
Efficient Pseudorandom Functions via
On-the-Fly Adaptation

Nico Döttling ?,??1 and Dominique Schröder? ? ?2

1 Dept. of Computer Science, Aarhus University
2 Dept. of Computer Science, Saarland University, CISPA

Abstract. Pseudorandom functions (PRFs) are one of the most fun-
damental building blocks in cryptography with numerous applications
such as message authentication codes and private key encryption. In this
work, we propose a new framework to construct PRFs with the overall
goal to build efficient PRFs from standard assumptions with an almost
tight proof of security. The main idea of our framework is to start from
a PRF for any small domain (i.e. poly-sized domain) and turn it into an
`-bounded pseudorandom function, i.e., into a PRF whose outputs are
pseudorandom for the first ` distinct queries to F . In the second step, we
apply a novel technique which we call on-the-fly adaptation that turns
any bounded PRF into a fully-fledged (large domain) PRF. Both steps of
our framework have a tight security reduction, meaning that any success-
ful attacker can be turned into an efficient algorithm for the underlying
hard computational problem without any significant increase in the run-
ning time or loss of success probability.

Instantiating our framework with specific number theoretic assumptions,
we construct a PRF based on k-LIN (and thus DDH) that is faster than
all known constructions, which reduces almost tightly to the underlying
problem, and which has shorter keys. Instantiating our framework with
general assumptions, we construct a PRF with very flat circuits whose
security tightly reduces to the security of some small domain PRF.

Keywords: Pseudorandom Functions, Efficient Reductions, DDH, K-LIN,
LWE

? The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for the
Sino-Danish Center for the Theory of Interactive Computation, within which part of
this work was performed; and also from the CFEM research center (supported by the
Danish Strategic Research Council) within which part of this work was performed.

?? Supported by European Research Commission Starting Grant no. 279447.
? ? ? Supported by the German Federal Ministry of Education and Research (BMBF)

through funding for the Center for IT-Security, Privacy and Accountability (CISPA,
www.cispa-security.org) and also by an Intel Early Career Faculty Honor Program
Award.

1 Introduction

Goldreich, Goldwasser, and Micali (GGM) introduced pseudorandom functions
(PRFs) in 1984 [13]. Roughly, a PRF is a keyed deterministic function, whose
output is indistinguishable from a random function. PRFs are one of the most
fundamental building blocks in cryptography, with numerous applications such
as private-key encryption, message authentication codes, key derivation, and
many more, e.g., [2,14,22,29,32]. In this work, we propose a novel framework to
construct PRFs with the overall goal of constructing efficient PRFs based on
standard assumptions with an almost tight proof of security. The basic idea of
this framework is to transform a PRF for a small domain (i.e., poly-size) into a
fully fledged domain that handles large input spaces. This transformation tightly
reduces to the underlying small domain PRF. The main steps of our framework
and the novel techniques are shown in Figure 1. We begin with a PRF that works

small domain PRF bounded PRF large domain PRF

domain extension on-the-fly adaptation

Fig. 1. Overview of the main steps and the techniques.

over a small domain, say {0, 1}log `, and which can be evaluated very efficiently
in time poly(λ, log `), for some parameter `.

The first step in our framework is to extend the domain of a small-domain
PRF into a bounded pseudorandom function (bPRF). A function F is an `-
bounded pseudorandom function (for an ` ≤ poly(λ)), if the outputs of F are
pseudorandom for the first ` distinct queries to F and if F can be computed
“super efficiently” (i.e., in time poly(λ, log(`))). In some sense, this primitive can
be seen as the computational analogue to `-wise independent functions.

The second step in our framework is a reduction technique we call on-the-fly
adaptation. The goal of this technique is to construct a PRF F in which we
can dynamically embed an `-bounded PRF F` for every ` that grows at most
polynomially. Now assume we have a PPT distinguisher D that distinguishes F
from a truly random function. Since D is efficient, it sends at most q = poly(λ)
queries to its oracle (for an a-priori unknown q). On-the-fly adaptation allows us
to turn this distinguisher against F into a distinguisher D′ against a bounded
PRF Fq that has the same advantage.

We will demonstrate this idea with a simple on-the-fly adaptation technique
that works for any bounded PRF. The basic idea of this technique is to compute
F as a sum of functions F`, for an exponentially increasing `. An important

point is that all F` have the same domain. The function F is computed by

F (K,x) =

t⊕
i=0

F2i(K2i , x),

where K = (K2i)i=1,...,t. If we choose the parameter t = ω(log(λ)) slightly
super-logarithmic, we will be able to embed any F` into F . Notice that F can
be computed efficiently, as we required that bounded PRFs can be computed
in time poly(λ, log(`)). To illustrate the main idea, assume that there exists a
distinguisher D that makes at most q = poly(λ) queries distinguishes F from a
truly random function. We will provide a reduction that turns this distinguisher
into a distinguisher against the small domain PRF F2dlog qe . Observe that we can
express F by

F (K,x) =

log q−1⊕
i=0

F2i(K2i , x)⊕ F2dlog qe(K2dlog qe , x)⊕
t⊕

i=log q+1

F2i(K2i , x).

The reduction can now replace the middle term F2dlog qe(K2dlog qe , x) by its own
oracle and provide to D an oracle O′ that computes the function

O′(x) =

log q−1⊕
i=0

F2i(K2i , x)⊕O(x)⊕
t⊕

i=log q+1

F2i(K2i , x).

Clearly, if O computes the function F2dlog qe , then O′ computes the function F .
On the other hand, if O is a random function, then O′ also is a random function.
This reduction is tight. Notice that it is crucial for this technique to work that
all F` have the same input domain. Basically the domain extension step in our
framework is geared towards equalizing the domains of small domain PRFs. This
generic technique is similar to a transformation from non-adaptive to adaptive
pseudorandom functions by Berman and Haitner [4]. The construction of [4]
however yields no tight security proof (which was not the purpose of that work),
as their construction does not start from bounded PRFs.

We will now discuss domain extension for arbitrary PRFs and provide a
simple domain extension technique that uses only linear functions to pre- and
post-process a small domain PRF. This, together with the generic on-the-fly
adaptation technique described above yields a PRF construction from any small
domain PRF. We will discuss an instantiation of this general construction based
on LWE.

