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Abstract. Motivated by the goal of constructing efficient hash func-
tions, we investigate the possibility of hashing a long message by only
making parallel, non-adaptive calls to a hash function on short messages.
Our main result is a simple construction of a collision-resistant hash func-
tion h : {0, 1}n 7→ {0, 1}k that makes a polynomial number of parallel
calls to a random function f : {0, 1}k 7→ {0, 1}k, for any polynomial
n = n(k). This should be compared with the traditional use of a Merkle
hash tree, that requires at least log(n/k) rounds of calls to f , and with
a more complex construction of Maurer and Tessaro (Crypto 2007) that
requires two rounds of calls to f . We also show that our hash function h
satisfies a relaxed form of the notion of indifferentiability of Maurer et al.
(TCC 2004) that suffices for implementing the Fiat-Shamir paradigm. As
a corollary, we get sublinear-communication non-interactive arguments
for NP that only make two rounds of calls to a small random oracle.

An attractive feature of our construction is that h can be implemented
by Boolean circuits that only contain parity gates in addition to the
parallel calls to f . Thus, we get the first domain-extension scheme which
is degree-preserving in the sense that the algebraic degree of h over the
binary field is equal to that of f .

Our construction makes use of list-recoverable codes, a generalization of
list-decodable codes that is closely related to the notion of randomness
condensers. We show that list-recoverable codes are necessary for any
construction of this type.
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1 Introduction

In this work we consider the problem of extending the domain of cryptographic
hash functions. We start by discussing the case of collision-resistant hash func-
tions, and later address extensions to other types of hash functions.

A family
{
g : {0, 1}v 7→ {0, 1}k

}
of efficiently computable, length-decreasing

functions is called collision resistant if given the description of a random g from
the family, it is computationally infeasible to find a pair of distinct inputs s, s′

such that g(s) = g(s′).

Collision-resistant hashing is a fundamental primitive in cryptography that
has been the subject of a large body of work. Its applications span many areas,
ranging from the commonly used “hash and sign” paradigm for practical digital
signatures [29, 10] to cryptographic protocols such as sublinear-communication
commitments [9, 21], succinct and efficiently verifiable arguments for NP [23, 30],
and protocols that bypass black-box simulation barriers [1].

The existence of collision-resistant hash functions can be based on a variety
of standard number theoretic or algebraic cryptographic assumptions, includ-
ing the conjectured intractability of factoring, discrete logarithms, and lattice
problems [8, 13, 33, 25]. Yet, the task of heuristically constructing highly efficient
hash functions that can also be conjectured to have near-optimal security is quite
challenging. In particular, this task is arguably more challenging than a similar
task for other “symmetric” cryptographic primitives such as one-way functions
[41], pseudorandom generators [5, 41], and universal one-way hash functions [31].
This intuition is supported by theoretical results that rule out the possibility of
obtaining collision-resistant hash functions from any of these other symmetric
primitives via a black-box construction [36, 19]. Practical collision attacks on
commonly used hash functions such as MD5 [40] may also be viewed as an indi-
cation for the subtle nature of hash function design. Despite the above, there are
many practical constructions of cryptographic hash functions that are conjec-
tured to satisfy collision resistance as well as other useful properties. See [4] for a
description of SHA-3, the winner of the recent NIST hash function competition,
as well as an overview of other work on practical hash function design.

A common technique for building a hash function g : {0, 1}v 7→ {0, 1}k that
compresses a long input into a short output is by combining multiple invocations
of a smaller hash function f : {0, 1}kin 7→ {0, 1}kout in a way that supports a
black-box reduction of the collision-resistance of g to that of f . This technique,
known as domain-extension, is motivated by the possibility of carefully designing
and analyzing an optimized implementation of f on some fixed input length,
and then scaling up its efficiency and security advantages to apply to arbitrarily
long inputs. It is sometimes the case that the collision-resistance of g relies
on a stronger assumption on f than just collision-resistance. In fact, several
domain-extension schemes assume f to be a completely random function (see
e.g., [26, 37, 34, 38] and references therein, as well as [20] for discussion of the
meaningfulness of such results). In the following we will use the term “domain-
extension” in this broader sense. A simple domain-extension technique due to



Merkle [28] extends the domain of a hash function f : {0, 1}2k 7→ {0, 1}k for short

inputs into a hash function g : {0, 1}nk 7→ {0, 1}k for long inputs by applying a
tree of invocations of f whose leaves are k-bit input blocks and whose root is
the output.

In this work we consider the question of minimizing the parallel complexity of
domain-extension schemes. A natural measure of this complexity is the number
of rounds of parallel calls to f . Ideally, one could hope to compute g by only
making a single round of calls to f , where the input for each call is computed
directly from the input for g, and the outputs of the calls are used to compute
the output of g. The hash tree construction falls short of this goal, requiring at
least ⌈log2 n⌉ rounds. A more complex construction of Maurer and Tessaro [26]
comes close to this goal, requiring only two rounds of calls to f .5

Our main result is a simple construction of a fully parallel (single-round)
domain-extension scheme that realizes a collision-resistant g : {0, 1}v 7→ {0, 1}k
by making a polynomial number of parallel calls to a random function f :
{0, 1}k 7→ {0, 1}k, for any polynomial v = v(k). The construction achieves a
near-optimal level of security, requiring an attacker to make roughly 2k/2 calls
to f in order to find a collision in g with high probability. However, this may
come at the cost of a higher number of calls to f compared to traditional domain-
extension schemes. See Section 7 for a more detailed discussion of the achievable
parameters.

