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Abstract. A non-malleable code protects messages against various classes
of tampering. Informally, a code is non-malleable if the message con-
tained in a tampered codeword is either the original message, or a com-
pletely unrelated one. Although existence of such codes for various rich
classes of tampering functions is known, explicit constructions exist only
for “compartmentalized” tampering functions: i.e. the codeword is par-
titioned into a priori fixed blocks and each block can only be tampered
independently. The prominent examples of this model are the family of
bit-wise independent tampering functions and the split-state model.

In this paper, for the first time we construct explicit non-malleable codes
against a natural class of non-compartmentalized tampering functions.
We allow the tampering functions to permute the bits of the codeword
and (optionally) perturb them by flipping or setting them to 0 or 1. We
construct an explicit, efficient non-malleable code for arbitrarily long
messages in this model (unconditionally).

We give an application of our construction to non-malleable commit-
ments, as one of the first direct applications of non-malleable codes to
computational cryptography. We show that non-malleable string com-
mitments can be “entirely based on” non-malleable bit commitments.
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1 Introduction

Non-malleability is a cryptographic notion [16] which requires that an encod-
ing (encryption, commitment etc.) of a message cannot be used to create a valid
encoding of a “related” message by a (computationally) crippled adversary. Non-
malleable codes [18] is a special case of this idea: here, the encoding is in the form
of a single string (rather than an interactive protocol), but the attacker is heavily
crippled in that the tampering function it can apply on a codeword must belong
to very simple classes (e.g., bit-wise functions). Non-malleable codes are required
to be secure without relying on any computational restriction on the adversary,
but instead – as is the case for other information-theoretic cryptographic prim-
itives like secret-sharing and information-theoretically secure multi-party com-
putation – relies on limitations of the adversary’s access5 to information. The
limited access is captured by limiting the class of tampering functions.

Ever since non-malleable codes were explicitly introduced, there has been
a tremendous body of work on the topic [18,17,10,11,2,9,1]. Even when there
are severe restrictions on the tampering class, it has been a challenge to obtain
explicit constructions of non-malleable codes. All prior explicit constructions of
non-malleable codes rely on the “compartmentalized” structure of the tamper-
ing function, i.e. the codeword is partitioned into a priori fixed blocks and any
tampering function should tamper with each block independently. The prominent
examples of this model are the family of bit-wise independent tampering func-
tions and the split-state model.

In this work, we seek to build explicit non-malleable codes (with efficient
encoding and decoding algorithms) for certain non-compartmentalized tamper-
ing functions. In particular, we consider bit-permutation attacks composed with
arbitrary bit-wise functions. Our result could be seen as a first step towards one
of the major problems in non-malleable codes: to construct explicit codes that
are non-malleable against low-complexity function classes like NC0 and AC0.
Indeed, the tampering functions we consider are very low-complexity circuits,
with only unary gates and no fan-outs.

We point out that existential results and efficient randomized constructions
are known for non-malleable codes against a very broad classes of tampering
functions. However, given the theoretical importance of non-malleable codes (as
evidenced by a deep and rich literature), explicit constructions are of great in-
terest. Further, randomized constructions, even when they are efficient, are not
suitable for some cryptographic applications. Indeed, in this work, we present a
novel cryptographic application of non-malleable codes to non-malleable string
commitments. Among other things, this is an instance of an application where
neither party can be trusted to carry out the code construction honestly. We
discuss this application further, later in this section.

Construction sketch. Our non-malleable code construction consists of four steps,
that are sketched below. We present a more detailed overview and further mo-
tivation behind these steps in the full version [3].

5 Here access refers to both the ability to read and write the information in the system.



◦ We start with a large-alphabet randomized encoding which has a large
enough distance and whose positions are t-wise independent for a large enough
t (e.g., a “packed secret-sharing scheme” based on the Reed-Solomon code suf-
fices), and make it resistant to permutations by incorporating into each character
its position value; i.e., the character at the ith position in a codeword xi is re-
encoded as 〈i, xi〉, and allowed to occur at any position in the new codeword.

◦ The above code uses a large alphabet. It is concatenated with a binary inner
code that is also resistant to permutations: each character in the outer code’s
alphabet is mapped to a positive integer (in a certain range) and is encoded by
a block of bits whose weight (number of positions with a 1) equals this integer.
Note that a permutation may move bits across the different blocks. To resist such
attacks, we keep the bits within each block randomly permuted, and also, ensure
that a good fraction of the weights do not correspond to a valid block (achieved,
for instance, by requiring that the the weight of each block is a multiple of 36 ),
so that blindly mixing together bits from different blocks has some probability
of creating an invalid block. A careful combinatorial argument can be used to
show that, despite dependencies among the blocks caused by a permutation
attack, the probability of having all attacked blocks remaining valid decreases
multiplicatively with the number of blocks being attacked thus. This, combined
with the fact that the outer code has a large distance, ensures that the probability
of creating a different valid codeword by this attack is negligible. However, we
need to ensure not only that the attack has negligible chance of modifying one
codeword into a different valid codeword, but also that the probability of creating
an invalid codeword is (almost) independent of the actual message. Roughly, this
is based on the large independence of the outer code.

◦ The resulting code is not necessarily resistant to attacks which can set/reset
several bits. Towards achieving resistance to such attacks as well, we consider
an intermediate 2-phase attack family: here the adversary can set/reset bits
at random positions, learn which positions were subjected to this attack, and
then specify a permutation attack.7 To resist such attacks, we encode each bit
in the above codeword into a bundle, using an additive secret-sharing. Then,
if one or more bits in a bundle are set/reset, all the other bits in the bundle
turn uniformly random. Hence, unless the adversary chooses to set/reset a very
large number of positions (in which case almost every bundle is touched, and
all information about the original message is lost), for every bit which has been
set/reset, there will be several that are uniformly random. Now, even though the
adversary can apply a permutation to rearrange these random bits (into as few
bundles as possible), to ensure that there are only a few bundles with a random
bit, the adversary is forced to set/reset at most a few bundles’ worth of bits. We

6 In our actual analysis, we also allow the attacker to flip any subset of bits. This
prevents us from having valid weights to be 0 modulo 2, as flipping an even number
of positions preserves this parity.

