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Abstract. Round-optimal blind signatures are notoriously hard to con-
struct in the standard model, especially in the malicious-signer model,
where blindness must hold under adversarially chosen keys. This is sub-
stantiated by several impossibility results. The only construction that can
be termed theoretically efficient, by Garg and Gupta (Eurocrypt’14),
requires complexity leveraging, inducing an exponential security loss.
We present a construction of practically efficient round-optimal blind
signatures in the standard model. It is conceptually simple and builds on
the recent structure-preserving signatures on equivalence classes (SPS-
EQ) from Asiacrypt’14. While the traditional notion of blindness follows
from standard assumptions, we prove blindness under adversarially chosen
keys under an interactive variant of DDH. However, we neither require
non-uniform assumptions nor complexity leveraging.
We then show how to extend our construction to partially blind signatures
and to blind signatures on message vectors, which yield a construction
of one-show anonymous credentials à la “anonymous credentials light”
(CCS’13) in the standard model.
Furthermore, we give the first SPS-EQ construction under non-interactive
assumptions and show how SPS-EQ schemes imply conventional structure-
preserving signatures, which allows us to apply optimality results for the
latter to SPS-EQ.

Keywords: (Partially) Blind Signatures, Standard Model, SPS-EQ, One-
Show Anonymous Credentials

1 Introduction

The concept of blind signatures [22] dates back to the beginning of the 1980s.
A blind signature scheme is an interactive protocol where a user (or obtainer)
requests a signature on a message which the signer (or issuer) must not learn. In
particular, the signer must not be able to link a signature to the execution of the
issuing protocol in which it was produced (blindness). Furthermore, it should
even for adaptive adversaries be infeasible to produce a valid blind signature
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without the signing key (unforgeability). Blind signatures have proven to be
an important building block for cryptographic protocols, most prominently for
e-cash, e-voting and one-show anonymous credentials. In more than 30 years of
research, many different (> 50) blind signature schemes have been proposed. The
spectrum ranges from RSA-based (e.g., [22,19]) over DL-based (e.g., [41,2]) and
pairing-based (e.g., [14,12]) to lattice-based (e.g., [44]) constructions, as well as
constructions from general assumptions (e.g., [36,35,25]).

Blind signatures and their round complexity. Two distinguishing features
of blind signatures are whether they assume a common reference string (CRS) set
up by a trusted party to which everyone has access; and the number of rounds in
the signing protocol. Schemes which require only one round of interaction (two
moves) are called round-optimal [25]. Besides improving efficiency, round optimal-
ity also directly yields concurrent security (which otherwise has to be dealt with
explicitly; e.g., [37,35]). There are very efficient round-optimal schemes [23,14,11]
under interactive assumptions (chosen target one more RSA inversion and chosen
target CDH, respectively) in the random oracle model (ROM), as well as under
the interactive LRSW [39] assumption in the CRS model [32]. All these schemes
are in the honest-key model, where blindness only holds against signers whose
keys are generated by the experiment.

Fischlin [25] proposed a generic framework for constructing round-optimal
blind signatures in the CRS model with blindness under malicious keys: the signer
signs a commitment to the message and the blind signature is a non-interactive
zero-knowledge (NIZK) proof of a signed commitment which opens to the message.
Using structure-preserving signatures (SPS) [3] and the Groth-Sahai (GS) proof
system [33] instead of general NIZKs, this framework was efficiently instantiated
in [3]. In [12,13], Blazy et al. gave alternative approaches to compact round-
optimal blind signatures in the CRS model which avoid including a GS proof
in the final blind signature. Another round-optimal solution with comparable
computational costs was proposed by Seo and Cheon [46] building on work by
Meiklejohn et al. [40].

Removing the CRS. Known impossibility results indicate that the design of
round-optimal blind signatures in the standard model has some limitations. Lin-
dell [38] showed that concurrently secure (and consequently also round-optimal)
blind signatures are impossible in the standard model when using simulation-
based security notions. This can however be bypassed via game-based security
notions, as shown by Hazay et al. [35] for non-round-optimal constructions.

Fischlin and Schröder [27] showed that black-box reductions of blind-signature
unforgeability to non-interactive assumptions in the standard model are impos-
sible if the scheme has three moves or less, blindness holds statistically (or
computationally if unforgeability and blindness are unrelated) and protocol tran-
scripts allow to verify whether the user is able to derive a signature. Existing
constructions [31,30] bypass these results by making non-black-box use of the
underlying primitives (and preventing signature-derivation checks in [31]).

Garg et al. [31] proposed the first round-optimal generic construction in the
standard model, which can only be considered as a theoretical feasibility result.



Using fully homomorphic encryption, the user encrypts the message sent to the
signer, who evaluates the signing circuit on the ciphertext. To remove the CRS,
they use two-round witness-indistinguishable proofs (ZAPs) to let the parties
prove honest behavior; to preserve round-optimality, they include the first fixed
round of the ZAP in the signer’s public key.

Garg and Gupta [30] proposed the first efficient round-optimal blind signature
constructions in the standard model. They build on Fischlin’s framework using
SPS. To remove a trusted setup, they use a two-CRS NIZK proof system based on
GS proofs, include the CRSs in the public key while forcing the signer to honestly
generate the CRS. Their construction, however, requires complexity leveraging
(the reduction for unforgeability needs to solve a subexponential DL instance for
every signing query) and is proven secure with respect to non-uniform adversaries.
Consequently, communication complexity is in the order of hundreds of KB (even
at a 80-bit security level) and the computational costs (not considered by the
authors) seem to limit their practical application even more significantly.

Partially blind signatures. Partially blind signatures are an extension of
blind signatures, which additionally allow to include common information in
a signature. Many non-round-optimal partially blind signature schemes in the
ROM are based on a technique by Abe and Okamoto [7]. The latter [42] proposed
an efficient construction for non-round-optimal blind as well as partially blind
signatures in the standard model. Round-optimal partially blind signatures in the
CRS model can again be obtained from Fischlin’s framework [25]. Round-optimal
partially blind signatures in the CRS model are constructed in [13,40,46]. To
date, there is—to the best of our knowledge—no round-optimal partially blind
signature scheme that is secure in the standard model.