Our domain-extension scheme has the attractive feature that g can be im-
plemented by Boolean circuits consisting only of parity gates in addition to the
parallel calls to f . Thus, we get the first degree-preserving domain-extension
scheme, in the sense that the algebraic degree of g over the binary field is equal
to that of f . In contrast, in constructions that make two rounds of calls to f ,
the degree of g is at least quadratic in that of f . Low-degree hash functions are
motivated by applications in the domain of secure computation, in which the
cost of evaluating a function may depend on its algebraic degree. See [20] for
further discussion.

Our construction makes use of list-recoverable codes, a generalization of list-
decodable codes that is closely related to the notion of randomness condensers.
We show that list-recoverable codes are necessary for any construction of this
type. In the following we give a more detailed account of our results and the
underlying techniques.

2 Parallel Domain-Extension

Recall that a domain-extension scheme for hash functions takes as input a fixed
length hash function f : {0, 1}kin 7→ {0, 1}kout and outputs a new hash function

for much larger inputs, namely a function g : {0, 1}v 7→ {0, 1}kout for a given
v > kin. (For the sake of simplicity, we assume that the output length of g

5 Their construction actually realizes the stronger goal of constructing a function g
that is indistinguishable from a random function. See Section 8 for further discussion.



is kout, rather than an additional parameter.) We consider the standard model
in which the function f is provided to the construction after being chosen by
some randomized process, and the function g uses f as a black-box (i.e., it is
oblivious to the concrete implementation of f). The focus of this work is on
parallel domain-extension: upon receiving an input s ∈ {0, 1}v, the function g
first prepares n queries to the hash function f (which we will denote by C(s) =
(x1, . . . , xn)), and then the final output of g is obtained by computing some
function h on the input s and the answers f(x1), . . . , f(xn).

Definition 1 (parallel domain-extension scheme). Let kin, kout, v, n be

integers, let C : {0, 1}v 7→
(
{0, 1}kin

)n

and let h be defined over {0, 1}v ×(
{0, 1}kout

)n

. The parallel domain-extension scheme (C, h) is the oracle-

aided function g(C,h) defined as follows. For f : {0, 1}kin 7→ {0, 1}kout , let

gf(C,h) : {0, 1}
v 7→ {0, 1}kout be defined by

gf(C,h)(s) = h(s, f(C(s)1), . . . , f(C(s)n)).

If the value of (C, h) is clear from the context, we refer to gf(C,h) as gf or g.

Such a construction should maintain the security of the underlying hash func-
tion (i.e., f). In particular, whenever f is chosen from a collision-resistant hash
function family, the resulting function g should be collision-resistant as well. As a
step towards this goal, it is common to consider the following intermediate goal:
assume that f is a random function (which in particular is collision-resistant),
and prove that the resulting function g is collision-resistant. In the following let
Fkin,kout be the family of all functions mapping kin-bit strings to kout-bit strings.

Definition 2 (collision-resistance in the random oracle model). Let g be
an oracle-aided function (i.e., deterministic algorithm), with an oracle mapping
kin-bit strings to kout-bit strings. The function g is (ℓ, ε)-collision-resistant in the
random oracle model, if for any ℓ-query adversary A (i.e., A makes ℓ oracle calls),
it holds that Prf←Fkin,kout

[
(s1, s2)← Af : s1 ̸= s2 ∧ gf (s1) = gf (s2)

]
≤ ε.

An important goal is to come up with an efficient collision-resistant parallel
domain-extension scheme, according to Definition 2, where efficiency can be
measured in terms of circuit size, depth, or algebraic degree. This motivates
schemes in which n (the number of queries) is as small as possible, and the
functions C and h are efficiently computable.

Our main result is that if we take C to be a list-recoverable code (defined
below), then for making the resulting scheme collision-resistant in the random-
oracle model, it suffices to take h to be simply the XOR function applied to the
n outputs of f .

It turns out that when used with (short) random oracle, our parallel domain-
extension scheme also maintains other useful properties of the random oracle.
While we cannot show our parallel domain-extension scheme to be indifferen-
tiable from a random function in the sense of Maurer et al. [27], we show that it



enjoys a weaker form of indifferentiability, which neither implies nor is implied
by collision-resistance. This property will turn out to be sufficient for convert-
ing interactive proof system into non-interactive ones using the the Fiat-Shamir
paradigm [12].

Definition 3 (weak indifferentiability). Let g : {0, 1}v 7→ {0, 1}t be an
oracle-aided function, taking an oracle mapping kin-bit strings to kout-bit strings.
The function g is (ℓ, R, r)-weak-indifferentiable from a random function, if for any
two-oracle algorithm D making ℓ queries to the left-hand side oracle, and a single
query to the right-hand side oracle, there exists a single-query algorithm Sim such

that PrfIdeal←Fkin,kout

[
DfIdeal,g

fIdeal ∈ E
]
≤ R ·PrgIdeal←Fv,t

[
DSimgIdeal ,gIdeal ∈ E

]
for any event E. The simulator Sim is of size r, i.e., it is implemented by a next
message circuit of size r (i.e., a circuit that gets as input the past queries and
the current one, and returns the answer to the current query).

