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Abstract. The best existing bounds on the concrete security of key-
alternating ciphers (Chen and Steinberger, EUROCRYPT ’14) are only
asymptotically tight, and the quantitative gap with the best existing
attacks remains numerically substantial for concrete parameters. Here,
we prove exact bounds on the security of key-alternating ciphers and
extend them to XOR cascades, the most efficient construction for key-
length extension. Our bounds essentially match, for any possible query
regime, the advantage achieved by the best existing attack.
Our treatment also extends to the multi-user regime. We show that the
multi-user security of key-alternating ciphers and XOR cascades is very
close to the single-user case, i.e., given enough rounds, it does not sub-
stantially decrease as the number of users increases. On the way, we also
provide the first explicit treatment of multi-user security for key-length
extension, which is particularly relevant given the significant security loss
of block ciphers (even if ideal) in the multi-user setting.
The common denominator behind our results are new techniques for
information-theoretic indistinguishability proofs that both extend and
refine existing proof techniques like the H-coefficient method.
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1 Introduction

Precise bounds on the security of symmetric constructions are essential in es-
tablishing when and whether these constructions are to be deployed. This paper
revisits the question of proving best-possible security bounds for key-alternating
ciphers and key-length extension schemes.

Our contribution is twofold. First, we prove exact bounds on the security of
key-alternating ciphers and related methods for key-length extensions (i.e, XOR
cascades) which essentially match what is achieved by the best-known attack.
This is a substantial improvement over previous bounds, which are only asymp-
totically optimal. Second, we extend our treatment to the multi-user setting,
where no non-trivial bounds are known to date for these constructions.
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Our results are built on top of new conceptual insights in information-theoretic
indistinguishability proofs, generalizing previous approaches such as the H-
coefficient technique [9, 24].

Key-alternating ciphers. Key-alternating ciphers (KACs) generalize the
Even-Mansour construction [13] over multiple rounds. They abstract the struc-
ture of AES, and this fact has made them the object of several recent analy-
ses [1, 7–9, 11, 25]. Given t permutations π = (π1, . . . , πt) on n-bit strings, as
well as n-bit subkeys L0, L1, . . . , Lt, the t-round KAC construction KAC[π, t]
outputs, on input M , the value

Lt ⊕ πt(Lt−1 ⊕ πt−1(· · ·π1(M ⊕ L0) · · · )) . (1)

Here, we are specifically interested in (strong) prp security of KAC[π, t], i.e., its
indistinguishability from a random permutation (under random secret sub-keys)
for adversaries that can query both the construction and its inverse. Analyses
here are in the random-permutation model: The permutations π1, . . . , πt are
independent and random, and the distinguisher is given a budget of q on-line
construction queries, and p1, . . . , pt queries to each of the permutations. The
currently best bound is by Chen and Steinberger (CS) [9], who prove that the
distinguishing advantage of any such distinguisher A satisfies (using N = 2n and
p1 = · · · = pt = p)

Adv
±prp
KAC[π,t](A) ≤ (t + 2)

(

q(6p)t

N t
· t2(t + 1)t+1

)1/(t+2)

. (2)

Note that the best known distinguishing attack achieves advantage roughly
qpt/N t. The bound from (2) is asymptotically “tight”, i.e., the attacker needs

to spend about Ω
(

N t/(t+1)
)

queries for the bound to become constant, as in

the attack. However, there is a substantial gap between the curve given by the
bound and the advantage achieved by the best attack, and the constant hidden
inside the Ω notation (which depends on t) is fairly significant.

Exact bounds for KACs. Our first contribution is a (near-)exact bound
for KACs which matches the best-known attack (up to a small factor-four loss
in the number of primitive queries necessary to achieve the same advantage).
Concretely, we show that for A as above,

Adv
±prp
KAC[π,t](A) ≤ q(4p)t

N t
. (3)

The core of our proof inherits some of the combinatorial tools from CS’s proof.
However, we use them in a different (and simpler) way to give a much sharper
bound. We elaborate further at the end of this introduction. Clearly, our new
bound substantially improves upon the CS bound from (2). For example, for
realistic AES-like parameters (n = 128 and t = 10), and q = p = 2110, the CS
bound is already vacuous (indeed, the advantage starts becoming substantial
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at around 2100), and in contrast, our new bound still gives us 2−50. Another
feature is that our bound does not make any assumptions on q and p — we can
for example set q = N and still infer security as long as p is sufficiently small. In
contrast, the CS bound (and the technique behind it) assumes that p, q ≤ N/3.

We note in passing that Lampe, Patarin, and Seurin [19] already proved a
similar bound for the (simpler) case of a specific non-adaptive distinguisher. If
one wants however to extend their bound to the adaptive case, a factor-two loss
in the number of rounds becomes necessary.

Multi-user security. Similar to all prior works, the above results only con-
sider a single user. Yet, block ciphers are typically deployed en masse and at-
tackers are often satisfied with compromising some user among many. This can
be substantially easier. For example, given multiple ciphertexts encrypted with
a single k-bit key, a brute-force key-search attack takes effort roughly 2k to suc-
ceed. However, if the ciphertexts are encrypted with u different keys, the effort
is reduced to 2k/u. Overall we effectively lose log(u) bits of security, which can
be substantial. Note that this loss is only inherent if exhaustive key-search is the
best attack — it may be that a given design is subject to better degradation,
and assessing what is true is crucial to fix concrete parameters.

The notion of multi-user (mu) security was introduced and formalized by
Bellare, Boldyreva, and Micali [2] in the context of public-key encryption. Unfor-
tunately, until recently, research on provable mu security for block-cipher designs
has been somewhat lacking, despite significant evidence of this being the right
metric (cf. e.g. [6] for an overview). Recent notable exceptions are the works of
Mouha and Luykx [22] and Tessaro [26]. The former, in particular, provided a
tight analysis of the Even-Mansour cipher in the mu setting, and is a special
case of our general analysis for t = 1.

Multi-user security for KACs. First recall that in the mu setting, the ad-
versary makes q queries to multiple instances of KAC[π, t] (and their inverses),
each with an independent key (but all accessing the same π), and needs to dis-
tinguish these from the case where they are replaced by independent random
permutations. The crucial point is that we do not know a per-instance upper
bound on the number of the distinguisher queries, which are distributed adap-
tively across these instances. Thus, in the worst-case, at most q queries are made
on some instance and by a naive hybrid argument,1

Adv
±mu-prp
KAC[π,t](A) ≤ u · q(4(p + qt))t

N t
≤ q2(4(p + qt))t

N t
, (4)

where u is an upper bound on the number of different instances (or “users”) for
which A makes a query, which again can be at most q. Note that such additional
multiplicative factor q is significant: e.g., for t = 1, it would enforce q < N1/3.

1 The increase from p to p + qt is due to the fact that in the reduction to su prp
security, the adversary needs to simulate queries to all but one of the instances with
direct permutation queries.
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As our second contribution, we show that this loss is not necessary, and that in
fact essentially the same bound as in the single-user case holds, i.e.,

Adv
±mu-prp
KAC[π,t](A) ≤ 2

q(4(p + qt))t

N t
. (5)

To get a sense of why the statement holds true, note that we could prove this
bound easily if we knew that the adversary makes at most qi queries for the i-th
user, and q =

∑

i qi. In this case, the naive hybrid argument would yield the
bound from (5), but we do not have such qi’s. Our proof relies on a “transcript-
centric” hybrid argument, i.e., we use a hybrid argument to relate the real-
world and ideal-world probabilities that the oracles of the security game behave
according to a certain a-priori fixed transcript, for which the quantities qi are
defined. The fact that looking at these probabilities suffice will be at the core of
our approach, discussed below.

Key-length extension and multi-user security. A fundamental prob-
lem in symmetric cryptography, first considered in the design of “Triple-DES”
(3DES), is that of building a cipher with a “long” key from one with a “short”
key to mitigate the effects of exhaustive key search. Analyses of such schemes
(in the ideal-cipher model) have received substantial attention [4, 10, 14–17, 20],
yet the practical relevance of these works is often put in question given exist-
ing designs have already sufficient security margins. However, the question gains
substantial relevance in the multi-user setting – indeed, the mu PRP security of
an ideal cipher with key length k is at most 2k/2, i.e., 64 bits for AES-128.

In this paper, we analyze XOR-cascades [14, 20], which have been shown
to give the best possible trade-off between number of rounds and achievable
security. Given a block cipher E with k-bit keys and n-bit blocks, the t-round
XOR cascade XC[E, t] uses sub-keys J1, . . . , Jt, L0, . . . , Lt, and on input M ,
outputs

Lt ⊕ EJt
(Lt−1 ⊕ EJt−1

(· · ·EJ1
(M ⊕ L0) · · · )) . (6)

A connection between analyzing XC in the ideal-cipher model and KAC in the
random permutation model was already noticed [14, 15], but the resulting re-
duction is far from tight. Here, we give a tight reduction, and use our result on
KAC[π, t] to show that for every adversary making q construction queries and
at most p queries to an ideal cipher, if the keys J1, . . . , Jt are distinct,

Adv
±prp
XC[E,t](A) ≤ q

( 4p

2k+n

)t

. (7)

Our bound does not make any assumption on q (which can be as high as 2n)
and p. If the keys are independent (and may collide), an additional term needs
to be added to the bound — a naive analysis gives t2/2k, which is usually
good enough, and this is what done in prior works. This becomes interesting
when moving to the multi-user case. For the distinct-key case, we can apply
our techniques to inherit the bound from (7) (replacing p with p + q · t), noting
that we are allowing keys to collide across multiple users, just same-user keys
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need to be distinct. An important feature of this bound (which is only possible
thanks to the fact that we are not imposing any restrictions on query numbers
in our original bound for KAC[π, t]) is that it also gives guarantees when q ≫ 2n

and queries are necessarily spread across multiple users. This is particularly
interesting when n is small (e.g., n = 64 for DES, or even smaller if E is a
format-preserving encryption (FPE) scheme).