7 In the actual analysis, we need to consider a slightly stronger 2-phase attack, in which
the adversary can also learn the values of the bits in a small number of positions
before specifying a permutation (and flipping a subset of bits).



note that our actual analysis follows a somewhat different argument, but fits the
above intuition.
◦ Finally, the above code is modified as follows: a random permutation over

the bits of the code is applied to a codeword; the permutation itself is encoded
using a code of large distance, and appended to the above (permuted) codeword.
Then it can be shown that a full-fledged attack (involving arbitrary set/reset and
permutations) on such a codeword translates to a 2-phase attack of the above
kind. Note that we do not rely on the permutation itself to be encoded in a non-
malleable fashion. Indeed, the adversary can be allowed to learn and modify the
encoded permutation after it has committed to the set/reset part of its attack
on the rest of the codeword; in the 2-phase attack, this is modeled by the fact
that the adversary can learn which positions in the codeword were set and reset,
before deciding on the permutation attack.

As sketched above, the rate of our code is zero, as the codewords are poly-
nomially longer than the message. However, the generic compiler provided in [4]
when instantiated with our code yields a rate 1 code (i.e., the codewords are
only marginally longer than the messages, with the increase being sub-linear in
the length of the message).

An Application. One motivation behind the class of attacks considered in this
work comes from the following intriguing question:

Can non-malleable string-commitments be “entirely based” on non-malleable
bit-commitments?

To formalize this problem, we may consider an idealized model of bit com-
mitments using physical tokens: to commit a bit to Bob, Alice can create a small
physical token which has the bit “locked” inside (and later, she can send him
a “key” to open the token). This completely hides the bit from Bob until Alice
reveals it to him; on the other hand, Alice cannot change the bit inside the to-
ken once she has sent it to Bob. Further, this is a non-malleable bit commitment
scheme, in that if Bob plays a man-in-the-middle adversary, and wants to send
a commitment to Carol, he can can only send the token from Alice as it is, or
create a new token himself, independent of the bit committed to by Alice.

Now, we ask whether, in this model, one can make non-malleable string
commitments (relying on no computational assumptions). This is a question
about non-malleable codes in disguise! Indeed, if we required the commitment
protocol to involve just a single round of sending a fixed number of tokens,
then a commitment protocol is nothing but a non-malleable encoding of a string
into bits, and the class of tampering functions we need to protect against is
that of bit-level permutations and bit-wise set/reset.8 Though we presented this

8 For this application, bit-flipping need not be part of the admissible tampering func-
tions. However, even if we restricted ourselves to this simpler class, our construction
does not become significantly simpler. Indeed, handling permutations and set/reset
present the biggest technical challenges in our construction. By handling bit-flipping
as well, our tampering function family subsumes the bit-wise tampering function
family.



string commitment scheme in an idealized setting involving tokens, it can be
translated to a reduction of non-malleable string commitment to CCA-secure bit
commitment (as defined in [6]).

As mentioned above, the non-malleable codes we build can withstand a
slightly larger class of tampering attacks, which corresponds to the ability of
the adversary to apply any set of functions from {0, 1} to {0, 1} to the bits
stored in the tokens (i.e., set, reset, flip or keep), before applying the permuta-
tion attack. As such, in the above application, we do not actually require the
bit commitment scheme to be CCA secure. We also present a variant of the
above construction to illustrate this, which we base on a specific (non-standard)
assumption on a PRG.

This application also illustrates why explicit constructions can be of impor-
tance to cryptographic constructions. While there indeed is an efficient random-
ized construction of non-malleable codes that can resist permutations [20], it will
not be suitable in this case, because neither the sender nor the receiver in a com-
mitment scheme can be trusted to pick the code honestly (Bob could play either
role), and non-malleable codes are not guaranteed to stay non-malleable if the
description of the code itself can be tampered with. While one may address this
issue using a more complex protocol which securely samples a non-malleable code
using (malleable) string commitments, this undermines the simplicity of our pro-
tocol (which involves no interaction beyond carrying out the bit commitments)
and introduces more rounds of interaction.

1.1 Prior Work

Cramer et al. [14] introduced the notion of arithmetic manipulation detection
codes, which is a special case of non-malleable codes; AMD codes with optimal
parameters have been recently provided by [15]. Dziembowski et al. motivated
and formalized the more general notion of non-malleable codes in [18]. They
showed existence of a constant rate non-malleable code against the class of all bit-
wise independent tampering functions. Existence of rate 1 non-malleable codes
against various classes of tampering functions is known. For example, existence of
such codes with rate (1− α) was shown against any tampering function family
of size 22

αn

; but this scheme has inefficient encoding and decoding [10]. For
tampering functions of size 2poly(n), rate 1 codes (with efficient encoding and
decoding) exist with overwhelming probability [20].

On the other hand, explicit constructions of non-malleable codes have re-
mained elusive, except for some well structured tampering function classes. Re-
cently, an explicit rate 1 code for the class of bit-wise independent tampering
function was proposed by [11]. Note that a tampering function in this class tam-
pers each bit independently. For a more general compartmentalized model of
tampering, in which the codeword is partitioned into separate blocks and each
block can be tampered arbitrarily but independently, an encoding scheme was
proposed in [12]. In the most general compartmentalized model of tampering,
where there are only two compartments (known as the split-state model), an



explicit encoding scheme for bits was proposed by [17]. Recently, in a break-
through result, an explicit scheme (of rate 0) was proposed for arbitrary length
messages by [2]. Subsequently, a constant rate construction for 10 states was
provided in [9] and, building on that, a constant rate construction for the split
state was proposed in [1].