The main difference between Definition 3 and the standard notion of indif-
ferentiability from [27], is that the above definition only requires domination
between the real and emulated pair of systems, whereas [27] require statistical
closeness. We also provide Sim the query parameter ℓ as a parameter, which
makes our relaxed definition easier to realize. For simplicity, we have fixed the
number of queries to the right-hand side oracle to one (both for the distin-
guisher and the simulator). It turns out that this type of security is achieved
by our parallel domain-extension scheme and is sufficient for applying the Fiat-
Shamir paradigm as described below. Concretely, we show that by taking C and
h to be as above, the resulting function is weakly indifferentiable from a random
function, with small (i.e., polynomial) parameters.

We now give some brief intuition for why the above weak indifferentiability
property suffices for applying the Fiat-Shamir paradigm to simulate the verifier’s
challenge in 3-message public-coin interactive proofs. Let P be a malicious prover
that convinces the verifier V with noticeable success probability. P may make
ℓ queries to the real short-input oracle before sending his message to V. We
can consider a distinguisher D that simulates P and then uses one query to
the long-input oracle to see whether V accepts. D accepts iff V accepts. Now
consider the behavior of D in the two experiments that appear in Definition 3.
In the real experiment, the probability that D accepts is the success probability
of P. In the ideal experiment, V uses an ideal (full length) oracle and so the
success probability of D is bounded by the success probability when applying
the Fiat-Shamir paradigm with an ideal hash function.

3 List-Recoverable Codes

Definition 4 (list-recoverable code). Let α ∈ [0, 1]. A tuple x ∈
(
{0, 1}k

)n

is

– α-consistent with a set T ⊆ {0, 1}k, if |{i : xi ∈ T}| ≥ α · n.



– α-consistent with sets T1, . . . , Tn ⊆ {0, 1}k, if |{i : xi ∈ Ti}| ≥ α · n.

A function C : {0, 1}v 7→
(
{0, 1}k

)n

is (α, ℓ, L)-list recoverable, if for every set

T ⊆ {0, 1}k of size at most ℓ, there are at most L strings s ∈ {0, 1}v such that
C(s) is α-consistent with T . It is strongly (α, ℓ, L)-list recoverable, if for every

T1, . . . , Tn ⊆ {0, 1}k each of size at most ℓ, there are at most L strings s ∈ {0, 1}v
such that C(s) is α-consistent with T1, . . . , Tn.

For α = 1, we omit α in the above notation. The strings in the image of C
are referred to as codewords, and C has distance β, if every two codewords differ
on at least β · n of the indices.

The function C has a size r list-recovering algorithm, if there exists a circuit
of size r that given a set T ⊆ {0, 1}k of size at most ℓ returns the full list of (at
most L) strings that are α-consistent with T .

The notion of strongly list-recoverable codes (explicitly defined in [15]) is a
natural extension of the more standard uniquely decodable codes (captured by
ℓ = L = 1) and list-decodable codes (captured by ℓ = 1 and L > 1). The reader
is referred to [14] for a comprehensive treatment of list-decodable codes. In this
paper we use the weaker notion of list-recoverable codes (with a single set T
instead of a collection T1, . . . , Tn), as it turns out to be more natural for the
applications we consider.6 List-recoverable codes show up naturally in coding
theory when one considers list-decoding of concatenated codes.7 Conveniently,
many list-decoding algorithms (e.g., [39, 17, 32, 16]) solve the more general
list-recovering problem, and list-decoding is achieved as a special case. The pa-
rameter regime that we consider is less standard in coding theory and is strongly
related to unbalanced expanders and randomness condensers. We elaborate on
this connection in [20].

In our construction we require codes that, in addition to having large distance
and being list-recoverable, are also well ordered.

Definition 5 (well-ordered codes). A function C : {0, 1}v 7→
(
{0, 1}k

)n

is

well ordered, if for every s1, s2 ∈ {0, 1}v (not necessarily distinct) and for every
i ̸= j, C(s1)i ̸= C(s2)j.

Constructions of list-recoverable codes in the literature typically have this

property. Furthermore, a given function C : {0, 1}v 7→
(
{0, 1}k

)n

can be con-

verted into a function C̄ : {0, 1}v 7→
(
{0, 1}k+logn

)n

that is well ordered by

6 Note that it is immediate that a strongly list recoverable code is also (weakly) list-
recoverable, and that a weakly list-recoverable code with L′ = n · L is strongly
list recoverable. In our setting n is negligible compared to L and so the distinction
between the two notions of list-recoverable code makes little difference.

7 More precisely, if the inner code is list-decodable (rather than uniquely decodable)
then to obtain a list-decodable code, the outer code needs to be list-recoverable (and
not only list-decodable).



defining C̄(s)i = (C(s)i, i). This transformation increases the alphabet of the
code, but does not compromise the distance or list-recoverability. In our set-
ting log n is typically negligible compared to k and so the increase in alphabet
size is immaterial. Hence, one can assume without loss of generality that a list-
recoverable code is well ordered.

4 Parallel Domain-Extension via List-Recoverable Codes

We show that well-ordered, list-recoverable codes with large distance yield
parallel domain-extension schemes that are collision-resistant in the random-
oracle model, and furthermore are weak-indifferentiable from a random func-
tion. Specifically, this holds for any domain-extension scheme of the form
gf (s) =

⊕n
i=1 f (C(s)i), where C is such a list-recoverable code. Hereafter, we

refer to this scheme as the XOR parallel domain extension scheme.