However, for the independent-key case, the naive analysis here gives us a
term ut2/2k, where u is the number of users (and u = q may hold). This term is
unacceptably large – in particular, if u = q ≫ 2n. To this end, we significantly
improve (in the single-user case already) the additive term t2/2k. In the multi-
user setting, the resulting bound is going to be extremely close to the one for
distinct keys, if t 6= 3.2 We leave the question open of reducing the gap (or
proving its necessity) for t = 3.

Our techniques. A substantial contribution of our work is conceptual. Sec-
tion 3.1 below presents our tools in a general fashion, making them amenable to
future re-use. We give an overview here.

All of our results rely on establishing a condition we call point-wise prox-
imity: That is, we show that there exists an ǫ = ǫ(q) such that for all possible
transcripts τ describing a possible ideal- or real-world interaction (say with q
queries), the probabilities p0(τ) and p1(τ) that the ideal and real systems, re-
spectively, answer consistently with τ (when asked the queries in τ) satisfy

p0(τ)− p1(τ) ≤ ǫ · p0(τ) .

This directly implies that the distinguishing advantage of any q-query distin-
guisher is at most ǫ. This method was first used by Bernstein [5], and can be
seen as a special case of Patarin’s H-coefficient method [24] (recently revisited
and re-popularized by Chen and Steinberger [9]) and Nandi’s “interpolation
method” [23], where we do not need to consider the possibility of some tran-
scripts “being bad”. It turns out that when we do not need such bad set, the
notion becomes robust enough to easily allow for a number of arguments.

Transcript-centric reductions. Our first observation is that point-wise
proximity makes a number of classical proof techniques transcript-centric, such
as hybrid arguments and reductions. For example, assume that for a pair of
systems with transcript probabilities p0 and p1, we have already established
that p0(τ)−p1(τ) ≤ ǫ ·p0(τ). Now, to establish that for some other p′

0 and p′
1 we

also have p′
0(τ)− p′

1(τ) ≤ ǫ · p′
0(τ), it is enough to exhibit a function ϕ, mapping

transcripts into transcripts, such that

p′
1(τ)

p′
0(τ)

=
p1(ϕ(τ))

p0(ϕ(τ))

2 We note that in practice, it is easy for a user to enforce that her t keys are distinct,
making this part of the key sampling algorithm. Still, our bound shows that this is
not really necessary for t 6= 3.
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for every τ such that p′
0(τ) > 0. This is effectively a reduction, but the key point

is that the reduction ϕ maps executions into executions (i.e., transcripts), and
thus can exploit some global after-the-fact properties of this execution, such as
the number of queries of a certain particular type. This technique will be central
e.g. to transition (fairly generically) from single-user to multi-user security in a
tight way. Indeed, while a hybrid argument does not give a tight reduction from
single-user to multi-user security, such a reduction can be given when we have
established the stronger property of single-user point-wise proximity.

The expectation method. Our main quantitative improvement over the CS
bound is due to a generalization of the H-coefficient method that we call the
expectation method.

To better understand what we do, we first note that through a fairly involved
combinatorial analysis, the proof of the CS bound [9] gives (implicitly) an exact

formula for the ratio ǫ(τ) = 1 − p1(τ)
p0(τ) for every “good transcript” τ . The issue

here is that ǫ(τ) depends on the transcript τ , in particular, on numbers of paths
of different types in a transcript-dependent graph G = G(τ). To obtain a sharp
bound, CS enlarge the set of bad transcripts to include those where these path
numbers excessively deviate from their expectations, and prove a unique bound
ǫ∗ ≥ ǫ(τ) for all good transcripts. As these quantities do not admit overly strong
concentration bounds, only Markov’s inequality applies, and this results in ex-
cessive slackness. In particular, an additional parameter appears in the bound,
allowing for a trade-off between the probability δ∗ of τ being bad and the quality
of the upper bound ǫ∗, and this parameter needs to be optimized to give the
sharpest bound, which however still falls short of being exact.

The problem here is that the H-coefficient technique takes a worst-case ap-
proach, by unnecessarily requiring one single ǫ∗ to give us an upper bound for
all (good) transcripts. What we use here is that given a transcript-dependent
ǫ = ǫ(τ) for which the above upper bound on the ratio holds, then one can sim-
ply replace ǫ∗ in the final bound with the expected value of ǫ(τ) for an ideal-world
transcript τ . This expected value is typically fairly straightforward to compute,
since the ideal-world distribution is very simple.

We in fact do even more than this, noticing that for KACs point-wise proxim-
ity can be established, and this will allow us to obtain many of the applications
of this paper. In fact, once we do not need to enlarge the set of bad transcripts
any more as in CS, we observe that every transcript is potentially good. Only
in combination with the key (which is exposed as part of the transcript in CS)
transcripts can be good or bad. We will actually apply the expectation method
on every fixed transcript τ , the argument now being only over the choice of the
random sub-keys L0, L1, . . . , Lt – this makes it even simpler.

A perspective. The above techniques are all fairly simple in retrospect, but
they all indicate a conceptual departure from the standard “good versus bad”
paradigm employed in information-theoretic indistinguishability proofs. CS al-
ready suggested that one can generalize their methods beyond a two-set par-
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tition, but in a way, what we are doing here is an extreme case of this, where
every set in the partition is a singleton set.

It also seems that the issue of using Markov’s inequality has seriously affected
the issue of proving “exact bounds” (as opposed to asymptotically tight ones).
Another example (which we also revisit) is the reduction of security of XOR
cascades to that of KACs [14,15].

2 Preliminaries

Notation. For a finite set S, we let x←$ S denote the uniform sampling from S
and assigning the value to x. Let |x| denote the length of the string x, and
for 1 ≤ i < j ≤ |x|, let x[i, j] denote the substring from the ith bit to the
jth bit (inclusive) of x. If A is an algorithm, we let y ← A(x1, . . . ; r) denote
running A with randomness r on inputs x1, . . . and assigning the output to y.
We let y←$ A(x1, . . .) be the resulting of picking r at random and letting y ←
A(x1, . . . ; r).

Multi-user PRP security of blockciphers. Let Π : K ×M → M be a
blockcipher, which is built on a family of independent, random permutations
π : Index × Dom → Dom. (Note that here Index could be a secret key, in this
case π will model an ideal cipher, or just a small set of indices, in which case
π models a (small) family of random permutations.) We associate with Π a
key-sampling algorithm Sample. Let A be an adversary. Define

Adv
±mu-prp
Π[π],Sample(A) = Pr[RealAΠ[π],Sample ⇒ 1]− Pr[RandA

Π[π],Sample ⇒ 1]

where games Real and Rand are defined in Fig. 1. In these games, we first use
Sample to sample keys K1, K2, . . . ∈ K for Π, and independent, random per-
mutations f1, f2, . . . onM. The adversary is given four oracles Prim,PrimInv,
Enc, and Dec. In both games, the oracles Prim and PrimInv always give access
to the primitive π and its inverse respectively. The Enc and Dec oracles gives
access to f1(·), f2(·), . . . and their inverses respectively in game Rand, and access
to Π[π](K1, ·), Π[π](K2, ·), . . . and their inverses in game Real. The adversary
finally needs to output a bit to tell which game it’s interacting.

For the special case that and adversary A only queries Prim(·),Enc(1, ·),
and their inverses, we write Adv

±prp
Π[π],Sample(A) to denote the advantage of A.

If Sample is the uniform sampling of K then we only write Adv
±prp
Π[π] (A) and

Adv
±mu-prp
Π[π] (A). If Π doesn’t use π then Adv

±prp
Π (A) coincides with the conven-

tional (strong) PRP advantage of A against Π.

3 Indistinguishability Proofs via Point-wise Proximity

This section discusses techniques for information-theoretic indistinguishability
proofs. A reader merely interested in our theorems can jump ahead to the next
sections — the following tools are not needed to understand the actual state-
ments, only their proofs.
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proc Initialize() RealAΠ[π],Sample

for i = 1, 2, . . . do Ki←$ Sample()

proc Enc(i, x) {ret ΠKi [π](x)}

proc Dec(i, y) {ret Π−1
Ki

[π](y)}

proc Prim(J, u) {ret πJ (u)}

proc PrimInv(J, v) {ret π−1
J (v) }

proc Initialize() RandA
Π[π],Sample

for i = 1, 2, . . . do fi←$ Perm(M)

proc Enc(i, x) {ret fi(x)}

proc Dec(i, y) {ret f−1
i (y)}

proc Prim(J, u) {ret πJ (u)}

proc PrimInv(J, v) {ret π−1
J (v)}

Fig. 1: Games defining the multi-user security of a blockcipher Π : K×M→
M. This blockcipher is based on a family of independent, random permutations π :
Index×Dom→ Dom. The game is associated with a key-sampling algorithm Sample.
Here Perm(M) denotes the set of all permutations on M.

