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Abstract. In this work, we provide a new algebraic framework for pseudoran-
dom functions which encompasses many of the existing algebraic constructions,
including the ones by Naor and Reingold (FOCS’97), by Lewko and Waters
(CCS’09), and by Boneh, Montgomery, and Raghunathan (CCS’10), as well as the
related-key-secure pseudorandom functions by Bellare and Cash (Crypto’10) and
by Abdalla et al. (Crypto’14). To achieve this goal, we introduce two versions of
our framework. The first, termed linearly independent polynomial security, states
that the values (gP1(~a), . . . , gPq(~a)) are indistinguishable from a random tuple of
the same size, when P1, . . . , Pq are linearly independent multivariate polynomials
of the secret key vector ~a. The second, which is a natural generalization of the first
framework, additionally deals with constructions based on the decision linear and
matrix Diffie-Hellman assumptions. In addition to unifying and simplifying proofs
for existing schemes, our framework also yields new results, such as related-key
security with respect to arbitrary permutations of polynomials. Our constructions
are in the standard model and do not require the existence of multilinear maps.

1 Introduction

Pseudorandom functions (PRFs), originally defined by Goldreich, Goldwasser, and
Micali [19], are one of the most fundamental primitives in cryptography. Informally
speaking, a function is said to be pseudorandom if its outputs are indistinguishable from
that of a random function with respect to a computationally bounded adversary which
only has black-box access to it. Hence, even if the adversary can control the inputs on
which the function is computed and see the corresponding outputs, he or she should still
not be able to distinguish this function from a perfectly random one.

Due to their simplicity and security properties, pseudorandom functions have been
used in numerous applications, including symmetric encryption, authentication, and key
exchange. In particular, since pseudorandom functions can be used to model real-world
block-ciphers, such as AES [3], they are also extremely useful for the security analysis
of protocols that rely on these primitives.

Number-Theoretic Constructions. Despite its elegance, the original construction of
pseudorandom functions by Goldreich, Goldwasser, and Micali based on pseudorandom
generators was not very efficient. In order to improve its efficiency while still being able
to prove its security under reasonable complexity assumptions, Naor and Reingold [27]
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proposed a new construction based on the Decisional Diffie-Hellman assumption (DDH)
[27]. Let ~a = (a0, . . . , an) ∈ Zn+1

p be the key and x = x1 ‖ . . . ‖xn ∈ {0, 1}n be the
input of the PRF. Let g be a fixed public generator of a group G of prime order p. The
Naor-Reingold PRF is then defined as

NR(~a, x) =

[
a0

n∏
i=1

axii

]

where for any a ∈ Zp, [a] stands for ga, as defined in [18].
As mentioned in [17], the algebraic nature of the Naor-Reingold PRF has led to

many applications, such as verifiable random functions [2,22], distributed PRFs [27], and
related-key-secure PRFs [8], which are hard to obtain from generic PRFs. Hence, due to
its importance, several other extensions of the Naor-Reingold PRF have been proposed
[26,17] based on different assumptions, such as the Decision Linear assumption (DLin)
[15] and the d-DDHI assumption [17,20].

In this work, our main contribution is to further extend the above line of work by
providing a generic algebraic framework for building pseudorandom functions. In par-
ticular, all of the algebraic constructions mentioned above can be seen as a particular
instantiations of our framework. In addition, our framework is general enough that it cap-
tures and extends other constructions such as the related-key-secure PRF constructions
by Bellare and Cash [8] (BC) and by Abdalla et al. [1] (ABPP).

Linearly Independent Polynomial Security. To obtain our results, our first contribu-
tion is to introduce a new notion of linearly independent polynomial (LIP) security.
Informally, it states that the values ([P1(~a)] , . . . , [Pq(~a)]) are indistinguishable from
a random tuple of the same size, when P1, . . . , Pq are linearly independent multivari-
ate polynomials of degree at most d in any indeterminate and ~a is the PRF secret key
vector. The new notion is based on a new MDDH assumption [18] over the underlying
group G, denoted E1,d-MDDH, which can be (tightly) reduced to either DDH or DDHI
depending on value of d.

In order to illustrate the usefulness of the new notion, we show in Section 4 how
to use it to provide alternative security proofs for the Naor-Reingold PRF [27] and the
PRF by Boneh, Montgomery, and Raghunathan (BMR) in [17] as well as generalizations
of both these PRFs, that we call weighted NR and weighted BMR. Intuitively, all these
PRFs are defined over a prime order group G = 〈g〉 as a function F that takes a key ~a
and an input x and outputs an element in G of the shape F (~a, x) = [Px(~a)] where the
polynomial Px depends on x. Hence, to prove the security of such constructions, we just
need to prove that all polynomials Px, for any entries x, are linearly independent.

We would like to remark that the actual formulation of the LIP security in Section 3
includes a value a′ ∈ Zp multiplying each Pi(~a) term, which allows for the use of
different generators in the PRF constructions. While we could dispense with a′ in the
case where a′ and the ai values in ~a are scalars, we opted to use it to be consistent with
the case in which these values are matrices, as in Section 6.

Applications to Related-Key Security. Related-key attacks (RKAs) were first intro-
duced by Biham and Knudsen [11,24] and consider the setting in which an adversary
could force a given cryptographic primitive to execute under a different but related key.
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Over the years, such attacks became more predominant and several related-key attacks
have been proposed against existing block-ciphers (e.g., [12,13,23]). Since these attacks
are quite powerful and hard to defend against, Bellare and Kohno [9] introduced a formal
treatment of these attacks in the context of PRFs and pseudorandom permutations (PRPs)
to better understand if and how one could achieve security in the presence of related-key
attacks. One of their main observations is that certain classes of related-key attacks are
impossible to protect against and, hence, their goal was to identify the set of classes Φ
for which one could design secure RKA-PRFs and RKA-PRPs.

Let F : K × D → R be a family of functions for a security parameter κ, and let
Φ = {φ: K → K} be a set of related-key deriving (RKD) functions on the key space
K. Let G: K × D → R be a random function and let K ∈ K be a random target
key. Informally, in the RKA security model of [9], F is said to be a Φ-RKA-PRF if no
polynomial-time adversary can distinguish the output of F (φ(K), x) from the output of
G(φ(K), x), for pairs (φ, x) of its choice, with non-negligible probability.

Our second contribution is to show that the new LIP security notion can be used
to prove directly the related-key security of certain constructions. In particular, we
show that a particular case of our weighted BMR PRF construction is secure against
permutations of the secret key. In these attacks, the attacker can obtain the output of the
PRF with respect to any key that is a permutation of the original one.

