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Abstract. In this paper we investigate relations between several
masking schemes. We show that the Ishai–Sahai–Wagner private circuits
construction is closely related to Threshold Implementations and the
Trichina gate. The implications of this observation are manifold. We point
out a higher-order weakness in higher-order Threshold Implementations,
suggest a mitigation and provide new sharings that use a lower number
of input shares.
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1 Introduction

Side-channel cryptanalysis allows to break implementations of mathematically
secure cryptographic algorithms running on embedded devices. Shortly after the
introduction of a particularly powerful branch of side-channel attacks, namely
Differential Power Analysis (DPA) by Kocher et al. [15], different countermeasures
were proposed. An especially popular countermeasure used today is masking,
introduced in [7,12], mainly due to its theoretical soundness. Contrary to other
heuristic, ad-hoc approaches, masking carries a proof of security [7]. A dth-order
secure masking works by splitting every sensitive variable (i.e. that depends on
the key) into s shares, such that an adversary probing at most d values during the
computation gets no information about any sensitive variable. This adversarial
model is relevant in practice since the adversary is not weaker than a dth-order
DPA attack [11,8]. The advantage of a properly masked implementation is that
it forces the adversary to use higher-order DPA attacks in order to break it.
Higher-order DPA attacks are substantially harder to launch, both in terms
of data complexity and computational resources [7,19,24]. Masking, however,
comes with a cost. Performing operations in the masked domain increases the
computational requirements on the target platform (area, time and randomness,
among others), thus in practice, it is crucial to design countermeasures that have
a limited cost impact.

In this paper, we focus on Boolean masking, i.e. the intermediates are split
additively in a given finite field. The difficulty is then reduced to masking functions
that are not linear with respect to addition.



1.1 Related works

There have been several efforts for constructing masking schemes —algorithms to
compute on masked data. Some early development came from practitioners which
produced designs mostly oriented to fit in real-world constraints: Trichina presents
in [29] a masked AND gate resistant to first-order DPA attacks (first-order secure
masking).

A generic algorithm for the masked AND computation at any security level is
given by Ishai, Sahai and Wagner (here ISW) in [14], together with a convenient
theoretical framework to prove the security of such a scheme. It is, however, well
known that early theoretical concepts of masking schemes rely on assumptions
that do not necessarily hold in practice. This is true for both the hardware and
the software side. A common problem for the latter is that Hamming distance
leakage, which is typically visible in memory-element transitions, may invalidate
the assumption that leakages from each share are independent [1]. For the former,
glitches (in static CMOS, a spurious transition of nodes in a combinational circuit
within one clock cycle, resulting from different arrival times of the input signals)
were shown to be a source of exploitable leakage [17,18], enabling successful DPA
attacks against theoretically sound masked implementations due to unsatisfactory
leakage modeling.

The mitigation of glitches is a well-studied problem in digital design, since
they are not only inconvenient from a security point of view. Glitches are useless
transitions that consume extra energy and thus digital designers tend to minimize
them to achieve low-power and high-speed circuits. There are strategies to reduce
glitches (e.g., balancing the path delay using combinational tree-like structures) or
fully eliminate them (e.g. using dynamic logic styles, such as Domino or dynamic
differential such as SABL [27] or WDDL [28]).

Alternatively, a specific strand of masking schemes, namely Threshold
Implementations (TIs), were introduced in [21] to address the aforementioned
model limitations. TIs are designed to deal with non-idealities in hardware
(glitches) at a higher level of abstraction, and can provide strong security
guarantees that may be relevant in practice. While ISW requires first to decompose
a circuit into (exclusively) AND, XOR and NOT gates and then masking those,
TI has the advantage that any function can be shared directly, which typically
results in more compact designs. Recently TIs were extended to provide not only
first-order but also higher-order security [3].

1.2 Our contribution

The discussion provided in this paper is threefold. First, we point out the
similarities and differences between ISW, TI and the Trichina gate when the
function to mask is an AND gate. We gain deeper understanding about masking
schemes from these relations and use it to provide a generalized masking scheme
(Section 3).

In the second part of the paper, we show how this generalization is mutually
beneficial to all three masking schemes mentioned above. We show a weakness in



the recently proposed higher-order extension of TI and suggest a fix using ideas
from the generalized scheme in Section 4. In addition, we discuss how ISW and
the Trichina masked AND-gate can be implemented securely in logic styles that
glitch.

Finally, we focus on constructive applications. In Section 5.1, we discuss
under which conditions a TI function provides security against dth-order attacks
using only d + 1 shares instead of the usual td + 1 bound. We end the paper by
describing how ideas from TI could be inherited in software-oriented schemes to
provide security in a distance-based leakage model (Section 5.2).