One-show anonymous credentials systems. Such systems allow a user to
obtain a credential on several attributes from an issuer. The user can later selec-
tively show attributes (or prove relations about attributes) to a verifier without
revealing any information about undisclosed attributes. No party (including the
issuer) can link the issuing of a credential to any of its showings, yet different
showings of the same credential are linkable. An efficient implementation of
one-show anonymous credentials is Microsoft’s U-Prove [16].

Baldimtsi and Lysyanskaya [9] showed that the underlying signature scheme [15]
cannot be proven secure using known techniques. To mitigate this problem, in [8]
they presented a generic construction of one-show anonymous credentials in the
vein of Brands’ [15] approach from so-called blind signatures with attributes.
They also present a scheme based on a non-round-optimal blind signature scheme
by Abe [2] and prove their construction secure in the ROM.

Our Contribution

Blind signatures and anonymous credentials. Besides Fischlin’s generic
commit-prove paradigm [25], there are other classes of schemes. For instance, RSA
and BLS blind signatures [23,14,11] follow a randomize-derandomize approach,
which exploits the homomorphic property of the respective signature scheme.



Other approaches follow the commit-rerandomize-transform paradigm, where a
signature on a commitment to a message can be transformed into a rerandomized
(unlinkable) signature on the original message [12,32]. Our construction is based
on a new concept, which one may call commit-randomize-derandomize-open
approach. It does not use non-interactive proofs at all and is solely based on
the recent concept of structure-preserving signature schemes on equivalence
classes (SPS-EQ) [34] and commitments. As we also avoid a trusted setup of the
commitment parameters, we do not require a CRS. We do however prove our
scheme secure under interactive hardness assumptions.

In SPS-EQ the message space is partitioned into equivalence classes and given a
signature on a message anyone can adapt the signature to a different representative
of the same class. SPS-EQ requires that after signing a representative a signer
cannot distinguish between an adapted signature for a new representative of the
same class and a fresh signature on a completely random message.

In our blind-signature scheme the obtainer combines a commitment to the
message with a normalization element yielding a representative of an equivalence
class (commit). She chooses a random representative of the same class (randomize),
on which the signer produces a signature. She then adapts the signature to the
original representative containing the commitment (derandomize), which can be
done without requiring the signing key. The blind signature is the rerandomized
(unlinkable) signature for the original representative plus an opening for the
commitment (open). Our contributions to blind signatures are the following:

– We propose a new approach to constructing blind signatures in the standard
model based on SPS-EQ. It yields conceptually simple and compact construc-
tions and does not rely on techniques such as complexity leveraging. Our blind
signatures are practical in terms of key size, signature size, communication
and computational effort (when implemented with known instantiations of
SPS-EQ [29], a blind signature consists of 5 bilinear-group elements).

– We provide the first construction of round-optimal partially blind signatures in
the standard model, which follow straightforwardly from our blind signatures
and are almost as efficient.

– We generalize our blind signature scheme to message vectors, which yields
one-show anonymous credentials à la “anonymous credentials light” [8]. We
thus obtain one-show anonymous credentials secure in the standard model
(whereas all previous ones have either no security proof or ones in the ROM).

SPS-EQ. We give the first structure-preserving signatures on equivalence classes
satisfying all security notions from [34] under non-interactive assumptions. (Un-
fortunately, the scheme does not have all the properties required for building
blind signatures from it, for which we strengthen the notions from [34].)

Moreover, we show how any SPS-EQ scheme can be turned into a standard
structure-preserving signature scheme. This transformation allows us to apply the
optimality criteria by Abe et al. [4,5] to SPS-EQ. We conclude that the scheme
from [29] is optimal in terms of signature size and verification complexity and
that it cannot be proven unforgeable under non-interactive assumptions.



2 Preliminaries

A function ε : N → R+ is negligible if ∀ c > 0 ∃ k0 ∀ k > k0 : ε(k) < 1/kc. By
a←R S we denote that a is chosen uniformly at random from a set S. We write
A(a1, . . . , an; r) to make the randomness r used by a probabilistic algorithm
A(a1, . . . , an) explicit. If G is an (additive) group then G∗ denotes G \ {0G}.

Definition 1 (Bilinear map). Let (G1,+), (G2,+), generated by P and P̂ ,
resp., and (GT , ·) be cyclic groups of prime order p. We call e : G1 ×G2 → GT a
bilinear map (pairing) if it is efficiently computable and the following holds:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp.
Non-degeneracy: e(P, P̂ ) 6= 1GT

, i.e., e(P, P̂ ) generates GT .

If G1 = G2, then e is symmetric (Type-1) and asymmetric (Type-2 or 3) otherwise.
For Type-2 pairings there is an efficiently computable isomorphism Ψ : G2 → G1;
for Type-3 pairings no such isomorphism is known. Type-3 pairings are currently
the optimal choice in terms of efficiency and security trade-off [21].

Definition 2 (Bilinear-group generator). A bilinear-group generator is a
polynomial-time algorithm BGGen that takes a security parameter 1κ and outputs
a bilinear group BG = (p,G1,G2,GT , e, P, P̂ ) consisting of groups G1 = 〈P 〉,
G2 = 〈P̂ 〉 and GT of prime order p with log2 p = κ and a pairing e : G1×G2 → GT .
In this work we assume that BGGen is a deterministic algorithm.3

Definition 3 (Decisional Diffie-Hellman assumption). Let BGGen be a
bilinear-group generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ).
The DDH assumption holds in Gi for BGGen if for all probabilistic polynomial-
time (PPT) adversaries A there is a negligible function ε(·) such that

Pr

[
b←R {0, 1}, BG = BGGen(1κ), r, s, t←R Zp
b∗ ← A

(
BG, rPi, sPi, ((1− b) · t+ b · rs)Pi

) : b∗= b

]
− 1

2
≤ ε(κ) .

Definition 4 ((Symmetric) external Diffie-Hellman assumption). The
XDH and SXDH assumptions hold for BGGen if the DDH assumption holds in
G1 and holds in both G1 and G2, respectively.

The next assumption is a static computational assumption derived from the
SXDH version of the q-Diffie-Hellman inversion assumption [21].