To understand why RKA security can follow from the LIP security notion, let F be
a PRF defined over a prime-order group G = 〈g〉 that takes a key ~a and an input x and
outputs F (~a, x) = [Px(~a)]. Let Φ be a class of RKD functions, where functions ~φ =
(φ1, . . . , φn) ∈ Φ are such that φi are multivariate polynomials in Zp[T1, . . . , Tn]. Then,

for a RKD function ~φ and an input x, the PRF outputs F (~φ(~a), x) =
[
P~φ,x(~a)

]
, where

the polynomial P~φ,x(~T ) = Px(~φ(~T )) = Px(φ1(~T ), . . . , φn(~T )) depends on ~φ and x,

with ~T = (T1, . . . , Tn). Hence, when all polynomials P~φ,x are linearly independent, the
LIP security notion directly shows that F is Φ-RKA-secure.

Related-Key Security With Respect to Unique-Input Adversaries. Unfortunately,
the case in which the polynomials P~φ,x are all linearly independent is not so easy to
instantiate as we would like, and we have only been able to directly obtain RKA security
for very restricted classes. Hence, to overcome these restrictions, our third contribution
is to further extend our results in Section 5.2 to deal with the case where polynomials
are only linearly independent when all the inputs x are distinct. This scenario is similar
to the one considered in [1]. In particular, our new algebraic framework extends the
one from [1] and provides constructions for new and larger classes of RKD functions.
More precisely, we build in Section 5.2 RKA-PRFs against classes of permutations of
univariate polynomials. Furthermore, in the full version, we also consider classes of
univariate polynomials and multivariate affine RKD functions.

For simplicity, the results in Section 5.2 only hold with respect to PRFs of the
form [Px(~a)] where Px is a polynomial that depends on x. However, a more general
framework which does not make this assumption is described in the full version.

An Algebraic Framework For Non-Commutative Structures. Finally, our last con-
tribution is to extend the LIP security notion to work under weaker assumptions than
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DDH, such as DLin. As we point out in Section 6, the main difficulty in this case is
that the key values ai’s may be matrices, which do not necessarily commute. To address
this issue, we introduce natural conditions on the order of indeterminates which makes
non-commutative and commutative polynomials behave in a similar manner. Through
the new generalization, we not only deal with cases already covered by the LIP security
notion, but we also capture PRFs based on the DLin and MDDH assumptions [18].

Further discussions. In addition to the foundational work of Goldreich, Goldwasser,
and Micali [19], several other frameworks for constructing PRFs have appeared in the
literature, including [7,28,17] to name a few.

In [28], Naor and Reingold proposed the notion of pseudorandom synthesizers
and provided several instantiations for it based on different complexity assumptions.
Informally speaking, a pseudorandom synthesizer is a two-variable function, S(·, ·), so
that, for polynomially many random and independent input assignments (x1, . . . , xm)
and (y1, . . . , ym), the set of values {S(xi, yj)} are computationally indistinguishable
from uniform for i and j in {1, . . . ,m}.

In [7], Bellare, Canetti, and Krawczyk provide a framework for building variable-
length input PRFs from fixed-length input ones, known as the cascade construction. In
their framework, one obtains a larger-domain PRF F ′ simply by partitioning the input x
into a number n of small blocks x1, . . . , xn matching the domain of the underlying PRF
F and using the output of F on key ki and input xi as the secret key ki+1 for the next
stage. Since their framework requires the output of the underlying PRF to be at least as
long as the secret key, it cannot be applied to PRFs with very small domains.

To circumvent the restrictions of the cascade construction, Boneh, Montgomery,
and Raghunathan proposed an extension in [17], known as the augmented cascade
construction, in which supplemental secret information is provided in every iteration.
Unlike the cascade construction, its security does not follow from the standard security
of the underlying PRF, requiring it to meet a new notion called parallel security.

While these frameworks are more general than ours and capable of handling different
complexity assumptions (e.g., [6]), they are more combinatorial in nature and do not
fully exploit the algebraic nature of the underlying PRFs. In particular, it is not clear
how to extend them to the RKA setting, which is one of the main applications of our
new algebraic framework. Moreover, even in the standard PRF setting, our framework
seems to possess complementary features compared to the existing ones. Notably, it only
requires the verification of an algebraic condition (such as testing the linear independence
of the polynomials) for each instantiation, which is generally easier to prove.

Other Related Work. It is worth mentioning that in the context of related-key security,
Lewi, Montgomery and Raghunathan [25] designed RKA-PRFs for similar classes of
polynomial RKD functions. However, unlike their constructions, ours do not require
multilinear maps. Also, our constructions are proven fully RKA-secure while theirs are
only proven unique-input RKA-secure.
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2 Definitions

Notations and Conventions. We denote by κ the security parameter. Let F : K×D →
R be a function that takes a key K ∈ K and an input x ∈ D and returns an output
F (K,x) ∈ R. The set of all functions F : K×D → R is then denoted by Fun(K,D,R).
Likewise, Fun(D,R) denotes the set of all functions mapping D toR. If S is a set, then
|S| denotes its size. We denote by s $← S the operation of picking at random s in S. If ~x
is a vector then we denote by |~x| its length, so ~x = (x1, . . . , x|~x|). For a binary string
x, we denote its length by |x| so x ∈ {0, 1}|x|, xi its i-th bit, so x = x1 ‖ . . . ‖xn.
We extend these notations to any d-ary string x, for d ≥ 2. For a matrix A of size
k ×m, we denote by ai,j the coefficient ofA in the i-th row and the j-th column. For
a vector ~φ = (φ1, . . . , φn) of n functions from S1 to S2 with |~φ| = n and ~a ∈ S1,
we denote by ~φ(~a) the vector (φ1(~a), . . . , φn(~a)) ∈ Sn2 . We denote by Zp[T1, . . . , Tn]
the ring of multivariate polynomials in indeterminates T1, . . . , Tn. For a polynomial
P ∈ Zp[T1, . . . , Tn], we denote P (T1, . . . , Tn) by P (~T ) and by P (~a) the evaluation of
P by setting ~T to ~a, meaning that we set T1 = a1, . . . , Tn = an. For F : K ×D → R
and for a vector ~x overD, we denote by F (K,~x) the vector (F (K,x1), . . . , F (K,x|~x|)).
We denote by Sn the set of all permutations of {1, . . . , n}.

Finally, we often implicitly consider a multiplicative group G = 〈g〉 with public
generator g of order p and we denote by [a]g , or simply [a] if there is no ambiguity about
the generator, the element ga, for any a ∈ Zp. Similarly, ifA is a matrix in Zk×mp , [A]

is a matrix U ∈ Gk×m, such that ui,j = [ai,j] for i = 1, . . . , k and j = 1, . . . ,m.

Games [10]. Most of our definitions and proofs use the code-based game-playing
framework, in which a game has an Initialize procedure, procedures to respond to
adversary oracle queries, and a Finalize procedure. To execute a game G with an
adversary A , we proceed as follows. First, Initialize is executed and its outputs become
the input of A . When A executes, its oracle queries are answered by the corresponding
procedures of G. When A terminates, its outputs become the input of Finalize. The
output of the latter, denoted GA is called the output of the game, and we let “GA ⇒ 1”
denote the event that this game output takes the value 1. The running time of an adversary
by convention is the worst case time for the execution of the adversary with any of the
games defining its security, so that the time of the called game procedures is included.