2 Preliminaries

We begin with standard definitions and descriptions of the masking schemes that
we consider. Lower-case characters refer to elements in a field with characteristic
two. An element a is split into s shares ai, where i ∈ 1, 2, . . . , s by means
of Boolean masking. Namely, without loss of generality s − 1 random shares
a1, . . . , as−1 are drawn from the uniform distribution, then as is calculated such
that a =

⊕
s ai. Bold characters refer to a valid shared vector a = a1, . . . , as. We

use the term s-share representation (s-sharing) of a to emphasize the number of
shares. Note that the sharing a generated as detailed above is uniform [4].
Moreover, the sharing āi = a1, . . . , ai−1, ai+1, . . . , as is independent of the
unshared value a for any choice of i. It is hence an (s, s) secret sharing.

We use upper-case characters to denote functions. For a given unshared
function b = F (a), we generate a shared vector F = F1, . . . , Fs of component
functions Fi in order to perform the shared calculation. The sharing F is correct
if b =

⊕
s bi for bi = Fi(a). The algebraic degree of a function is denoted with t.

Adversarial model. We use d probing as our adversarial model which we define as
follows. The adversary is allowed to probe d wires in the circuit within a certain
time window. Each probed wire g calculating a function G gives information
about all the inputs of G up to the latest synchronization point1. This definition
directly implies that the adversary can derive all the intermediate values during
the computation of G and hence the output of G. To clarify, let us refer to
Figure 1. An attacker probing the output of the function G (that is, wire g)
can observe all the inputs to G up to, and including, reg2; can generate all the
intermediate values used during the calculation of G (including the outputs of G
that are stored in reg3); but can not directly learn all the values stored in reg1
or any intermediate values occurring during the calculations of each Fi.

We note that this is a theoretical model stronger than a real-world attacker
since a real-world attacker can only get a subset of the mentioned information.
Moreover, it is slightly different than the conventional d-probing model [14].
Nevertheless, it is advantageous since being able to see the inputs of the gates
used during the calculation implies the ability to observe real world effects such

1 One of the many ways of synchronization is storing elements in registers which we
inherit throughout this paper without loss of generalization.
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Fig. 1: Exemplary circuit to aid the explanation of the adversarial model adopted
in this paper. Fi and G are combinational logic blocks, regi are register stages
and fi and g are wires that compute the Fi (resp. G) functions.

as glitches. Hence, we gain the flexibility to work also with non-ideal (glitchy)
gates. If the usage of ideal gates is assumed, working with the conventional model
is typically sufficient.

This model matches quite nicely with dth-order DPA attacks, which consider a
noisy function of intermediates’ leakage [11]. There are certainly other adversarial
models that are even more powerful, in which the attacker has the ability to
adaptively move the probes between time periods (but not within a time period).
We note that this “adaptive-probes” model is stronger than dth-order DPA model
and we do not consider moving probes in this paper.

Require: s-shares a and b
Ensure: s-shares c satisfying c = ab

for i from 1 to s do
for j from i + 1 to s do

zij ← rnd()

zji ← (zij ⊕ aibj)⊕ ajbi
end for

end for
for i from 1 to s do

ci ← aibi
for j from 1 to s, j 6= i do

ci ← ci ⊕ zij
end for

end for

Fig. 2: ISW algorithm.
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Fig. 3: Intermediate state of the ISW
computation for s = 3.

Ishai–Sahai–Wagner scheme. Private circuits [14] provide a procedure for
computation on masked data. They give a construction for NOT and AND
gates, and prove the security against d probes of any circuit composed of these
secure gates (“gadgets”) which are in turn built from logic gates that do not



glitch. To compute c = F (a, b) = ab while providing security against d probes,
ISW takes s = 2d + 1 shares a and b of each input and consumes

(
s
2

)
bits of

randomness. We exemplify the computation of a masked AND gate providing
security against adversaries using one (d = 1, s = 3) and two (d = 2, s = 5)
probes in Equation (1), and Equations (2) and (3) respectively. An intermediate
state of the computation is shown in Figure 3.

z21 = (z12 ⊕ a1b2)⊕ a2b1,

z31 = (z13 ⊕ a1b3)⊕ a3b1,

z32 = (z23 ⊕ a2b3)⊕ a3b2,

c1 = a1b1 ⊕ z12 ⊕ z13,

c2 = a2b2 ⊕ z21 ⊕ z23,

c3 = a3b3 ⊕ z31 ⊕ z32.

(1)

First, three (resp. ten) bits of randomness zij where 1 ≤ i < j ≤ s are drawn
i.i.d. uniformly random. Then the intermediates zji are computed as shown in the
left column of Equation (1) (resp. Eqn. (2)). The last step xors the intermediates
zij and the products aibi to compute the s output shares c (right column of
Eqn. (1) and Eqn. (3) respectively).

z21 = (z12 ⊕ a1b2)⊕ a2b1,

z41 = (z14 ⊕ a1b4)⊕ a4b1,

z32 = (z23 ⊕ a2b3)⊕ a3b2,

z52 = (z25 ⊕ a2b5)⊕ a5b2,

z53 = (z35 ⊕ a3b5)⊕ a5b3,

z31 = (z13 ⊕ a1b3)⊕ a3b1,

z51 = (z15 ⊕ a1b5)⊕ a5b1,

z42 = (z24 ⊕ a2b4)⊕ a4b2,

z43 = (z34 ⊕ a3b4)⊕ a4b3,

z54 = (z45 ⊕ a4b5)⊕ a5b4.