Definition 5 (Co-Diffie-Hellman inversion assumption). Let BGGen be a
bilinear-group generator that outputs BG = (p,G1,G2,GT , e, P1 = P, P2 = P̂ ).
The co-DHI∗i assumption holds for BGGen if for every PPT adversary A there is
a negligible function ε(·) such that

Pr
[
BG = BGGen(1κ), a←R Zp∗ : 1

aPi ← A(BG, aP1, aP2)
]
≤ ε(κ) .

3 This is e.g. the case for BN-curves [10]; the most common choice for Type-3 pairings.



co-DHI∗1 is implied by a variant of the decision linear assumption in asymmetric
groups stating that given (BG, (aPj , bPj)j∈[2], raP2, sbP2) for a, b, r, s←R Zp∗ it
is hard to distinguish T = (r + s)P2 from a random G2 element. (A co-DHI∗i
solver could be used to compute 1

aP1 and 1
bP1, which enables to check whether

e( 1
aP1, raP2) e( 1

bP1, sbP2) = e(P1, T ).) This holds analogously for co-DHI∗2.

Generalized Pedersen commitments. These are commitments to a vector
of messages m = (mi)i∈[n] ∈ Zn

p that consist of one group element. They are
perfectly hiding and computationally binding under the discrete-log assumption.

SetupP(1κ, n): Choose a group G of prime order p with log2 p = κ and n+ 1 dis-
tinct generators (Pi)i∈[n], Q and output parameters cpp← (G, p, (Pi)i∈[n], Q)
(which is an implicit input to the following algorithms).

CommitP(m; r): On input a vector m ∈ Zn
p and randomness r ∈ Zp, output a

commitment C ←
∑
i∈[n]miPi + rQ and an opening O ← (m, r).

OpenP(C,O): On input C ∈ G and O = (m, r), if C =
∑
i∈[n]miPi + rQ then

output m = (mi)i∈[n]; else output ⊥.

Remark 1. SetupP is typically run by a trusted party; it can however also be run
by the receiver since commitments are perfectly hiding.

2.1 Structure-Preserving Signatures on Equivalence Classes

Structure-preserving signatures (SPS) [3,4,18,6] can sign elements of a bilinear
group without requiring any prior encoding. In such a scheme public keys,
messages and signatures consist of group elements only and the verification
algorithm evaluates a signature by deciding group membership and evaluating
pairing-product equations (PPEs).

The notion of SPS on equivalence classes (SPS-EQ) was introduced by Hanser
and Slamanig [34]. Their initial instantiation turned out to only be secure against
random-message attacks (cf. [28] and the updated full version of [34]), but together
with Fuchsbauer [29] they subsequently presented a scheme that is unforgeable
under chosen-message attack (EUF-CMA) in the generic group model.

The concept of SPS-EQ is as follows. Let p be a prime and ` > 1; then Zp` is
a vector space and we can define a projective equivalence relation on it, which
propagates to Gi` and partitions Gi` into equivalence classes. Let ∼R be this
relation, i.e., for M,N ∈ Gi` : M ∼R N ⇔ ∃ s ∈ Z∗p : M = sN . An SPS-EQ

scheme signs an equivalence class [M ]R for M ∈ (G∗i )` by signing a representative
M of [M ]R. It then allows for switching to other representatives of [M ]R and
updating the signature without access to the secret key. An important property
of SPS-EQ is class-hiding, which roughly means that two message-signature pairs
corresponding to the same class should be unlinkable.

Here, we discuss the abstract model and the security model of such a signature
scheme, as introduced in [34].

Definition 6 (Structure-preserving signatures on equivalence classes).
An SPS-EQ scheme SPS-EQ on (G∗i )` (for i ∈ {1, 2}) consists of the following
PPT algorithms:



BGGenR(1κ), a bilinear-group generation algorithm, which on input a security
parameter κ outputs an asymmetric bilinear group BG.

KeyGenR(BG, `), on input BG and vector length ` > 1, outputs a key pair (sk, pk).

SignR(M, sk), given a representative M ∈ (G∗i )` and a secret key sk, outputs a
signature σ for the equivalence class [M ]R.

ChgRepR(M,σ, µ, pk), on input a representative M ∈ (G∗i )` of class [M ]R, a
signature σ on M , a scalar µ and a public key pk, returns an updated
message-signature pair (M ′, σ′), where M ′ = µ ·M is the new representative
and σ′ its updated signature.

VerifyR(M,σ, pk) is deterministic and, on input a representative M ∈ (G∗i )`, a
signature σ and a public key pk, outputs 1 if σ is valid for M under pk and 0
otherwise.

VKeyR(sk, pk) is a deterministic algorithm, which given a secret key sk and a
public key pk outputs 1 if the keys are consistent and 0 otherwise.

An SPS-EQ scheme must satisfy correctness, EUF-CMA security and class-hiding.

Definition 7 (Correctness). An SPS-EQ scheme SPS-EQ on (G∗i )` is correct
if for all κ ∈ N, all ` > 1, all key pairs (sk, pk)← KeyGenR(BGGenR(1κ), `), all
messages M ∈ (G∗i )` and all µ ∈ Zp∗: VKeyR(sk, pk) = 1,

Pr
[
VerifyR(M,SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), µ, pk), pk) = 1

]
= 1 .

In contrast to standard signatures, EUF-CMA security is defined with respect to
equivalence classes, i.e., a forgery is a signature on a message from an equivalence
class from which no message has been signed.

Definition 8 (EUF-CMA). An SPS-EQ scheme SPS-EQ is existentially un-
forgeable under adaptively chosen-message attacks, if for all PPT algorithms A
with access to a signing oracle O, there is a negligible function ε(·) such that:

Pr

BG← BGGenR(1κ),
(sk, pk)← KeyGenR(BG, `),
(M∗, σ∗)← AO(·,sk)(pk)

:
[M∗]R 6= [M ]R ∀M ∈ Q ∧
VerifyR(M∗, σ∗, pk) = 1

 ≤ ε(κ) ,

where Q is the set of queries that A has issued to the signing oracle O.

Class-hiding is defined in [34] and uses the following oracles and a list Q to keep
track of queried messages M .

ORM : Pick a message M ←R (G∗i )`, append it to Q and return M .

ORoR(M, sk, pk, b): Given message M , key pair (sk, pk) and bit b, return ⊥ if
M 6∈ Q. On the first valid call, record M and σ ← SignR(M, sk); if later
called on M ′ 6= M , return ⊥. Pick R←R (G∗i )` and µ←R Zp∗, set (M0, σ0)←
ChgRepR(M,σ, µ, pk) and (M1, σ1)← (R,SignR(R, sk)) and return (Mb, σb).