Codes under computational assumptions. The idea of improving the rate of error-
correcting codes by considering computationally limited channels has been ex-
plored in a large body of work [30,32,34,27,26,8]. In the setting of non-malleable
codes as well, constructions based on computational assumptions have been ex-
plored, for example [31,19].

Non-malleable commitments. There is extensive literature on non-malleable com-
mitments starting from the work of Dolev, Dwork and Naor [16] leading to recent
constant-round constructions based on one-way functions [24,29,25]. Our appli-
cation of nonmalleable codes to non-malleable commitments is similar in spirit
to the work of Meyers and Shelat [33] on the completeness of bit encryption.
Concurrently, and independently of our work, Chandran et al. [7] relate non-
malleable commitments to a new notion of non-malleable codes, called blockwise
non-malleable codes.

Application of non-malleable codes to cryptographic constructions. AMD codes
have found several applications in information-theoretic cryptography, for secret-
sharing, randomness extraction and secure multi-party computation (e.g., [5,14]
[23,21]). However, the more general notion of non-malleable codes have had few
other applications, outside of the direct application to protecting the contents
of device memories against tampering attacks. Our application to non-malleable
commitment is one of the few instances where non-malleable codes have found an
application in a natural cryptographic problem that is not information-theoretic
in nature. A similar application appears in the recent independent work of
Coretti et al. [13].

1.2 Our Contribution

The class of tampering functions which permutes the bits of the codeword is
represented by SN . The set of all tampering functions which allow the adversary
to tamper a bit by passing it through a channel is denoted by F{0,1}; this includes
forwarding a bit unchanged, toggling it, setting it to 1, or resetting it to 0. The
class of tampering functions which allows the adversary to do apply both: i.e.,
tamper bits followed by permuting them is represented by: F{0,1}◦SN . Our main
result is a non-malleable code against this class of tampering functions.

Theorem 1 (Non-malleable Code). There exists an explicit and efficient
non-malleable code for multi-bit messages against the tampering class F{0,1} ◦
SN .



Our main non-malleable encoding which is robust to F{0,1} ◦ SN relies on a
basic encoding scheme. The basic encoding scheme is robust to a weaker class of
tampering functions, but it provides slightly stronger security guarantees. More
specifically, the basic scheme protects only against F̃{0,1}◦SN class, where F̃{0,1}
is the class of functions which either forward a bit unchanged or toggle it but do
not set or reset it. The stronger security guarantee given by basic scheme is that
it allows the adversary to adaptively choose the tampering function F̃{0,1} ◦ SN .
The adversary first specifies n0 and n1, i.e. number of indices it wants to reset
to 0 and number of indices it wants to set to 1. It is provided a random subset
of indices of size n0 which is all reset to 0; and a (disjoint) random subset of
indices of size n1 which is all set to 1. Given this information, the adversary
can adaptively choose the tampering function in F̃{0,1} ◦ SN . Even given this
additional power, the adversary cannot tamper the codeword to produce related
messages (except with negligible probability).

We present the basic encoding scheme and prove its non-malleability in Sec-
tion 5. Theorem 1 is proved via a reduction to the basic scheme. This proof is
provided in the full version [3].

Non-malleable commitments. As noted earlier, we consider the question of con-
structing simple string non-malleable commitments from bit non-malleable com-
mitments. For example, if we simply encode the given string and commit to each
of its bit using the given non-malleable bit-commitment, does it result in a secure
non-malleable string commitment schemes? What are the conditions we need on
the underlying bit commitment scheme?

For this question, we are interested in a really simple reduction, as opposed
to, e.g. “merely” black-box reductions. Indeed, if we ask for a merely black-box
construction we can invoke known (but complex) reductions: a bit commitment
scheme (even malleable) implies a one-way function, which in turn imply string
commitments in a black box way [25]. Such reductions are not, what we call
totally black-box. For example, if we switch to a model where we are given
the bit-commitment scheme as a functionality which can be executed only a
bounded number of times, such as a one-time program [22] or a hardware token
[28], then we do not necessarily have standard one-way functions. Therefore,
the reduction should avoid assuming additional complexity assumptions such
as OWFs or signatures. In fact, for this reason, the reduction should also not
rely on using tags and “tag-based” non-malleability [35]. It should work with
standard non-tag-based non-malleable bit-commitments.

Our reduction actually satisfies these conditions provided that we start with a
(non-tag-based) CCA-secure bit-commitment scheme [6]. We show that (perhaps
the simplest construction where) if we just commit to each bit of a random
codeword of the given string works! This gives us the following theorem:

Theorem 2 (CCA Bit-commitment to Non-malleable String Commit-
ment). There exists a simple and efficient black-box compiler which, when pro-
vided with:

◦ A non-malleable encoding robust to F{0,1} ◦ SN , and



◦ A r-round (possibly non-tag-based) CCA-secure bit-commitment scheme

yields a r-round non-malleable string-commitment scheme.

We note that the theorem statement is unconditional: it does not assume
any computational assumption beyond the given non-malleable bit-commitment.
In particular, the theorem holds even if the bit-commitment is implemented
in a model which does not necessarily imply OWFs. Furthermore, in our full
version [3], we prove that in fact, the theorem holds even if the bit-commitment
is not CCA-secure but only satisfies a much weaker notion which we call bounded-
parallel security.

Finally, we show the power of our non-malleable codes by demonstrating
that even if we start with a seemingly much weaker scheme which allows partial
malleability, e.g., it may allow the MIM to toggle the committed bit, our non-
malleable codes can “boost” it to full-fledged malleability. See [3] for details.

2 Preliminaries

We denote the set {1, . . . , n} by [n]. If a ∈ [b− ε, b+ ε], then we represent it as:
a = b± ε.