3.1 The indistinguishability framework

Let us consider the setting of a distinguisher A (outputting a decision bit) in-
teracting with one of two “systems” S0 and S1. These systems take inputs and
produce outputs, and are randomized and possibly stateful. We dispense with
a formalization of the concept of a system, as an intuitive understanding will
be sufficient. Still, this can be done via games [4], random systems [21], ITMs,
or whichever other language permits doing so. In this paper, these systems will
provide a construction oracle Enc with a corresponding inversion oracle Dec,
and a primitive oracle Prim with a corresponding inversion oracle PrimInv, but
our treatment here is general, and thus does not assume this form.

The interaction between Sb and A (for b ∈ {0, 1}) defines a transcript
τ = ((u1, v1), . . . , (uq, vq)) containing the ordered sequence of query-answer pairs
describing this interaction. We denote by Xb the random variable representing
this transcript. In the following, we consider the problem of upper bounding the
statistical distance

SD(X0, X1) =
∑

τ

max{0, Pr[X1 = τ ]− Pr[X0 = τ ]} , (8)

of the transcripts, where the sum is over all possible transcripts. It is well known
that SD(X0, X1) is an upper bound on the distinguishing advantage of A, i.e.,
the difference between the probabilities of A outputting one when interacting
with S1 and S0, respectively.

Describing systems. Following [21], a useful way to formally describe the be-
havior of a system S is to associate with it a function pS mapping a possible
transcript τ = ((u1, v1), . . . , (uq, vq)) with a probability pS(τ) ∈ [0, 1]. This is to
be interpreted as the probability that if all queries u1, . . . , uq in τ are asked to
S in this order, the answers are v1, . . . , vq. Note that this is not a probability
distribution (i.e., summing pS(τ) over all possible τ ’s does not give one). More-
over, pS is independent of any possible distinguisher — it is a description of the
system. (And in fact, this is precisely how [21] defines a system.)
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Because our distinguishers are computationally unbounded, it is sufficient to
assume them to be deterministic without loss of generality. A simple key obser-
vation is that for deterministic distinguisher A, given the transcript distribution
X of the interaction with S, we always have Pr[X = τ ] ∈ {0, pS(τ)}. This is
because, if τ = ((u1, v1), . . . , (uq, vq)), then either A is such that it asks queries
u1, . . . , uq when fed answers v1, . . . , vq (in which case Pr[X = τ ] = pS(τ)), or it
is not, in which case clearly Pr[X = τ ] = 0.

Let T denote the set of transcripts τ such that Pr[X1 = τ ] > 0. We call
such transcripts valid. Also, note that if τ ∈ T , then we also have Pr[X0 = τ ] =
pS0

(τ). Therefore, we can rewrite (8) as

SD(X0, X1) =
∑

τ∈T

max{0, pS1
(τ)− pS0

(τ)} . (9)

Note that which transcripts are valid depends on A, as well as on the system S1.

The H-coefficient method. Let us revisit the well-known H-coefficient tech-
nique [9, 24] within this notational framework. (This is also very similar to
alternative equivalent treatments, like the “interpolation method” presented
in [5, 23].) The key step is to partition valid transcripts T into two sets, the
good transcripts Γgood and the bad transcripts Γbad. Then, if we can establish

the existence of a value ǫ such that for all τ ∈ Γgood, we have 1 − pS0 (τ)

pS1 (τ) ≤ ǫ,

then we can conclude that

SD(X0, X1) =
∑

τ

max{0, pS1
(τ)− pS0

(τ)}

≤
∑

τ∈Γgood

pS1
(τ) ·max

{

0, 1− pS0
(τ)

pS1
(τ)

}

+
∑

τ∈Γbad

pS1
(τ) · 1

≤ ǫ + Pr[X1 ∈ Γbad] .

We note that in the typical treatment of this method, many authors don’t nota-
tionally differentiate explicitly between e.g. Pr[X0 = τ ] and pS0

(τ) (and likewise
for X1 and S1), even though this connection is implicitly made. (For example,
for typical cryptographic systems, the order of queries is re-arranged to compute
Pr[X0 = τ ] without affecting the probability, which is a property of pS0

, since
queries may not appear in that order for the given A.) Treating these separately
will however be very helpful in the following.

The expectation method. In the H-coefficient method, ǫ typically depends
on some global properties of the distinguisher (e.g., the number of queries) and
the system (key length, input length, etc). However, this can be generalized:
Assume that we can give a non-negative function g : T → [0,∞) such that

1− pS0
(τ)

pS1
(τ)
≤ g(τ) (10)
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for all τ ∈ Γgood, then we can easily conclude, similar to the above, that

SD(X0, X1) ≤
∑

τ∈Γgood

pS1
(τ) · g(τ) + Pr[X1 ∈ Γbad]

≤ E[g(X1)] + Pr[X1 ∈ Γbad] .

Note that we have used the fact that the function g is non-negative for the first
term to be upper bounded by the expectation E[g(X1)]. We refer to this method
as the expectation method, and we will see below that this idea is very useful.

The H-coefficient technique corresponds to the special case where g is “con-
stant”, whereas here the value may depend on further specifics of the transcript
at hand. Obviously, good choices of g, Γgood, and Γbad are specific to the problem
at hand. We also note that one can set g(τ) = 1 for bad transcripts, and then
dispense with the separate calculation of the probability. (The way we present it
above, however, makes it more amenable to the typical application.) Note that
Chen and Steinberger [9] explain that in the H-coefficient method one may go
beyond the simple partitioning in good and bad transcripts. In a sense, what we
are doing here is going to the extreme, partitioning Γgood into singleton sets.

3.2 Point-wise proximity

A core observation is that for some pairs of systems S0 and S1 (and this will be
the case for those we consider), we are able to establish a stronger “point-wise”
proximity property.

Definition 1 (Point-wise proximity). We say that two systems S0 and S1

satisfy ǫ-point-wise proximity if, for every possible transcript τ with q queries,

∆(τ) = pS1
(τ)− pS0

(τ) ≤ pS1
(τ) · ǫ(q) . (11)

Note that ǫ is a function of q, and often we will let it depend on more fine-grained
partitions of the query complexity. (Also in some cases, the query complexity will
be implicit.) In particular, for a certain q-query distinguisher A, by Equation (9),
it is clear that ǫ-point-wise proximity implies that SD(X0, X1) ≤ ǫ, which is also
a bound on A’s advantage. Observe that point-wise proximity is a property of a
pair of systems S0 and S1, independent of the adversaries interacting with them.

Also, it is equivalent to the fact that 1− pS0 (τ)

pS1 (τ) ≤ ǫ for all τ such that pS1
(τ) > 0.

In other words, establishing ǫ-proximity corresponds to applying the H-
coefficient method without bad transcripts. This is exactly the special case con-
sidered by Bernstein [5]. Of course, this method is not always applicable, but
when it is, it will bring numerous advantages.

The expectation method. We outline a general method to prove ǫ-point-wise
proximity based on the above general expectation method.

As the starting point, we extend the system S0 to depend on some auxiliary
random variable S (e.g., a secret key). In particular, we write pS0

(τ, s) to be
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the probability that S0 answers queries according to τ and that S = s. Further,
we define pS1

(τ, s) = pS1
(τ) · Pr[S = s], i.e., we think of S1 as also addition-

ally sampling an auxiliary variable S with the same marginal distribution as in
S0, except that the behavior of S1 remains independent of S. Then, for every
transcript τ ,

∆(τ) =
∑

s

pS1
(τ, s)−

∑

s

pS0
(τ, s) =

∑

s

pS1
(τ, s)− pS0

(τ, s) .

Now, we establish the following lemma, that is based on the above expectation
method.

Lemma 1 (The expectation method). Fix a transcript τ for which pS1
(τ) >

0. Assume that there exists a partition Γgood and Γbad of the range U of S, as well
as a function g : U → [0,∞) such that Pr[S ∈ Γbad] ≤ δ and for all s ∈ Γgood,

1− pS0
(τ, s)

pS1
(τ, s)

≤ g(s) .

Then,

∆(τ) ≤ (δ + E(g(S))) · pS1
(τ) .

Proof. Note that s ∈ U implies Pr[S = s] > 0, and thus pS1
(τ, s) > 0. We can

easily compute

∆(τ) ≤
∑

s∈U

pS1
(τ, s)− pS0

(τ, s)

= pS1
(τ) ·

∑

s∈U

Pr[S = s] ·
(

1− pS0
(τ, s)

pS1
(τ, s)

)

≤ pS1
(τ) ·

(

∑

s∈Γbad

Pr[S = s] +
∑

s∈Γgood

Pr[S = s] · g(s)
)

≤ (δ + E(g(S))) · pS1
(τ) . ⊓⊔

We stress that the partitioning into Γgood and Γbad, as well as the function g and
the random variable S, are all allowed to depend on τ (and in fact will depend
on them in applications).