BGGenR(1κ): Generate a Type-3 bilinear group BG with order p of bitlength κ.

KeyGenR(BG, `): On input BG and vector length ` > 1, choose (xi)i∈[`]←R (Zp∗)`,
set sk← (xi)i∈[`], pk← (X̂i)i∈[`] = (xiP̂ )i∈[`] and output (sk, pk).

SignR(M, sk): Given a representative M = (Mi)i∈[`] ∈ (G∗1)` of class [M ]R and

secret key sk = (xi)i∈[`], choose y←R Zp∗ and output σ = (Z, Y, Ŷ ) with

Z ← y
∑
i∈[`] xiMi Y ← 1

y
P Ŷ ← 1

y
P̂

VerifyR(M,σ, pk): Given M = (Mi)i∈[`] ∈ (G∗1)`, σ = (Z, Y, Ŷ ) ∈ G1 × G∗1 × G∗2
and public key pk = (X̂i)i∈[`], output 1 if the following hold and 0 otherwise:∏

i∈[`] e(Mi, X̂i) = e(Z, Ŷ ) e(Y, P̂ ) = e(P, Ŷ )

ChgRepR(M,σ, µ, pk): Given representative M = (Mi)i∈[`] ∈ (G∗1)`, σ = (Z, Y, Ŷ ),
scalar µ ∈ Zp∗ and pk, return ⊥ if VerifyR(M,σ, pk) = 0. Otherwise pick
ψ←R Zp∗ and return (µM, σ′) with σ′ ←

(
ψµZ, 1

ψ
Y, 1

ψ
Ŷ
)
.

VKeyR(sk, pk): Given sk = (xi)i∈[`] ∈ (Zp∗)` and pk = (X̂i)i∈[`] ∈ (G∗2)`, output 1

if xiP̂ = X̂i ∀i ∈ [`] and 0 otherwise.

Scheme 1: EUF-CMA-secure construction of an SPS-EQ scheme

Definition 9 (Class-hiding). An SPS-EQ scheme SPS-EQ on (G∗i )` is called
class-hiding if for all ` > 1 and PPT adversaries A with oracle access to O ←
{ORM ,ORoR(·, sk, pk, b)} there is a negligible function ε(·) such that

Pr

[
BG← BGGenR(1κ), b←R {0, 1},
(st, sk, pk)←A(BG, `), b∗←AO(st, sk, pk)

:
b∗ = b ∧

VKeyR(sk, pk) = 1

]
− 1

2
≤ ε(κ) .

Fuchsbauer, Hanser and Slamanig [29] present an EUF-CMA-secure scheme,
which we give as Scheme 1, and prove the following.

Theorem 1. Scheme 1 is EUF-CMA secure against generic forgers and class-
hiding under the DDH assumption.

3 New Results on SPS-EQ

In the following, we present the first standard-model construction of SPS-EQ
as modeled in [34]. We then introduce new properties to characterize SPS-
EQ constructions, strengthening the notion of class-hiding. Finally, we show
how to turn any SPS-EQ construction into an SPS construction. This does
not only provide a new, efficient standard-model SPS scheme derived from our
SPS-EQ scheme; it also allows us to infer optimality of the SPS-EQ scheme
from [29], (Scheme 1) and the impossibility of basing its EUF-CMA security on
non-interactive assumptions.



BGGen′R(1κ): Output BG← BGGenR(1κ).

KeyGen′R(BG, `): Given BG and ` > 1, output (sk, pk)← KeyGenR(BG, `+ 2).

Sign′R(M, sk): Given M = (Mi)i∈[`] ∈ (G∗1)` and sk, choose (R1, R2)←R (G∗1)2,
compute τ ← SignR((M,R1, R2), sk) and output σ ← (τ,R1, R2).

Verify′R(M,σ, pk): Given M = (Mi)i∈[`] ∈ (G∗1)`, signature σ ← (τ, R1, R2) and pk,
return VerifyR((M,R1, R2), τ, pk).

ChgRep′R(M,σ, µ, pk): Given M = (Mi)i∈[`] ∈ (G∗1)`, σ ← (τ,R1, R2), µ ∈ Zp∗ and

pk, run ((M̃, R̃1, R̃2), τ̃)← ChgRepR((M,R1, R2), τ, µ, pk) and output (M̃, σ̃)
with σ̃ ← (τ̃ , R̃1, R̃2) (or ⊥ if ChgRepR output ⊥).

VKey′R(sk, pk): Return VKeyR(sk, pk).

Scheme 2: Standard-model SPS-EQ construction from Scheme 1

3.1 A Standard-Model SPS-EQ Construction

Following the approach by Abe et al. [4], we construct from scheme SPS-EQ, given
as Scheme 1, an SPS-EQ scheme SPS-EQ′, given as Scheme 2, and prove that it
satisfies EUF-CMA and class-hiding, both under non-interactive assumptions.

The scheme for `-length messages is simply Scheme 1 with message space
(G∗1)`+2, where before each signing two random group elements are appended to
the message. Scheme 2 features constant-size signatures (4 G1 + 1 G2 elements),
has public keys of size `+ 2 and still uses 2 PPEs for verification.

Unforgeability follows from a q-type assumption that states that Scheme 1 for
` = 2 is secure against random-message attacks. (That is, no PPT adversary, given
the public key and signatures on q random messages, can, with non-negligible
probability, output a message-signature pair for an equivalence class that was
not signed.) Class-hiding follows from class-hiding of Scheme 1. Both proofs can
be found in the full version.

3.2 Perfect Adaption of Signatures

We now introduce new definitions characterizing the output distribution of
ChgRepR, which lead to stronger notions than class-hiding. The latter only
guarantees that given an honestly generated signature σ on M , the output
(µM, σ′) of ChgRepR for a random µ looks like a random message-signature pair.
This however does not protect a user against a signer when the user randomizes
a pair obtained from the signer. We thus explicitly require that an adaption of
any valid (not necessarily honestly generated) signature is distributed like a fresh
signature.