Domain Extension for Arbitrary PRFs The problem of domain extension
for pseudorandom functions was first considered by Levin [20]. Levin showed
that if the domain of a certain PRF is already sufficiently large, then it can be
extended by using a universal hash function to hash larger inputs into the domain
of this PRF. However, this technique is vulnerable to a ”birthday attack”, which
means that after a certain number of queries there is a high probability of finding

a collision in the hash function. Levin’s technique also fails for small domain
PRFs, i.e., PRFs with domains of polynomial size. Jain, Pietrzak, and Tentes [19]
provided a domain extension technique which also works for small domains, but
has an unfavorable security loss in this case. Moreover, as mentioned by the
authors, their technique does not seem to be directly applicable to efficient PRF
such as the one’s based on DDH [19]. The work of Jain et al. [19] was refined
by Chandran and Garg [8]. Berman et al. [5] also showed how to bypass the
birthday barrier via Cuckoo hashing.

We provide a simple general domain extension technique that preserves the
parallel complexity of an underlying small domain PRF. This domain extension
technique is inspired by the construction of universal hash functions by Ishai
et al. [18] and can be seen as an amplified version of Levin’s trick. For a small
domain pseudorandom function PRF` : {0, 1}log(2λ`) → Y, we construct a large
domain bounded PRF F` : X → Y by

F`(K
′, x) =

λ⊕
j=1

PRF`(K,BIN(j)‖Hj(x)),

where K ′ = (K,H1, . . . ,Hλ), H1, . . . ,Hλ ←$ H are randomly chosen universal
hash functions from a family H that maps X to {0, 1}log(2`) and BIN(j) is the
log(λ) bit binary representation of an integer j ∈ {1, . . . , λ}.

1.1 A General Transformation

Above we described our on-the-fly adaptation technique that works for any
bounded PRF. Combining this technique with a general domain extension tech-
nique, we obtain large domain pseudorandom function with almost tight security
(i.e., only a logarithmic loss) from any suitable small domain PRF. In a nutshell,
a small domain PRF is suitable for this technique if its security loss only depends
on the size of its input domain, but not (polynomially) on the number queries a
distinguisher sends3. The computational problems from which PRFs with such a
small security loss can be constructed usually have one feature in common: they
support a statistical random self-reduction. Candidate PRFs with this property
are PRFs based on the LWE [30,28] problem, such as the PRF of Banerjee, Peik-
ert, and Rosen [1]. Using the BPR PRF as small domain PRF in our general
construction, we obtain a large domain PRF which is secure under a weaker
assumption, which has a tighter proof of security, and a shallower evaluation
circuit than instantiating the BPR scheme with a large domain directly.

In the remaining part of this section, we discuss more efficient instantiations
based on DDH and k-LIN. Here, we exploit specific number theoretic properties
in order to improve the efficiency and security of the resulting PRF.

3 The Naor Reingold PRF would be such a suitable PRF as its security reduction only
loses a factor of n. However, as discussed above we provide a much more efficient
direct construction based on the NR PRF.

1.2 Efficient PRFs based on DDH and k-LIN

One appealing property of our framework is that it yields several new construc-
tions of PRFs based on weak standard assumptions, such as k-LIN (and thus
DDH) with an almost tight proof of security. A tight reduction means that a
successful attacker can be turned into an efficient algorithm for the hard compu-
tational problem without any significant increase in the running time or signifi-
cant loss of success probability4. We will provide a specific on-the-fly adaptation
technique that exploits algebraic properties of the underlying number theoretic
assumptions. We can thus avoid the blow up of the general on-the-fly adaptation
technique described in the last paragraph and obtain PRFs that improve upon
known constructions in terms of efficiency, security, and key-size.

Instantiation based on DDH. In the following we discuss our construc-
tion based on the DDH assumption. Our underlying small domain PRF is the
Naor-Reingold PRF based on DDH [26]. For an input domain {0, 1}n, the Naor
Reingold PRF NR : Kn × {0, 1}n → G is defined by

NRn(K,x) = ga
∏n−1

j=0 s
xj
j ,

where K = (a, s0, . . . , sn−1) and a, s0, . . . , sn−1 ←$ Zp. In the first step, we
turn the small domain PRF NRlog(`), which has a domain of size ` into an `-
bounded PRF that has input domain Zp, i.e., a large input domain. In contrast
to our generic construction (that we will discuss later), we can exploit specific
number theoretic properties in order to improve the efficiency, the tightness of
the security reduction, and the key-size. The bounded PRF F` : K × Zp → G is
defined as follows:

F`(K,x) = ga
∏log(`)−1

j=0 (sj+x
2j). (1)

We will briefly discuss why security of this PRF tightly reduces to the security
of NRlog(`). Expanding the exponent of F`(K,x) yields

a

log(`)−1∏
j=0

(sj + x2
j

) =
∑

c∈{0,1}log(`)

a log(`)−1∏
j=0

s
1−cj
j

︸ ︷︷ ︸

E(c)

x
∑t

j=1 cj2
j

(2)

Now, observe that the term E(c) on the right side is an exponent of the Naor
Reingold PRF NRlog(`). Specifically, it holds that gE(c) = NRlog(`)(¬c) (where
¬c is the bitwise negation of c). Changing the sum on the right side of (2) to run
over all j = 0, . . . , 2d`e−1 and setting c = BIN(j) (where BIN(j) is the log(`)-bit

4 Usually even a polynomially-bounded increase/loss is considered as significant, if
the polynomial may be large. An increase/loss by a small constant factor is not
considered as significant.

binary representation of j), we get that F` can be equivalently computed as

F`(K,x) =

2dlog(`)e−1∏
j=0

(
NRlog(`)(K,¬BIN(j))

)xj

. (3)

Notice that this expression can still be efficiently computed as long as ` ≤
poly(λ). Now, observe that if we replace NRlog(`) by a random function in this
expression, then F` becomes an (information theoretic) `-wise independent func-
tion. We can therefore use this alternative description of F` to show that it is
an `-bounded PRF.

The observation that functions of the form as F` in (3) can be computed in
time log ` via a closed form as (1) was previously made by Benadbbas, Gennaro,
and Vahlis for the Naor-Reingold PRF [3] and Fiore and Gennaro for the Lewko-
Waters PRF [12]. The fact that F` is a bounded PRF was independently observed
by Hazay [15].