(2)

c1 = a1b1 ⊕ z12 ⊕ z13 ⊕ z14 ⊕ z15,

c2 = a2b2 ⊕ z21 ⊕ z23 ⊕ z24 ⊕ z25,

c3 = a3b3 ⊕ z31 ⊕ z32 ⊕ z34 ⊕ z35,

c4 = a4b4 ⊕ z41 ⊕ z42 ⊕ z43 ⊕ z45,

c5 = a5b5 ⊕ z51 ⊕ z52 ⊕ z53 ⊕ z54.
(3)

Extensions to higher orders are similarly generated using the algorithm in Figure 2.

It is well known that the ISW algorithm can work in larger finite fields by
building upon field multiplications instead of AND gates. In the case of AES,
there is a significant performance gain if ISW operates in GF(28), due to the
algebraic structure of the AES S-box [25]. We refer to [14] for a variant of this
method using s = d + 1 shares.

Threshold Implementations. TI provides provable security against dth-order DPA
even in a circuit with glitches according to [3]. In addition, it is also advantageous
since any degree t function can be securely implemented using at least s ≥ td + 1
shares.

The security of a single function relies on the satisfaction of dth-order non-
completeness: any combination of up to d component functions Fi of F must
be independent of at least one input share. It is shown that such a sharing can
always be constructed using sin = td + 1 and sout =

(
sin
t

)
shares. Examples for

the function d = F (a, b, c) = c⊕ ab are given in Equations (4) and (5) for d = 1
and d = 2 respectively.



d1 = c2 ⊕ a2b2 ⊕ a1b2 ⊕ a2b1,

d2 = c3 ⊕ a3b3 ⊕ a3b2 ⊕ a2b3

d3 = c1 ⊕ a1b1 ⊕ a1b3 ⊕ a3b1.

(4)

Notice that sout > sin for d > 1. In order to avoid further increase of the
number of shares when several functions are cascaded, some of the output shares
are typically xored. It is important that this reduction is performed only after the
sout-sharing d is stored in the registers in order to satisfy the non-completeness
property and to avoid glitches depending on all shares of a variable.

d1 = c2 ⊕ a2b2 ⊕ a1b2 ⊕ a2b1,

d3 = c4 ⊕ a4b4 ⊕ a1b4 ⊕ a4b1,

d5 = a2b3 ⊕ a3b2,

d7 = c5 ⊕ a5b5 ⊕ a2b5 ⊕ a5b2,

d9 = a3b5 ⊕ a5b3,

d2 = c3 ⊕ a3b3 ⊕ a1b3 ⊕ a3b1,

d4 = c1 ⊕ a1b1 ⊕ a1b5 ⊕ a5b1,

d6 = a2b4 ⊕ a4b2,

d8 = a3b4 ⊕ a4b3,

d10 = a4b5 ⊕ a5b4.

(5)

In order to provide security when several functions are cascaded, (i.e. the
output of F is used as the input to another shared nonlinear-function G), the
shared function and its output should satisfy uniformity [4]. Several methods
to achieve uniformity have been proposed [5,6,16,22]. It is advised to use re-
masking [4,20] in case these methods do not provide a solution.

When a single AND gate is considered, it has been shown that there exists
no 3-sharing satisfying both uniformity and first-order non-completeness [5].
Therefore, the output shares of the 3-share AND gate must be re-masked
(refreshed). Moreover, the sharing in Equation (4) considering an AND and
XOR gate instead of a single AND gate satisfies all TI properties.

Trichina AND-gate. Unlike ISW and TI which can be applied both at the
algorithm and at the gate level, Trichina [29] investigates how to implement a
masked AND gate c = ab securely strictly at the gate level. The construction,
which is described in Equation (6), requires two 2-share inputs and uses 1-bit
extra randomness z12 to generate a 2-share output. The security relies strictly
on the order of the operations to avoid unmasking certain bits, on the ideality of
the cells and on the assumption that the sharing a of a is independent from b.

c1 = (((z12 ⊕ a1b2)⊕ a2b1)⊕ a2b2)⊕ a1b1, c2 = z12. (6)



3 Conciliation

In this section we mainly describe a generalized masking scheme and argue its
security. In order to do that, we first relate the ISW scheme with TI and the
Trichina gate using elementary transformations. We then use ingredients from
all three schemes in our generalized construction. As a case study, we consider a
first-order sharing of an AND gate.