Probability distributions are represented by bold capital alphabets, for ex-
ample X. The distribution US represents a uniform distribution over the set S.
Given a distribution X, x ∼ X represents that x is sampled according to the dis-

tribution X. And, for a set S, x
$←S is equivalent to x ∼ US . For a joint variable

X = (X1, . . . ,Xn) and S = {i1, . . . , i|S|} ⊆ [n], we define the random variable
XS = (Xi1 , . . . ,Xi|S|). We also define hamming distance between two samples
u = (u1, u2, . . . , un) and v = (v1, v2 . . . , vn) drawn from the distribution X as
the number of indices at which they differ, i.e., HD(u, v) = |{i ∈ [n] | ui 6= vi}|.
For a function f(·), the random variable Y = f(X) represents the following
distribution: Sample x ∼ X; and output f(x). Further, f(x[n]) represents the
vector f(x1) . . . f(xn).

The statistical distance between two distributions S and T over a finite sam-
ple space I is defined as: SD (S,T) := 1

2

∑
i∈I |Prx∼S[x = i]− Prx∼T[x = i]|

2.1 Classes of Tampering Functions

We shall consider the following set of tampering functions.

1. Family of Permutations. Let SN denote the set of all permutations π : [N ]→
[N ]. Given an input codeword x[N ] ∈ {0, 1}

N
, tampering with function π ∈

SN yields the following codeword: xπ−1(1) . . . xπ−1(N) =: xπ−1([N ]).
2. Family of Fundamental Channels. The set of fundamental channels over
{0, 1}, represented as F{0,1}, contains the following binary channels f : a)
f(x) = x, b) f(x) = 1⊕ x, c) f(x) = 0, or d) f(x) = 1. These channels are,
respectively, called forward, toggle, reset and set functions.



3. Family of Sensitive Channels. The set of sensitive functions F̃{0,1} contains
only forward and toggle channels. In other words, tampering involves XOR-
ing an N -bit input string with a fixed N -bit string.

We can define more complex tampering function classes by composition of
these function classes. For example, composition of SN with F{0,1} yields the fol-
lowing class of tampering functions. For any π ∈ SN and f1, . . . , fN ∈ F{0,1}, it
transforms a codeword x[N ] into f1(xπ−1(1)) . . . fN (xπ−1(N)) =: f1,...,N (xπ−1([N ])).
This class is represented by: F{0,1} ◦ SN .

2.2 Non-Malleable Codes

We define non-malleable codes formally in Fig. 1. Our main result provides an
efficient non-malleable code against the tampering class F{0,1} ◦ SN .

Let F be a set of functions of the form f : {0, 1}N → {0, 1}N . Consider two mappings
Enc : {0, 1}L → {0, 1}N (possibly randomized) and Dec : {0, 1}N → {0, 1}L ∪ {⊥}.

For f ∈ F and s ∈ {0, 1}L, define a random variable Tamper
(s)
f over {0, 1}L ∪ {⊥} as

follows:
Tamper

(s)
f = Dec(f(Enc(s))).

Let Sim be a map from F to distributions over the sample space {0, 1}L∪{same∗,⊥}.
For f ∈ F and s ∈ {0, 1}L, define the random variable Copy

(s)

Sim(f) as follows.

Copy
(s)

Sim(f) =

{
s if Sim(f) = same∗

Sim(f) otherwise.

The simulation error (or, advantage) is defined to be:

advEnc,Dec,F := inf
Sim

max
s∈{0,1}L
f∈F

SD
(
Tamper

(s)
f ,Copy

(s)

Sim(f)

)
(Enc,Dec) is called an [N,L, ν]-non-malleable code against F if the following condi-
tions hold:

◦ Correctness: ∀s ∈ {0, 1}L, Pr[Dec(Enc(s)) = s] = 1.
◦ Non-Malleability: advEnc,Dec,F 6 ν(N).

We refer to an [N,L, ν]-non-malleable code simply as an [N,L]-non-malleable code if
ν is negligible. We say that the coding scheme is efficient if Enc and Dec run in time
bounded by a polynomial in N.

Fig. 1: Definition of Non-Malleable Codes



3 Building Blocks

In this section, we define various types of secret-sharing schemes relevant to our
construction. First we present the basic notion.

Definition 1 (Secret-Sharing Scheme (SSS)). Let S = (X0,X1, . . . ,XM )
be a joint distribution over ΛL ×ΣM , such that the support of X0 is all of ΛL.
(The random variable X0 represents the secret being shared and Xi for i ∈ [m]
represents the i-th share.)

We say that S is an [M,L, T,D]Λ,Σ secret-sharing scheme if the following
conditions hold:

1. T -privacy: ∀ s, s′ ∈ ΛL, ∀ J ⊆ [M ] such that |J | 6 T , we have

SD ((XJ |X0 = s), (XJ |X0 = s′)) = 0.

2. D-distance: For any two distinct c, c′ ∈ Supp(X[M ]), the hamming distance
between them, HD(c, c′), is at least D, where Supp(X[M ]) denotes the support
of distribution X[M ].

3. Reconstruction: For any s, s′ ∈ ΛL such that s 6= s′, we have

SD
(
(X[M ]|X0 = s), (X[M ]|X0 = s′)

)
= 1.

In the remainder of the paper, by an SSS scheme, we shall implicitly refer
to a family of SSS schemes indexed by M , i.e., [M,L(M), T (M), D(M)]-SSS
schemes for each positive integer M . We define the rate of such a scheme to be

limM→∞
L(M)
M . We will be interested in efficient SSS schemes. For this, we define

two algorithms for encoding and decoding as follows:

◦ EncSSS(s): This is a randomized algorithm that takes s ∈ ΛL as input and
outputs a sample from the distribution (X[M ]|X0 = s).

◦ DecSSS(c̃): This algorithm takes a c̃ ∈ ΣM as input, and outputs a secret
s ∈ ΛL such that c̃ ∈ Supp(X[M ]|X0 = s). If such a secret does not exist, it
outputs ⊥.