In the last step, we apply an “in-place” on-the-fly adaptation technique to
this function. We will not use the generic technique described above, but one
that exploits the specific algebraic properties of F`. We define the full fledged
PRF F by

F(K,x) = ga
∏t−1

j=0(sj+x
2j),

where the parameter t = ω(log(λ)) is chosen slightly super-logarithmic. Now,
notice that we can embed the bounded PRF F` (for any ` ≤ poly(λ)) into F by

F(K,x) =

(
ga
∏log(`)−1

j=0 (sj+x
2j)

)∏t−1
j=log(`)

(sj+x
2j)

= (F`(K`, x))
∏t−1

j=log(`)
(sj+x

2j)
.

In the security proof, we replace F` by a truly random function. The main part of
the proof consists in showing that the exponent

∏t−1
j=log(`)(sj+x2

j

) only accounts
for a negligible error.

Comparison to Naor-Reingold [25]. Our full fledged PRF with input domain Zp
improves upon the Naor-Reingold PRF (NR-PRF) in terms of tightness of the
security reduction and compactness. In contrast to the NR-PRF, the loss of our
security reduction is only a factor of log(q) (where q = poly(λ) is the number
of queries required by the distinguisher D), compared to a factor n for the NR-
PRF. Our PRF is very compact as it only requires ω(log(λ)) Zp elements for its
key, whereas the Naor-Reingold needs n Zp elements. Since the exponentiation
is the dominating factor in the computation of both PRFs, the costs to evaluate
both functions is roughly the same.

Instantiation based on k-LIN. In the main body, we directly provide a PRF
construction based on a family of weaker computational problems known as k-
LIN [31,17]. The decisional k-linear assumption becomes (generically) weaker
as the parameter k grows, where the instance k = 1 corresponds to DDH and

k = 2 to the linear assumption [6]. The main motivation for these assumptions
is that groups are known where the DDH assumption is easy, but the compu-
tational Diffie Hellman problem is supposedly hard [16]. It is thus desirable to
have constructions of cryptographic primitives based on the decisional k-linear
assumption instead of DDH. Our generalized PRF is defined as follows: Let
k ≥ 1 be a positive integer, G = 〈g〉 be a cyclic group of prime order p and
t = ω(log(λ)). The function F : K × Zp → Gk is defined by

F (K,x) = ga
>·
∏t−1

j=0(Sj+x
2j ·I),

where K = (a,S0, . . . ,St−1) with a ←$ Zkp, S0, . . . ,St−1 ←$ Zk×kp and I the
identity matrix. Clearly, if we only need a single group element as output, we
can truncate the exponent and perform only 1 exponentiation.

Comparison to Lewko-Waters [21]. Our PRF improves upon the Lewko-Waters
PRF (LW-PRF) in terms of efficiency, tightness of the security reduction, and
compactness. A single evaluation of the LW-PRF involves n matrix multiplica-
tions and a single exponentiation. In our case, the computation requires only
t = ω(log(λ)) matrix multiplications and a single exponentiation. For larger k,
the cost of the matrix multiplication dominates the cost of the exponentiation,
so in this case our construction is more efficient. The security reduction of Lewko
and Waters loses a factor of k ·n while our reduction only losses a factor of k log q.
The keys of the LW-PRF consist of n k×k matrices over Zp, while ours consists
merely of t = ω(log λ) such matrices.

1.3 Other Related Work

Many number-theoretic PRF constructions follow the GGM paradigm [13], such
as [25,21,1]. Naor and Reingold introduced pseudorandom synthesizer (PRS)
that can be used to construct parallel computable pseudorandom function [24,1].
A PRF construction that is not based on either the GGM or synthesizers paradigm
is the PRF of Dodis-Yampolskiy, which is in fact a direct construction, but whose
security is closely related to its underlying bilinear q-type assumption [10]. Re-
cently, Chase and Meiklejohn showed that this q-type assumption can be re-
duced to the subgroup hiding assumption in composite order groups [9]. The
PRF of Naor, Reingold, and Rosen is a clever variant of the Naor-Reingold PRF
that is secure under the factoring assumption [27]. The work of Boneh, Mont-
gomery, and Raghunathan combines a generalization of the GGM tree with the
Dodis-Yampolskiy PRF to get a large-domain (simulateable) verifiable random
function [7].

2 Preliminaries

Throughout this paper, we will use λ to denote the security parameter. We will
denote the concatenation of two bit strings x and y by x‖y. We will generally

assume that logarithms are rounded to the next biggest integer, i.e., when we
write log(`) we actually mean dlog(`)e. To avoid confusion, we will sometimes still
write dlog(`)e, e.g. when we write 2dlog(`)e to indicate that this can be different
from `.

Definition 1 (Pseudorandom Functions). Let Xλ and Yλ be two finite sets
depending on λ. We say that an efficiently computable keyed function PRF :
Kλ×Xλ → Yλ with key-space Kλ is a pseudorandom function (PRF), if it holds
for every PPT oracle distinguisher D that

|Pr[DPRF(K,·)(1λ) = 1]− Pr[DR(1λ) = 1]| ≤ negl(λ),

where K ←$ Kλ and R : Xλ → Yλ is a randomly chosen function. If |X | ≤
poly(λ), then we say that PRF is a small-domain PRF, otherwise we call PRF a
large-domain PRF.

We will usually omit the λ subscript in the definition of K, X and Y. More-
over, we will henceforth implicitly assume that distinguisher gets 1λ as an addi-
tional input without explicitly stating this.

As mentioned in the outline, bounded pseudorandom functions can be seen
as a computational analogue of limited-wise independent functions. Basically,
the difference between true PRFs and bounded PRFs manifests itself in their
security guarantee. While a distinguisher against a true PRF can query the PRF
an a-priori unbounded number of times, a distinguisher against an `-bounded
PRF can query the PRF with at most ` distinct queries.

Definition 2 (Bounded Pseudorandom Functions). Let X and Y be fi-
nite sets (depending on λ). We say that a keyed function F` : K` × X → Y
parametrized by a parameter ` is a bounded pseudorandom function (bPRF), if
F` is computable in time poly(λ, log(`)) and if it holds for all efficiently com-
putable `∗ = `(λ) ≤ poly(λ) and all `∗-query distinguishers D (i.e. distinguishers
that send at most `∗ distinct queries) that

|Pr[DF`(K,·) = 1]− Pr[DR = 1]| ≤ negl(λ),

where K ←$ K` and R : X → Y is a randomly chosen function.