PRFs [19,8]. The advantage of an adversary A in attacking the standard PRF security
of a function F : K ×D → R is defined via

Advprf
F (A ) = Pr

[
PRFRealAF ⇒ 1

]
− Pr

[
PRFRandA

F ⇒ 1
]
.

Game PRFRealF first picks K $← K and responds to oracle query Fn(x) via F (K,x).
Game PRFRandF first picks f $← Fun(D,R) and responds to oracle query Fn(x) via
f(x).

RKA-PRFs [9,8]. Let F : K×D → R be a function and Φ ⊆ Fun(K,K). The members
of Φ are called RKD (Related-Key Deriving) functions. An adversary is said to be Φ-
restricted if its oracle queries (φ, x) satisfy φ ∈ Φ. The advantage of a Φ-restricted
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Table 1. Security of Ek,d-MDDH

k = 1 k = 2 k ≥ 3

d = 1 = Advddh
G . 2 ·AdvU2-mddh

G . k ·Adv
Uk-mddh
G

d ≥ 2 . d ·Advd-ddhi
G generic bilinear group† ?‡

Advddh
G , Advd-ddhi

G and Adv
Uk -mddh

G are advantages for DDH, DDHI, and Uk-MDDH. This latter as-
sumption is weaker than k-Lin;
† proven in the generic (symmetric) bilinear group model [14] in the full version;
‡ (trivially) secure in the generic cyclic group model [30], but nothing known about security in generic (symmet-

ric) k-linear group model [29,21].

adversary A in attacking the RKA-PRF security of F is defined via

Advprf-rka
Φ,F (A ) = Pr

[
RKPRFRealAF ⇒ 1

]
− Pr

[
RKPRFRandA

F ⇒ 1
]
.

Game RKPRFRealF first picks K $← K and responds to oracle query RKFn(φ, x)

via F (φ(K), x). Game RKPRFRandF first picks K $← K and G $← Fun(K,D,R)
and responds to oracle query RKFn(φ, x) via G(φ(K), x). We say that F is a Φ-RKA-
secure PRF if for any Φ-restricted adversary, its advantage in attacking the RKA-PRF
security is negligible.

Group Generators. All our PRFs and RKA-PRFs use a cyclic group of prime order p.
The generator(s) used in their construction is supposed to be public. In particular, RKD
functions cannot modify the generator(s). Our security proofs will then start by giving
the generators to the adversary.

Hardness Assumptions. To get a simpler and unified framework, we introduce a par-
ticular MDDH assumption [18]: the Ek,d-MDDH assumption, defined by the matrix
distribution Ek,d which samples matrices Γ as follows

Γ =


A0

1 ·A0

A1
1 ·A0

...
Ad

1 ·A0

 ∈ Zk(d+1)×k
p withA0,A1

$← Zk×kp . (1)

The advantage of an adversary D against the Ek,d-MDDH assumption is

Adv
Ek,d-mddh
G (D) = Pr [ D(g, [Γ ] , [Γ ·W ]) ]− Pr [ D(g, [Γ ] , [U ]) ],

where Γ $← Ek,d, W $← Zk×1
p , U $← Zk(d+1)×1

p . As any MDDH assumption and as
recalled in the full version, this assumption is random self-reducible, which enables us
to make relatively tight proofs.

In Table 1, we summarize security results for Ek,d-MDDH. For k = 1 or d = 1, the
Ek,d-MDDH assumption is implied by standard assumptions (DDH, DDHI, or k-Lin,
recalled in the full version). E1,1-MDDH is actually exactly DDH.

For our RKA framework, we also make use of the d-Strong Discrete Logarithm
(SDL) problem given in [20] and recalled in the full version.
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3 Linearly Independent Polynomial Security

In this section, we define a new security notion, termed linearly independent polynomial
(LIP) security, which captures that, given a cyclic group G = 〈g〉 of prime order p, the
hardness of distinguishing a tuple (y1, . . . , yq) = ([P1(~a) · a′] , . . . , [Pq(~a) · a′]) ∈ Gq

from a random tuple in (y1, . . . , yq)
$← Gq , where ~a is a secret random vector in Znp , a′

is a secret random scalar in Zp, and Pj are linearly independent multivariate polynomials.
Our LIP theorem (Theorem 1) shows that distinguishing these two tuples is harder than
the E1,d-MDDH problem in G, where d is the maximum degree in one indeterminate
in polynomials P1, . . . , Pq. We point out that, on the one hand, if there were a linear
relation between the polynomials, i.e., if there exists (λ1, . . . , λq) ∈ Zqp\{(0, . . . , 0)},
such that

∑q
j=1 λjPj = 0, then it would be straightforward to break the LIP security

by checking whether
∏q
j=1 yj

λj = 1 (real case) or not (random case). So the linear
independence of the Pj’s is required.

On the other hand, if the polynomials Pj are linearly independent, then distinguishing
the two tuples is hard in the generic group model, since in this model, the adversary
can only compute linear combinations of the group elements it is given (and check
for equality). The LIP security is therefore not surprising. What is surprising, is that
it is possible to prove it under classical assumptions such as E1,d-MDDH, without an
exponential blow-up.

In the following, we first consider a particular case of the LIP theorem in which the
polynomials are given in their expanded form. This section not only serves as a warm-up
for the sequel, but it also helps better grasp the challenges of the proof of the full theorem
and gives a nice overview. Next, we formally state the LIP theorem.

3.1 Warm-up: Expanded Multilinear Polynomials

As a warm-up, let us first suppose the polynomials Pj are multilinear and given in their
expanded form: Pj ∈ Zp[T1, . . . , Tn] and

Pj(~T ) =
∑

i∈{0,1}n
αj,iT

i1
1 · · ·T inn .

There are 2n monomials T i11 · · ·T inn , even in that restricted case. So we need to sup-
pose that either n is logarithmic in the security parameter, or, more generally, only a
polynomial (in the security parameter) number of αj,i are non-zero.

Let us now prove the LIP security of these polynomials. In the real case, we have:

yj = [Pj(~a)a′] =

 ∑
i∈{0,1}n

αj,ia
i1
1 · · · ainn a′

 =
∏

i∈{0,1}n
NR((a′,~a), i)αj,i , (2)

where NR((a′,~a), i) =
[
a′
∏n
k=1 a

ik
k

]
(for i ∈ {0, 1}n). NR is a secure PRF under

the DDH assumption, meaning that all the values NR((a′,~a), i) for all i ∈ {0, 1}n
look independent and uniformly random. Let us write ~U the column vector, with rows
indexed by i ∈ {0, 1}n, containing all the discrete logarithm of these values, i.e.,
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ui = a′
∏n
k=1 a

ik
k . Let us also write M the q × 2n matrix, with columns indexed by

i ∈ {0, 1}n, defined by mj,i = αj,i. Then we can rewrite Equation (2) as:

(
y1 . . . yq

)ᵀ
=
[
M · ~U

]
.