3.1 From ISW to TI

Consider the ISW construction with s = 3 input shares, providing first-order
security as depicted in Figure 4. It is equivalent to the computation in Equation (1)
and to Figure 2. In Figure 4, the computation flows from the outside towards the
center. It begins with deriving all the cross products aibj . Then three random
values zij are added to some of the cross products. The terms are finally xored
together in three groups to generate the output shares ci.

In the following, we perform several elementary transformations on this circuit
to arrive to a typical re-masked 3-share TI of an AND gate.
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Fig. 4: Original ISW scheme.
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Fig. 5: After first transformation.

First transformation: moving random bits. Delaying the injection of randomness
using the random bits zij closer to the center (towards the end of the calculation)
as depicted in red yields the construction in Figure 5. Of course, this operation
preserves the correctness of the output. It is already possible to recognize a
refreshing operation in the inner ring where z12, z13 and z23 are involved. Note
that the security of this intermediate construction highly depends on the order of
computation of the XOR gates and the ideality (glitching behavior) of the gates.



Second transformation: moving AND gates. The next modification transforms
the circuit of Figure 6 into Figure 7. It simply moves around the two red AND
gates a1b3 and a3b1 together with the XOR gate from the upper to the lower-left
branch.
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Fig. 6: Before second transformation.
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Fig. 7: After second transformation.

This second transformation also preserves the correctness at the output.
Notice that after this transformation each branch of the circuit sees at most two
shares of each input. For example, the upper branch sees only a2, a3, b2 and b3.
We can absorb the computation from each branch (3 ANDs and 2 XORs) into
its respective component function Fi as shown in Equation (7).

F1(a1, a2, b1, b2) = a2b2 ⊕ a1b2 ⊕ a2b1,

F2(a2, a3, b2, b3) = a3b3 ⊕ a2b3 ⊕ a3b2,

F3(a1, a3, b1, b3) = a1b1 ⊕ a3b1 ⊕ a1b3.

(7)

The reader will recognize that the resulting sharing F is a TI (satisfying
first-order non-completeness) followed by a refreshing (resulting from the first
transformation.) Note that one could also equivalently see this refreshing as an
addition with the uniform shares of the constant value 0.

The security of this construction follows from the fact that it is a TI, followed
by a refreshing. In particular, this construction is secure even in the presence of
glitches. Therefore, we link the s = 3 ISW scheme to first-order TI.

3.2 From ISW to the Trichina AND-gate

In Figure 8, we draw the ISW computation2 of an AND gate for s = 2. In Figure 9,
we have the Trichina AND gate. Similar to Section 3.1, we can transform the
ISW construction s = 2 to the Trichina gate by rearranging the term a1b1. It is

2 We stress that ISW with s = 2 is neither strictly defined nor proven secure in the
ISW simulation model. We are extending the algorithm in Figure 2 in a straight
forward way to any s.



noteworthy that the Trichina gate resembles a simplified ISW, and thus can be
seen as the practitioners version.
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Fig. 8: ISW with s = 2.

b2

z12

a2 b1
a2 b2

a1 b1

z12
c2

c1

a1

Fig. 9: Trichina AND gate.

3.3 Generalizing and inducing a structure

We can generalize the masked AND-gate transformations from Sections 3.1 and 3.2
to the general case of higher orders. In addition, we can construct variants that
compute logic gates with more than two inputs or more sophisticated functions.

In order to induce a structure to the mentioned generalization, we decompose
the resulting construction into four layers as exemplified in Figures 10 and 11 for
first- and second-order security respectively. Specifically, we notice a non-linear
layer N , followed by a linear layer L and a refreshing layer R. In certain cases
where we want to reduce the number of shares, we add a linear compression layer
C. Below we detail the functionality of each layer.
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Fig. 10: First-order secure (s = 3) after
transformation.
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after transformation.



The non-linear layer N . This layer is responsible for the bulk of the computation,
corresponding to the cross products aibj . For example, in the first-order secure
construction of a 3-share 2-input AND gate, N (a,b) = (a1b1, a1b2, . . . , a3b3)
maps 6 input bits to 9 output bits (aibj). Note that the set of cross products
calculated in this layer is defined by the number of shares and the function itself.
3

In order to generalize the construction such that a function other than c = ab
is computed (such as d = abc, d = a ⊕ bc, d = a ⊕ bc ⊕ abc), N needs to be
modified accordingly. To be specific, all the shared terms (cross products and
linear terms) should be placed in N to be used in the following steps.

The linear layer L. This layer is an XOR net that reduces the number of shares
without modifying the unshared value. In the AND-gate example, it maps 9 input
bits (output of N ) to 3 output bits for the first-order case and 25 input bits to
10 output bits in the second-order case. The linear layer L of TI is responsible
for preserving non-completeness. Failure to achieve non-completeness can cause
sensitive information leakage in a glitchy circuit as in the case of the original
ISW scheme (see Section 4.2).

The reduction of the number of shares performed by L partially limits the
exponential blow-up of shares otherwise caused by the non-linear layer N alone.
We point out that the output of N is already a valid, non-complete sharing
when each cross product is considered as an output share. However, cascading
several sharings without L increases the number of shares rapidly, making such
an implementation impractical except for circuits with very shallow logic depth.