Notice that in the definition of bounded PRFs we allow the key-space to
depend on `, but X and Y are independent of `. Moreover, as we require that
F` is computable in time poly(λ, log(`)), we implicitly also require that |K`| ≤
poly(λ, log(`)). Requiring that F` can be computed in time poly(λ, log(`)) allows
us to evaluate F` for super-polynomial `, while we only require security for `∗

which are at most polynomial.
The following lemma states that if a function F outputs uniformly random

outputs under benign inputs, then the statistical distance from F to a uniformly
random function F ′ can be bounded by the probability that a non-adaptive
sequence of inputs is not benign. Intuitively, an adaptive distinguisher D learns
nothing about the set of bad inputs unless it finds such an input by chance, as

otherwise the function F reveals no information about the set of bad inputs.
This lemma is a simplified version of a more general statement due to Maurer
[23].

Lemma 1. Let X and Z be two finite sets. Let FK,aux : X → Z be a function
that takes two additional parameters K ∈ K and aux ∈ AUX. Let good(·, ·)
be a predicate with the following property: If good({x1, . . . , xi}, aux) holds, then
FK,aux(x1), . . . , FK,aux(xi) are distributed uniformly at random over the choice
of K ←$ K. Let D be a (possibly unbounded) distinguisher that makes at most
` distinct queries, K ←$ K, aux ←$ AUX and let F ′ be a uniformly chosen
function from X to Z. Then it holds that

|Pr[DFK,aux = 1]− Pr[DF
′

= 1]| ≤ max
S

Pr[¬good(S, aux)],

where S runs over all subsets of X of size at most `.

A proof of Lemma 1 can be found in the full version.

3 A Generic Construction

In this section, we will first provide an efficient construction of `-bounded pseu-
dorandom function any small domain PRF with input space of (polynomial) size
n · `. Security of the `-bounded PRF follows tightly from the underlying small
domain PRF. Second, we will provide a general construction of a PRF from
`-bounded PRFs, where security also follows tightly.

3.1 Bounded PRFs via Domain Extension of Small Domain PRFs

We will need universal hash functions for our domain extension technique.

Definition 3 (Universal Hash Functions). Let X and Y be finite sets. We
say that a family H of functions from X to Y is a family of universal hash
functions, if it holds for all x 6= x′ ∈ X that Pr[H(x) = H(x′)] ≤ 1/|Y|, where
the probability is taken over the random choice of H ←$ H.

Universal hash functions can be constructed very efficiently, see e.g.,[18].

Construction 1 Let PRF` : K` × {0, 1}log(2λ`) → {0, 1}m be a keyed function
with key space K`. Let H` be a family of universal hash functions that map X to
{0, 1}log(2`). Let BIN(j) denote the log(λ) bit binary representation of a number
j ∈ {1, . . . , λ}. We define the keyed function F` : K′ × X → {0, 1}m with key
space K′` = Hλ ×K` by

F`(K
′, x) =

λ⊕
j=1

PRF`(K,BIN(j)‖Hj(x)),

where Hj ←$ H` for j = 1, . . . , λ, K ←$ K` and K ′ = (H1, . . . ,Hλ,K).

The following theorem states that F` is an `-bounded pseudorandom function
if PRF` is a pseudorandom function.

Theorem 1. Let PRF` and F` be as in Construction 1. If PRF` is a pseudoran-
dom function, then F` is an `-bounded pseudorandom function. More specifically,
assume there exists an `∗ ≤ poly(λ) and an `∗-query PPT distinguisher D that
distinguishes F`∗ from a truly random function with advantage ε, then there exists
a PPT distinguisher D′ with essentially the same runtime as D that distinguishes
PRF`∗ from a truly random function with advantage at least ε− `∗ · 2−λ.

The proof of Theorem 1 will be given in the full version.

3.2 PRFs via On-the-Fly Adaptation of bounded PRFs

In this section we provide a generic on-the-fly adaptation technique which con-
verts a bounded PRF into a standard PRF.

Construction 2 Let t = ω(log(λ)) be slightly super-logarithmic. For a given
parameter `, let F` : K`×X → {0, 1}m be a keyed function with corresponding key
space K`. Define the function F : K×X → {0, 1}m with key-space K =

∏t
i=0K2i

by

F (K,x) =

t⊕
i=0

F2i(K2i , x),

where K2i ←$ K2i for i = 1, . . . , t and K = (K2i)i=1,...,t.

We will now show that F is in fact a pseudorandom function.

Theorem 2. Let F` and F be as in Construction 2. Assume that F` is an `-
bounded PRF for every efficiently computable ` = `(λ). Then F is a pseudoran-
dom function. Specifically, if D is a PPT distinguisher against F with advantage
ε that makes at most q = poly(λ) distinct queries, then there exists a PPT dis-
tinguisher D′ (with essentially the same runtime as D) with advantage ε against
F`∗ , where `∗ = 2dlog(q)e ≤ 2q = poly(λ).

Proof. Let D be a PPT distinguisher against F with advantage ε that makes
at most q distinct queries. Note that since q = poly(λ) and t = ω(log(λ)), it
holds log(q) ≤ t (for a sufficiently large λ). We will now construct an `∗-query
distinguisher D′ against F`∗ , which is given in Figure 2.

Notice first that D′ sends at most q ≤ 2dlog(q)e = `∗ queries to its oracle, as D
sends at most q oracle queries. We will now analyze the distinguishing advantage
of D′. First, assume that D′’s oracle O implements the function F`∗(K, ·) for a
randomly chosen K ←$ K`∗ . Then, the oracle O provided by D′ to D implements
exactly the function F (K, ·) for a randomly chosen K ←$ K. On the other
hand, if O behaves like a uniformly random function R′, then the oracle O′ also

Distinguisher D′
Has access to oracle O(·)
Set i∗ ← dlog(q)e
For i ∈ {1, . . . , t}\{i∗}

K2i ←$ K2i

b′ ← DO
′(·)(1λ)

return b′

O′(x):

y ←
⊕i∗−1

i=0 F2i(K2i , x)⊕O(x)⊕
⊕t

i=i∗+1 F2i(K2i , x)

return y

Fig. 2. The distinguisher D′

implements a uniformly random function R, as R′ is independent of the K2i .
Consequently, it holds that

Adv(D′) = |Pr[D′F`∗ (K`∗ ,·) = 1]− Pr[D′R
′

= 1]|
= |Pr[DF = 1]− Pr[DR = 1]| = ε,

i.e. D′ distinguishes F` from a uniformly random function R′ with advantage ε.
This concludes the proof.