Since the polynomials Pj are linearly independent, the rows of M are linearly inde-

pendent. Therefore, as
[
~U
]

looks uniformly random in G2n , (y1, . . . , yq) looks like a
uniformly random tuple in Gq . This proves the result of the LIP theorem in this multilin-
ear case with expanded polynomial. Extending this result to non multilinear polynomial
would just require slightly changing the assumption, as long as polynomials are given in
their expanded form.

This result is already very useful. We will see in Section 4 that it enables to prove
the security of the Naor-Reingold PRF and variants thereof.

Challenges for its Extension. Unfortunately, for certain settings such as those con-
sidered in the context of related-key security, or even for the Boneh-Montgomery-
Raghunathan PRF [17], we cannot have polynomials in an expanded form, but only as a
polynomial-size (in the number n of indeterminates and the maximum degree d in each
indeterminate) formula (given by an abstract tree).1 The problem is that the expanded ver-
sion of these polynomials may be exponentially large. For example, (T1 +1) · · · (Tn+1)
has 2n monomials.

Therefore, the main challenge is to prove the theorem without expanding the poly-
nomials. This requires a much more subtle proof that we sketch here. This first idea
is the following: instead of replacing all monomials by independent random values at
once, we first fix all values T2, . . . , Tn to randomly chosen a2, . . . , an, and get polyno-
mials in T1 only. These polynomials can be expanded without an exponential blow-up,
and each monomial T1, T

2
1 , . . . can be replaced by an independent random value (in-

stead of a1, a
2
1, . . . for some value a1). Then, we can fix only T3, . . . , Tn to randomly

chosen a3, . . . , an, get a polynomial in T1 and T2, and replace all distinct monomial
(T1, T

2
1 , T1T2, T

2
2 , . . . ) by independent random values. And we can continue like that

until all monomials are replaced.
Obviously, if we do that so naively, we get back to the original problem: we have

an exponential number of monomials. The second idea is to remark that we actually
do not need to expand polynomials to replace all distinct monomials by random values
and get the result, at each step of the previous idea. We could just assign random
values to all polynomials (after fixing Ti+1, . . . , Tn to ai+1, . . . , an), if they are all
linearly independent: this is exactly what we showed in the previous proof for expanded
polynomials. And if they are not all linearly independent, we just need to take care of
linear combinations, and compute the resulting value accordingly.

More precisely, for any polynomial P , let us write QP ∈ Zp[T1, . . . , Ti] the poly-
nomial obtained after fixing Ti+1, . . . , Tn to ai+1, . . . , an. To answer the j-th query
Pj , we check whether QPj is linearly independent from (QPl)l=1,...,j−1. If that is the
case, we answer with an independent random value yj . Otherwise, we find some linear

1 Details on the representation of polynomials are given in the full version.
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proc Initialize
~a

$← Zn
p ; a′ $← Zp

b
$← {0, 1}

proc Pl(P )

If b = 0 then y ← [P (~a) · a′] else y
$← G

Return y

proc Finalize(b′)
Return b′ = b

Fig. 1. Game defining the (n, d)-LIP security for a group G

combination between QPj and (QPl)l=1,...,j−1, and we write QPj =
∑j−1
l=1 λlQPl and

outputs
∏j−1
l=1 y

λl
l , with yl the output given for Pl.

The last difficulty is that this proof requires a test of linear dependence of multivariate
polynomials. One way to do that would be to expand them, which is exactly what we
are trying to avoid. So, instead, we use a statistical test based on the Schwartz-Zippel
lemma, which basically consists in evaluating the polynomials in enough random points
and looking for linear combination among the vectors of these evaluations.

3.2 Main Theorem: LIP Security

LIP Security. Let G = 〈g〉 be a group of prime order p. We define the advantage of
an adversary A against the (n, d)-LIP security of G, denoted Adv

(n,d)-lip
G (A ) as the

probability of success in the game defined in Fig. 1, with A being restricted to make
queries P ∈ Zp[T1, . . . , Tn] such that for any query P , the maximum degree in one
indeterminate in P is at most d, and for any sequence (P1, . . . , Pq) of queries, the
polynomials (P1, . . . , Pq) are always linearly independent over Zp. Another way to
look at the security definition is to consider that when b = 0, Pl(P ) outputs [P (~a)]h =
[P (~a) · a′]g, where the generator is h = [a′]g, which is not public (but can be obtained
by querying the polynomial 1), and g is a public generator.

Theorem 1 (LIP). Let G = 〈g〉 be a group of prime order p. Let A be an adver-
sary against the (n, d)-LIP security of G that makes q oracle queries P1, . . . , Pq.
Then we can design an adversary B against the E1,d-MDDH problem in G, such
that Adv

(n,d)-lip
G (A ) ≤ n · d ·Adv

E1,d-mddh
G (B) +O(ndq/p). The running time of B

is that of A plus the time to perform a polynomial number (in q, n, and d) of operations
in Zp and G.

The proof is detailed in the full version.

4 Recovering and Extending Existing Number-Theoretic PRFs

In Table 2, we recall known number-theoretic PRFs, namely the Naor-Reingold (NR)
PRF [27], its variant NR∗ defined in [8], and the algebraic PRF by Boneh, Montgomery,
and Raghunathan (BMR) in [17]. We also introduce weighted (extended) versions of
these PRFs, namely weighted NR (WNR) and weighted BMR (WBMR), in order to
construct RKA-secure PRFs for new classes of RKD functions (Section 5). These
weighted PRFs are obtained by applying particular permutations to the key space. Then,
as PRFs, it is straightforward that the security of NR and BMR implies the security
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of their weighted versions. However, as detailed in Section 5, in the RKA setting, we
can prove that some of these weighted PRFs are secure against certain classes of RKD
functions while both NR and BMR are not, even if we apply the BC/ABPP frameworks.

Using the LIP theorem and changing the generators used (to get PRFs of the form
F (~a, x) = [Px(~a) · a′]), the security proof of WNR and WBMR is straightforward, and
so is the security proof of NR, NR∗, and BMR, as particular cases of WNR and WBMR.
Concretely, for WBMR~w, we start by revealing the generator h to the adversary where

h =

 n∏
i=1

∏
k∈{0,...,d}

(ai + wi + k)

 · a′

g

= [P (~a) · a′]g

which is a generator with overwhelming probability. Then, when the adversary makes a
query x, it is clear that[

n∏
i=1

1

ai + wi + xi

]
h

=

 n∏
i=1

∏
k∈{0,...,d}\{xi}

(ai + wi + k)

 · a′

g

= [Px(~a) · a′]g

As each polynomial Px is null on every input −x′ for x′ ∈ {0, . . . , d}n, seen as a
vector of Znp , except when x′ = x, and as P is null on all −x′, P and (Px)x are
linearly independent. Then, we conclude the security proof of WBMR~w by applying the
LIP theorem. Formal proofs are provided in the full version.