Theorem 1. Let kin, kout, v be integers, α > 0, and let C : {0, 1}v 7→(
{0, 1}kin

)n

be a well-ordered, (α, ℓ, L)-list recoverable code of distance α. De-

fine h : {0, 1}v ×
(
{0, 1}kout

)n

7→ {0, 1}kout by h(s, a1, . . . , an) =
⊕n

i=1 ai. Then

g(C,h) is (ℓ, L2/2kout)-collision-resistant in the random-oracle model.

We remark that the collision-resistance of g(C,h) holds even if we only require
that the function f it gets as oracle be L2-wise independent. Thus, using codes
with small L allows us to require less of the oracle.

Theorem 2. Let kin, kout, v be integers, and let C : {0, 1}v 7→
(
{0, 1}kin

)n

be

a well-ordered, (ℓ, L)-list recoverable code, with size r list-recovering algorithm,
and let h be as in Theorem 1. Then g(C,h) is (ℓ, L, r̂)-weak-indifferentiable from
random function (from v bits to kout bits), with r̂ = O(r + ℓ · (kout + kin)).

Note that the weak-indifferentiablity of the scheme requires much less from the
underlying code. In particular, it is not sensitive to the consistency parameter
(allowing it to be 1) nor to the distance of the code, and hence does not im-
ply collision-resistance. On the other hand, our application of this notion in the
context of computationally sound arguments will require the list-recovering al-
gorithm to be computationally efficient, a feature that is not needed for collision-
resistance.

We prove Theorem 1 below. For the proof of Theorem 2, and proofs of the
other theorems in this paper, see full version [20].

4.1 Proving Theorem 1

We show that an ℓ-query adversary is unlikely to find a collision in the above
construction (i.e., find two elements s1 ̸= s2 ∈ {0, 1}v, with gf (s1) = gf (s2)),
when f is chosen at random from F — the set all functions mapping kin-bit
strings to kout-bit strings.



Fix a code C of the type considered in Theorem 1 and an ℓ-query (without
loss of generality, deterministic) adversary A, and let g = g(C,xor). The core of
the argument is using the list-recoverability of C, and its distance, to bound the
number of input pairs that A is able to try out. We use the following definition.

Definition 6 (dangerous pairs). A pair (s1, s2) ∈ ({0, 1}v)2 of distinct

elements is dangerous w.r.t. a (query) set Q of elements in {0, 1}kin , if
C(s1)i, C(s2)i ∈ Q for all 1 ≤ i ≤ n with C(s1)i ̸= C(s2)i.

We bound the number dangerous pairs w.r.t. an ℓ-size query set Q using the
bound on the number of codewords that are α-consistent with Q.

Claim 3 Let (s1, s2) be a dangerous pair w.r.t. a query set Q, then both C(s1)
and C(s2) are α-consistent with Q.

Proof. Assume that (s1, s2) is a dangerous pair w.r.t. a query set Q. Let D =
{i : C(s1)i ̸= C(s2)i}. Since the distance of C is α, it holds that |D| ≥ α · n.
Since (s1, s2) is a dangerous pair, C(s1)i, C(s2)i ∈ Q for all i ∈ D, and hence,
both C(s1) and C(s2) are α-consistent with Q.

Corollary 1. There are at most
(
L
2

)
dangerous pairs w.r.t. an ℓ-size query set.

Proof. Since C is (α, ℓ, L)-list recoverable, there are at most L strings s ∈ {0, 1}v
such that C(s) is α-consistent with an ℓ-size query set Q. Hence, by Claim 3,
there are at most

(
L
2

)
dangerous pairs w.r.t. Q.

For f ∈ F , let QA,f be the ℓ-size query set asked by Af . Corollary 1 yields

that there are at most
(
L
2

)
dangerous pairs w.r.t. QA,f . A straightforward union

bound yields that a non-adaptive A (i.e., one that “writes” all its queries in
advance) is unlikely to find a collision within the dangerous pairs w.r.t. QA,f . A
slightly more involved argument yields the same bound also for adaptive adver-
saries. Specifically, we give the following bound (proof given below).

Claim 4 Prf←F [(s1, s2) ← Af : (s1, s2) is dangerous w.r.t. QA,f ∧ gf (s1) =

gf (s2)] ≤
(
L
2

)
· 2−kout .

On the other hand, it is immediate that A is unlikely to find a collision of a
non-dangerous pair.

Claim 5 Prf←F [(s1, s2)← Af : s1 ̸= s2 ∧ (s1, s2) is non-dangerous w.r.t. QA,f

∧ gf (s1) = gf (s2)] = 2−kout .

Proof. Since (s1, s2) is non-dangerous, it follows that C(s1)i ̸= C(s2)i for some
i ∈ [v], and without loss of generality C(s1)i /∈ QA,f . Consider any fixing of all f
queries but C(s1)i that is consistent with the actual answers of f on the queries
in QA,f . Since C is well ordered, this fixes C(st)j for all t ∈ {1, 2} and j /∈ [n].
The claim follows, since for each such fixing, it holds that

Pr
[
gf (s1) = gf (s2)

]
= Pr

f (C(s1)i) =
⊕

j∈[n]\{i}

f (C(s1)j)⊕
⊕
j∈[n]

f (C(s2)j)


= 2−kout .



It follows that Af finds a collision with probability at most (
(
L
2

)
+ 1) · 2−kout ≤

L2/2kout , proving the first part Theorem 1.

Proving Claim 4 Recall that the ℓ-query adversary A in consideration may
be adaptive, which means that it possibly selects its oracle queries based on the
answers it received for previous queries. Our goal is to bound the probability
that A finds a pair of codewords that is both dangerous (with respect to QA,f )
and forms a collision.