Definition 10 (Perfect adaption of signatures). SPS-EQ on (G∗i )` perfectly
adapts signatures if for all tuples (sk, pk,M, σ, µ) with

VKeyR(sk, pk) = 1 VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗



ChgRepR(M,σ, µ, pk) and (µM,SignR(µM, sk)) are identically distributed.

We now show the relation between Def. 10 and 9. The following is proven
analogously to the proof of class-hiding of Scheme 1 in [29].

Proposition 1. Let SPS-EQ be an SPS-EQ scheme on (G∗i )`, ` > 1, with perfect
adaption of signatures. If M ←R [M ]R is computationally indistinguishable from
M ←R (G∗i )` then SPS-EQ is class-hiding.

Corollary 1. If the DDH assumption holds in Gi then any SPS-EQ scheme on
(G∗i )` satisfying Def. 10 is class-hiding (Def. 9).

We note that the converse is not true, as witnessed by Scheme 2: it satisfies
class-hiding, but the discrete logs of (R1, R2) contained in a signature σ have the
same ratio as those of (R̃1, R̃2) from the output of ChgRepR.

Maliciously chosen keys. Whereas Def. 10 strengthens Def. 9 in that it
considers maliciously generated signatures, the next definition strengthens this
further by considering maliciously generated public keys. As there might not
even be a corresponding signing key, we cannot compare the outputs of ChgRepR
to those of SignR. We therefore require that ChgRepR outputs a random element
that satisfies verification.

Definition 11 (Perfect adaption under malicious keys). SPS-EQ on (G∗i )`
perfectly adapts signatures under malicious keys if for all tuples (pk,M, σ, µ) with

VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗

we have that ChgRepR(M,σ, µ, pk) outputs (µM, σ′) such that σ′ is a random
element in the space of signatures, conditioned on VerifyR(µM, σ′, pk) = 1.

Proposition 2. Scheme 1, from [29], satisfies both Definitions 10 and 11.

Proof (sketch). For any M ∈ (G∗1)` and pk ∈ (G∗2)`, let (xi)i∈[`] be s.t. pk =

(xiP̂ )i∈[`]. A signature (Z, Y, Ŷ ) ∈ G1 ×G∗1 ×G∗2 satisfying VerifyR(M, (Z, Y, Ŷ ),

pk) = 1 must be of the form (Z = y
∑
xiMi, Y = 1

yP, Ŷ = 1
y P̂ ) for some y ∈ Zp∗.

ChgRepR outputs σ′ = (yψ
∑
xiµMi,

1
yψP,

1
yψ P̂ ), which is a random element in

G1 ×G∗1 ×G∗2 satisfying VerifyR(M,σ′, pk) = 1. ut

3.3 From SPS-EQ to (Rerandomizable) SPS Schemes

We now show how any EUF-CMA-secure SPS-EQ scheme that signs equivalence
classes of (G∗i )`+1 with ` > 0 can be turned into an EUF-CMA-secure SPS
scheme signing vectors of (G∗i )`. (We note that SPS schemes typically allow
messages from G1 and/or G2, which is preferable when used in combination
with Groth-Sahai proofs.) The transformation works by embedding messages
(Mi)i∈[`] ∈ (G∗i )` into (G∗i )`+1 as M ′ = ((Mi)i∈[`], P ) and signing M ′. To verify



a signature σ on a message (Mi)i∈[`] ∈ (G∗i )` under key pk, one checks whether
VerifyR(((Mi)i∈[`], P ), σ, pk) = 1.

What we have done is to allow only one single representative of each class,
namely the one with P as its last element, a procedure we call normalization.
EUF-CMA of the SPS-EQ states that no adversary can produce a signature on
a message from an unqueried class, which therefore implies EUF-CMA of the
resulting SPS scheme.

Moreover, from any SPS-EQ with perfect adaption of signatures the above
transformation yields a rerandomizable SPS scheme, since signatures can be
rerandomized by running ChgRepR for µ = 1 (Def. 10 guarantees that this
outputs a random signature). This also means that the lower bounds for SPS
over Type-3 groups given by Abe et al. in [4,5] carry over to SPS-EQ: any SPS
must use at least 2 PPEs for verification and must have at least 3 signature
elements, which cannot be from the same group. Moreover, EUF-CMA security
of optimal (that is, 3-element-signature) SPS-EQ schemes cannot be reduced to
non-interactive assumptions.

Finally, let us investigate the possibility of SPS-EQ in the Type-1 and Type-
2 pairing setting and implied lower bounds. Class-hiding requires the DDH
assumption to hold on the message space. This excludes the Type-1 setting, while
in Type-2 settings the message space must be (G∗1)`. In [6] Abe et al. identified
the following lower bounds for Type-2 SPS schemes with messages in G1: 2 PPEs
for verification and 3 group elements for signatures. The above transformation
converts a Type-2 SPS-EQ into a Type-2 SPS, hence these optimality criteria
apply to Type-2 SPS-EQ schemes as well.

Implications. Applying the above transformation to the SPS-EQ scheme
from [29] (Scheme 1) yields a perfectly rerandomizable SPS scheme in Type-3
groups with constant-size signatures of unilateral length-` message vectors and
public keys of size ` + 1. Scheme 1 is optimal as it only uses 2 PPEs and its
signatures consist of 3 bilateral group elements. Hence, by [5] there is no reduction
of its EUF-CMA security to a non-interactive assumption and the generic group
model proof in [29] is the best one can achieve.

Applying our transformation to Scheme 2 yields a new standard-model SPS
construction for unilateral length-` message vectors in Type-3 groups. It has
constant-size signatures (4 G1 + 1 G2 elements), a public key of size `+ 3 and
uses 2 PPEs for verification; it is therefore almost as efficient as the best known
direct SPS construction from non-interactive assumptions in [4], whose signatures
consist of 3 G1 +1 G2 elements. Scheme 2 is partially rerandomizable [3], whereas
the scheme in [4] is not.

4 Blind Signatures from SPS-EQ

We first present the abstract model for blind signature schemes. Security is
defined by unforgeability and blindness and was initially studied in [43,36] and
then strengthened in [26,45].



Definition 12 (Blind signature scheme). A blind signature scheme BS con-
sists of the following PPT algorithms:

KeyGenBS(1κ), on input a security parameter κ, returns a key pair (sk, pk).