Note that the uniqueness of the output of algorithm DecSSS is guaranteed
by the reconstruction property. An SSS scheme is said to be efficient if the two
algorithms defined above run in time bounded by a polynomial in M .

We can instantiate a secret-sharing scheme with all the properties described
above using Reed-Solomon codes. Let n, k and ` be any three positive inte-
gers such that n > k > `. Let F be a finite field of size at least n + `. Let
{u−`, . . . , u−1, u1, . . . , un} ⊆ F. The secret-sharing of a message (s1, . . . , s`) ∈ F`
is done by choosing a random polynomial p(·) of degree < k conditioned on
(p(u−1), . . . , p(u−`)) = (s1, . . . , s`). The shares {y1, . . . , yn} are evaluations of
p(·) at {u1, . . . , un} respectively. It is known that efficient encoding and decod-
ing procedures exist using Lagrange interpolation. Further, this encoding has
privacy k − ` and distance n− k + 1.

SSS with independence. A secret-sharing scheme with independence, or i-SSS
in short, is defined in the same way as an SSS, except that instead of privacy, it
has a stronger independence property:



◦ T -independence: ∀ s ∈ ΛL, ∀ J ⊆ [M ] such that |J | 6 T , we have

SD ((XJ |X0 = s),UΣ|J|) = 0.

In simple words, any subset of at most T shares are uniformly distributed over
the corresponding codeword space (whereas privacy only guarantees that these
shares have a distribution independent of the secret being shared). The encoding
and decoding algorithms for i-SSS are denoted by Enci-SSS and Deci-SSS respec-
tively. Reed-Solomon codes, as defined above, actually give independence and
not just privacy.

Augmented SSS. A secret-sharing scheme (with or without independence) can
be augmented to have each share also specify which share it is – the first, the
second, etc. More formally, if we have an [M,L, T,D]Λ,Σ-SSS (or i-SSS) with
(EncSSS,DecSSS) algorithms, we define algorithms Enca-SSS and Deca-SSS for the
augmented secret-sharing scheme over ΛL × ([M ]×Σ)M as follows:

◦ Enca-SSS(s): Run EncSSS(s) to obtain c1, . . . , cM . Output (1, c1), . . . , (M, cM ).
◦ Deca-SSS(c̃): Let c̃ = ((i1, c̃1), . . . , (iM , c̃M )). Sort the shares according to the

first element in each tuple, check that each index occurs exactly once, and
then output DecSSS((c̃1, . . . , c̃M )).

It is easy to observe that a-SSS defined in this way has T -privacy and D-distance.

Additive Secret Sharing. An [M,L]Λ,Σ additive secret sharing scheme, re-
ferred to simply as add, is an [M,L, T,D]Λ,Σ-i-SSS with T = M − 1 and D = 1.
One can instantiate such sharing schemes over any Abelian group (G,+). The
joint distribution (X0, . . . ,XM ) is defined via the following sampling procedure:

pick x1, . . . , xM
$← G and set x0 =

∑
i∈[M ] xi. It is easy to see that there exist

efficient encoding and decoding algorithms, which are denoted by Encadd and
Decadd respectively.

Balanced Unary Encoding. This scheme is parameterized by a message space
F and a positive integer p. Let π : F → Z|F | be a bijection and m = 3p |F |+ 1.
Then, given a message s ∈ F , the encoding Encunary(s) is performed as follows:
Sample a random set S of [m] of weight dm/3e+pπ(s). The codeword is defined to
be the characteristic vector of set S. Note that this scheme has efficient encoding
and decoding algorithms, Encunary and Decunary, respectively. For any s ∈ F
and any set S used for encoding s, the total weight of the final shares lie in
[m/3, 2m/3]. Hence, the name balanced unary secret sharing scheme.

We now define how to combine two or more schemes.

Definition 2 (Concatenating Sharing Schemes.). Consider two secret shar-

ing schemes, an outer scheme S(out) = (X
(out)
0 ,X

(out)
1 , . . . ,X

(out)
n ) over ΛL ×ΣN

and an inner scheme S(in) = (X
(in)
0 ,X

(in)
1 , . . . ,X

(in)
m ) over Σ×ΓM . The concate-

nation of the outer scheme with the inner scheme is defined as the joint dis-

tribution S(concat) = (X
(concat)
0 ,X

(concat)
1 , . . . ,X

(concat)
NM ) over ΛL × ΓMN . Given a

secret s ∈ ΛL, sample x
(concat)
[NM ] ∼ (X

(concat)
[NM ] |X

(concat)
0 = s) as follows: first sample



x
(out)
[N ] ∼

(
X

(out)
[N ]

∣∣∣ X
(out)
0 = s

)
, and then for each i ∈ [N ], sample x

(concat)
(i−1)m+[M ] ∼(

X
(in)
[M ]

∣∣∣ X
(in)
0 = x

(out)
i

)
. We use S(concat) = S(out)◦S(in) to represent the concate-

nation of S(out) with S(in).

If the encoding and decoding procedures for outer and inner schemes are
(Enc(out),Dec(out)) and (Enc(in),Dec(in)) respectively, then the corresponding pro-

cedures for the concatenated scheme are denoted by (Enc(out) ◦ Enc(in),Dec(out) ◦
Dec(in)). Note that the final encoding and decoding procedures are efficient if the
corresponding procedures are efficient for inner and outer schemes.

Moreover, we emphasize that we do not focus on error correcting codes. In
particular, if any of inner or outer decoding procedures fails, we output ⊥ as the
decoding of the overall code.

4 Our Non-Malleable Encoding Scheme

In this section, we describe our non-malleable encoding scheme against the class
of tampering functions F{0,1} ◦ SN . It proceeds in following two steps.