3.3 Instantiations

Combining Theorem 1 and Theorem 2 yields the following

Theorem 3. Let t = ω(log(λ)). Let PRF` : {0, 1}log(2λ`) → {0, 1}m be a small
domain PRF, let H` : X → {0, 1}log(2`) be a family of universal hash functions.
Define the keyed function F : K ×X → {0, 1}m by

F (K,x) =

t⊕
i=1

λ⊕
j=1

PRF2i(K2i ,BIN(j)‖H2i,j(x)),

where K2i ←$ K2i for i = 1, . . . , t and H2i,j ←$ H2i for i = 1, . . . , t and
j = 1, . . . , λ.

If PRF` is a PRF for every ` = poly(λ), then F is a PRF. More specifi-
cally, if there exists an distinguisher D that makes at most q = poly(λ) queries
and distinguishes F with advantage ε, then there exists a distinguisher D′ with
essentially the same runtime as D that distinguishes PRF2dqe with advantage
ε− q · 2−λ.

We will briefly discuss efficiency aspects of the construction provided in The-
orem 3. First of all notice that the transformation preserves the parallel complex-
ity of the underlying small domain PRF. Moreover, the pre- and post-processing
steps are entirely linear, i.e. the computation of universal hash functions and
XOR-ing the results.

We will now discuss an instantiation of this PRF using a small domain PRF
based on lattice problems. As already mentioned in the introduction, the main
purpose of our constructions is obtaining PRFs from standard assumptions that
are as tight as possible. Since the construction in the last section allows reducing
the security of the constructed large domain PRF to the security of an adversary
specific small domain PRF, we need a family of small domain PRFs with security
as tight as possible. The Naor-Reingold PRF with domain {0, 1}n allows for a
security loss of a factor of n, while the security loss of a comparable GGM PRF
is q · n. This holds because the DDH problem possesses a statistical random
self-reduction which allows to compute an arbitrary number of DDH samples
from a given sample. The learning with errors (LWE) problem enjoys a similar
property, which is stated explicitly in the assumption.

Definition 4 (Decisional LWE [30,28]). Let p = p(λ) be a modulus, k =
k(λ) = poly(λ) be a positive integer and χr = DZ,r be a gaussian distribution
with noise parameter r. Let s ←$ Zkp be chosen uniformly at random. The goal
of the LWE(p, n, χr) problem is to distinguish an arbitrary number of samples
(a, 〈a, s〉 + e) where a ←$ Zkp and e ←$ χα from samples (a, u) where u ←$ Zp
is chosen uniformly at random.

Banerjee, Peikert and Rosen [1] constructed a PRF based on the LWE prob-
lem. The PRF has a structure which is similar to the Lewko-Waters PRF but
uses a rounding operation instead of exponentiation. Let p1 � p2. For an x ∈ Zp1
define bxep2 = d(p2/p1)·xc mod p2. For vectors x ∈ Zkp1 define b·ep2 component-
wise. We can now state the BPR PRF.

Theorem 4. Let n = n(λ) be a positive integer, r = r(n) be a noise parameter,
k = k(λ) = poly(λ) be a positive integer and let p1, p2 be moduli such that
p1 ≥ p2 ·n · (Cr

√
k)n ·kω(1), where C is a universal constant. The keyed function

BPRn : Kn × {0, 1}n → Zkp2 with key space Kn = Zkp2 ×
(
Zk×kp2

)n
is defined by

BPRn(K,x) =

a>
n∏
j=1

S
xj

j

p2

,

where a←$ Zkp1 and S1, . . . ,Sn ←$ χ
k×k
α and K = (a,S1, . . . ,Sn).

Assume that LWE(p1, k, χr) is hard. Then BPRn is a pseudorandom func-
tion. Specifically, if there exists a distinguisher D that distinguishes BPRn with
advantage ε from a random function, then there exists a distinguisher D′ with es-
sentially the same runtime as D that distinguishes LWE(p1, k, χr) with advantage
ε/(k · n).

Observe that in Theorem 4 the underlying hardness assumption changes when
we increase the input length n. More specifically, the smaller the term p1/r is,
the harder the underlying LWE problem LWE(p1, k, χr) becomes. The term p1/r
is dominated by (Cr

√
k)n, thus we aim towards minimizing n. Observe that we

can fix a modulus p2 for the whole family BPRn, therefore all functions in this

family have the same output domain. Plugging the BPRn as small domain PRF
in the construction of Theorem 3 yields that n never becomes larger than log(q)
for some q = poly(n). Thus we can base the security of the PRF in Theorem 3
on LWE(p1, k, χr) with p1 = p2 ·n · (Cr

√
k)log(2λq) ·kω(1), which is slightly super-

polynomial (instead of sub-exponential). Moreover, since the BPRn loses only a
factor k · n in its security reduction to LWE, the resulting PRF from Theorem
3 loses only a factor of k · log(2λq). We remark that using the more efficient and
tighter Ring-LWE based PRF of [1], the security reduction to Ring-LWE loses
only a factor of log(2λq).

While the construction from Theorem 3 preserves the parallel complexity of
the small domain PRF, the overall complexity of evaluating the PRF may actu-
ally increase. We consider it an interesting problem to find a PRF construction
which enjoys similar properties as the k-LIN based construction in Section 4, i.e.
one improves the underlying small domain PRF in all aspects, in particular key
size and evaluation complexity.

4 A Direct Construction from the k-LIN Problem

In this section, we will provide our efficient constructions of number-theoretic
PRFs. As discussed above, we will first develop a specialized domain extension
technique and then construct a large domain PRF using a tailor-made on-the-fly
adaptation strategy.

4.1 Preliminaries

In this section, we will generally index vectors of length n with indices 0, . . . , n−1.
We will denote the identity matrix in Zk×kp by I. For vectors a ∈ Zkp we define ex-
ponentiation component-wise, i.e. ga = (ga0 , . . . , gak−1). The decisional k-linear
assumption (k-LIN) [31,17] generalizes the decisional DDH problem. The deci-
sional k-Linear assumption becomes (generically) weaker when the parameter
k grows, where the instance k = 1 corresponds to DDH and k = 2 to the lin-
ear assumption [6]. The main motivation for these assumptions is that groups
are known, where the DDH assumption is easy, but the computational Diffie
Hellman problem is supposedly hard [16].