(UBS(m, pk),SBS(sk)) are run by a user and a signer, who interact during execution.
UBS gets input a message m and a public key pk and SBS has input a secret
key sk. At the end UBS outputs σ, a signature on m, or ⊥ if the interaction
was not successful.

VerifyBS(m,σ, pk) is deterministic and given a message-signature pair (m,σ) and
a public key pk outputs 1 if σ is valid on m under pk and 0 otherwise.

A blind signature scheme BS must satisfy correctness, unforgeability and blindness.

Definition 13 (Correctness). A blind signature scheme BS is correct if for all
κ ∈ N, all (sk, pk)← KeyGenBS(1κ), all messagesm and σ ← (UBS(m, pk),SBS(sk))
it holds that VerifyBS(m,σ, pk) = 1.

Definition 14 (Unforgeability). BS is unforgeable if for all PPT algorithms
A having access to a signer oracle, there is a negligible function ε(·) such that:

Pr

[
(sk, pk)← KeyGenBS(1κ),

(m∗i , σ
∗
i )k+1
i=1 ←A(·,SBS(sk))(pk)

:
m∗i 6= m∗j ∀i, j ∈ [k+1], i 6= j ∧

VerifyBS(m∗i , σ
∗
i , pk)=1 ∀i ∈ [k+1]

]
≤ ε(κ) ,

where k is the number of completed interactions with the oracle.

There are several flavors of blindness. The strongest definition is blindness in the
malicious signer model [1,42], which allows the adversary to create pk, whereas
in the honest-signer model the key pair is set up by the experiment. We prove
our construction secure under the stronger notion, which was also considered by
the recent round-optimal standard-model constructions [31,30].

Definition 15 (Blindness). BS is called blind if for all PPT algorithms A with
one-time access to two user oracles, there is a negligible function ε(·) such that:

Pr


b←R {0, 1}, (pk,m0,m1, st)← A(1κ),

st← A(UBS(mb,pk),·)(1),(UBS(m1−b,pk),·)(1)(st),
Let σb and σ1−b be the resp. outputs of UBS,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1)← (⊥,⊥),
b∗ ← A(st, σ0, σ1)

: b∗= b

− 1

2
≤ ε(κ) .

4.1 Construction

Our construction uses commitments to the messages and SPS-EQ to sign these
commitments and to perform blinding and unblinding. Signing an equivalence class
with an SPS-EQ scheme lets one derive a signature for arbitrary representatives
of this class without knowing the private signing key. This concept provides an
elegant way to realize a blind signing process as follows.



KeyGenBS(1κ): Compute BG ← BGGenR(1κ), (sk, pkR)←R KeyGenR(BG, ` = 2),
pick q←R Zp∗ and set Q← qP , Q̂← qP̂ . Output (sk, pk = (κ, pkR, Q, Q̂)).

U (1)
BS (m, pk): Given pk = (κ, pkR, Q, Q̂) and m ∈ Zp, compute BG← BGGenR(1κ).

If Q = 0G1 or e(Q, P̂ ) 6= e(P, Q̂) then return ⊥; else choose s←R Zp∗ and r←R Zp
s.t. mP + rQ 6= 0G1 and output

M ← (s(mP + rQ), sP ) st← (BG, pkR, Q,M, r, s)

SBS(M, sk): Given M ∈ (G∗1)2 and secret key sk, output π ← SignR(M, sk).

U (2)
BS (st, π): Parse st as (BG, pkR, Q,M, r, s). If VerifyR(M,π, pkR) = 0, return ⊥.

Run ((mP +rQ, P ), σ)← ChgRepR(M,π, 1
s
, pkR) and output τ ← (σ, rP, rQ).

VerifyBS(m, τ, pk): Given m ∈ Zp∗, blind signature τ = (σ,R, T ) and pk =
(κ, pkR, Q, Q̂), with Q 6= 0G1 and e(Q, P̂ ) = e(P, Q̂), output 1 if the following
holds and 0 otherwise.

VerifyR((mP + T, P ), σ, pkR) = 1 e(T, P̂ ) = e(R, Q̂)

Scheme 3: Blind signature scheme from SPS-EQ

The signer’s key contains an element Q under which the obtainer makes a
Pedersen commitment C = mP + rQ to the message m. (Since the commitment
is perfectly hiding, the signer can be aware of q with Q = qP .) The obtainer
then forms a vector (C,P ), which can be seen as the canonical representative
of equivalence class [(C,P )]R. Next, she picks s←R Zp∗ and moves (C,P ) to a
random representative (sC, sP ), which hides C. She sends (sC, sP ) to the signer
and receives an SPS-EQ signature on it, from which she can derive a signature
on the original message (C,P ), which she can publish together with an opening
of C. As verification will check validity of the SPS-EQ signature on a message
ending with P , the unblinding is unambiguous.

Let us now discuss how the user opens the Pedersen commitment C = mP+rQ.
Publishing (m, r) directly would break blindness of the scheme (a signer could link
a pair M = (D,S), received during signing, to a signature by checking whether
D = mS + rqS). We therefore define a tweaked opening, for which we include
Q̂ = qP̂ in addition to Q = qP in the signer’s public key. We define the opening as
(m, rP ), which can be checked via the pairing equation e(C −mP, P̂ ) = e(rP, Q̂).
This opening is still computationally binding under the co-DHI∗1 assumption (in
contrast to standard Pedersen commitments, which are binding under the discrete-
log assumption). Hiding of the commitment still holds unconditionally, and we
will prove the constructed blind-signature scheme secure in the malicious-signer
model without requiring a trusted setup.

The scheme is presented as Scheme 3. (Note that for simplicity the blind
signature contains T = rQ instead of C.) Correctness follows by inspection.



4.2 Security

Theorem 2. If the underlying SPS-EQ scheme is EUF-CMA secure and the
co-DHI∗1 assumption holds then Scheme 3 is unforgeable.

The proof, which is given in the full version, follows the intuition that a forger must
either forge an SPS-EQ signature on a new commitment or open a commitment
in two different ways. The reduction has a natural security loss proportional to
the number of signing queries.