5 Application to Related-Key Security

In this section, we show how our theorem can be used to build RKA-secure PRFs
from a PRF F defined over a prime order group G = 〈g〉 that takes a key ~a and an
input x and outputs a group element F (~a, x) = [Px(~a)]. Let Φ be a class of RKD
functions, where functions ~φ = (φ1, . . . , φn) ∈ Φ are such that φi are multivariate
polynomials in Zp[T1, . . . , Tn]. Then, for an RKD function ~φ and an input x, the PRF

outputs F (~φ(~a), x) =
[
P~φ,x(~a)

]
, where the polynomial P~φ,x(~T ) = Px(~φ(~T )) =

Px(φ1(~T ), . . . , φn(~T )) depends on ~φ and x. In particular, Pid,x = Px for all x, where
id is the identity function.

When all polynomials P~φ,x and the constant polynomial 1 are linearly independent,
the LIP theorem directly shows that F is Φ-RKA-secure. To illustrate this, we construct
in Section 5.1 a PRF that is secure against permutations of the secret key using this
method.

However, to assume that all polynomials P~φ,x are linearly independent is a very

strong property and, in general, this is not the case for all x and ~φ. Hence, in Section 5.2,
we consider the less restrictive case where the polynomials P~φ1,x1

, . . . , P~φq,xq are
linearly independent as long as the inputs x1, . . . , xq are distinct (in which case the
adversary is said to be unique-input). More precisely, we first design a new algebraic
framework that extends the one from [1], when the PRF F is of the form [Px(~a)] and the
RKD functions are multivariate polynomials, and then use it to construct RKA-secure
PRFs from F for new and larger classes of RKD functions.
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Table 2. Existing Number-Theoretic PRFs and their Weighted Extensions

PRF F
Key ~a

Key domain K Domain D Output Advprf
F .

NR
(a0, . . . , an)
K = Zn+1

p
{0, 1}n

[
a0

n∏
i=1

axi
i

]
n ·Advddh

G

NR∗
(a1, . . . , an)
K = Zn

p
{0, 1}n \ {0n}

[
n∏

i=1

axi
i

]
n ·Advddh

G

BMR
(a1, . . . , an)
K = Zn

p
{0, . . . , d}n

[
n∏

i=1

1

ai + xi

]
nd ·Advd-ddhi

G

WNR~w

(~w ∈ Zn+1
p )∗

(a0, . . . , an)
K = Zn+1

p

if w0 6= 0: {0, 1}n,
else: {0, 1}n \ {0n}

[
aw0
0

n∏
i=1

awixi
i

]
n ·Advddh

G
†

WBMR~w

(~w ∈ Znp )‡
(a1, . . . , an)
K = Zn

p
{0, . . . , d}n

[
n∏

i=1

1

ai + wi + xi

]
nd ·Advd-ddhi

G

G = 〈g〉 is a prime order group, and g is the generator used for the PRF construction;
The last column show approximate simplified bounds on the advantage Advprf

F of a polynomial-time adversary
against the security of the PRF F ; exact bounds can be found in the full version;
Remarks: NR = WNR(1,...,1), NR∗ = WNR(0,1,...,1), and BMR = WBMR(0,...,0);
∗ for WNR, weights are ~w = (w0, . . . , wn) ∈ Zn+1

p ;
† when w1, . . . , wn are coprime to p− 1, and w0 is 0 or coprime to p− 1;
‡ for WBMR, weights are ~w = (w1, . . . , wn) ∈ Znp .

5.1 Direct Constructions of RKA-Secure PRFs

In this section, we show how the LIP theorem can be used to prove the Φ-RKA-PRF
security in the particular case where all polynomials P~φ,x are linearly independent, for

any ~φ ∈ Φ and any input x.
Specifically, we consider the class ΦSn of functions defined as {σ | σ ∈ Sn}

such that, applying a function σ ∈ ΦSn to a key ~a = (a1, . . . , an) ∈ Znp leads to the
key σ(~a) = (aσ−1(1), . . . , aσ−1(n)), so the i-th component of ~a becomes the σ(i)-th
component of the key σ(~a).

It is clear that BMR is not ΦSn-RKA-secure, since we can distinguish BMR from
a random function with only 2 queries. Indeed, let id be the identity function and (12)
be the permutation which switches the first two components of the key. Then, one can
just first query (id, 100 . . . 0) and ((12), 010 . . . 0) and check whether the output of these
queries are the same, which is the case in the real case while they are independent in
the random case. However, we show in what follows that a particular case of WBMR,
defined below, is a ΦSn -RKA-secure PRF.

Linear WBMR PRF. We define WBMRlin as the particular case of WBMR, where
wi = (i− 1)(d+ 1), for i = 1, . . . , n. Please refer to Table 2 for details.

Theorem 2. Let G = 〈g〉 be a group of prime order p and let WBMRlin be the function
defined above. Then we can reduce the ΦSn-RKA-PRF security of WBMRlin to the
hardness of the (n(d+ 1)− 1)-DDHI problem in G, with a loss of a factor n(n(d +
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1)− 1). Moreover, the time overhead of this reduction is polynomial in n, d and in the
number of queries made by the adversary.

The proof is given in the full version and is very similar to the proof of security of WBMR
sketched in Section 4. The construction can actually be extended to also tolerates small
additive factors in addition to permutations (see the full version).

5.2 Constructions via Unique-Input RKA-Secure PRFs

In this section, we address the less restrictive case where the polynomials P~φ1,x1
, . . . ,

P~φq,xq are linearly independent for any ~φ1, . . . , ~φq only when the inputs x1, . . . , xq are
all distinct. Please notice that this is the case for all the classes considered in [8] and [1].
We now denote by M the “original” PRF: M(~a, x) = [Px(~a)].

In order to build RKA-secure PRFs from such PRFs, we would like to apply the
ABPP generic framework [1] that allows to transform a PRF M which is RKA-secure
with respect to unique-input adversaries (UI-RKA-secure) into an RKA-secure PRF F ,
when M is key-collision and statistical-key-collision secure. The latter means that it
is hard to find two functions φ1, φ2 ∈ Φ such that φ1(K) = φ2(K), even with access
to an oracle (φ, x) 7→ f(φ(K), x), when f = M (key-collision security), and when
f is a random function (statistical key-collision security). The framework consists in
transforming this UI-RKA-secure PRF M into an RKA-secure PRF F , as follows:

F (K,x) = M(K,H(x,M(K, ~ω))),

where H is a compatible collision-resistant hash function, and the vector ~ω is a strong
key fingerprint, meaning that it is a vector of inputs such that the vector of outputs
M(K, ~ω) completely defines K (recall that M(K, ~ω) = (M(K,ω1), . . . ,M(K,ω|~ω|)).
As defined in [8], a hash function is said to be compatible if it guarantees that the inner
calls to M in the construction above will never collide with the outer calls to M even
under related keys.

Unfortunately, if we consider the PRF WNR~w with some wi > 1, then it is not clear
how to find a strong key fingerprint, which can be used to apply the ABPP framework.
Furthermore, this ABPP framework requires to prove several non-algebraic proper-
ties (statistical or computational), namely key-collision, statistical-key-collision, and
UI-RKA securities.