Definition 5 (Decisional k-LIN Problem). Let G be a cyclic group of prime
order p. Let g0, g1, . . . , gk ←$ G and s1, . . . , sk, r ←$ Zp be chosen uniformly at
random. The goal of the k-LIN problem in G is to distinguish the distributions

(g0, . . . , gk, g
s1
1 , . . . , g

sk
k , g

∑k
i=1 si

0) and (g0, . . . , gk, g
s1
1 , . . . , g

sk
k , g

r
0).

We will use the PRF construction of Lewko and Waters [21] as underlying
small domain PRF in our construction.

Theorem 5. Let k ≥ 1 be a positive integer, G = 〈g〉 be a cyclic group of
prime order p and n = n(λ) be a positive integer. Define the keyed function
LWn : Kn × {0, 1}n → G with key space Kn = Zkp ×

(
Zk×kp

)n
by

LWn(K,x) = ga
>·
∏n−1

j=0 S
xj
j ,

where a←$ Zkp, S0, . . . ,Sn−1 ←$ Zk×kp and K = (a,S0, . . . ,Sn−1). If the k-LIN
problem is hard in G, then LWn is a pseudorandom function. More specifically,
assume that there exists a PPT distinguisher D that distinguishes LWn with
advantage ε from a random function. Then there exists a PPT distinguisher D′
that distinguishes the k-LIN problem with advantage ε/(k · n).

The Lewko-Waters PRF LW as described in the construction in Theorem
5 outputs k group elements and therefore requires k exponentiations. We can
truncate the output of the LW PRF to a single group element, thereby only
requiring a single exponentiation.

4.2 A bounded PRF from k-LIN

We will now provide an efficient construction of a bounded PRF from k-LIN.
The security of this bounded PRF tightly reduces to the security of a small
domain LW PRF and therefore to k-LIN with only a logarithmic loss.

Construction 3 Let k ≥ 1 be a positive integer, G = 〈g〉 be a cyclic group
of prime order p. The keyed function F` : K` × Zp → G with key space K` =

Zkp ×
(
Zk×kp

)log(`)
is defined by

F`(K`, x) = ga
>·
∏log(`)−1

j=0 (Sj+x
2j ·I),

where a←$ Zkp, S0, . . . ,Slog(`)−1 ←$ Zk×kp and K` = (a,S0, . . . ,Slog(`)−1)

For a bit b ∈ {0, 1} let ¬b = 1− b denote the negation of b. For a bit-vector
c ∈ {0, 1}m let ¬c denote the bit-wise negation of c. We will need the following
technical lemma.

Lemma 2. Let p be a prime integer. It holds for all r ∈ N>0, all matrices
S0, . . . ,Sr−1 ∈ Zk×kp and all x ∈ Zp that

r−1∏
j=0

(Sj + x2
j

I) =
∑

c∈{0,1}r

r−1∏
j=0

S
¬cj
j

x
∑r−1

j=0 cj2
j

.

The proof of Lemma 2 works by inductively expanding the left side of the equa-
tion and can be found in the full version of this paper. We will now show that
the function F` given in Construction 3 is a bounded PRF.

Theorem 6. Assume that the k-LIN problem is hard in G. Then the function
F` defined in Construction 3 is a bounded PRF. More specifically let `∗ ≤ poly(λ)
and assume that D is an `∗-query PPT distinguisher with advantage ε against the
pseudorandomness of F`∗ . Then there exists a distinguisher D′ (with essentially
the same runtime as D) with advantage ε

k·log(`∗) against k-LIN.

Proof. First observe that F` can be computed in time poly(λ, log(`)). Notice that
LWlog(`) and F` have identical key-spaces. Let K = (a,S0, . . . ,Slog(`)−1) be a key
for F`. It follows immediately by Lemma 2 that we can compute F` by

F`(K,x) = ga
>·
∏log(`)−1

j=0 (Sj+x
2j ·I)

= g
a>·
∑

c∈{0,1}log(`)

(∏log(`)−1
i=0 S

¬ci
i

)
x
∑log(`)−1

i=0
ci2

i

=
∏

c∈{0,1}log(`)
g
a>·
(∏log(`)−1

i=0 S
¬ci
i

)
x
∑log(`)−1

i=0
ci2

i

=
∏

c∈{0,1}log(`)

(
LWlog(`)(K,¬c)

)x∑log(`)−1
i=0

ci2
i

For an integer j ∈ {0, . . . , 2dlog(`)e − 1} let BIN(j) denote the log(`) bit binary

representation of j, i.e. it holds that j =
∑log(`)−1
i=0 BIN(j)i2

i. Thus, it holds that

F`(K,x) =

2dlog(`)e−1∏
j=0

(
LWlog(`)(K,¬BIN(j))

)xj

. (4)

Now, let `∗ ≤ poly(λ) and assume that D is a `∗-query PPT distinguisher that
distinguishes F`∗ with advantage ε from a random function. We will construct a
PPT distinguisher D′ that distinguishes LWlog(`∗) from a random function with

advantage ε. Since the function table of a function {0, 1}log(`∗) → Gk has size
2dlog(`

∗)e · k log(|G|) ≤ 2`∗k log(|G|) = poly(λ), we can assume that D′’s input is
an explicit function table.

Distinguisher D′

Input: Function T : {0, 1}log(`
∗) → Gk,

encoded as a function table

b′ ← DO(·)(1λ)
return b′

O(x):

y ←
∏2dlog(`

∗)e−1
j=0 (T (¬BIN(j)))x

j

return y

First observe thatD′ is efficient asD is efficient and the oracleO can be imple-
mented efficiently (as 2dlog(`

∗)e ≤ 2`∗). We will now analyze the advantage of D′.
If D′’s input T is a function LWlog(`∗)(K, ·) for a randomly chosen K ←$ Klog(`∗),

then clearly by (4) it holds that the oracle O implements exactly F`∗(K, ·). On
the other hand, if T implements a random function R′ : {0, 1}log(`∗) → Gk, then

we can express R′ by R′(¬BIN(j)) = ga
>
j for all j = 0, . . . , 2dlog(`

∗)e−1, where the
a0, . . . ,a2dlog(`∗)e−1 ←$ Gk are chosen uniformly at random. Thus, in this case
the function computed by O is

O(x) =

2dlog(`
∗)e−1∏

j=0

ga
>
j x

j

= g
∑2dlog(`

∗)e−1
j=0 a>j x

j

,

which is an `∗-wise independent function. To see this, note that g-exponentiation

is an isomorphism and the function in the exponent
∑2dlog(`

∗)e−1
j=0 a>j x

j is a ran-

dom polynomial of degree 2dlog(`
∗)e−1 ≥ `∗−1, which is an `∗-wise independent

function. Thus, from the view of D the oracle O implements a random function
R, as D sends at most `∗ distinct queries. We conclude

Adv(D′) = |Pr[D′LWlog(`∗)(K,·) = 1]− Pr[D′R
′

= 1]|
= |Pr[DF`∗ (K,·) = 1]− Pr[DR = 1]| = ε.