1. Basic Encoding Scheme. Though this scheme will offer non-malleability
against a weaker class of tampering functions, it will offer stronger guar-
antees beyond standard non-malleability. We refer to this as “2-Phase Non-
malleability” property. The security proof of our main construction described
below reduces to the 2-phase non-malleability of our basic scheme.

The basic encoding scheme is described formally in Fig. 2. As a high level,
our encoding scheme is a concatenation code (see Definition 2) which does
the following: Given a message s, it samples an outer code according to aug-
mented Reed-Solomon code based secret sharing. Then for each outer code
element, it samples an inner codeword which itself is a concatenation code
using balanced unary secret sharing scheme and additive sharing scheme.

2. Main Construction. Our main non-malleable coding scheme resistant against
the class of attacks F{0,1} ◦ SN is built on top of the basic coding scheme.
In order to encode a message s, we choose a random permutation σ. The
codeword consists of two parts: the first part is the basic encoding of s with σ
applied on it, and the second part is a secret sharing of σ with high distance
and independence encoding. Intuitively, applying a random permutation en-
sures that setting/resetting bits in the main codeword results in random
positions being modified in the basic codeword, exactly the kind of attack
basic code can handle. The scheme is described formally in Fig. 3.

In the following section, we first describe the 2-phase security of basic encod-
ing scheme and then our main construction.



Let κ be the statistical security parameter. Let {0, 1}L be the message space, such
that L = κΘ(1).
Let ` = L

2 lgL
. Let F be a characteristic 2 field. Let (Enca-SSS,Deca-SSS) be a [n, `, k, d]F,F

augmented secret sharing scheme such that k = 2n/3 and d = Θ(n). Define
(Enc(out),Dec(out)) = (Enca-SSS,Deca-SSS).

Let F = [n] × F and u = ω(log κ). Let (Encunary,Decunary) be the unary encoding
scheme mapping F to {0, 1}m and (Encadd,Decadd) be the additive encoding scheme
mapping {0, 1} to {0, 1}u (see Section 3). Define Enc(in) = Encunary ◦ Encadd as the
concatenation encoding scheme (see Definition 2). Let Dec(in) be the corresponding
decoding algorithm.

Define Enc(basic) = Enc(out) ◦ Enc(in) and Dec(basic) = Dec(out) ◦ Dec(in).

Encoding: Given s ∈ F`, output c[umn] ∼ Enc(basic)(s).

Decoding: Given c[umn], output Dec(basic)(c).

Fig. 2: Basic Non-malleable Code achieving 2-Phase Non-malleability.

5 Basic Encoding Scheme and 2-phase Non-Malleability

2-Phase Non-Malleability is a two-phase attack experiment where the adversary
gets additional information about the codeword in the first phase before it gets
to choose the tampering function in second phase.

1. In the first phase the adversary sends message s and n0, n1, np ∈ [N ] such
that n0 +n1 +np 6 N and np 6 log2 κ. Here n0 and n1 refer to the number
of bits in the tampered codeword that will be set to 0 and 1, respectively. np
refers to the number of bits of the original codeword which will be revealed
to the adversary before he chooses the final tampering function.

2. The challenger picks an index set I
$←
(

[N ]
n0 + n1 + np

)
and randomly par-

titions I into I0, I1 and Ip of size n0, n1 and np, respectively. It picks
c = Enc(s). Then it sends (I0, I1, Ip, cIp) to the adversary. Here I0 and I1
refer to the indices which will be set to 0 and 1, respectively. Ip refers to the
indices of c which are revealed in cIp .

3. In the second phase, the adversary sends a tampering function f ∈ F̃{0,1} ◦
SN , using the information obtained from first phase.

4. The tampered codeword is created by setting the bits at positions I0 and I1
to 0 and 1, respectively, to obtain c′. Then, f is applied to c′.

Observe that in the above experiment the adversary can specify n0, n1, np
and a function map in advance, and then the challenger can carry out the entire
experiment on its own. The function map takes three disjoint subsets of indices
I0, I1, Ip ⊆ [N ] of size n0, n1, and np respectively, and a bit string of length



Let {0, 1}L be the message space and {0, 1}N be the codeword space. Let N (1) be
the size of codeword output by Encbasic. Let F be a finite field of characteristic 2 and

` =
⌈
N(1) logN(1)

log2 |F|

⌉
. Let (Enci-SSS,Deci-SSS) be the encoding and decoding algorithms

of a [2N (1) + `, `,N (1), N (1) + 1]F,F secret sharing scheme with independence. Note
that a permutation in SN(1) can be represented using N (1) logN (1) bits.

Enc(s ∈ {0, 1}L):

(a) Choose a permutation σ ∈ SN(1) at random.

(b) Let c
(1)

[N(1)]
∼ Encbasic(s).

(c) Let c
(2)

[N(2)]
∼ Enci-SSS(σ). Here we interpret σ as an element in F`; and the shares

∈ F2N(1)+` as an element in {0, 1}N
(2)

.

(d) Output c[N ] := (c
(1)

[N(1)]
, c

(2)

[N(2)]
).

Dec(c̃ ∈ {0, 1}N ):

(a) Let
(
c̃
(1)

[N(1)]
, c̃

(2)

[N(2)]

)
≡ c̃[N ].

(b) Decode c̃
(2)

[N(2)]
by the decoding algorithm of Deci-SSS to obtain a permutation σ̃.

(c) Output s̃ = Decbasic(σ̃
−1(c̃

(1)

[N(1)]
)). (If either of the decoding algorithms fail, out-

put ⊥.)

Fig. 3: Main Non-malleable Code

|Ip| 6 log2 κ, and outputs a function f ∈ F̃{0,1} ◦ SN . Let F∗ be a tampering
function family where an f∗ ∈ F∗ is specified by n0, n1, np and map, and tampers
the codeword as the challenger does. Our security requirement can now be simply
stated as non-malleability against the tampering class F∗. The only issue is that
the functions in this family are randomized and we have defined non-malleability
w.r.t. deterministic functions. However, we could just define the randomness of

Tamper
(s)
f in Fig. 1 to be over the coin tosses of not only the encoding function

but also over the tampering function, and take care of this problem.