To this end, we first introduce the following notations. Let Q
(j)
A,f ={

q
(1)
A,f , . . . , q

(j)
A,f

}
be the set of first j queries made by Af . Let E

(j)
A,f be the

event that there exists a pair (s1, s2) ∈ ({0, 1}v)2 of distinct elements that is

dangerous w.r.t. Q
(j)
A,f and gf (s1) = gf (s2). Finally, denote by d

(j+1)
A,f the num-

ber of pairs (ŝ1, ŝ2) that are dangerous w.r.t. Q
(j+1)
A,f and there exists 1 ≤ i ≤ n

such that C(ŝ1)i = q
(j+1)
A,f ̸= C(ŝ2)i.

We next bound the probability that after making the j + 1 query, the ad-
versary finds – for the first time – a pair that is both dangerous and colliding.

Claim 6 For any 1 ≤ j < ℓ and d ∈ N, it holds that

Prf←F

[
E

(j+1)
A,f ∧ ¬E(j)

A,f | d
(j+1)
A,f = d

]
≤ d

2kout
.

Proof. By simple rules of conditional probability, it suffices to prove

Prf←F

[
E

(j+1)
A,f | ¬E(j)

A,f ∧ d
(j+1)
A,f = d

]
≤ d

2kout
. For E

(j+1)
A,f to occur, there needs

to be a pair (ŝ1, ŝ2) that is dangerous w.r.t. Q
(j+1)
A,f and gf (ŝ1) = gf (ŝ2). The

condition that E
(j)
A,f does not occur yields that if (ŝ1, ŝ2) is dangerous w.r.t.

Q
(j)
A,f , then gf (ŝ1) ̸= gf (ŝ2). Hence, for computing the probability that such a

pair exists, one should only consider pairs that are dangerous w.r.t. Q
(j+1)
A,f and

are not dangerous w.r.t. Q
(j)
A,f .

Let (ŝ1, ŝ2) be a pair that is dangerous w.r.t. Q
(j+1)
A,f and not dangerous w.r.t.

Q
(j)
A,f . Note that there exists a (single) 1 ≤ i ≤ n with C(ŝ1)i = q

(j+1)
A,f ̸= C(ŝ2)i;

the existences holds since otherwise, this pair is already a dangerous pair w.r.t.

Q
(j)
A,f , and the uniqueness follows since C is well-ordered. We next compute the

probability that gf (ŝ1) = gf (ŝ2). Consider any fixing of all f queries but C(s1)i
that is consistent with the actual answers of f on the queries inQ

(j)
A,f (specifically,

E
(j)
A,f does not occur and d

(j+1)
A,f = d for such fixings). Since C is well ordered,

this fixes C(st)j for all t ∈ {1, 2} and j /∈ [n]. For each such fixing, it holds that

Pr
[
gf (ŝ1) = gf (ŝ2)

]
= Pr

f (C(ŝ1)i) =
⊕

j∈[n]\{i}

f (C(ŝ1)j)⊕
⊕
j∈[n]

f (C(ŝ2)j)


= 2−kout .



By assumption, there are d such dangerous pairs. Hence, by a union bound, the
claim follows.

Proof (Proof of Claim 4). Since QA,f = Q
(ℓ)
A,f , it holds that EA,f := E

(ℓ)
A,f is

the event that there exists a pair (ŝ1, ŝ2) ∈ ({0, 1}v)2 of distinct elements that
is dangerous w.r.t. QA,f and gf (ŝ1) = gf (ŝ2). Clearly, the probability of EA,f

upperbounds the probability that A outputs such a pair.

Evidently, E
(1)
A,f can never occur, since no pair is dangerous w.r.t. a single

query. Furthermore, E
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A,f for any j′ ≤ j implies E
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A,f . Hence, we have that
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where the inequality follows from Claim 6. By linearity of expectation, it holds
that
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The last inequality follows since

ℓ−1∑
j=1

d
(j+1)
A,f ≤

(
L

2

)
(3)

for every f ∈ F . To see that Equation (3) holds, note that each pair that is

dangerous w.r.t. Q
(j)
A,f is also dangerous w.r.t. Q

(ℓ)
A,f (i.e., the set of all queries

made by A). Furthermore, each such dangerous pair (s, s′) is only counted by a

single d
(j)
A,f , i.e., for the first j in which Qj contains all the queries C(s)i ̸= C(s′)i.

Hence, Equation (3) follows from Corollary 1.

5 Beyond Collision-Resistance

We suggest some applications of the XOR parallel domain-extension scheme
described in [20] to parallel constructions of other cryptographic primitives in
the random oracle model. These applications exploit both the collision-resistance
and weak-indifferentiability properties of our construction. In this section we
give a high level description of these applications and refer the reader to [20] for
formal statements.

Fiat-Shamir paradigm. We show that the XOR parallel domain-extension scheme
can be used to implement the Fiat-Shamir paradigm for converting any three-
message public-coin argument, which may possibly employ a random oracle, into
a non-interactive (i.e., single-message) argument in the random oracle model.



We start by describing the Fiat-Shamir transformation when applied to three-
message protocols. Let ⟨P,V⟩ be a public-coin three-message argument system
for an NP language. Such a protocol has the following high level structure: (1)
P send a v-bit message to V; (2) V sends a random k-bit challenge to P; (3)
P responds to this challenge; (4) V decides whether to accept by applying an
efficient predicate to the input and the protocol’s transcript.