The refreshing layer R. This layer is applied in order to re-mask the output
of L. It is shown in several prior works on first-order TI that this layer can be
avoided if the output of L already satisfies uniformity. However, R is critical in
order to provide higher-order security as will be discussed in Section 4.1. In ISW,
each output of each masked AND gate is refreshed, which clearly increases the
randomness requirements compared to the generalized sharing of a more complex
function with several terms (such as d = a⊕ bc⊕ abc).

The compression layer C. While designing the L layer, there is a natural tension
between two desirable properties, namely satisfying dth-order non-completeness
and having a small number of output shares. Normally, one designs L to have a
small number of output shares yet satisfying dth-order non-completeness. One
example of this issue is the second-order masking of an AND-gate depicted
in Figure 11, where the number of shares at the output of L (10 shares) is
considerable larger than the number of shares of each input variable (5-share a
and b).

If it is desired to decrease the number of output shares further, the compression
layer C is applied. This layer is composed of XOR gates only. In order to satisfy

3 It is possible to add other terms to N (as long as they are inserted an even number
of times), such as virtual variable pairs [6], in order to increase the flexibility for
generating a uniform sharing.



non-completeness and avoid glitches causing leakage of more than the intended
number of shares, it is crucial to isolate the R and C layers using registers.

Note that in typical TIs, the layers N and L are combined and absorbed
into the component functions without registers between these layers as drawn
in Figure 11. An additional challenge is to design L so that it simultaneously
satisfies non-completeness and uniformity.

3.4 Security arguments for generalized scheme

In this section, we argue the security of the generalized structure. We start
by showing the security of a 2-input AND gate (2AND) against a d-probing
adversary and inductively continue to a function of degree t. We assume that
inputs to N are uniformly shared and synchronous. This discussion enables us to
relate the number of required shares in TI with that in ISW.

2-input AND gate. Let us consider a set of information I (based on indices)
gathered by the attacker by probing d wires. Specifically, if a wire corresponding
to ai, bi or aibi is probed, the index i ∈ I. If the wire corresponding to aibj is
probed, both i, j ∈ I. This implies that a probed wire at the output of the layer
N can give information about at most two indices. Therefore, the cardinality
of I is at most 2d when d wires are probed in N . It follows that using at least
2d + 1 shares is required to provide security up to L. However, an attacker is not
limited to probing certain layers. Notice that the attacker probing closer to the
end of the calculation of the component functions, i.e. just before the register
between R and C, gains more information. By the definition of the linear layer
L, the component functions should be formed such that any combination of up
to d of them should be independent of at least one share, i.e. one index, when a
d-probing secure circuit is considered. Hence, we know that if it is possible to
construct L with the given restriction, the attacker probing d wires never has
all the indexes in I. Since the input shares are uniformly shared and the vectors
āi, b̄i, . . . are independent from the unshared values a, b, . . ., we achieve security
at the end of L. Moreover, knowing the randomness used in R does not yield
additional information to the attacker. At this point the possibility of generating
L with 2d + 1 shares becomes the question. It has been shown in [3] with a
combinatorial argument that this is possible if the linear layer L is divided into(
2d+1

2

)
component functions. Namely, each component function uses at most two

input shares and hence at most two indices are put in I for each probing. This
gives the cardinality of at most 2d when d probes are used.

Notice that the security discussion provided so far considers only one AND gate.
However, the security of the generalized scheme also holds for the composition of
several AND gates. Namely, the refreshing layer R and the register afterwards
impose independence of the composed elements and non-completeness respectively.
Hence, the union of the gathered information does not give an additional
advantage to the attacker.

In the case of a single-probe adversary, we can relax the requirements on
R. As long as the next nonlinear function sees uniformly shared inputs, one



can simplify the construction of R and even in some cases avoid R. This result
follows from the fact that an attacker using a single probe is unable to combine
information from more than one function.

3-input AND gate. The security argument for a 3-input AND gate (F (a, b, c) =
abc) follows the same lines as for the 2-input AND gate. The nonlinear layer N
calculates aibjck terms. In order to keep the number of shares small, we need to
make sure that each component function uses variables with at most 3 different
indices. Then, an attacker probing d wires can only gather information from
at most 3d indices. The question if it is possible to arrange L such that this
restriction is respected is answered positively in [3]. It can be done by dividing
L into

(
3d+1

3

)
component functions. Note that for a full proof of security, the

insertion of randomness (the R layer) and registers become critical in order to
provide higher-order security of the composition of such gates.

Naturally, it is also possible to generate a shared 3AND gate by composing
two shared 2AND gates. This requires usage of registers after both the first and
the second 2AND-gate calculation. However, the construction described above
which performs the 3AND gate calculation at once is typically more efficient.

t-input AND gate. We can inductively apply the arguments for 2AND and
3AND gates to the t-input AND gate. This implies the sufficient lower bound of
sin = td + 1 input shares. The shared function should be split into at least

(
sin
t

)
component functions in L and satisfy dth-order non-completeness.