Theorem 3 (2-Phase Non-malleability). There exists an explicit and ef-
ficient non-malleable code for multi-bit messages against the tampering class
F∗.

5.1 Proof of Theorem 3

In this section we show that the basic encoding scheme described in Fig. 2 sat-
isfies Theorem 3.

Useful Terminology. We will call the field elements of augmented secret shar-
ing scheme Enc(out) as “elements”. The encoding of each element via inner encod-



ing Enc(in) will be called a “block” or “inner codeword”. We shall visualize our
inner code blocks as a two-dimensional objects, where each “column” represents
the additive secret shares of a bit in the unary encoding scheme.

Below we crucially rely on the notion of “equivalence of codes” and “dirty
inner codewords” or “dirty blocks” as defined below.

Equivalence of Codewords for our Scheme. Here we describe equivalence
of codes for Enc(in) and Enc(basic).
1. Inner codes. Two inner codewords, g

(in)
[um] and h

(in)
[um] are equivalent codes if

they encode the same message according to the inner encoding scheme Enc(in).

2. Non-Malleable codes. Two codewords g
(basic)
[umn] and h

(basic)
[umn] are equivalent

codes if their outer codes under Enc(out) are identical 9. That is, following holds.

For all i ∈ [n], define g
(in)
i = g

(basic)
(i−1)um+[um] and h

(in)
i = h

(basic)
(i−1)um+[um]. Then,

there exists a π : [n]→ [n] such that for all i ∈ [n], g
(in)
i
∼= h

(in)
π(i).

Criteria for valid inner codeword or block. For a block to be valid, the
corresponding unary code should have parity 0 mod 3.
Classification of blocks. We classify the inner codewords or blocks in follow-
ing three categories.

Fixed blocks. We say that a block is completely fixed if all its bits are obtained
from bits in I0 ∪ I1. That is, the tampering function explicitly writes down the
whole block using bits from I0 ∪ I1. Note that some of these bits might have
been toggled.

Copied blocks. We say that a block is completely copied if it is generated by
copying one whole block in c and (possibly) performing column preserving per-
mutations to the block. Also, even number of toggles might have been applied
to any of these columns. Note that copied blocks are valid with probability 1.

Dirty Blocks. We say that an inner codeword or a block in c̃ is dirty if it is
neither fixed nor copied. In other words, one of the following holds:

1. The block receives its bits partially from one block of c. To clarify, it can be
the case that it receives bits from more than one blocks, or it receives bits
from one block but some of its bits are obtained from I0 ∪ I1.

2. (The block receives all its bits from one block of c but) The permutation
within the block is not column preserving. That is, there exists a column
which receives bits from more than one columns of the same inner codeword.

3. (The block receives all its bits from one block and the permutation is column
preserving but) There exists a column which has odd number of toggle gates.

9 Note that we only insist that g
(basic)
[umn] and h

(basic)
[umn] not only encode the same mes-

sage s but also every outer codeword element is identical. Note that we allow for
permutation of outer code elements.



We show that a dirty block fails to be a valid block (according to inner
encoding scheme) with at least a constant probability (see [3] for details).

We denote the number of dirty blocks by ndirty, fixed blocks by nfixed, and
copied blocks by ncopy. Note that n = ndirty + nfixed + ncopy. Finally, we define
peeked blocks as follows:

Peeked blocks. We say that a block is a peeked if one of its bits has been
copied from Ip. Let npeek be the number of such blocks. Note that npeek 6 np.

5.2 Key Steps of the Proof

In this section, we give a high level proof idea by doing a case analysis on
n0 +n1 and explaining how Sim is determined on each case (depending on map).
The threshold value log10 κ chosen below for analysis is arbitrary; any suitable
poly log κ will suffice. For a formal proof of non-malleability, please refer to the
full version [3].

Case 1. log6 κ 6 n0 + n1 6 N − um log3 κ.
In this case, Sim outputs ⊥ with probability 1. This incurs negl(κ) simula-
tion error. This is because, as we can show, ndirty > log3 κ with probability
1− negl(κ). Further, as described below, if ndirty is large, then the the probabil-

ity that Tamper(s) outputs something other than ⊥ is negligible.

Case 2. n0 + n1 6 log6 κ.
Note that Sim has n0, n1, np and map. It begins by sampling I0, I1, Ip, cIp and
f ∈ F according to map as in real execution. Based on these we have the following
cases on ndirty, the number of dirty blocks.
Case 2.1. ndirty > log3 κ.
In this case, Sim outputs ⊥ with probability 1. Again, as explained below, this
incurs a negligible simulation error.
Case 2.2. ndirty < log3 κ.
In this case, ncopy = n − ndirty − nfixed > n − log3 κ − log6 κ/um. That is, the
tampering function copies most of the blocks identically into the tampered code-
word. Now, let n′copy be the number of copied blocks which do not contain any

bit from Ip. Then n′copy > ncopy − npeek > n− 2 log6 κ.
So, the tampered codeword can either be invalid or (if valid) equivalent to

the original codeword (because distance of the outer codeword � Θ(log6 κ)).
Now the probability that the completely fixed, dirty and peeked blocks are each
identical to their counterparts in the input codeword does not depend the mes-
sage s because the privacy of the outer codeword is� ndirty +nfixed +npeek. This
probability σ can be computed exhaustively by Sim and does not depend on the
message s. So, given these I0, I1, Ip, cIp , f , Sim outputs same∗ with probability
σ; otherwise outputs ⊥. This is clearly identical to the real execution random
variable Tamper(s) on I0, I1, Ip, cIp , f .