The Fiat-Shamir transformation makes P generate all three messages by ap-
plying a hash function h : {0, 1}v 7→ {0, 1}k to the first message of P to simulate
the random challenge. This paradigm is provably secure in the random oracle
model, but requires the random oracle input length to be as long as P’s first
message. We then use the weak-indifferentiability property, as discussed in Sec-
tion 2, to show that the resulting scheme is also secure when h is the hash
function obtained by applying the XOR parallel domain-extension scheme to
a random oracle f : {0, 1}k 7→ {0, 1}k. Namely, we create a Fiat-Shamir like
transformation that uses parallel calls to a small random oracle.

Parallel commitment with local decommitment. Next, we consider commitment
schemes for strings s ∈ {0, 1}v that support a sublinear-communication local
decommitment of any bit from s. Intuitively, in such schemes we require that
the sender be bound to the string it committed to, but we do not explicitly
require that it hide s. Instead, we require that the communication of both the
commitment to s and the decommitment of each bit si be sublinear in v. We
observe that such a commitment scheme can be obtained by dividing s into√
v blocks of length

√
v each and applying the XOR parallel domain-extension

separately to each block. To decommit si, the sender reveals the entire block
containing si, and the receiver applies the hash function to ensure consistency.
In this scheme, both the sender and the receiver only make parallel calls to a
small random oracle.

Two-adaptive sublinear non-interactive arguments. Finally, we combine the
above two applications to obtain sublinear-communication non-interactive ar-
guments for NP in the random oracle model, which does not require the oracle
input length to be large. To this end, we first apply the three-message protocol
of Kilian [22], which combines a probabilistically checkable proof (PCP) with a
commitment scheme as above. Then, following Micali [30], we apply the Fiat-
Shamir transformation to make this argument non-interactive.

By using efficient PCP constructions (e.g., those from [2]) and applying the
XOR parallel domain-extension in both steps of the process, we get the following
corollary: every NP language that can be recognized by a non-deterministic
Turing machine of running time T (n) has a non-interactive argument of length
Õ(T 1/2(n)) in the random oracle model, in which the prover and the verifier
make only two rounds of calls to the oracle.



6 Necessity of List-Recoverability for Parallel
Domain-Extension

It turns out that some form of list-recoverability is necessary for the collision-
resistance of a parallel domain-extension. Let (C, h) be a domain-extension
scheme, and assume that C is not (1, ℓ, L)-list recoverable. Namely, there ex-

ists a set T ⊆ {0, 1}kin of size at most ℓ, for which there are (at least) L + 1
distinct elements s1, . . . , sL+1 ∈ {0, 1}v such that for every 1 ≤ i ≤ L + 1:
gf (si) = h(si, f(x1), . . . , f(xn)) for x1, . . . , xn ∈ T . Hence, by querying f only
on the ℓ elements in T , an adversary obtains the required information for com-
puting gf (s1), . . . , g

f (sL+1). This attack finds a collision in gf if L ≥ 2kout . Thus,
(1, ℓ, L)-list-recoverability with L ≤ 2kout , is necessary for the collision-resistance
of g in the random-oracle model. This is formally stated below.

Theorem 7. Let kin, kout, v, n be integers. For every C : {0, 1}v 7→
(
{0, 1}kin

)n

and h : {0, 1}v×
(
{0, 1}kout

)n

7→ {0, 1}kout if C is not (1, ℓ, 2kout)-list-recoverable

then g(C,h) is not (ℓ, 0.99)-collision-resistant in the random oracle model.

We note that there are codes of large minimal distance (such as the repetition
code) for which the attack in the proof of Theorem 7 can be implemented in
polynomial time, by using linear algebra.

Necessity of list-recoverability with L ≈ 2
kout

2 . Note that Theorem 7 discusses

L = 2kout while in Theorem 1 we require L ≤ 2
kout

2 to get a meaningful result. Is

it possible to show that (ℓ, L) list-recoverability with L ≈ 2
kout

2 is also necessary
for security? We give a partial answer to this question below.

Observe that the above attack allows the adversary to use ℓ queries into
f and come up with

(
L+1
2

)
≈ 2kout pairs s ̸= s′, such that he can compute

g(s) and g(s′). In some natural settings, computing g on this number of pairs
suffices to find a collision. For instance, this is the case if the function g is
4-wise independent.8 There are codes C satisfying the properties requested in
Theorem 1, with which the construction of Theorem 1 is 4-wise independent.
This implies that Theorem 1 cannot be improved to imply security with L > 2

k
2 .

Necessity of list-recoverability with α < 1. Theorem 7 shows that it is necessary
that C is list-recoverable with α = 1 in any parallel domain-extension scheme. In
our construction, however, we use stronger codes with α < 1, and we also require

8 g is 4-wise independent, if for every four distinct s1, s2, s3, s4 ∈ {0, 1}v the random
variables g(s1), g(s2), g(s3), g(s4) are uniformly distributed and independent (over
the random choice of the oracle f). For such g, the expectation of the random
variable counting the number of pairs s ̸= s′ such that g(s) = g(s′) is at least(
L+1
2

)
/2kout (which is large if L ≥ 2kout/2). Moreover, 4-wise indpendence implies

that the variance of the random variable above is small, and therefore, the number
of collisions is with high probability, close to the expectation. This implies that the
adversary obtains a collision with high probability.



that the codes have large distance. The next theorem shows that this assumption
is necessary in case h is the XOR function (as we chose in Theorem 1).