Blindness. For the honest-signer model, blindness follows from the DDH as-
sumption and perfect adaption of signatures (Def. 10) of the underlying SPS-EQ
scheme. Let Q← qP and let q be part of the signing key, and let (P, rP, sP, tP )
be a DDH instance. In the blindness game we compute M as (m · sP + q · tP, sP ).
When the adversary returns a signature on M , we must adapt it to the unblinded
message—which we cannot do as we do not know the blinding factor s. By perfect
adaption however, an adapted signature is distributed as a fresh signature on the
unblinded message, so, knowing the secret key, we can compute a signature σ
on (m · P + q · rP, P ) and return the blind signature (σ, rP, q · rP ). If the DDH
instance was real, i.e., t = s · r, then we perfectly simulated the game; if t was
random then the adversary’s view during issuing was independent of m.

For blindness in the malicious-signer model, we have to deal with two obstacles.
(1) We do not have access to the adversarially generated signing key, meaning we
cannot recompute the signature on the unblinded message. (2) The adversarially
generated public-key values Q, Q̂ do not allow us to embed a DDH instance for
blinding and unblinding.

We overcome (1) by using the adversary A itself as a signing oracle by
rewinding it. We first run A to obtain a signature on (s′(mP + rQ), s′P ), which,
knowing s′, we can transform into a signature on (mP+rQ, P ). We then rewind A
to the point after outputting its public key and run it again, this time embedding
our challenge. In the second run we cannot transform the received signature,
instead we use the signature from the first run, which is distributed identically,
due to perfect adaption under malicious keys (Def. 11) of the SPS-EQ scheme.

To deal with the second obstacle, we use an interactive variant of the DDH
assumption: Instead of being given P, rP, sP and having to distinguish rsP from
random, the adversary, for some Q of its choice, is given rP, rQ, sP and must
distinguish rsQ from random.

Definition 16 (Assumption 1). We assume that for all PPT algorithms A
there is a negligible function ε(·) such that:

Pr

 b←R {0, 1}, BG← BGGenR(1κ)

(st, Q, Q̂)← A(BG), r, s, t←R Zp
b∗←A(st, rP, rQ, sP, ((1−b)·t+ b·rs)Q)

:
e(Q, P̂ ) = e(P, Q̂)

b∗ = b

− 1

2
≤ ε(κ) .

Proposition 3. The assumption in Def. 16 holds in generic groups and reaches
the optimal, quadratic simulation-error bound.



Theorem 3. If the underlying SPS-EQ scheme has perfect adaption of signatures
under malicious keys and Assumption 1 holds then Scheme 3 is blind.

The proofs can be found in the full version.

4.3 Discussion

Basing our scheme on non-interactive assumptions. Fischlin and Schröder
[27] show that the unforgeability of a blind-signature scheme cannot be based on
non-interactive hardness assumptions if (1) the scheme has 3 moves or less, (2) its
blindness holds statistically and (3) from a transcript one can efficiently decide
whether the interaction yielded a valid blind signature. Our scheme satisfies (1)
and (3), whereas blindness only holds computationally.

They extend their result in [27] to computationally blind schemes that meet
the following conditions: (4) One can efficiently check whether a public key has a
matching secret key; this is the case in our setting because of group-membership
tests and pairings. (5) Blindness needs to hold relative to a forgery oracle. As
written in [27], this does e.g. not hold for Abe’s scheme [2], where unforgeability
is based on the discrete-log problem and blindness on the DDH problem.

This is the case in our construction too (as one can forge signatures by solving
discrete logarithms), hence the impossibility result does not apply to our scheme.
Our blind signature construction is black-box from any SPS-EQ with perfect
adaption under malicious keys (Def. 11). However, the only known such scheme
is the one from [29], which is EUF-CMA secure in the generic-group model, that
is, it is based on an interactive assumption. Plugging this scheme into Scheme 3
yields a round-optimal blind signature scheme with unforgeability under this
interactive assumption and co-DHI∗1, and blindness (under adversarially chosen
keys) under Assumption 1 (Def. 16), which is also interactive.

To construct a scheme under non-interactive assumptions, we would thus
have to base blindness on a non-interactive assumption; and find an SPS-EQ
scheme satisfying Def. 11 whose unforgeability is proven under a non-interactive
assumption.

Efficiency of the construction. When instantiating our blind-signature con-
struction with the SPS-EQ scheme from [29] (given as Scheme 1), which we
showed optimal, this yields a public key size of 1 G1 + 3 G2, a communication
complexity of 4 G1 + 1 G2 and a signature size of 4 G1 + 1 G2 elements. For a
80-bit security setting, a blind signature has thus 120 Bytes.

The most efficient scheme from standard assumptions is based on DLIN [30].
Ignoring the increase of the security parameter due to complexity leveraging,
their scheme has a public key size of 43 G1 elements, communication complexity
18 log2 q+ 41 G1 elements (where, e.g., we have log2 q = 155 when assuming that
the adversary runs in ≤ 280 steps) and a signature size of 183 G1 elements.

4.4 Round-Optimal Partially Blind Signatures

Partially blind signatures are an extension of blind signatures, where messages
contain common information γ, which is agreed between the user and the signer.



This requires slight modifications to the unforgeability and blindness notions:
An adversary breaks unforgeability if after k signing queries it outputs k + 1
distinct valid message-signature pairs for the same common information γ∗. In
the partial-blindness game m0 and m1 must have the same common information
γ to prevent the adversary from trivially winning the game. (Formal definitions
for partially blind signatures can be found in the full version.)

Construction. We construct a round-optimal partially blind signature scheme
PBS = (KeyGenPBS, (UPBS,SPBS),VerifyPBS) secure in the standard model from an
SPS-EQ scheme SPS-EQ by modifying Scheme 3 as follows. To include common
information γ ∈ Zp∗, SPS-EQ is set up for ` = 3. On input M ← (s(mP+rQ), sP ),

SPBS returns a signature for M ← (s(mP + rQ), γ · sP, sP ) and U (2)
PBS additionally

checks correctness of the included γ and returns ⊥ if this is not the case. Otherwise,
it runs ((mP + rQ, γP, P ), σ) ← ChgRepR(M,π, 1s , pk) and outputs signature
τ ← (σ, rP, rQ) for message m and common information γ. For this construction
we obtain the following, whose proofs are analogous to those for Scheme 3.

Theorem 4. If SPS-EQ is EUF-CMA secure and the co-DHI∗1 assumption holds,
then the resulting partially blind signature scheme is unforgeable.