Degree t Boolean functions. The above inductive argument does not exclude
functions composed of more than one degree t term. To clarify, the generation
of N is performed by straight-forward calculation of all cross products using
sin = td + 1 shares. The linear layer is split into

(
sin
t

)
component functions, each

of which sees t indices as described above for a t-input AND gate. Any shared
term of degree ≤ t can be placed to at least one existing component function
since any cross product of the shared ≤ t term uses at most t indices, which
concludes the argument.

Degree t functions in other finite fields. A careful investigation of the above
arguments shows that they are independent of the used field. Namely, it is enough
to replace the AND gates in GF(2) with multiplication in the required field in
order to provide security for a degree t function.

We conclude the security argument of the generalized masking scheme by
noting that sin can be chosen to be greater than td + 1 in order to achieve
flexibility without invalidating the security arguments.

3.5 Wrapping up.

In this section, we provided a generalized scheme which extends ISW and TI like
masking schemes. Specifically, unlike the ISW scheme which builds up on AND
gates or field multiplications; the generalized scheme allows to implement any



function directly, enabling the usage of less compositions. The generalized scheme
inherits the ability to operate on larger fields and security against d-probing
adversary. In addition, it offers protection for composition of gates.

4 What can go wrong?

In Section 3 we constructed a generalized masking structure, and assigned precise
requirements and functions to each of its layer. In this section, we show how small
deviations from this generalized scheme can cause vulnerable implementations.
In particular, in Section 4.1 we analyze the cost of lacking a refreshing layer
R. We use the recently proposed higher-order TI as our case study to show a
higher-order flaw, then we suggest a generic fix. In Section 4.2, we elaborate on
the insecurity that deviating from the structure especially on L brings in the
presence of glitches using the ISW and Trichina scheme as our case study.

4.1 Higher-order TI is not so higher-order secure

The higher-order TI proposed in [3] fits to our generalized structure as follows.
N and L together enforce a correct and dth-order non-complete implementation.
However, unlike the generalized scheme, the refreshing layer R is not performed
in TI when the uniformity of the shared output of C can be satisfied without
R. This difference becomes important since as we shall see in the sequel, it can
induce a higher-order security flaw when composing several sharings, even if these
sharings are uniform.

For simplicity, we use a second-order TI of a mini-cipher construction and
show a second-order leakage.

Description of the mini-cipher. Let us consider a minimal non-linear feedback
shift register. This mini-cipher comes from an extreme simplification of the
KATAN block cipher for which a higher-order TI was given in [3]. We consider a
4-bit state S[i], i ∈ 0, . . . , 3 for which the taps are at the state bits with indices
i = 1, 2, 3 and the feedback is plugged at position 0. This state is a “sensitive
variable4”. The feedback function (“round function” of an extremely unbalanced
Feistel) F = F (S[3], S[2], S[1]) is the same AND-XOR feedback function as in
KATAN, namely d = F (a, b, c) = ab⊕ c.

Shared version of the mini-cipher. The shared version of this mini-cipher (non-
complete sharing in the N and L) follows the lines of [3]. The feedback function
F is shared as Equation (5). In particular, to provide security against glitches,
the state bit S[0], in which the output of F is stored, is composed of 10 shares,
whereas S[1],S[2],S[3] are composed of 5 shares. The conversion from 10 to 5
shares is done as suggested in [3]. That is, the fifth share of S[1] sees the xor of
the last six shares of S[0] when the cipher is clocked.

4 The goal is to show leakage in this construction. To simplify and keep the essentials,
we do not explicitly inject the key in this mini-cipher construction, but assume that
the initial state is secret (sensitive).
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Fig. 12: Diagram of the shared version of the mini-cipher.

A second-order leakage. Some lengthy, albeit straightforward, calculations show
that the covariance (second mixed statistical moment) between the fifth share
of S[1] after the first cycle and the fourth share of S[1] after the seventh cycle
depends on the unshared initial value S[2]. Thus, there is a second-order flaw
that invalidates the security claims of the scheme.5

Mitigation. The direct mitigation is to refresh the shares after each shared
function computation, for example by adding fresh shares of the null vector.
In other words, the refreshing layer R should be implemented in TI when
higher-order security is considered. The idea here is to isolate the intermediates
occurring within each computation stage from intermediates of another stage, so
that combining intermediates from different stages no longer reveals information
about a secret unshared value. With this argument, we fix the flaw in [3] using
the conciliation of masking schemes.

Note that this fix naturally increases area and randomness requirements and
we do not claim that it is the optimal solution. We foresee that this solution
may be an overkill in many situations, and a careful analysis can save significant
amount of randomness. This is especially true since the existence of a second-
order dependency between two variables does not necessarily imply an easy
key-extraction by DPA. In particular, if there is a second-order flaw between
two intermediates for which there is enough key-diffusion between them, key
recovery exploiting the joint leakage of intermediates becomes difficult. The exact
minimum amount of R layers needed to make the whole implementation secure
against higher-order attacks may depend from design to design.