Transcript reduction. Lemma 1 gives us one possible approach to prove
ǫ-point-wise proximity. Another technique we will use is to simply reduce this
property to ǫ-point-wise proximity for another pair of systems.

Typically, we will assume that we are in the above extended setting, where
we have enhanced the systems S0 and S1 with some auxiliary random variable S.
Here, in contrast to the above, we assume that S is not necessarily independent
of the behavior of the system S1. Further, assume that we are given two other
systems S′

0 and S′
1 for which ǫ-point-wise proximity holds. To this end, we are
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simply going to provide an explicit reduction R which is going to map every
(τ, s) for S0 and S1 into a transcript R(τ, s) for S′

0 and S′
1 such that

pS0
(τ, s)

pS1
(τ, s)

=
pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

.

whenever pS1
(τ, s) > 0. This will be sufficient for our purposes, because (with U

being the set of s such that pS1
(τ, s) > 0)

∆(τ) ≤
∑

s∈U

pS1
(τ, s) ·

(

1− pS0
(τ, s)

pS1
(τ, s)

)

=
∑

s∈U

pS1
(τ, s) ·

(

1−
pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

)

≤ ǫ · pS1
(τ) .

Note that here ǫ = ǫ(q′), where q′ is the number of queries in R(τ, s).

3.3 From single-user to multi-user security

There is no generic way to derive a tight bound on the multi-user security of a
construction given a bound on its single-user security — the naive approach uses
a hybrid argument, but as we have no bounds on the per-user number of queries
of the attacker (which may vary adaptively), this leads to a loss in the reduction.
Here, we show how given point-wise proximity for the single-user case, a bound
for multi-user security can generically be found via a hybrid argument.

We assume now we are in the above multi-user prp security setting presented
in Section 2, and we let preal and prand describe the oracles available in the real
and random experiments (which we can see as systems in the framework above).
Assume that we already established ǫ-point-wise proximity for the single-user
case for transcripts with at most p primitive queries and q function queries (and
we think of ǫ = ǫ(p, q) as a function of p and q). That is, we have shown that
for every transcript τ such that all function queries have form Enc(i, x) and
Dec(i, y) for the same i (whereas Prim(J, u) / PrimInv(J, v) are unrestricted),

prand(τ)− preal(τ) ≤ prand(τ) · ǫ(p, q) . (12)

Let m be the number of calls to π/π−1 that a single call to Π/Π−1 makes.
Also assume now that ǫ satisfies the following properties: (i) ǫ(x, y) + ǫ(x, z) ≤
ǫ(x, y + z), for every x, y, z ∈ N, and (ii) ǫ(·, z) is an increasing function on N,
for every z ∈ N. Property (ii) usually holds, because asking more queries should
only increase the adversary’s advantage. Property (i) is also usually satisfied by
typical functions we use to bound distinguishing advantages. Further, we assume
that ǫ(p + qm, q) ≤ 1/2. Then, we show the following.

Lemma 2 (From su to mu point-wise proximity). Assume all conditions
above are met. Then for all transcripts τ with at most q function queries (for
arbitrary users) and p primitive queries,

prand(τ)− preal(τ) ≤ prand(τ) · 2ǫ(p + q ·m, q) (13)
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Proof. Fix some transcript τ , and assume that in τ , function queries are made
for r users u1, . . . , ur ∈ N. For each i ∈ {0, 1, . . . , r}, consider the hybrid system
Si which provides a compatible interface with the real and random games, and
answers primitives queries in the same way, but queries for user uj for j > i
are answered with the actual construction Π and Π−1, whereas queries for uj

with j ≤ i are answered by i independent random permutations. Then clearly
pS0

(τ) = preal(τ) and pSr
(τ) = prand(τ). We can thus rewrite

prand(τ)− preal(τ) =

r
∑

i=1

pSi
(τ)− pSi−1

(τ) .

Suppose that τ contains qi queries to Enc(ui, ·)/Dec(ui, ·). We’ll prove that for
any i ∈ {1, . . . , r},

pSi
(τ)− pSi−1

(τ) ≤ pSi
(τ) · ǫ(p + qm, qi) . (14)

This claim will be justified later. Now Equation (14) implies that

pSi−1
(τ) ≥ (1− ǫ(p + qm, qi)) · pSi

(τ)

for every i ∈ {1, . . . , r}. Thus for any i ∈ {1, . . . , r},

pS0
(τ) ≥ pSi

(τ)

i
∏

j=1

(1− ǫ(p + qm, qj)) ≥ pSi
(τ)

(

1−
i

∑

j=1

ǫ(p + qm, qj)
)

≥ pSi
(τ)

(

1−
r

∑

j=1

ǫ(p + qm, qj)
)

≥ pSi
(τ)

(

1− ǫ(p + qm, q)
)

≥ 1

2
pSi

(τ) .

The first inequality is due to the fact that (1− x)(1− y) ≥ 1− (x + y) for every
0 ≤ x, y ≤ 1; the second last inequality is due to the property (i) of function ǫ;
and the last one is due to the assumption that ǫ(p + qm, q) ≤ 1/2. Combining
this with Equation (14),

r
∑

i=1

pSi
(τ)− pSi−1

(τ) ≤
r

∑

i=1

pSi
(τ) · ǫ(p + qm, qi)

≤
r

∑

i=1

2pS0
(τ) · ǫ(p + qm, qi) ≤ 2pS0

(τ) · ǫ(p + qm, q) .

What’s left is to prove Equation (14). To this end, fix i ∈ {1, . . . , r}, and we
are going to use the transcript reduction technique presented above. First off,
enhance Si−1 and Si with an auxiliary variable S which contains (i) the tran-
script of all internal Prim/PrimInv caused by querying Enc(uj , ·)/Dec(uj , ·),
and (ii) the keys Kj of users uj , for j > i. Now, given (τ, s), note that if we
start by removing all queries from τ for users uj for j < i (which are answered
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Fig. 2: Left: Illustration of KAC[π, 2]. Right: Illustration of KACX[π, 2].
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Fig. 3: Su PRP security of KAC on 3 rounds (left) and 10 rounds (right) on
128-bit strings: our bounds versus CS’s. The solid lines depict our bounds, and
the dashed ones depict CS’s bounds. In both pictures, p = q, and the x-axis gives the
log (base 2) of p, and the y-axis gives upper bounds on the PRP security of KAC.

by random permutations in both Si−1 and Si), obtaining a transcript τ ′, then
we necessarily have

pSi−1
(τ, s)

pSi
(τ, s)

=
pSi−1

(τ ′, s)

pSi
(τ ′, s)

.

This is because the distribution of these answers is independent of what is in
τ ′, s in both Si−1 and Si, and in both cases the distribution is identical. Then,
given τ ′ and a value s for S (in either of the system), we can easily construct a
transcript R(τ ′, s) where all function queries for users uj for j > i are removed,
all primitive queries in s are made directly to the Prim and PrimInv oracles in
τ ′, and all keys Kj of users uj for j > i are removed. It is easy to verify that

pSi−1
(τ, s)

pSi
(τ, s)

=
pSi−1

(R(τ ′, s))

pSi
(R(τ ′, s))

,

because (i) the function queries of users uj can be derived from the primitive
queries and Kj , and (ii) the keys Kj for j > i are independent of what’s used
for user i. However, note R(τ ′, s) contains qi Enc/Dec queries, all for users ui,
and at most p + q ·m queries to Prim / PrimInv. As for those transcripts we
have already established ǫ-point-wise proximity, Equation (14) follows by the
transcript reduction method. ⊓⊔

4 Exact Bounds for Key-Alternating Ciphers

4.1 Results and Discussion

This section provides a comprehensive single- and multi-user security analysis
of key-alternating ciphers. After reviewing the construction, and the concrete
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bound proved by Chen and Steinberger [9], we state and discuss our main results,
starting with the single-user security case.

Key-alternating ciphers. Let us review the key-alternating cipher construc-
tion. Let t and n be positive integers, and let π : N × {0, 1}n → {0, 1}n be
a family of permutations on {0, 1}n. We write πi(·) to denote π(i, ·), and N
for 2n. The Key-Alternating Cipher (KAC) construction gives a blockcipher
KAC[π, t] : ({0, 1}n)t+1 × {0, 1}n → {0, 1}n as follows. On input x and keys
K = (L0, . . . , Lt) ∈ ({0, 1}n)t+1, KAC[π, t](K, x) returns yt, where y0 = x⊕L0,
and yi = πi(yi−1) ⊕ Li for every i ∈ {1, . . . , t}. It is a direct generalization
of the classic Even-Mansour construction [12]. See Fig. 2 for an illustration of
KAC[π, 2].