By Theorem 5, the distinguisher D′ yields a distinguisher D′′ with advantage
ε

k log(`∗) against k-LIN.

4.3 In-Place On-the-Fly Adaptation

While the general on-the-fly adaptation strategy we will provide in Section 3.2
needs to replicate the the underlying bounded PRF t times, we will now provide
a specific on-the-fly adaptation technique for the bounded PRF F` provided in
the last paragraph that involves no expansion whatsoever. Due to the special
algebraic structure of F`, this on-the-fly adaptation can be done in-place. To
obtain an unbounded PRF from the bounded PRF of Construction 3, we will set
the upper limit of the product in the exponent from log(`) to some t = ω(log(λ)).
We thereby ensure that t is large enough that we can embed F`∗ in this PRF for
any `∗ ≤ poly(λ).

Construction 4 Let k ≥ 1 be a positive integer and G = 〈g〉 be a cyclic group
of prime order p. Let t = ω(log(λ)). The keyed function F : K × Zp → G with

key space K = Zkp ×
(
Zk×kp

)t
is defined by

F (K,x) = ga
>·
∏t−1

j=0(Sj+x
2j ·I),

where a←$ Zkp, S0, . . . ,St−1 ←$ Zk×kp and K = (a,S0, . . . ,St−1).

We still need the following auxiliary lemma which states that a randomly
chosen matrix from Zk×kp has full rank, except with small probability.

Lemma 3. Let p be a prime and S ←$ Zk×kp be chosen uniformly at random.
Then it holds that

Pr[rank(S) < k] ≤ 1

p− 1
.

The proof of Lemma 3 is standard.

Theorem 7. Assume that the k-LIN problem is hard in G. Then the func-
tion F defined in Construction 4 is a PRF. More specifically assume that D
is PPT distinguisher that makes at most q = poly(λ) queries and distinguishes
F with advantage ε from a uniformly random function. Then there exists a
PPT distinguisher D∗ (with essentially the same runtime as D) with advantage

1
k·log(q) ·

(
ε− qt

(p−1)

)
against k-LIN in G.

Proof. Let D be a distinguisher with advantage ε against the pseudorandomness
of F which makes at most q = poly(n) queries. Note that since q = poly(λ) and
t = ω(log(λ)), it holds log(q) ≤ t− 1 (for a sufficiently large λ). We will define 3
hybrid experiments. In hybrid i D is given access to a function F (i) : Zp → Gk.

– Hybrid H1: In this experiment D is given oracle access to the function F (1)

given by F (1)(x) = F (K,x) for a randomly chosen K ←$ K.
– Hybrid H2: In this experiment D is given oracle access to the function F (2)

defined by

F (2)(x) = gr(x)
>·
∏t

j=log(q)(Sj+x
2j I),

where r : Zp → Zkp is a uniformly random function and Slog(q), . . . ,St−1 ←$

Zk×kp .
– Hybrid H3: In this experiment D is given oracle access to a uniformly random

function F (3).

Clearly, it holds that

|Pr[DF
(1)

= 1]− Pr[DF
(3)

= 1]| ≥ ε.

Define

ε1 = |Pr[DF
(1)

= 1]− Pr[DF
(2)

= 1]|

ε2 = |Pr[DF
(2)

= 1]− Pr[DF
(3)

= 1]|.

By the triangle inequality it holds that

ε ≤ ε1 + ε2.

We will first show that ε2 ≤ qt/(p− 1). Define

M(x) =

t−1∏
j=log(q)

(Sj + x2
j

I),

and observe that F (2)(x) = gr
>(x)·M(x). Now, if it holds for distinct x1, . . . , xq ∈

Zp that rank(M(xi)) = k for i = 1, . . . , q, then r>(x1)·M(x1), . . . , r>(xq)·M(xq)
are distributed independently and uniformly at random. Thus it also holds that
F (2)(x1), . . . , F (2)(xq) are distributed independently and uniformly at random.
We can define the predicate good({x1, . . . , xq},M) to be true if and only if it
holds rank(M(xi)) = k for i = 1, . . . , q. Applying Lemma 1 yields

ε2 = |Pr[DF
(2)

= 1]− Pr[DF
(3)

= 1]|
≤ max
x1,...,x`

Pr[¬good({x1, . . . , xq},M)]

= max
x1,...,x`

Pr[∃i : rank(M(xi)) < k].

For a fixed x it holds that rank(M(x)) < k if there exists a j ∈ {log q, . . . , t− 1}
with rank(Sj + x2

j

I) < k. Since Sj is chosen uniformly at random it holds by
Lemma 3 that

Pr[rank(Sj + x2
j

I) < k] = Pr[rank(Sj) < k] ≤ 1

p− 1
.

By a union bound over the j it holds that Pr[rank(M(x)) < k] ≤ t
p−1 . By another

union bound over i = 1, . . . , q it holds that

Pr[∃i : rank(M(xi)) < k] ≤ qt

p− 1

We conclude ε2 ≤ qt/(p− 1) and therefore ε1 ≥ ε− qt/(p− 1).

Now let `∗ = 2dlog(q)e. We will now construct a PPT distinguisher D′ that
distinguishes the bounded PRF F`∗ with advantage ε2. The distinguisher D′ is
given in Figure 3.

Distinguisher D′
Has access to oracle O(·)
Slog(q), . . . ,St ←$ Zk×kp

b′ ← DO
′(·)(1λ)

return b′

O′(x):
y0 ← O(x)

y ← y

∏t−1
j=log(q)

(Sj+x
2j I)

0

return y

Fig. 3. The distinguisher D′

First assume that D′’s oracle O implements the function F`∗(K`∗ , x) =

ga
>∏log(q)−1

j=0 (Sj+x
2j I) where K` = (a,S0, . . . ,Slog(q)−1) is a uniformly chosen key

for F`∗ . Then the oracle O′ implements the function

O′(x) =

(
ga
>∏log(q)−1

j=0 (Sj+x
2j I)

)∏t−1
j=log(q)

(Sj+x
2j I)

= g

(
a>
∏log(q)−1

j=0 (Sj+x
2j I)

)
·
∏t−1

j=log(q)
(Sj+x

2j I)

= ga
>∏t−1

j=0(Sj+x
2j I).