4.2 ISW and Trichina in the presence of glitches

ISW scheme implicitly considers a logic gate that does not glitch. Thus, a
straightforward translation of ISW into standard CMOS technology can result in
a vulnerable implementation. To see this, observe that in Equation (8) c3 breaks
the non-completeness property:

5 This result had been previously reported in [23] and experimentally confirmed in [26].



c1 = a1b1 ⊕ z12 ⊕ z13,

c2 = a2b2 ⊕ ((z12 ⊕ a1b2)⊕ a2b1))⊕ z23,

c3 = a3b3 ⊕ ((z13 ⊕ a1b3)⊕ a3b1)⊕ (z23 ⊕ a2b3)⊕ a3b2.

The trivial fix here is to register signals that otherwise could result in undesired
(and pernicious) glitches. More precisely, if during the ISW computation in logic,
the intermediate values zji where i < j (outputs in Equation (1), left column;
and Equation (2)) are stored in registers together with the intermediate values
aibi before further XOR combinations, the circuit becomes secure even if there
are glitches. This follows since non-completeness holds between register stages.
The caveat of this fix is the significant increase in area (and latency) due to extra
registers. Note that this extra layer of registers is prevented by careful selection
of the layer L.

Similar observations apply to the Trichina construction. Trichina also imposes
restrictions on the logic gates, especially on the order of evaluation of these gates.
It is implicitly assumed that signals are registered or latched in order to avoid
glitches. The case where first-order security fails due to glitches is studied in [18].

5 Applications

Here we introduce two additional constructive applications. In the first one,
we focus on optimizing the generalized scheme further such that it uses
less input shares per function. The second application analyses software-like
implementations in a distance-based leakage model.

5.1 Using d + 1 input shares

As described in Section 3, the generalized scheme uses at least td+ 1 input shares
to protect a function with degree t against d-probing attacks. Here, we improve
the scheme such that it uses less input shares, specifically, d+ 1 shares to achieve
d-probing security. As a trade-off, however, this sharings are more restrictive with
the requirements of independent input sharings. We illustrate with single-probe
secure examples the design process of such sharings and the construction of layers.
We provide a security argument and discuss connections with prior works.

First crack. We start with the first-order sharing of c = ab with sin = 2
and sout = 4 given in Equation (8). The sharing c is only composed of the
crossproducts aibj . Hence, it can be seen as the output of N which is already a
correct sharing for c. Moreover, if the sharing of a is independent than that of b
then each share ci is independent of at least one input share of each variable. In
other words, non-completeness is satisfied. This implies the independence of c
from the unmasked variables a and b providing security under a single probe.

c1 = a1b1, c2 = a1b2, c3 = a2b1, c4 = a2b2. (8)



Note that in this simple sharing, if the sharings of a and b were dependent (for
example, a = b), then the second output share a1b2 = a1a2 would depend on all
shares of a (breaking non-completeness) and this would clearly leak information
about a. During the construction of layers in the following, we assume that the
sharings of each input variable is independent from all others.

Construction of N and L. The increase of number of variables in the
input increases the number of cross products and hence the number
of output shares of N exponentially. For example, if we consider the
sharing of d = a ⊕ ac ⊕ bc with sin = 2, we end up with 10 terms
(a1, a2, a1c1, a1c2, a2c1, a2c2, b1c1, b1c2, b2c1, b2c2) in N . Notice that it is possible
to reduce the number of output shares using a careful selection of a linear layer
L as shown in Equation (9) while satisfying the non-completeness property.

d1 = a1 ⊕ a1c1 ⊕ b1c1,

d2 = a1c2 ⊕ b1c2,

d3 = a2 ⊕ a2c1 ⊕ b2c1,

d4 = a2c2 ⊕ b2c2.
(9)

The number of output shares of L also changes significantly depending on the
function itself in addition to the number of input shares. To clarify, let us consider
the sharing of d = a⊕ ac⊕ bc⊕ ab which differs from the prior unshared function
in the additional term ab. The terms (a1b1, a1b2, a2b1, a2b2) should be added
to Equation (9) for a correct implementation. Even if we place the additional
terms a1b1 and a2b2 to the first and the last component functions in Equation (9)
respectively, the remainding terms a1b2 and a2b1 can not be placed in these four
component functions without breaking the non-completeness property. Hence, we
need to increase the number of shares. One option to obtain non-completeness is
increasing the number of output shares of L as shown in the equation below.

d1 = a1 ⊕ a1c1 ⊕ b1c1 ⊕ a1b1,

d2 = a1c2 ⊕ b1c2,

d3 = a2 ⊕ a2c1 ⊕ b2c1,

d4 = a2c2 ⊕ b2c2 ⊕ a2b2,

d5 = a1b2,

d6 = a2b1.