The CS bound. Chen and Steinberger (CS) [9] shows that if an adversary makes
at most q queries to Enc/Dec, and at most p ≤ N/3 queries to Prim(i, ·) and
PrimInv(i, ·) for every i ∈ {1, . . . , t}, then

Adv
±prp
KAC[π,t](A) ≤ qpt

N t
· Ct2(6C)t +

(t + 1)2

C
(15)

for any C ≥ 1. Since Equation (15) holds for any C ≥ 1, to determine the best
upper bound for Adv

±prp
KAC[π,t](A) according to this inequality, one needs to find

the minimum of the right-hand side of Equation (15). For each fixed p, q and t,
from the inequality of arithmetic and geometric means:

qpt

N t
· Ct2(6C)t +

(t + 1)2

C
=

qpt

N t
· Ct2(6C)t +

(t + 1)

C
+ · · ·+ (t + 1)

C

≥ (t + 2)

(

qptCt2(6C)t

N t
· (t + 1)

C
· · · (t + 1)

C

)1/(t+2)

= (t + 2)

(

q(6p)t

N t
· t2(t + 1)t+1

)1/(t+2)

.

The equality happens if C =
(

Nt(t+1)
qt2(6p)t

)(t+2)

. Equation (15) can be rewritten as

Adv
±prp
KAC[π,t](A) ≤ (t + 2)

(

q(6p)t

N t
· t2(t + 1)t+1

)1/(t+2)

.

(This bound is slightly smaller than the claimed result in [9, Corollary 1].) While
this bound is asymptotically optimal, meaning that the adversary needs to spend
about N t/(t+1) queries for the bound to become vacuous, it’s concretely much
weaker than the best possible bound, which is roughly qpt/N t [14].

Single-user security of KACs. We establish the following theorem, which
gives a near-exact bound on the PRP security of the KAC[π, t] construction
in the ideal-permutation model. Following the theorem, we first give some com-
ments. The proof is found in Section 4.2, where we also give a high-level overview.
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Theorem 1 (Su PRP security of KACs). Let t and n be positive integers,
and let π : N × {0, 1}n → {0, 1}n be a family of ideal permutations on {0, 1}n.
Let KAC[π, t] be as above. For an adversary A that makes at most q queries
to Enc/Dec, and at most pi queries to Prim(i, ·) and PrimInv(i, ·) for every
i ∈ {1, . . . , t}, it holds that

Adv
±prp
KAC[π,t](A) ≤ 4tqp1 · · · pt/N t . (16)

This bound constitutes a significant improvement over the CS bound. For ex-
ample, consider n = 128 and t = 3. For p = 296 and q = 264, CS’s result yields
Adv

±prp
KAC[π,3](A) ≤ 0.71, whereas according to Theorem 1, Adv

±prp
KAC[π,3](A) ≤ 2−26.

See Fig. 3 for a graphical comparison of CS’s bound and ours for the case p = q
and both t = 3 and t = 10 rounds. Note that the latter case is the one match-
ing AES-128 the closest. In particular, here, we see that the advantage starts
to become noticeable roughly at q = p = 2100 for the CS bound, whereas this
happens only at 2113 for our new bound. One of the issues in the CS bound is
that the 1/(t + 2) exponent smoothes the actual bound considerably, and thus
gives a much less sharp transition from small advantage to large as t increases.

Query regimes. Let us point out two important remarks on the bound. First
off, it is important that our bound does not require any bound on q and p1, . . . , pt.
Any of these values can equal N , and the construction remains secure as long as
4tqp1 · · · pt/N t remains small enough. Dealing with such q = N and pi = N case
requires in fact a completely novel approach, which we introduce and explain
below in Section 4.2. This will be important when using our bounds in the proof
for the analysis of XOR cascades, which we want to hold true even if N is small
(e.g., in the case of format-preserving encryption (FPE) [3]) and the attacker
distributes q ≫ N queries across multiple users, possibly exhausting all possible
queries for some of these users.

On the other hand, one might worry that an adversary may adaptively dis-
tribute the number of queries among the permutations π1, . . . , πt, and want a
bound in terms of p, the total number of queries to π. Naively, the bound in
Theorem 1 is only q(4p)t/N t. However, we can exploit our point-wise proximity
based approach to get a sharper bound: In each transcript τ , the number of
queries pi[τ ] to πi is completely determined, and thus Equation (17) in the proof
of Theorem 1 can be rewritten as

pS1
(τ)− pS0

(τ) ≤ pS1
(τ) · 4tqp1[τ ] · · · pt[τ ]

N t

≤ pS1
(τ) · 4tq(p1[τ ] + · · ·+ pt[τ ])t

N ttt
≤ pS1

(τ) · q(4p)t

N ttt
.

Then Adv
±prp
KAC[π,t](A) ≤ q(4p)t/(Nt)t.

Variants. Consider the following natural variant KACX[π, t] of KAC[π, t]. It
uses only t subkeys (L1, . . . , Lt) ∈ ({0, 1}n)t. On input x, it returns returns
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yt, where y0 = x, and yi = πi(yi−1 ⊕ Li) ⊕ Li for every i ∈ {1, . . . , t}. See
Fig. 2 for an illustration of KACX. Note that KACX is KAC with effective key
(L1, L1 ⊕ L2, L2 ⊕ L3, . . . , Lt−1 ⊕ Lt, Lt), or in other words, we have chosen
random keys under the constraint that their checksum equals 0n.

While we do not give the concrete proof, we note that the same security
bound and proof will continue to work: in the proof, whenever we need to use
the independence of the subkeys, we consider only t subkeys at a time. We note
that for t = 1 this is exactly the statement that the security of Even-Mansour
is not affected when one sets both keys to be equal.

4.2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We begin with a high-level
overview of the proof structure. Following the notational framework of Sec-
tion 3.1, let S0 and S1 be the systems associated by the real and ideal game
in the prp security definition. In particular, transcripts τ for these systems con-
tain two different types of entries:

– Enc/Dec queries. Queries to Enc(1, x) returning y and Dec(1, y) returning
x are associated with an entry (enc, x, y).

– Prim/PrimInv queries. Queries to Prim(j, x), returning y, and those to
PrimInv(j, y), returning x, are associated with an entry (prim, j, x, y)

Note that a further distinction between entries corresponding to forward and
backward queries is not necessary, as this will not influence the probabilities
pS0

(τ) and pS1
(τ) that a certain transcript occurs. Similarly, these probabilities

are invariant under permuting the entries of τ . We also assume without loss of
generality that no repeated entries exist in τ (this corresponds to the fact that
an attacker asks no redundant queries).

Overview. Our goal is to establish the point-wise proximity for S0 and S1, i.e.,
for any transcript τ containing q entries (enc, ·, ·), and at most pi entries of form
(prim, i, ·, ·) for i = 1, . . . , t, we show

pS1
(τ)− pS0

(τ) ≤ pS1
(τ) · 4tqp1 · · · pt

N t
. (17)

In particular, the proof of (17) is made by two parts:

– Case 1. q, p1, . . . , pt ≤ N/4. Then, we give a direct proof of (17) using
the expectation method from Lemma 1, where the auxiliary variable S will
consist of the secret keys L0, L1, . . . , Lt (in S0). Our proof will resemble in
some aspects that of Chen and Steinberger [9], but it will be much simpler
due to the fact that the queries are fixed by τ , and we will only argue over
the probability of S. We will still resort to the involved and elegant “path-
counting” lemma of [9], but it will only be used to define a function g for
which computing the expectation of g(S) will be fairly easy.
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– Case 2. At least one of q, p1, . . . , pt is bigger than N/4. We’ll use the tran-
script reduction method, where the other two systems S′

0 and S′
1 on which

we assume we have established point-wise proximity provide the real and
ideal games for a (t− 1)-round KAC.

Therefore, our proof for Equation (17) uses induction on the number of rounds
of the KAC. If all queries are smaller than N/4 then we can give a direct proof,
otherwise the transcript reduction lands us back to the induction hypothesis. To
this end, note that although KAC is defined for t ≥ 1 rounds, we can also define
KAC[π, 0](K, x) = x⊕K for every x ∈ {0, 1}n, and the bound degenerates to 1.
This is our base case in which Equation (17) vacuously holds.

Now suppose that Equation (17) holds for KAC of 0, . . . , t − 1 rounds. We
now prove that it also holds for KAC of t rounds as well. We’ll consider the
following two cases.3

Case 1: q, p1, . . . , pt ≤ N/4. Fix a transcript τ . We use the expectation method.
Let S be the random variable for the key of KAC[π, t] in S0, and let K =
({0, 1}n)t+1) be the key space. Then S is uniformly distributed over K. For each
key s = (L0, . . . , Lt) ∈ K, define the graph G(s) as follows:

– Its set of vertices are partitioned into t+1 sets V0, . . . , Vt, each of 2n elements.
For each j ∈ {0, . . . , t}, use the elements of {j} × {0, 1}n to uniquely label
the elements of Vj .

– For each entry (prim, j, x, y) in τ , connect the vertices (j − 1, x⊕Lj−1) and
(j, y).

For a path P in G(s), let |P | denote the number of edges in this path. (A vertex
is a also a path that has no edge.) We define the following notion of good and
bad keys.

Definition 2 (Bad and good keys). We say that a key s = (L0, . . . , Lt)
is bad if τ contains an entry (enc, x, y) such that in the graph G(s), there’s a
path P0 starting from (0, x) and a path P1 starting from (t, y ⊕ Lt) such that
|P0|+ |P1| ≥ t. If a key is not bad then we’ll say that it’s good. Let Γbad be the
set of bad keys, and let Γgood = K\Γbad.