Theorem 8. There exists c > 0 such that the following holds for every α < 1,
integers kin ≥ c · log( v

1−α ), kout, v ≥ c ·max {kin, kout}, c ·( v
1−α ) ≤ n ≤ 2kin/2, c ·

( n
1−α ) ≤ ℓ ≤ 2kin/4 and L ≥ ℓ. There exists a function C : {0, 1}v 7→

(
{0, 1}kin

)n

that is (1, ℓ, L)-list recoverable, well ordered, and has distance α, and (yet) for
h(s, a1, . . . , an) =

⊕n
i=1 ai, the parallel domain-extension scheme g(C,h) is not

(O( n
1−α ), 0.99)-collision-resistant in the random-oracle model.

Theorem 8 shows that there exist codes C which satisfy all the requirements
of Theorem 1 with the single exception being that the list-recoverability parame-
ter is taken to be one (rather than the distance α of the code). Yet, the resulting
construction is insecure. In fact, there is a lot of slack in the counterexample,
one can choose the parameters ℓ, L to be much more favorable than in Theo-
rem 1, and still an adversary with only O( n

1−α ) queries can break the scheme
with probability arbitrarily close to one.

It should be noted that the previous construction of Maurer and Tessaro
[26] extends the domain of a random function by relying on a notion of “input-
restricting families”, which is equivalent to strongly list-recoverable codes with
α = 1.9 Such input-restricting families were subsequently used in [11] for the
purpose of extending the domain of MACs. The construction from [26] is not
fully parallel, requiring two rounds of calls to the random oracle f . The example
provided in Theorem 8 gives a formal explanation why the use of input-restricting
families does not suffice for using a single round of calls, even if one is only
interested in collision-resistance as in this work.

Intuitively, the issue is as follows. In order to break collision-resistance the
adversary is only required to produce a distinct pair (s, s′) of inputs such that
g(s) = g(s′), and the adversary is not required to be able to compute g(s).
Loosely speaking, parallel domain-extension schemes in which C is (α = 1, ℓ, L)-
list recoverable, have the property that after asking ℓ queries the adversary
cannot come up with t > L inputs s1, . . . , st such that he can compute
g(s1), . . . , g(st). The example in Theorem 8 shows that there are (1, ℓ, L)-list-
recoverable codes, in which the adversary can a produce a collision (s, s′) even
though he did not query f on all the inputs required to compute g(s), g(s′) (and
therefore is not controlled by list-recoverability with α = 1). In Theorem 1 we
show how to bypass this limitation by using list-recoverable codes with α < 1.
We hope that the introduction of this stronger combinatorial object to the area
of domain-extensions may help to improve and simplify other tasks in this area.

9 This notion is also equivalent to certain unbalanced expander graphs, see discussion
in [20].



7 Using Known Explicit List-Recoverable Codes

In this section we plug in list-recoverable codes with specific parameters to obtain
concrete results. We use the Parvaresh-Vardy code [32] in the range of parameters
analyzed by Guruswami, Umans and Vadhan [18].

Theorem 9 ([18]). For every α ≥ 1/2, 0 < β < 1, and k < v ∈ N, there

exists a poly(v)-time computable function C : {0, 1}v 7→
(
{0, 1}k

)n

for n =

O(v ·k)
1

1−β , that is well ordered, has distance α, and for every L ≤ 2β·(k−2 logn),
it is (α, ℓ, L)-list recoverable with ℓ = Ω(n · L) and has a poly(v, ℓ)-size list-
recovering algorithm. Furthermore, when viewed as a function C : Fv

2 7→ Fk·n
2 ,

every output bit can be expressed as a degree one polynomial in the input bits.

We remark that [18] give a more general trade-off of parameters as well as a
tighter connection between the parameters. More specifically, the theorem of [18]
is stated as a condenser, and the statement given here is using the interpretation
of condensers as list-recoverable codes (see [20] for more details). The facts that
the construction of [18] is well-ordered and has large distance are not explicitly
stated in [18], but are easily verified from the actual construction. The list-
recovering algorithm is also not explicitly stated but follows directly from the
proof of [18]. Finally, the fact that the mapping can be seen as a collection of
degree one polynomials over F2 also follows from the specific structure of the
construction of [18], or more generally from the structure of the Parvaresh-Vardy
code.10

We now plug this code into Theorem 1 and obtain concrete results. For
simplicity, we assume here that the input and output length of the oracle (i.e.,
f) are the same, and denote both lengths by k. We consider powerful adversaries

with ℓ = 2(
1
2−γ)·k for a small constant γ > 0 and shoot for ε that is exponentially

small in k. Plugging the code of [18] into the construction of Theorem 1, yields

that for desired security ε, it suffices to take L = c · ε 1
2 · 2 k

2 for some constant
c. By the construction of [18] we can achieve this with ℓ = Ω(L · n) = Ω(ε

1
2 ·

2
k
2 · n). Namely, we can achieve ε = 2−2γk for ℓ = 2(

1
2−γ)·k-query adversaries.