For this reason, we design a new algebraic framework, that generalizes the ABPP
framework in the particular case of PRFs of the shape M(~a, x) = [Px(~a)] and of
RKD functions which are multivariate polynomials. For completeness, a more general
framework, which does not make any assumptions about the shape of a PRF, is also
given in the full version. Afterwards, we use our algebraic framework to design new
RKA-secure PRFs based on WNR for larger classes for which previous constructions
from [8] and [1] are not secure.

An Algebraic Framework for Related-Key Security. Here, we describe a new frame-
work that transforms any PRF that satisfies that P~φ1,x1

, . . . , P~φq,xq are linearly indepen-

dent, for any ~φ1, . . . , ~φq as long as x1, . . . , xq are all distinct inputs, into a RKA-secure
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PRF. To do so, we first introduce three new notions, termed algebraic fingerprint, helper
information, and expansion function, and defined as follows.

GROUP GENERATOR. In this framework and its applications, we assume for simplic-
ity that the generator used in the PRF construction, that is revealed to the adversary, is
[a′].

ALGEBRAIC FINGERPRINT. In order to overcome the eventual lack of a strong key
fingerprint, we introduce algebraic fingerprint, which will be used to replace M(K, ~ω)
in the construction in [1], where ~ω is a strong fingerprint. An algebraic fingerprint
is simply an injective function ~Ω: Znp → Gm such that the image ~Ω(~a) is a vector
of group elements ([Ω1(~a)a′] , . . . , [Ωm(~a)a′]) with Ω1, . . . , Ωm being polynomials
in Zp[T1, . . . , Tn] and a′ ∈ Zp. In our applications, we will simply have ~Ω(~a) =

([a1a
′] , . . . , [ana

′]), so m = n and Ωi(~T ) = Ti for i = 1, . . . , n.
HELPER INFORMATION. In order to prove the security of our framework, we need to

be able to compute the image of the algebraic fingerprint, ~Ω(~φ(~a)) = ((Ω1 ◦ ~φ)(~a), . . . ,

(Ωm ◦ ~φ)(~a)), for any related key ~φ(~a) ∈ Znp , with ~φ ∈ Φ, from some information
which can somehow be made public without hurting security. We call this information a
helper information, write it HelpΦ(~a), and call HelpΦ the helper function. We suppose
that HelpΦ(~a) = ([help1(~a)a′] , . . . , [helpl(~a)a′]), with help1, . . . , helpl linearly inde-
pendent polynomials which generate a vector subspace of Zp[T1, . . . , Tn] containing the
polynomials Ωi ◦ ~φ for i = 1, . . . ,m, and ~φ ∈ Φ.

HASH FUNCTION AND EXPANSION FUNCTION. Let D = D ×Gm where D is the
domain of the PRF M , and let h be a collision-resistant hash function h: D → hSp
(definition recalled in the full version), where hSp is a large enough space. The last
thing we need to define is an expansion function, which is simply an injective function
E: hSp→ S ⊆ D such that for any sequence (~φ1, x1), . . . , (~φq, xq) where x1, . . . , xq
are distinct inputs in S and ~φ1, . . . , ~φq are RKD functions, polynomials help1, . . . , helpl
and polynomials P~φ1,x1

, . . . , P~φq,xq and 1 (which needs to be queried to define the
generator [a′]) are linearly independent over Zp (in particular, E has to be injective).

Using these new tools, we obtain the following framework.

Theorem 3. Let G be a group of prime order p. We use the above definitions, with
M : Znp × D → G defined by M(~a, x) = [Px(~a)]. Let d be a upper bound for the
maximum degree in any indeterminate of polynomials in {help1, . . . , helpl} ∪ {Px,~φ |
x ∈ S, ~φ ∈ Φ}. Define F : Znp ×D → G by

F (~a, x) = M(~a,E(h(x, ~Ω(~a))))

for all ~a ∈ Znp and x ∈ D. Then, we can reduce the Φ-RKA-PRF security of F to
the (n, d)-LIP security, the collision-resistance security of h without any loss, and to
the d-SDL assumption with a loss of a factor 2n. The running time overhead of this
reduction is polynomial in n, d and q.

PROOF OVERVIEW. The proof of the above theorem is detailed in the full version
and relies on the sequence of 10 games (games G0 −G9). We first prove an intermediate
statement whose proof is very similar to the proof of Theorem 3.1 from [1], under a
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notion termed extended key-collision security (that states the hardness of finding key
collisions given access to PRF values and helper information) which is defined in the
appendix. Afterwards, we reduce this notion to the hardness of the SDL in G. Here we
provide a brief overview of the proof of the intermediate statement.

We start by giving the generator used for the PRF by querying polynomial 1. Hence,
the generator is simply [a′]. Since we may have key collisions (i.e., two RKD functions
φ1 6= φ2, such that φ1(~a) = φ2(~a)), we start by dealing with possible collisions on the
related keys in the RKAPRFReal case, using the extended key-collision notion (games
G0 − G2). These claws can be detected by looking for collisions on images of ~Ω for
different RKD functions.

Then, in games G3 − G4, we deal with possible collisions on hash values in order
to ensure that the inputs t = E(h(x, ~Ω(~a))) used to compute the output y are distinct
(recall that E is injective).

Then, we use the (n, d)-LIP security notion to show that it is hard to distinguish the
output of F and the helper information from uniformly random values (games G5 −G6).

Finally, we use once again the extended-key-collision security notion to deal with
possible key collisions in the RKAPRFRand case (games G7 − G9) so that G9 matches
the description of the RKAPRFRand game. These key collisions can still be detected in
these games by making crucial use of the helper information.

RKA-PRFs for Permutations of Univariate Polynomial Functions. We now apply
our framework to a particular case of WNR and build the first RKA-secure PRF secure
against permutations of univariate polynomials. We chose to set w0 to 0 in our construc-
tion in order to ease the readability so that the key space of the PRF stays Znp , but similar
results can be proven with w0 = 1 or set to a prime number p0 > d (and distinct to
p1, . . . , pn defined below).

For d ≥ 1, let Φd be the class of degree at most d non-constant univariate polynomials
defined as Φd = {~φ: Znp → Znp | φi : ~T 7→

∑d
j=0 αi,jT

j
i , (αi,1, . . . , αi,d) 6= 0d,∀i =

1, . . . , n}. Then we consider the class ΦSn,d of permutations of degree at most d non-
constant univariate polynomials, defined as follows:

ΦSn,d = {σ ◦ ~φ | (σ, ~φ) ∈ Sn × Φd} .

For a key ~a = (a1, . . . , an) ∈ Znp , applying an RKD function σ ◦ ~φ ∈ ΦSn,d, where
~φ = (φ1, . . . , φn) leads to the key (φσ−1(1)(~a), . . . , φσ−1(n)(~a)) ∈ Znp , so the i-th
component ai of the key is changed into φi(~a) and becomes the σ(i)-th component of
the related key.