Let Zs(i, j) be the number of paths from vertices in Vi to vertices in Vj of G(s).
For 0 ≤ a < b ≤ t, let B(a, b) be the collection of sets σ = {(i0, i1), (i1, i2), . . . ,
(iℓ−1, iℓ)}, with a = i0 < · · · < iℓ = b. Let the Enc entries of τ be (enc, x1, y1),
. . . , (enc, xq, yq). For k ∈ {1, . . . , q}, let αk[s] be the length of the longest path
starting from (0, xk), and t − βk[s] be the length of the longest path ending at
(t, yk). For 0 ≤ a < b ≤ t, let Ra,b,k[s] = 1 if αk[s] ≥ a and βk[s] ≤ b, and
let Ra,b,k[s] = 0 otherwise. Note that if s is good then αk[s] < βk[s] for every
k ∈ {1, . . . , q}.
Recall that in the expectation method, one needs to find a non-negative function
g : K → [0,∞) such that g(s) bounds 1 − pS0

(τ, s)/pS1
(τ, s) for all s ∈ Γgood.

3 Note that here the unusual thing is that Case 1 is handled via a direct proof.
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The function g is directly given in the following technical lemma. The proof,
which is based on the main combinatorial lemma of [9], is in Appendix A of the
full version of this paper.

Lemma 3. For any s ∈ Γgood, it holds that

1− pS0
(τ, s)

pS1
(τ, s)

≤
q

∑

k=1

∑

0≤a<b≤t

Ra,b,k[s] ·
∑

σ∈B(a,b)

∏

(i,j)∈σ

Zs(i, j)

N − pj − q
.

Before we continue the proof, a few remarks are needed. First, note that Lemma 3
only needs q+pi < N for every i ∈ {1, . . . , t}. Therefore, one in fact can consider
Case 1 for q, p1, . . . , pt ≤ N/λ, for an arbitrary constant λ > 2, and Case 2 for
max{q, p1, . . . , pt} > N/λ. This will lead to the bound around q(cp/N)t, where
c = max{λ, 2(λ− 1)/(λ− 2)}. To minimize this, the best choice of λ is 2 +

√
2,

but we use λ = 4 for simplicity.

We finally have everything in place to apply the expectation method. Note that

E[g(S)] = E





q
∑

k=1

∑

0≤a<b≤t

Ra,b,k[S] ·
∑

σ∈B(a,b)

∏

(i,j)∈σ

ZS(i, j)

N − pj − q





≤
q

∑

k=1

E





∑

0≤a<b≤t

Ra,b,k[S] ·
∑

σ∈B(a,b)

∏

(i,j)∈σ

2ZS(i, j)

N



 ,

where the last inequality is due to the hypothesis that p1, . . . , pt, q ≤ N/4. We
will need the following technical lemma below; the proof is in Appendix B of the
full version of this paper.

Lemma 4. For k ∈ {1, . . . , q},

E
(

∑

0≤a<b≤t

Ra,b,k[S] ·
∑

σ∈B(a,b)

∏

(i,j)∈σ

2ZS(i, j)

N

)

≤ (4t − t− 1)p1 · · · pt

N t
.

Note that expectation in Lemma 4 is over the uniform choices of the key vector
S = (S0, S1, . . . , St), and the proof of Lemma 4 can actually compute the exact
value of this expectation. Hence, from Lemmas 1, 3, and Lemma 4, to get our
bound for Case 1, it suffices to prove that

Pr[S ∈ Γbad] ≤ (t + 1)qp1 · · · pt/N t . (18)

To justify Equation (18), let S = (S0, . . . , St). If S ∈ Γbad then τ must contain
entries (enc, x, y), (prim, 1, u1, v1), (prim, 2, u2, v2), . . . , (prim, t, ut, vt) such that
one of the following happens:

• u1 = x⊕ S0, and ui = vi−1 ⊕ Si for every i ∈ {2, . . . , t}, or
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• vt = y ⊕ St, and ui = vi−1 ⊕ Si for every i ∈ {2, . . . , t}, or

• u1 = x ⊕ S0, vt = y ⊕ St, and there is some ℓ ∈ {2, . . . , t} such that
ui = vi−1 ⊕ Si for every i ∈ {2, . . . , t}\{ℓ}.

Since S0, . . . , St are uniformly and independently random in {0, 1}n, the chance
that S is bad is at most (t + 1)qp1 . . . pt/N t.

Case 2: N/4 < max{q, p1, . . . , pt} ≤ N . Fix a transcript τ . We have three sub-
cases below, each needs a different way to define S and uses a different transcript
reduction.

We now give an intuition for the proof. We want to derive from (τ, s) a tran-
script R(τ, s) for a system S′

0 that implement the real game for a (t− 1)-round
KAC. In most cases (Cases 2.1 and 2.2), this KAC construction is KAC[π, t−1],
and S consists of the last subkey Lt and some additional query-answer pairs. In
this case pS1

(τ, s) means the probability that S1 behaves according to the entries
in (τ, s), and that Lt←$ {0, 1}n independent of S1 agrees with the subkey in s.

The target transcript R(τ, s) consists of the Prim entries to π1, . . . , πt−1

in (τ, s), and the query-answer pairs to KAC[π, t − 1] that one can infer from
the entries (enc, ·, ·), the entries (prim, t, ·, ·), and the last subkey as specified in
(τ, s). The random variable S and the system S′

1 that implements the ideal game
for KAC[π, t− 1] will be constructed so that for every b ∈ {0, 1}, the event that
Sb behaves according to (τ, s) consists of two independent events: (i) S′

b behaves
according to R(τ, s), and (ii) πt behaves according to the entries in (τ, s), and
Lt agrees with what’s specified in s. Since (ii) doesn’t use Enc and Dec oracles,
the reduction preserves the ratio pS0

(τ, s)/pS1
(τ, s).

Case 2.1: p1, . . . , pt ≤ N/4 but N/4 < q ≤ N . We’ll in fact give an even stronger
bound

pS1
(τ)− pS0

(τ) ≤ pS1
(τ) · 4t−1p1 . . . pt

N t−1
.

Let S be the random variable for the last subkey Lt in S0 and the (N − q) Enc

queries/answers that τ lacks. (We stress that here S has only a single subkey,
so a value s for S will have the form 〈Lt, (enc, x1, y1), . . . , (enc, xN−q, yN−q)〉.)
It suffices to show that for any s such that pS1

(τ, s) > 0,

pS1
(τ, s)− pS0

(τ, s) ≤ pS1
(τ, s) · 4t−1p1 . . . pt

N t−1
. (19)

Let S′
0 be the system that implements the real game on KAC[π, t− 1]. Let f be

the ideal permutation that S1 uses for answering Enc/Dec queries. Let f ′ be
the permutation such that f ′(x) = π−1

t (f(x)) for every x ∈ {0, 1}n, and thus f ′

is also an ideal permutation. The permutation f can be viewed as the cascade
of f ′ and πt (meaning that f(x) = πt(f

′(x)) for every x ∈ {0, 1}n). Let S′
1 be

a system that provides the ideal game on KAC[π, t − 1] and uses f ′ to answer
Enc/Dec queries.

For any b ∈ {0, 1}, although there are N Enc entries in (τ, s) for Sb, since
there are only pt query-answer pairs to πt, one can only “backtrack” pt Enc
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query-answer pairs for S′
b. Let R(τ, s) be the transcript consisting of these pt

backtracked pairs and the query-answer pairs to π1, . . . , πt−1. Formally, for any
entry (prim, i, u, v) in (τ, s), add this to R(τ, s) if i ≤ t − 1. Next, for any
entry (prim, t, u, v) in τ , there is exactly one entry (enc, x, y) in (τ, s) such that
v⊕Lt = y, so add (enc, x, u) to R(τ, s) as the corresponding backtracked query-
answer pair. Then R(τ, s) has pt Enc entries and pi query-answer pairs for πi,
for every i ≤ t−1. Now, for Sb to behave according to (τ, s), it means that (i) S′

b

must behave according to R(τ, s), (ii) the subkey in S—recall that S contains
only the last subkey Lt—must agree with what is specified in s, and (iii) πt must
be completely determined from S′

b, the last subkey Lt, and the N Enc entries
of (τ, s). Since πt is independent of S′

b and Lt,

pSb
(τ, s) =

1

N ·N !
· pS′

b
(R(τ, s)) .

Hence
pS0

(τ, s)

pS1
(τ, s)

=
pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

.

But from the induction hypothesis,

1−
pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

≤ 4t−1p1 . . . pt

N t−1
.

Case 2.2: p1, . . . , pt−1 ≤ N/4 but pt > N/4. We’ll in fact give an even stronger
bound

pS1
(τ)− pS0

(τ) ≤ pS1
(τ) · 4t−1qp1 . . . pt−1

N t−1
.

Let S be the random variable for the last subkey Lt in S0 and the (N − pt)
queries/answers to πt that τ lacks. From now on, this case is exactly the same
as Case 2.1, except that since there are now N queries to πt but only q Enc

queries in (τ, s), we can only backtrack q Enc queries in S′
b.