Theorem 5. If SPS-EQ has perfect adaption under malicious keys and Assump-
tion 1 holds, then the resulting partially blind signature scheme is partially blind.

5 One-Show Anonymous Credentials from SPS-EQ

Baldimtsi and Lysyanskaya [8] introduced blind signatures with attributes and
show that they directly yield a one-show anonymous credential system in the vein
of Brands [15]. In contrast to Brands’ original construction, their construction
relies on a provably secure three-move blind signature scheme (in the ROM). In
this section we show how to construct two-move blind signatures on message
vectors, which straightforwardly yield anonymous one-show credentials that are
secure in the standard model.

5.1 Blind Signatures on Message Vectors

Our construction BSV of round-optimal blind signatures on message vectors
m ∈ Zn

p simply replaces the Pedersen commitment mP + rQ in Scheme 3 with
a generalized Pedersen commitment

∑
i∈[n]miPi + rQ. Thus, KeyGenBSV, on in-

put 1κ, n, additionally outputs generators (Pi)i∈[n] and VerifyBSV(m, (σ,R, T ), pk)

checks VerifyR((
∑
i∈[n]miPi + T, P ), σ, pkR) = 1 and e(T, P̂ ) = e(R, Q̂). Due to

space constraints, the construction BSV is detailed in the full version, where we
also show the following.

Theorem 6. If the underlying SPS-EQ scheme is EUF-CMA secure and the
co-DHI∗1 assumption holds then BSV is unforgeable.

Theorem 7. If the underlying SPS-EQ scheme has perfect adaption under ma-
licious keys and Assumption 1 holds then BSV is blind.



5.2 Anonymous Credentials Light

The intuition behind our construction is comparable to [8], which roughly works
as follows. In the registration phase, a user registers (once) a generalized Pedersen
commitment C to her attributes and gives a zero-knowledge (ZK) proof of the
opening (some attributes may be opened and some may remain concealed). In
the preparation and validation phase, the user engages in a blind-signature-with-
attributes protocol for some message m (which is considered the credential serial
number) and another commitment C ′. C ′ is a so-called combined commitment
obtained from C and a second credential-specific commitment provided by the
user. Finally, the credential is the user output of a blind-signature-with-attributes
protocol resulting in a signature on message m and a so-called blinded Pedersen
commitment C ′′. The latter contains the same attributes as C, but is unlinkable
to C and C ′. Showing a credential amounts to presenting C ′′ along with the
blind signature and proving in ZK a desired relation about attributes within C ′′.

Our construction combines BSV with efficient ZK proofs and is conceptually
simpler than the one in [8]. For issuing, the user sends the issuer a blinded version
M ← (sC, sP ) of a commitment C to the user’s attributes (M corresponds
to the blinded generalized Pedersen commitment in [8]). In addition, the user
engages in a ZK proof (denoted PoK) proving knowledge of an opening of C
(potentially revealing some of the committed attributes). The user obtains a
BSV-signature π on M and turns it into a blind signature σ for commitment C
by running ((C,P ), σ)← ChgRepR(M,π, 1s , pk). The credential consists of C, σ
and the randomness r used to produce the commitment. It is showed by sending
C and σ and proving in ZK a desired relation about attributes within C.

For ease of presentation, we only consider selective attribute disclosure below.
We note that proofs for a rich class of relations [24,20,17] w.r.t. generalized
Pederson commitments, as used by our scheme, could be used instead. Henceforth,
we denote by S the index set of attributes to be shown and by U those to
be withheld. During a showing, a ZK proof of knowledge for a commitment
C =

∑
i∈[n]miPi + rQ to attributes (mi)i∈[n] amounts to proving

PoKP

{(
(αj)j∈U , β

)
: C =

∑
i∈SmiPi +

∑
j∈U αjPj + βQ

}
. (1)

The proof for a blinded commitment (A,B) = (sC, sP ) during the obtain phase
is done as follows.

PoKBP

{(
(αj)j∈U , β, γ

)
:

A =
∑
i∈SmiHi +

∑
j∈U αjHj + βHQ ∧∧

i∈[n](Hi = γPi) ∧HQ = γQ ∧B = γP

}
. (2)

Here the representation is with respect to bases Hi = sPi, HQ = sQ, which are
published and guaranteed to be correctly formed by PoKBP.4

4 In the blindness game, given B = sP from a DDH instance, these bases are simulated
as Hj ← pjB and HQ ← qB. We can even prove security in the malicious-signer
model by extending the assumption from Def. 16: in addition to Q the adversary
outputs (Pi)i∈[n] and receives (sPi)i∈[n] and sQ.



Construction. As we combine scheme BSV with ZK proofs, we need the fol-
lowing conceptual modifications. The signature τ ← (σ,R, T ) reduces to τ ← σ,
since the user provides a ZK-PoK proving knowledge of the randomness r in C.
Moreover, verification takes C instead of m as verifiers have only access to the
commitment. Consequently, VerifyBSV of scheme BSV only runs VerifyR.

Setup. The issuer runs (sk, pk) ← KeyGenBSV(1
κ, n), where n is the number of

attributes in the system, and publishes pk as her public key.

Issuing. A user with attribute values m runs (M, st)← U (1)

BSV(m, pk; (s, r)) (where
(s, r) is the chosen randomness), sends the blinded commitment M = (sC, sP )
to the issuer and gives a proof PoKBP from (2) that M commits to m (where
the sets U and S depend on the application). The issuer returns π ← SBSV(M, sk)
and after running σ ← U (2)

BSV(st, π) (the outputs rP and rQ are not needed), the
user holds a credential (C, σ, r).

Showing. Assume a user with credential (C, σ, r) to the attributes m = (mi)i∈[n]
wants to conduct a selective showing of attributes with a verifier who holds the
issuer’s public key pk. They engage in a proof PoKP from (1) and the verifier
additionally checks the signature for the credential by running VerifyBSV(C, σ, pk).
If both verifications succeed, the verifier accepts the showing.

Let us finally note that there is no formal security model for one-show credentials.
Theorem 2 in [8] informally states that a secure commitment scheme together
with a blind signature scheme with attributes implies a one-show credential
system. Using the same argumentation as [8], our construction yields a one-show
credential system in the standard model.
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