Before explaining our construction, we would like to point out that, even if we just
consider the simple class of permutations ΦSn ⊂ ΦSn,1 introduced in Section 5.1,
we can already show that NR and NR∗ are not ΦSn-RKA secure, even with respect to
unique-input adversaries.

Indeed, let us consider NR∗: let id be the identity function and (12) be the permutation
which switches the first two components of the key. Then, the output of the queries
(id, 100 . . . 0) and ((12), 010 . . . 0) will be the same in the real case and independent in
the random case.

In fact, we can generalize the attack above to show that there even exists a compatible
collision-resistant hash function h such that the PRF that one obtains when applying
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the Bellare-Cash (or ABPP) transform to NR∗ would not be RKA-secure with respect
to the class of permutations. Indeed, let h′ be a collision-resistant hash function. The
counter-example for h could be as follows (where x1 and x2 are two arbitrary distinct
inputs):

h(x, [a1] , . . . , [an]) =

1110 ‖h′(x1, [a1] , . . . , [an]) if x = x1

1101 ‖h′(x1, [a2] , [a1] , [a3] , . . . , [an]) if x = x2

1111 ‖h′(x, [a1] , . . . , [an]) otherwise.

Note that h is a compatible collision-resistant hash function. It is easy to see that
the output of the queries (id, x1) and ((12), x2) will be the same in the real case and
independent in the random case. The same kind of attack can be mounted against NR.

However, while NR and NR∗ are not RKA-secure against permutations attacks, we
show in what follows that a particular case of WNR, defined below, yields a ΦSn,d-
RKA-secure PRF.

d-Linear Weighted NR PRF. Let d ≥ 1. Let p1 < p2 < · · · < pn be distinct prime
numbers such that p1 > d. We define WNRd-lin as the particular case of WNR, where
w0 = 0 and wi = pi. Please refer to Table 2 for details. Using standard inequalities over
prime numbers, it is easy to see that we can find p1, . . . , pn such that pn = Õ(d+ n).

In order to apply the framework from Theorem 3 to WNRd-lin and ΦSn,d, we define:
– [a′] ∈ G is the generator used for the PRF construction
– ~Ω: ~a ∈ Znp 7→ ([a1a

′] , . . . , [ana
′]) ∈ Gn

– HelpΦSn,d
: ~a ∈ Znp 7→ ([a′] , [a1a

′] , . . . ,
[
ad1a
′] , . . . , [ana′] , . . . , [adna′]) ∈ Gnd+1

– h can be any collision-resistant hash function h: {0, 1}n ×Gn → {0, 1}n−2

– E: z ∈ {0, 1}n−2 7→ 11 ‖ z ∈ {0, 1}n
We just need to prove that E satisfies the linear independence property required to

apply the framework, which is done in the full version, and sketched here. We order
monomials of multivariate polynomials, with any order respecting the total degree of
polynomials (e.g., the graded lexicographic order). The leading monomial (i.e., the
first monomial for that order) of the polynomial P~φ,x is T

xσ(1)pσ(1)d1
1 · · ·T xσ(n)pσ(n)dn

n ,
with di > 0 the degree of φi. The polynomials for the helper information (helpk) are
T ji . Therefore, the leading monomials of help1, . . . , helpl, P ~φ1,x1

, . . . , P ~φq,xq , 1 are all
distinct, when x1, . . . , xq are distinct inputs. This means that the matrix whose columns
correspond to monomials (ordered as specified above) and whose rows correspond to the
polynomials help1, . . . , helpl, P ~φ1,x1

, . . . , P ~φq,xq , 1 (ordered according to their leading
monomial) is in echelon form. Hence, the latter polynomials are linearly independent.
Finally, by combining Theorem 3 and the LIP theorem, we obtain the following theorem.

Theorem 4. Let ~Ω, h and E be defined as above. Define F : Znp × {0, 1}n → G by
F (~a, x) = WNRd-lin(~a,E(h(x, ~Ω(~a)))), for all a ∈ Znp and x ∈ {0, 1}n. Then we can
reduce the ΦSn,d-RKA-PRF security of F to the hardness of the pnd-DDHI problem
in G and the pnd-SDL problem in G, respectively with a loss of a factor npnd and of a
factor n, and to the CR security of h. Moreover, the time overhead of this reduction is
polynomial in n, d, pn and in the number of queries made by the adversary attacking the
ΦSn,d-RKA-PRF security of F .
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6 Extension to PRFs in Symmetric Bilinear Groups

6.1 High-Level Overview of Existing Constructions and Challenges

All the previous constructions (of classical PRF and RKA-secure PRF) require at least
DDH to hold. In particular, they are insecure if there exists a symmetric pairing e :
G × G → GT . In this section, we investigate how to adapt our linearly independent
polynomials framework and the corresponding LIP theorem to handle constructions of
PRFs under weaker assumptions, which may hold in symmetric bilinear groups.

The first algebraic PRF based on DLin is the Lewko-Waters PRF [26], which is
defined as follows:

LW(~A, x) =

[
n∏
i=1

Axi
i ·A

′

]
,

with ~A = (A1, . . . ,An) being a vector of n uniformly random matrices in Z2×2
p and

A′ a uniformly random matrix in Z2×m
p , for some m ≥ 1.A′ was actually in Z2×1

p (i.e.,
m = 1) in [26] (with only the first group element being returned). This PRF is secure
under DLin, and even under a weaker assumption, namely the U2-MDDH-assumption
of Escala et al. [18]. In the latter paper, this PRF is extended to any MDDH-assumption,
which particularly encompasses DDH and DLin. These instantiations differ by the size
of the matrices and their distribution. Except for constructions using multilinear maps
and lattices [16,5] or trivial variants, we are not aware of any other construction.

Commutation Challenge From a high level point of view, these PRFs are very similar
to the one considered in our algebraic framework in Section 3, except elements of keys
are now matrices. Unfortunately, matrices do not commute in general, and this lack of
commutativity makes everything more complex.

One naive solution would be to extend the LIP theorem by considering non-commu-
tative polynomials, or in other words elements of the free algebra Zp〈T1, . . . , Tn〉. In this
algebra, for example, T1T2 and T2T1 are distinct and linearly independent elements. The
problem is that, as proven by Amitsur and Levitzki [4], for any matricesA1, . . . ,A4 ∈
Z2×2
p ,

∑
σ∈S4

sgn(σ) · Aσ(1) · Aσ(2) · Aσ(3) · Aσ(4) = 0, with sgn(σ) being the
parity of the permutation σ. Thus, while the family of non-commutative polynomials
(Pσ = Tσ(1)Tσ(2)Tσ(3)Tσ(4))σ∈S4 is linearly independent in the free algebra, the PRF
of domainD = S4, the PRF defined by F (~A, σ) =

[
Aσ(1)Aσ(2)Aσ(3)Aσ(4)A

′] would
clearly be insecure.