Case 2.3: There is some index i ∈ {1, . . . , t− 1} such that N/4 < pi ≤ N . We’ll
give an even stronger bound

pS1
(τ)− pS0

(τ) ≤ pS1
(τ) · 4t−1q

N t−1

∏

j∈{1,...,t}\{i}

pj .

Let S be the random variable for the subkey Li in S0 and the other (N − pi)
query-answer pairs to πi that τ lacks. Fix s such that pS1

(τ, s) > 0. It suffices
to prove that

pS1
(τ, s)− pS0

(τ, s) ≤ pS1
(τ, s) · 4t−1q

N t−1

∏

j∈{1,...,t}\{i}

pj .

In this case, we’ll need to build another (t − 1)-round KAC. Intuitively, we
“collapse” the ith and (i+1)th round of KAC[π, t] into a single round. Formally,
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construct π′ : N × {0, 1}n → {0, 1}n from π and the subkey Li in s as follows.
For every j < i, we have π′(j, ·) = π(j, ·). For every j > i, let π′(j, ·) = π(j +1, ·).
Finally, let π′(i, x) = π(i + 1, π(i, x)⊕ Li) for every x ∈ {0, 1}n. Thus π′ is also
a family of independent, ideal permutations on {0, 1}n. Let S′

0 be a system that
provides the real game on KAC[π′, t − 1]. Let f be the ideal permutation that
S1 uses for answering Enc/Dec queries and let S′

1 be a system that provides
the ideal game on KAC[π′, t− 1] and uses f to answer Enc/Dec queries.

Now, in (τ, s), we have N query-answer pairs for πi and pi+1 query-answer pairs
for πi+1. One thus can “connect” those pairs to obtain pi+1 query-answer pairs
for π′

i, which is the cascade of πi and πi+1. Formally, for any entry (prim, j, a, b)
in (τ, s), if j < i then add this entry to R(τ, s) as a query for π′

j , and if j > i + 1
then add (prim, j − 1, a, b) to R(τ, s) as a query for π′

j−1. Next, for every entry
(prim, i + 1, u, v) in τ , there is exactly one entry (prim, i, x, y) in (τ, s) such that
y ⊕ Li = u, so add (prim, i, x, v) to R(τ, s) as the corresponding connecting
query. Hence R(τ, s) has q Enc queries and pj queries to π′

j if j < i, and pj+1

queries to π′
j if j ≥ i.

For each b ∈ {0, 1}, for Sb to behave according to (τ, s), it means that (i) S′
b

must behave according to R(τ, s), (ii) the subkey in S must agree with what’s
specified in s, and (iii) πt must behave according to the N entries specified by
(τ, s). Note that π′

i is the cascade of πi and πi+1, and since πi+1 is independent
of πi, so is π′

i. Hence

pSb
(τ, s) =

1

N ·N !
· pS′

b
(R(τ, s)) .

Hence
pS0

(τ, s)

pS1
(τ, s)

=
pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

.

But from the induction hypothesis,

1−
pS′

0
(R(τ, s))

pS′

1
(R(τ, s))

≤ 4t−1q

N t−1

∏

j∈{1,...,t}\{i}

pj .

4.3 Multi-user security of KAC

In this section, we consider the multi-user security of KAC. The bounds are
immediate, and rely on the fact that the actual proof of Theorem 1 established
point-wise proximity. Indeed, from Equation (17) in the proof of Theorem 1 and
Lemma 2, we obtain Theorem 2. The analogous claims also hold for the variant
KACX we discussed above.

Theorem 2 (Mu PRP security of KACs). Let t and n be positive integers,
and let π : N × {0, 1}n → {0, 1}n be a family of ideal permutations on {0, 1}n.
Let A be an adversary that makes at most q queries to Enc/Dec, and at most
pi queries to Prim(i, ·)/PrimInv(i, ·) for every i ∈ {1, . . . , t}. Then

Adv
±mu-prp
KAC[π,t](A) ≤ 2 · 4tq(p1 + qt) · · · (pt + qt)

N t
.
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Fig. 4: Mu PRP security of 10-round KAC on 128-bit strings. From left to
right: the naive bound by using the hybrid argument with CS’s result, the naive bound
by using the hybrid argument with the su PRP result in Theorem 1, and the bound in
Theorem 2. We set p = q = u, where u is the number of users. The x-axis gives the log
(base 2) of p, and the y-axis gives upper bounds on the mu PRP security of KAC.

We note that this bound is essentially the same as the one from Theorem 1,
with an additional factor two and the additive term qt. This additive term plays
a significant role when t is small, but its role decreases as q grows. Concretely, for
t = 1, we recover the Even-Mansour multi-user bound of Mouha and Luykx [22],

i.e., Adv
±mu-prp
KAC[π,1](A) ≤ 8(qp+q2)

N . The O(q2/N) term takes into account collisions

on the keys across multiple users, which allows to easily distinguish and is there-
fore tight. Note that for t = 1, the distinction between single-key or two-key
Even-Mansour is exactly the distinction between KAC and KACX, and our
bounds are identical.

Beating the hybrid argument. We would like to stress once more the im-
portance of giving direct bounds for mu security, as opposed to using a naive
hybrid argument. Indeed, if we used the hybrid argument on our su PRP result
in Theorem 1 then we would obtain an inferior bound with form

Adv
±mu-prp
KAC[π,t](A) ≤ u · 4tq(p1 + qt) · · · (pt + qt)

N t

where u is the number of users. If one used the hybrid argument on CS’s original
bound, then the bound becomes

Adv
±mu-prp
KAC[π,t](A) ≤ u(t + 2)

(

q(6p + 6qt)t

N t
· t2(t + 1)t+1

)1/(t+2)

.

This makes one important point apparent: While the exponent 1/(t + 2) in CS’s
bound is already undesirable in the su PRP setting, in the mu PRP case, it’s
much worse, as illustrated in Fig. 4. If one models AES as a 10-round KAC
on 128-bit strings then our mu PRP result suggests that AES has about 110-
bit security. Using the hybrid argument with our su PRP result decreases it to
100-bit security, whereas using the hybrid argument on CS’s result plummets to
45-bit security.
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Fig. 5: Left: The XC[E, 2] construction. Right: The 2XOR[E] construction.

5 XOR Cascades

In this section, we apply the above results to study XOR cascades for blockci-
pher key-length extension. Variants of XOR cascades have been studied in the
literature [14,15,17,18,20] and the connection with KACs was already observed.
However, we improve these results along two different axes: Tightness (we give
a much better reduction to the security of KACs than the one of [15], using
point-wise proximity), and multi-user security. In particular, to the best of our
knowledge, this is the first work studying multi-user key-length extension, a
problem we consider to be extremely important, given the considerable security
loss in the multi-user regime.

The XOR-Cascade construction. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a
blockcipher. Let t ≥ 1 be an integer, and let K = ({0, 1}k)t × ({0, 1}n)t+1. Let
Sample be a sampling algorithm that samples L0, . . . , Lt←$ {0, 1}n, and samples
without replacement J1, . . . , Jt from {0, 1}k, and outputs (J1, . . . , J1, L0, . . . , Lt).
The XOR-Cascade construction XC[E, t], on a key K = (J1, . . . , Jt, L0, . . . , Lt) ∈
K, describes a permutation on {0, 1}n as follows. On input x, XC[E, t](x) returns
yt, where y0 = x⊕L0, and yi = EJi

(yi−1)⊕Li for every i ∈ {1, . . . , t}. See Fig. 5
for an illustration of XC[E, 2].

We also define – in analogy with KACX above – a version of XC with t sub-
keys L1, . . . , Lt (rather than t + 1), which xor’s Li to the input and the output
of EJi

in the i-th round. We refer to this as XCX[E, t], and note that it is simply
the t-fold sequential composition of DESX [18].

Single-user security of XC[E, t]. The following theorem establishes the
single-user security for XC[E, t] in the ideal-cipher model, and, in contrast to
previous analyses [14,15,20], the resulting bound is essentially exact. We require
the keys J1, . . . , Jt to be sampled by Sample as random yet distinct. This is no
big loss – an additional t2/2k term can added to take this into account, but
this term is going to be large when moving to the multi-user case. Below, we’ll
develop a better bound for the independent-key case, and for now, stick with
distinct keys.

Theorem 3 (Su PRP security of XC, distinct subkeys). Let t be a positive
integer. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and let XC[E, t]
and Sample be as above. Then in the ideal-cipher model, for any adversary A
that makes at most q Enc/Dec queries, and at most p Prim/PrimInv queries,

Adv
±prp
XC[E,t],Sample(A) ≤ 4tqpt

2t(k+n)
. (20)
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Fig. 6: Su PRP security (distinct subkeys) of XC on 2 iterations (left) and
6 iterations (right) on k = 56 and n = 64: our bound versus the results
in [14,15]. The solid lines depict the bound in Theorem 3, and the dashed ones depict
the bound obtained by combining the reduction in [14,15] and our result in Theorem 1.
In both pictures, q = 2n, and the x-axis gives the log (base 2) of p, and the y-axis gives
upper bounds on the su PRP security of XC.