Furthermore, ℓ can be taken to be Ω(2k/2 · n) (that is larger than 2k/2) for any

10 More precisely, the function C has the following form. It sets v = v1 · v2 for some
integers v1, v2. Given an input x ∈ {0, 1}v it is interpreted as a vector in Fv2

2v1 which
is in turn interpreted as the coefficients of a degree v2 univariate polynomial f(X)
over F2v1 . For every i ∈ [n], C(x)i = (i, f0(αi), . . . , fm−1(αi)) where αi ∈ F2v1 is
a constant that depends only on i, and for every j ∈ [m], fj(X) is a univariate

polynomial defined by fj = fhj

mod E, where h is a parameter and E is some
degree v2 +1 irreducible polynomial. Thus, the code is immediately seen to be well-
ordered and to inherit distance from the Reed-Solomon code (that corresponds to
j = 1). The analysis of [18] allows choosing h that is even. Note that for an even h,
the identity (x+y)h = xh+yh holds in F2v1 . It is standard that this implies that for
every fixed α ∈ F2v1 , the map f 7→ (fh mod E)(α) is F2-linear. This indeed implies
that viewing the function C as a map from Fv

2 to Fk·n
2 , it is a degree one mapping.



small constant ε > 0. This is best possible in the sense that with 2
k
2 · n queries

to f , one can simulate a birthday attack against g, and find a collision.

Comparing to the standard Merkle-tree based domain-extension, the result-
ing construction does make significantly more oracle calls to the underlying
small domain function. Specifically, our construction makes n = O(v2 · k2) calls,
whereas the Merkle-tree construction makes O(v/k) calls. We remark that if we
were to use a random code (rather than an explicit one), then the number of
calls decreases to O(v/k) as is the case for Merkle trees. Furthermore, even when
using explicit codes, if we settle for security against 2βk-query adversaries, the

query complexity of our construction can be reduced to roughly (v ·k)
1

1−β , which
roughly matches the Merkle-tree construction for v that is significantly larger
than k (which is the interesting range of parameters). Parvaresh-Vardy codes
allow for some other trade-offs between security and number of queries that we
do not examine here.

The code C that we use can be evaluated by degree one polynomials over F2.
This immediately gives a very efficient parallel implementation in the standard
model of Boolean circuits with parity gates of fan-in 2. Such circuits can compute
the code C with depth log2 v. Moreover, in this model, computing the final xor in
our construction, can be done by circuits of depth log2 n. Thus, overall our final
hash function g can be implemented by circuits whose depth is bigger than the
depth of f by log2 v+log2 n. By our bounds on n, this quantity is roughly 3 log2 v
for 2(

1
2−γ)·k-query adversaries with small γ > 0, and roughly (2 + β) · log2 v for

small β > 0 and 2βk-query adversaries. We remark that future developments
in the area of list-recoverable codes or randomness condensers may reduce n
to O(v/k). It is also natural to expect that random F2-linear codes (or even
families of efficiently encodable LDPC codes that are used in practice) achieve
this bound. However, this is not known at this point.

8 Additional Related Work

Extending the domain of collision-resistant hash functions is of great impor-
tance for many cryptographic applications that depend on collision-resistance.
Classical construction paradigms for domain-extension are the Merkle hash
tree [28] and the Merkle-Damg̊ard paradigm [29, 10]. Both paradigms are itera-
tive, namely, use sequential calls to the underlying hash-function. More specif-
ically, in both paradigms n = O(v/k) calls are made to the primitive, where
the former paradigm requires log(n) rounds of calls, and the latter paradigm
requires n rounds. Indeed, the Merkle-Damg̊ard paradigm realizes the much
stronger task of extending a fixed domain hash function to a full-fledged hash
function, i.e., one that can deal with input of any length. The Merkle-Damg̊ard
paradigm is extensively used in practice and was the subject of much theoretical
research and extensions (see, e.g., [24, 7, 3]). Lower bounds on the security of
these domain-extension techniques were obtained, e.g., in [37, 38]. The construc-
tion of Shrimpton and Stam [35] was the first construction achieving optimal



collision-resistance security in an inherently non-trivial way. Their construction
only doubles the domain, and requires two rounds of calls.

Most relevant to our work is the work of Maurer and Tessaro [26], already
discussed above. This work considers the more challenging problem of extending
the domain of a random function. Specifically, given a random function f from k
bits to k bits, they construct a function g fromm(k) bits to ℓ(k) bits, for arbitrary
polynomials m, ℓ, such that g is indistinguishable from a random function. The
latter is formalized by using the indifferentiability framework from [27], which
implies collision-resistance as a special case. The main goal of [27] is to obtain
near-optimal security, namely to guarantee security against attackers that make
2(1−ε)k oracle queries to f , improving over previous works.11 However, their con-
struction also achieves a high level of parallelism, requiring only two rounds of
calls to f . Compared to the construction from [27], our construction is consider-
ably simpler, it is fully parallel (i.e., requires only one round of calls to f), and
it preserves the algebraic degree of f (whereas the construction from [27] more
than squares the degree). As discussed in Section 6 (below Theorem 8), these
disadvantages of [26] seem inherent given the type of combinatorial object on
which they rely.

Building on and extending the techniques of [26], Dodis and Steinberger
[11] construct a domain-extension scheme for MACs that has security beyond
the “birthday barrier”. Finally, Canetti et al. [6] considered the related, but
somewhat orthogonal, goal of amplifying the security of a collision-resistant hash
function.

Acknowledgments. We thank Yevgeniy Dodis, Swastik Kopparty, Phil Rogaway,
Atri Rudra and Stefano Tessaro for helpful discussions and pointers.

11 Note that in the context of collision-resistance, the birthday paradox implies that
collisions can be found with high probability using 2kout/2 oracle calls.
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