → G4 and G4 → G5.

G1-G2 Transition. The two games (with the same random tapes) are visibly
different only if a path is triggered in G1 but not in G2, i.e., when a path
triggered by the outer detect zones in G1 contains a permutation query that
hasn’t been issued in G2. In this case (and assuming that G1 and G2 are being
“run” simultaneously on the same distinguisher D, with the same random tapes
f1, . . . , f8 : {0, 1}n → {0, 1}n and p : {0, 1}2n → {0, 1}2n) we say that G1 and
G2 diverge.

More precisely, one can show that divergence occurs if and only if the sim-
ulator makes a certain call of the form11 “CheckP+(x1, x2, x8)” such that (i)
p(x0, x1) is unread in G2, where

12 x0 = F1(x1) ⊕ x2, and (ii) the first n bits of
the unread value p(x0, x1) are equal to x8. In fact, this notion can be defined
with respect to the execution of G2 alone (i.e., without examining the execution
of G1) which then makes it straightforward to examine. In more detail, the prob-
ability of divergence of occuring in G2 is obtained by a simple union bound over
all calls to the CheckP+/CheckP− procedures, where the number of such calls is
upper bounded thanks to the (previously established) simulator efficiency. (In-
deed, the proof actually starts off by arguing various efficiency metrics in G1

and G2.)

G3-G4 Transition. For this transition, a randomness mapping argument is
used, as introduced by [20]. We also take advantage of some refinements intro-
duced by [1, 14]. Specifically, following [1], we use “footprints” and eschew the
use of a “two-way random function”; and following [14], we additively cancel the
probabilities of abort in G4 in separate transitions from G3 to G4 and from G4

to G5 in order to avoid double-counting these probabilities.
As usual, the randomness mapping argument consists of two steps: bound-

ing the abort probability in G3, and mapping the randomness of non-aborting
executions of G3 to the randomness of “matching” executions of G4. Bounding
the abort probability in G3 is the more technically involved of the two steps.

11 Or a call “CheckP−(x1, x7, x8)” subject to symmetric conditions.
12 The fact that CheckP+(x1, x2, x8) is called in the first place implies that F1(x1) 6= ⊥

in either game.



A small novelty that we introduce also concerns the randomness mapping
argument. Specifically, a randomness map needs to be defined with respect to a
distinguisher D that “completes” all paths (that contain a permutation query
issued by D). Making the assumption that D completes all paths is without loss
of generality, but costs a multiplicative factor in the number of queries that is
equal to the number of rounds—potentially annoying! However, we note that if
D is allowed q queries to each of its r + 1 oracles (the permutation plus the r
rounds functions), then the assumption that D completes all paths can be made
at the cost of only doubling the number of D’s queries. Moreover, there is no
real cost in giving D the power to query each of its oracles q times, since most
proofs effectively allow this anyway.

G4-G5 Transition. A non-aborting execution of G4 is identical to an execution
of G5 with the same random tape, so the advantage in distinguishing between
these two games is upper bounded by the simulator’s abort probability in G4.
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