Assumption Challenge and Generic Symmetric Bilinear Group The second chal-
lenge is to prove the hardness of the E2,d-MDDH assumption in the generic bilinear
group, which is done in the full version, using a non-trivial technical lemma. Notably,
contrary to the cyclic group case, it is not straightforward to check whether a PRF de-
fined by F (~A, x) =

[
Px(~A) ·A′

]
is secure in the generic bilinear group model, where

(Px)x∈D is a family of non-commutative polynomials, ~A is a vector of matrices from
Z2×2
p , andA′ is a matrix from Z2×m

p , for some m ≥ 1.
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6.2 Generalized Polynomial Framework

Let us show how we address these challenges.

Generalized Polynomial (GP) Security. Let us introduce the (k, n, d)-GP security of
a cyclic group G = 〈g〉 as a generalization of the (n, d)-LIP security in Section 3.2,
where the secret scalar a′ $← Zp and the secret vector of scalars ~a $← Znp are replaced by

a secret matrixA′ $← Zk×mp (for some m ≥ 1; for the sake of simplicity, in the sequel,

we choose k = m) and a secret vector of matrices ~A $← (Zk×kp )
n, respectively.

Result under E2,d-MDDH. To extend Theorem 1 to symmetric bilinear groups and
avoid the commutativity problem, we suppose that all indeterminates appear “in the
same order when multiplied together” in each subexpression of the representation of
the non-commutative polynomials Pj (e.g., P1 = T1T3 + T3T2 and P2 = T3 + T1T2,
where T1 appears before T3 which appears before T2). The condition is quite natural and
is formally defined in the full version. That makes these non-commutative polynomials
behave very similarly to commutative polynomial, and we get the following theorem.

Theorem 5. Let G = 〈g〉 be a group of prime order p. Let A be an adversary against
the (2, n, d)-GP security of G that makes q oracle queries P1, . . . , Pq . We suppose that
all indeterminates appear in the same order in each monomial of each non-commutative
polynomials Pj . Then we can build an adversary B against the E2,d-MDDH problem in
G, such that Adv

(2,n,d)-gp
G (A ) ≤ n · d ·Adv

E2,d-mddh
G (B) +O(ndq/p). The running

time of B is that of A plus the time to perform a polynomial number (in q, n, and d) of
operations in Zp and G.

The proof is similar to the proof of the LIP theorem (with some additional care when
partially evaluating polynomials to avoid having polynomials with matrix coefficients)
and is given in the full version. Actually, this theorem can trivially be extended to the
(k, n, d)-GP security and the Ek,d-MDDH assumption. But for k ≥ 3 and n ≥ 2, it is
not known if the latter assumption is secure in the generic k-linear group model.

Results in the Generic Bilinear Group Model. We may wonder whether the (2, k, d)-
GP security still holds in the generic bilinear group model, when indeterminates do not
necessarily appear in the same order in each polynomial Pj . As seen before, it is not
sufficient to suppose that (Pj)j=1,...,q is a linearly independent family. But we show here
that under a relatively natural condition, the DLM (distinct leading monomial) condition,
the (2, k, d)-GP security still holds.

To formally state our result, we need to introduce some notions, which are formally
defined in the full version and which are informally described here. We consider a
monomial order for Zp[T1, . . . , Tn], which is a total order on monomials T i11 · · ·T inn
compatible with multiplications and where 1 is the smallest monomial. We then define
the commutative leading monomials of a non-commutative polynomial as the monomials
which are the highest for our monomial order, when considered as commutative mono-
mials. There may be many commutative leading monomials for a given polynomial (for
example T1T

2
2 + 5T2T1T2 has two commutative leading monomials: T1T

2
2 and T2T1T2).

We say a polynomial has a unique commutative leading monomial if there is only one
such monomial.
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Table 3. Summary of our Results Related to Generalized Polynomial Security

Cyclic Group G Symmetric Bilinear Group
(pairing e : G×G→ GT )

Pj ∈ Zp[T1, . . . , Tn]
commutative polynomial

Pj ∈ Zp〈T1, . . . , Tn〉
non-commutative polynomial

(a′, a1, . . . , an)
$← K = Zn+1

p (a′, a1, . . . , an)
$← K = (Z2×2

p )
n+1

In generic cyclic group:
(1, n, d)-GP security
⇔ (Pj)j satisfies the DLM condition
⇔ (Pj)j is linearly independent

In generic bilinear group:
(2, n, d)-GP security
⇐ (Pj)j satisfies the DLM condition

(easy) (Theorem 6)

Under E1,d-MDDH:
(1, n, d)-GP security
⇔ same condition as above

Under E2,d-MDDH:
(2, n, d)-GP security
⇐ same condition as above

+ same order for indeterminates
or equivalently,
(Pj)j is linearly independent
+ smae order for indeterminates

(Theorem 1, the LIP theorem) (Theorem 5)

Finally, we say that a family of polynomials (Pj)j satisfies the DLM condition, if
there exists a monomial order and an invertible matrixM ∈ Zq×qp such thatM · (Pj)j is
a vector of non-commutative polynomials with unique and distinct commutative leading
monomials, where (Pj)j is the column vector of polynomials Pj .

Theorem 6. Let G = 〈g〉 be a group of prime order p. Let A be an adversary against
the (2, n, d)-GP security of G that makes q oracle queries P1, . . . , Pq . We suppose that
(Pj)j satisfies the DLM condition. Then, the advantage Adv

(2,n,d)-gp
G (A ) is negligible

in the generic bilinear group model.

The proof of Theorem 6 is given in the full version. We remark that, in the case of
commutative polynomials (i.e., LIP theorem), the DLM condition is exactly the same
as saying that the polynomials Pj are linearly independent (using the Gauss reduction).
However, this is not the case with non-commutative polynomials (e.g., consider P1 =
T1T2 and P2 = T2T1 which are linearly independent but which have the same leading
monomial).

Summary. Table 3 provides a summary of all our results about GP security.

6.3 Applications

RKA-PRFs in Generic Bilinear Groups. The RKA-PRF for permutation of univariate
polynomial functions based on WNR (Section 5.2) can easily be transformed into an
RKA-secure PRF for symmetric bilinear groups for the same set of RKD functions. It is
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sufficient to change keys from ~a
$← Znp to ~A $← (Z2×2

p )
n. Indeed, the RKA framework

extends to this case easily, and the polynomials family we considered verifies the DLM
condition as non-commutative polynomials. Actually, our proof of their linear indepen-
dence can be seen as exhibiting a monomial order (namely the graded lexicographic
order) for which these polynomials have distinct leading monomials. In addition, their
leading monomials are always unique even as non-commutative polynomials.

RKA-PRFs under E2,d-MDDH. Unfortunately, Theorem 5 does not apply to RKA-PRF
for permutation, as permutation change the order of the indeterminates. However, it still
easily enables to construct the first RKA-PRF for univariate polynomial functions, secure
in symmetric bilinear groups, using the construction of Section 5.2 (or a slightly more
efficient variant thereof in the full version). Again, the construction is straightforward
and so is the proof.
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