ThusO′ implements exactly F (1). On the other hand, if D′’s oracleO implements

a random function R with R(x) = gr(x)
>

, where r : Zp → Zkp is a random
function, then the oracle O′ implements the function

O′(x) =
(
gr
>(x)

)∏t−1
j=log(q)

(Sj+x
2j I)

= g
r>(x)·

∏t−1
j=log(q)

(Sj+x
2j I)

.

Thus O′(x) implements exactly F (2). We conclude that

Adv(D′) = |Pr[D′F`∗ (K`∗ ,·) = 1]− Pr[D′R = 1]|

= |Pr[DF
(1)

= 1]− Pr[DF
(2)

= 1]| = ε1 ≥ ε−
qt

p− 1
.

By Theorem 6 this yields a distinguisher D∗ with advantage 1
k·log(q) ·

(
ε− qt

(p−1)

)
against k-LIN in G. This concludes the proof.

PRF with Shorter Keys. Escala et al. [11] suggested a framework that gen-
eralizes Diffie-Hellman like decisional assumptions and proposed a variant of
the Lewko-Waters PRF with short keys based on the so-called Matrix-DDH
(MDDH) assumption. The proof of Theorem 6 immediately generalizes to this
setting. Theorem 7 also holds in this setting, given that the distribution of aggre-
gated transformation matrices T corresponding to the matrix distribution D`,k
(c.f. [11], Section 5.3) used in the MDDH problem satisfies Pr[rank(T + x · I) <
k] ≤ negl for all x ∈ Zp.

Acknowledgements

We thank Max Rabkin and the reviewers of CRYPTO 2015 for their helpful
comments and feedback.

References

1. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Berlin, Germany, Cambridge, UK (Apr 15–19, 2012)

2. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interative zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO’89. LNCS, vol. 435, pp. 194–211. Springer, Berlin, Germany, Santa
Barbara, CA, USA (Aug 20–24, 1990)

3. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 14–18, 2011)

4. Berman, I., Haitner, I.: From non-adaptive to adaptive pseudorandom functions.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 357–368. Springer, Berlin,
Germany, Taormina, Sicily, Italy (Mar 19–21, 2012)

5. Berman, I., Haitner, I., Komargodski, I., Naor, M.: Hardness preserving reductions
via Cuckoo hashing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 40–59.
Springer, Berlin, Germany, Tokyo, Japan (Mar 3–6, 2013)

6. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Berlin, Germany, Interlaken, Switzerland
(May 2–6, 2004)

7. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10. pp. 131–140. ACM Press,
Chicago, Illinois, USA (Oct 4–8, 2010)

8. Chandran, N., Garg, S.: Balancing output length and query bound in hardness
preserving constructions of pseudorandom functions. In: Meier, W., Mukhopad-
hyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 89–103. Springer, Berlin,
Germany, New Delhi, India (Dec 14–17, 2014)

9. Chase, M., Meiklejohn, S.: Déjà Q: Using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 622–639. Springer, Berlin, Germany, Copenhagen, Denmark (May 11–15, 2014)

10. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Berlin, Germany, Les Diablerets, Switzerland (Jan 23–26, 2005)

11. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Berlin, Germany, Santa Barbara,
CA, USA (Aug 18–22, 2013)

12. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: Yu, T., Danezis, G., Gligor, V.D. (eds.)
ACM CCS 12. pp. 501–512. ACM Press, Raleigh, NC, USA (Oct 16–18, 2012)

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-
tended abstract). In: 25th FOCS. pp. 464–479. IEEE Computer Society Press,
Singer Island, Florida (Oct 24–26, 1984)

14. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol.
196, pp. 276–288. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 19–23,
1984)

15. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 90–120. Springer, Berlin, Germany, Warsaw, Poland (Mar 23–25, 2015)

16. Herranz, J., Hofheinz, D., Kiltz, E.: The kurosawa-desmedt key encapsulation is
not chosen-ciphertext secure. Cryptology ePrint Archive, Report 2006/207 (2006),
http://eprint.iacr.org/

17. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Berlin, Germany, Santa Barbara, CA, USA (Aug 19–23, 2007)

18. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp.
433–442. ACM Press, Victoria, British Columbia, Canada (May 17–20, 2008)

19. Jain, A., Pietrzak, K., Tentes, A.: Hardness preserving constructions of pseudo-
random functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 369–382.
Springer, Berlin, Germany, Taormina, Sicily, Italy (Mar 19–21, 2012)

20. Levin, L.: One way functions and pseudorandom generators. Combinatorica 7(4),
357–363 (1987)

21. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In: Al-Shaer, E., Jha, S., Keromytis, A.D.
(eds.) ACM CCS 09. pp. 112–120. ACM Press, Chicago, Illinois, USA (Nov 9–13,
2009)

22. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Princeton, NJ, USA (1994)

23. Maurer, U.M.: Indistinguishability of random systems. In: Advances in Cryptology
- EUROCRYPT 2002, International Conference on the Theory and Applications of
Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002,
Proceedings. pp. 110–132 (2002)

24. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. In: 36th FOCS. pp. 170–181. IEEE Computer
Society Press, Milwaukee, Wisconsin (Oct 23–25, 1995)

25. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS. pp. 458–467. IEEE Computer Society Press, Miami
Beach, Florida (Oct 19–22, 1997)

26. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited (extended abstract). In: 29th ACM STOC. pp. 189–199.
ACM Press, El Paso, Texas, USA (May 4–6, 1997)

27. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring (ex-
tended abstract). In: 32nd ACM STOC. pp. 11–20. ACM Press, Portland, Oregon,
USA (May 21–23, 2000)

28. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. pp. 333–
342 (2009)

29. Razborov, A.A., Rudich, S.: Natural proofs. In: 26th ACM STOC. pp. 204–213.
ACM Press, Montréal, Québec, Canada (May 23–25, 1994)

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, May 22-24, 2005. pp. 84–93 (2005)

31. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007), http://eprint.iacr.org/

32. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (Nov
1984), http://doi.acm.org/10.1145/1968.1972