Case 3. n0 + n1 > N − um log3 κ.
In this case, nfixed = n − ndirty − ncopy > n − log3 κ. In this case, the tampered
code word is either invalid or (if valid) equivalent to the codeword consistent with
the fixed inner codewords (because the distance of the outer encoding scheme is
much greater than Θ(log3 κ)).

Now Sim samples I0, I1, Ip, cIp and f ∈ F according to map as in real execu-
tion. We say that (I0, I1) is good if it contains at least one bit from each column
of c.

Since we have n0+n1 > N−um log3 κ, we can show that Pr[(I0, I1) is good] =
1−negl(κ). If (I0, I1) is not good, then we define Sim to output ⊥ with probability
1 on this (I0, I1). This incurs additional negl(κ) expected simulation error over
the choices of (I0, I1).

Now we are in the case that (I0, I1) is good. Given this, Sim first checks
whether the fixed inner blocks can define a valid outer codeword. If not, then
Sim outputs ⊥. Simulation error in this case is 0.

Finally, we are in the case when (I0, I1) are good and the fixed blocks define
a valid outer codeword, say g∗ and a message s∗. Now Sim needs to check that
remaining blocks are consistent with g∗ or not. Note that since (I0, I1) is good,
the bits restricted to [N ] \ (I0 ∪ I1 ∪ Ip) are uniform bits. This is because all
proper subsets of any column are uniform random bits. Now the probability of
forming a codeword for s∗ can be exhaustively computed starting from uniform
random bits for [N ]\ (I0∪I1∪Ip) and taking fixed value for bits in Ip as cIp . Let
this probability be σ. Note that peeked blocks cannot intersect with set of fixed
blocks. Now, Sim outputs s∗ with probability σ and ⊥ otherwise. The simulation
error in this case is again 0.

Analysis for ndirty > log3 κ. In Case 1 and Case 2.1 above we relied on the
claim that if ndirty is large, then the probability of the tampered codeword being
valid is negligible. To prove this, we need to consider different ways in which
a dirty block can be formed. In all cases, it is easy to argue that each dirty
block has a constant positive probability of being an invalid block (the unary
codeword encoded by the block will not be 0 (mod 3)). However, these events
need not be independent of each other. The main reason for dependence is that
bits from a single block can be moved into two different blocks. Nevertheless,
we can show that there is an ordering of the dirty blocks that at least ndirty/2
dirty blocks are “risky,” i.e., the probability of it being an invalid block is a
positive constant, conditioned on all previous blocks being valid. Technically, the
ith block (according to the given ordering) is risky if there is some block u in
the original codeword, such that the ith block as well as the jth block, for some
j > i, each has at least one bit copied to it from u; further a sufficiently large
number of bits from u should be copied to blocks numbered i or larger. We can
consider any arbitrary ordering, and its reverse ordering, and argue that every
dirty block is risky in one of the two orderings. This guarantees that in one of
the two orderings, there are at least ndirty/2 risky blocks. The above analysis
assumes that the adversary does not see the bits from the original codeword
that it copies, which is not true since it is given the bits in Ip. To account for



this we restrict to orderings in which the npeek blocks containing the bits from
Ip appear at the beginning, and also define a block to be risky only if it is not
one of these blocks. Since npeek is much smaller than ndirty, we can argue that
the number of risky blocks remains large.

6 Application to Non-Malleable String Commitment

For a bit b and auxiliary input z, let STRb(〈C,R〉, A, n, z) denote the output
of the following experiment: on input (1n, z), A adaptively chooses two strings
(v0, v1) of length n (where n is the security parameter), and receives a commit-
ment to vb while simultaneously A also interacts with a receiver, attempting to
commit to some value. Define ṽ to be the value contained in the right commit-
ment.10. If A’s commitment transcript on right is either not accepting, or iden-
tical to the transcript on left, then output a special symbol ⊥; if ṽ ∈ {v0, v1},
output a special symbol same∗; otherwise, output ṽ.11

Definition 3 (Non-malleable String Commitments). We say that 〈C,R〉
is a non-malleable string commitment scheme (for all strings in {0, 1}n) if for
every PPT A and every z ∈ {0, 1}∗ it holds that

STR0(〈C,R〉, A, n, z) ≈c STR1(〈C,R〉, A, n, z).

We remark that the definition above requires the message space to be large
(i.e., at least super-polynomial in n). Otherwise, the definition cannot be achieved.
This definition, however, is equivalent to a standard simulation-based formula-
tion of non-malleability (see Theorem A.1 in [18]).

Below we give our construction for non-malleable string commitments from
non-malleable bit commitments. We prove the security of our scheme in the full
version [3].

Construction. Given a bit commitment scheme 〈C,R〉, we construct a string
commitment scheme 〈C ′, R′〉 for {0, 1}n as follows. Let nm-code be a non-malleable
coding scheme for messages of length n that is robust to F := F0,1 ◦SN , and let
t(n) denote the length of the codewords for some fixed polynomial t. Let Enc and
Dec be encoding and decoding algorithms. To commit to a string v ∈ {0, 1}n,
C ′ generates a random codeword w ← Enc(v), and commits to each bit of w
independently, and in parallel using the bit-commitment protocol 〈C,R〉. The
receiver checks that no two bit-commitment transcripts, out of t such transcripts,
are identical. If the check fails, or if any of the bit-commitment transcripts are

10 Note that ṽ is unique w.h.p. and there exists d̃ s.t. open(c̃, ṽ, d̃) = 1 where c̃ is the
right commitment.

11 Following [16], this definition allows MIM to commit to the same value. It is easy to
prevent MIM from committing the same value generically in case of string commit-
ments: convert the scheme to tag based by appending the tag with v, and then sign
the whole transcript using the tag.



not accepting, the receiver rejects; otherwise it accepts the commitment. To de-
commit to v, the receiver sends v along with decommitment information for each
bit of w denoted by (wi, di) for every i ∈ [t]; the receiver accepts v if and only if
all recommitments verify and the resulting codeword decodes to v.
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