The proof is in Appendix C of the full version of this paper. Here we point out
a few remarks. First off, we note the bound above (and its proof) can easily
adapted to analyze XCX[E, t]. Moreover, the proof itself is a direct application
of point-wise proximity combined with the transcript reduction technique to
reduce XC case to the KAC case. This will give a tight relationship, substantially
improving on the previous results by Gaži [14] and its generalization by Gaži et
al. [15], which actually used an adversarial reduction, and needed to resort to
Markov-like arguments which, once again, we avoid. Concretely, if we combine
the reduction in [14, 15] with our KAC result in Theorem 1, we’ll obtain the
following weak bound

Adv
±prp
XC[E,t],Sample(A) ≤ 4t · (2t + 2)

(

qpt

2t(k+n)

)1/(t+1)

.

As illustrated in Fig. 6, the gap between the bound above and ours is substantial.

Multi-user security of XC. We now consider the multi-user security of XC.
Since the proof of Theorem 3 actually establishes pointwise proximity, from
Lemma 2, we obtain Theorem 4 below. If we instead use the hybrid argument
on the su PRP security then we obtain an inferior bound

Adv
±mu-prp
XC[E,t],Sample(A) ≤ u · 4tq(p + qt)t/2t(k+n)

where u is the number of users. If we use the hybrid argument on the bound ob-
tained by combining the reduction in [14,15] with our KAC result in Theorem 1,
we’ll obtain an even weaker bound

Adv
±prp
XC[E,t],Sample(A) ≤ u · 4t(2t + 2)

(

q(p + qt)t

2t(k+n)

)1/(t+1)

.

The three bounds are illustrated in Fig. 7.
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Fig. 7: Mu PRP security (distinct subkeys) of 3-round XC on k = 56 and
n = 64: our bound versus naive ones from the hybrid argument. From left
to right: the naive bound by using the hybrid argument with the bound obtained by
combining the reduction in [14,15] with our KAC result in Theorem 1, the naive bound
by using the hybrid argument with the su PRP result in Theorem 3, and the bound in
Theorem 4. We set p = q = u, where u is the number of users. The x-axis gives the log
(base 2) of p, and the y-axis gives upper bounds on the mu PRP security of XC.

Theorem 4 (Mu PRP security of XC, distinct subkeys). Let t be a posi-
tive integer. Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher and let XC[E, t]
and Sample be as above. Then in the ideal-cipher model, for any adversary A
that makes at most q Enc/Dec queries, and at most p Prim/PrimInv queries,

Adv
±mu-prp
XC[E,t],Sample(A) ≤ 2 · 4tq(p + qt)t/2t(k+n) .

We stress here that q is allowed to be larger than N = 2n — nothing in the
theorem limits this, and security is obtained as long 2 · 4tq(p + qt)t/2t(k+n) is
sufficiently small. This is conceptually very important. Indeed, we may want to
apply our result even to ciphers for which N is very small (these arise in the
setting of FPE [3], where one could have N ≈ 230, or even less), and a multi-user
attacker can exhaust the domain for multiple keys. In passing, we note that the
reason such a strong result is possible is inherited directly from the fact that
Theorem 1 does not make any restrictions on q.

There are some variants of XC in the literature. For example, Gaži and Tessaro
(GT) [17] gave a variant of XC[E, 2] that they call 2XOR. This construction, as
illustrated in Fig. 5, uses a shorter key and saves one additional xor, compared
to XC[E, 2]. While its su PRP security appears to be the same as XC[E, 2], as
GT’s result suggests, in Appendix E of the full version, we show that it has much
weaker mu PRP security by giving an attack.

On uniform subkeys. So far we have considered security of the XC construc-
tion when each key K = (J1, . . . , Jt, L0, . . . , Lt) is chosen so that the subkeys
J1, . . . , Jt are distinct. A natural question is to bound the degradation when
J1, . . . , Jt←$ {0, 1}k. First consider the su setting. A simple solution is to add
a term t2/2k to account for the probability that there are some i 6= j such that
Ji = Jj . This is fine for the su setting, but when one moves to the mu setting,
this term blows up to ut2/2k, where u is the number of users. This happens
even in the ideal case where the adversary distributes the queries evenly among
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Fig. 8: Mu PRP security of XC (uniform subkeys) on 3 iterations (left) and
4 iterations (right) on k = 56 and n = 64: our bound versus naive one. The
dashed lines depict the bound obtained by adding a term ut2/2k to the bound in
Theorem 4, and the solid ones depict the bound in Theorem 5, where u is the number
of users. In both pictures, p = q = u, and the x-axis gives the log (base 2) of p, and
the y-axis gives upper bounds on the mu PRP security of XC.

users. To avoid this undesirable term, in Proposition 1 below, we take a differ-
ent approach. Intuitively, even if there are only ℓ ≤ t distinct subkeys, then at
least our construction should achieve security level ǫ(ℓ) similar to the bound in
Theorem 3 for XC[E, ℓ]. Let L be the random variable for the number of distinct
subkeys in XC[E, t], for example, Pr[L = t] ≥ 1− t2/2k. Then our bound would
be the expectation E(ǫ(L)). The gap between this bound and the naive one with
the term t2/2k may not be large on practical values of n and k, but it allows us
to use Lemma 2 to obtain a good mu PRP bound.

Proposition 1 (Su PRP security of XC, uniform subkeys). Let t ≥ 2 be
an integer. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and let XC[E, t]
be as above. Then in the ideal-cipher model, for any adversary A that makes at
most q Enc/Dec queries, and at most p Prim/PrimInv queries,

(a) If t ≥ 3 then Adv
±prp
XC[E,t](A) ≤ 4tqpt

2(n+k)t + qt2

2k

(

t
2k + 4p

2k+n

)t−2
.

(b) If t = 2 then Adv
±prp
XC[E,t](A) ≤ q(4p)2

22(n+k) + 4qp
22k+n + 2q

2k+n/2 .

The proof of Proposition 1 is in Appendix D of the full version, and it also
establishes pointwise proximity. From Lemma 2, we obtain Theorem 5 below. As
illustrated in Fig. 8, this bound is much better than the naive one obtained via
adding a term ut2/2k to the bound in Theorem 4 (to account for the probability
that there is a user whose subkeys are not distinct), where u is the number of
users. When one increases the number of rounds then our bound shows that the
security substantially improves (from 80-bit to 90-bit security), but the naive
bound still stays at 50-bit security, since the bound ut2/2k is the bottleneck,
and it gets worse when t increases.

Theorem 5 (Mu PRP security of XC, uniform subkeys). Let t ≥ 2 be
an integer. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and let XC[E, t]
be as above. Then in the ideal-cipher model, for any adversary A that makes at
most q Enc/Dec queries, and at most p Prim/PrimInv queries,
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Fig. 9: Mu PRP security of XC on 3 iterations (left) and 4 iterations (right)
on k = n = 32: uniform versus distinct subkeys. The dashed lines depict the
bound in Theorem 4, and the solid ones depict the bound in Theorem 5. In both
pictures, p = q, and the x-axis gives the log (base 2) of p, and the y-axis gives upper
bounds on the mu PRP security of XC. The parameters n and k are chosen to be small
so that in the right picture, the gap between the two lines is visible to the naked eye.

(a) If t ≥ 3 then Adv
±mu-prp
XC[E,t] (A) ≤ 2·4tq(p+qt)t

2(n+k)t + 2qt2

2k

(

t
2k + 4p+4qt

2k+n

)t−2
.

(b) If t = 2 then Adv
±mu-prp
XC[E,t] (A) ≤ 2q(4p+8q)2

22(n+k) + 8q(p+2q)
22k+n + 4q

2k+n/2 .

Interpreting the bounds in Theorem 5. For the case t = 3, there’s a
considerable gap compared to the matching attack. See Fig. 9 for an illustration
of the degradation of the bound in Theorem 5 compared to that in Theorem 4.
This gap is probably an artifact of the proof technique rather than reflecting
a true security loss when using uniform subkeys: for example, in the su case,
if J1 = · · · = Jt then we give up, but of course even in this extreme case,
the construction should still retain some reasonable security. For t ≥ 4 and all
practical choices of n and k, the bounds in Theorem 5 and Theorem 4 are close:
the former is just about t2 + 1 times worse than the latter. To justify this, note
that we can assume that 4(p + qt)/2n > 2k/2, otherwise both bounds are tiny.
Then

qt2

2k

(

t

2k
+

4p + 4qt

2k+n

)t−2

≈ qt2

2k

(

4p + 4qt

2k+n

)t−2

< t2 · 4tq(p + qt)t

2(n+k)t
.

Pictorially, as shown in Fig. 9, the two bounds are too close, and we have to
choose very small n and k so that the gap between the two lines is still visible
to the naked eye. Likewise, for t = 2 and and all practical choices of n and
k, the bound in Theorem 5 is about twice worse than that of Theorem 4. ( In
Proposition 1, for t = 2, if J1 = J2 then we don’t give up, but show that the
construction still retains security bound up to 4qp

2k+n + 2q
2n/2 . However, this method

fails to work for t = 3. It’s why the bound in Theorem 5 is still sharp for t = 2,
but deteriorates for t = 3.)
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