(10)

Construction of R and C. It is clear that if n × sin < m × sout, the output
sharing can not be uniform. Even if n × sin ≥ m × sout the uniformity is not
guaranteed. The output sharing described in Equations (8), (9) and (10) are
such non-uniform examples which require refreshing (R layer). An alternative
approach for the first-order case only is to decrease the number of shares in
order to achieve uniformity after storing the output of the mentioned sharings in
registers (prior to the C layer). To exemplify, consider the following sharing of
d = ab⊕ c with 2 input shares of each variable.

d1 = a1b1 ⊕ c1, d2 = a1b2, d3 = a2b1 ⊕ c2, d4 = a2b2. (11)

The sharing d is a nonuniform 4-sharing. However, the 2-sharing e generated
by e1 = d1 ⊕ d2 and e2 = d3 ⊕ d4 is uniform. Moreover, if the sharing d is stored
in registers before decreasing the number of shares, as implied by the registers
between the R and C layers in the generalized construction, any glitch during the



calculation of ei does not reveal information about the input values. Note that
the selection of the xored terms is not random at all and must be performed with
extreme care. A bad choice for a compression layer would be e1 = d1 ⊕ d3 and
e2 = d2 ⊕ d4, since e2 = (a1 ⊕ a2)b2 = ab2 obviously reveals information on a.

Security argument of the improved bound on the number of shares. It is noteworthy
that the security of the improved scheme is not proven using indices as for the
generalized scheme described in Section 3.4. Instead, since we assume that each
input sharing is independent of the others, we ensure that any combination of d
probes miss at least one share of each input variable. Therefore d+ 1 input shares
are sufficient in order to provide non-completeness in N hence independence of
the output shares from each unmasked input. As discussed above the requirements
that should be satisfied by the L and C layers in order to provide the claimed
security highly depends on the function. Therefore, we avoid to give a generic
construction besides imposing dth-order non-completeness in L and extreme care
not to unmask in C. The extension to higher orders is straightforward under
given exceptions.

Application to 4-bit quadratic permutations. Due to space restrictions, this section
is not present in this version. The interested reader can find it in the extended
version6 of this paper.

Connections with software ISW. In [25], a fast masked AES at any order is
given. The authors improve the security guarantees with respect to the number
of shares from s = 2d + 1 to s = d + 1. This improvement actually resembles to
the contribution of this section. The improvement was later shown to be slightly
flawed by [10]. However, we observe here that the refreshing from [25] is not
exactly the same as the layer R presented in Section 3.3 (operating in GF(28)).
Namely, the refreshing from [25] uses 1 unit of randomness (elements in GF(28))
less than R. Using a refreshing that mimics the layer R makes the second-order
flaw disappear [2].

5.2 Resistance against distance leakage

There are many applications of the ISW scheme for masked software
implementations [25], [13]. In the case of AES, there is a significant performance
gain if the ISW operates in GF(28), due to the algebraic structure of the AES
Sbox. A common problem with ISW-based software implementations is the
mismatch between the probing model in which ISW is proven secure and the
leakage behavior of the device that runs the implementation. For instance, typical
processors can be approximately modeled by a distance-based leakage behavior
(Hamming distance) rather than value-based one (Hamming weight). Thus, a
straightforward implementation of ISW without a careful prior profiling of the
device leakage behavior will likely lead to an insecure implementation. This is

6 http://www.reparaz.net/oscar/crypto2015/

http://www.reparaz.net/oscar/crypto2015/


because, even if ISW is secure in weight-based leakage behavior, it is not in a
distance-based one.

There are already some theoretical solutions for this problem, although they
come with a great cost [9], [1]. We point out here that it is possible to minimize
the exposure to this issue with the same modification performed in Section 3, i.e.
bringing the non-completeness condition.

The generalized scheme (e.g. after the second modification in Figure 7)
computes sequentially each branch (component function) Fi, i = 1, 2, 3 and then
performs a refreshing. This scheme is secure even if during the computation of
each branch Fi the device leaks distances (or a more complex leakage function of
several values). Contrary to the ISW, we do not impose specific constraints on
the order of evaluation of intermediates (within each Fi). This result immediately
follows from non-completeness of each branch Fi. It is required, however, to make
sure that there is no distance leakage between an intermediate appearing in Fi

and another in Fj , for i 6= j. It is noteworthy that the randomness requirement,
running time and memory requirements stay the same as in the original algorithm.

6 Conclusion

In this paper, we explored the connections, similitudes and differences between
several masking schemes, both from theoretical domains and from practitioners
working under real-world constraints. It is remarkable how two substantially
disparate communities arrive to essentially similar designs. This perhaps builds
even more confidence on the underlying techniques.

There are certainly many future avenues of research. For example, it would
be desirable to have explicit and tight bounds on the randomness requirements
to achieve efficient masked implementations.
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