
Constant-Round Concurrent Zero-knowledge
from Indistinguishability Obfuscation

Kai-Min Chung1, Huijia Lin2, Rafael Pass3

1 Academia Sinica
kmchung@iis.sinica.edu.tw

2 University of California, Santa Barbara
rachel.lin@cs.ucsb.edu

3 Cornell University
rafael@cs.cornell.edu

Abstract. We present a constant-round concurrent zero-knowledge pro-
tocol for NP. Our protocol relies on the existence of families of collision-
resistant hash functions, one-way permutations, and indistinguishability
obfuscators for P/poly (with slightly super-polynomial security).

1 Introduction

Zero-knowledge (ZK) interactive proofs [30] are paradoxical constructs that al-
low one player (called the Prover) to convince another player (called the Verifier)
of the validity of a mathematical statement x ∈ L, while providing zero addi-
tional knowledge to the Verifier. Beyond being fascinating in their own right,
ZK proofs have numerous cryptographic applications and are one of the most
fundamental cryptographic building blocks.

The notion of concurrent zero knowledge, first introduced and achieved in the
paper by Dwork, Naor and Sahai [24], considers the execution of zero-knowledge
proofs in an asynchronous and concurrent setting. More precisely, we consider a
single adversary mounting a coordinated attack by acting as a verifier in many
concurrent executions (called sessions). Concurrent ZK proofs are significantly
harder to construct and analyze. Since the original protocol by DNS Dwork, Naor
and Sahai (which relied on “timing assumptions”), various other concurrent ZK
protocols have been obtained based on different set-up assumptions (e.g., [25,
22]), or in alternative models (e.g., super-polynomial-time simulation [44, 53]).

In the standard model, without set-up assumptions (the focus of our work),
Canetti, Kilian, Petrank and Rosen [14] (building on earlier works by [38, 58])
show that concurrent ZK proofs for non-trivial languages, with “black-box” sim-
ulators, require at least Ω̃(log n) number of communication rounds. Richardson
and Kilian [56] constructed the first concurrent ZK argument in the standard
model without any extra set-up assumptions. Their protocol, which uses a black-
box simulator, requires O(nε) number of rounds. The round-complexity was later
improved in the work of Kilian and Petrank (KP) [37] to Õ(log2 n) round. More
recent work by Prabhakaran, Rosen and Sahai [55] improves the analysis of

the KP simulator, achieving an essentially optimal, w.r.t. black-box simulation,
round-complexity of Õ(log n); see also [52] for an (arguably) simplified and gen-
eralized analysis.

The central open problem in the area is whether a constant-round concurrent
ZK protocol (for a non-trivial language) can be obtained. Note that it could very
well be the case that all “classic” zero-knowledge protocols already are concur-
rent zero-knowledge; thus, simply assuming that those protocols are concurrent
zero-knowledge yields an assumption under which constant-round concurrent
zero-knowledge (trivially) exists—in essence, we are assuming that for every
attacker a simulator exists. Furthermore, as shown in [33] (and informally dis-
cussed in [16]) under various “extractability” assumptions of the knowledge-of-
exponent type [21, 34, 8], constant-round concurrent zero-knowledge is easy to
construct. But such extractability assumptions also simply assume that for every
attacker, a simulator (in essence, “the extractor” guaranteed by the extractabil-
ity assumption) exists. In particular, an explicit construction of the concurrent
zero-knowledge simulator is not provided—it is simply assumed that one exists.
For some applications of zero-knowledge such as deniability (see e.g., [24, 44]),
having an explicit simulator is crucial. Rather, we are here concerned with the
question of whether constant-round concurrent zero-knowledge, with an explicit
simulator, exits.

1.1 Towards Constant-round Concurrent Zero-Knowledge

Recently, the authors [16] provided a first construction a constant-round concur-
rent zero-knowledge protocol with an explicit simulator, based on a new crypto-
graphic hardness assumption—the existence of so-called P-certificates, roughly
speaking, succinct non-interactive arguments for languages in P. An issue with
their approach, however, is we only have candidate constructions of P-certificates
that are sound against uniform polynomial-time attackers (as opposed to non-
uniform ones), and the protocol of [16] inherits the soundness property of the
underlying P-certificate. Additionally, whereas the assumption that a particular
proof system is a P-certificates is a falsifiable assumption [54, 42], it is unclear
whether the existence of P-certificates itself can be based on some more natural
hardness assumptions.

A very recent elegant work by Pandey, Prabhakaran and Sahai [43] takes
a different approach and instead demonstrates the existence of constant-round
concurrent zero-knowledge protocol with an explicit simulator based on the ex-
istence of differing-input obfuscation (diO) for (restricted classes of) P/poly [6,
11, 1]. Whereas the assumption that a particular scheme is a diO is an “ex-
tractability” assumption (similar in flavor to knowledge-of-exponent type [21,
34, 8] assumptions), the intriguing part of the scheme of Pandey et al [43] is that
the extractability assumption is only used to prove soundness of the protocol;
concurrent zero-knowledge is proved in the “standard” model, through providing
an explicit simulator. Nevertheless, diO is a strong and subtle assumption—as
shown by recent work [12, 27, 36]; unless we restrict the class of programs for

which diO should hold, we may end up with a notion that is unsatisfiable. Ad-
ditionally, there are currently no known approaches for basing diO on more
“natural” (or in fact any) hardness (as opposed to extractability) assumption.

1.2 Our Results

In this paper, we combine the above-mentioned two approaches. Very roughly
speaking, we will use obfuscation to obtain a variant of the notion of a P-
certificate, and we next show that this variant still suffices to obtain constant-
round concurrent zero-knowledge (where the soundness conditions holds also
against non-uniform PPT attackers). More importantly, rather than using diO,
we are able to use indistinguishability obfuscation (iO) [6, 26]. Following the
groundbreaking work of Garg et al [26], there are now several candidate con-
structions of iO that can be based on hardness assumptions on (approximate)
multilinear maps [51, 29].

Theorem 1. Assume the existence of indistinguishability obfuscation for P/poly
(with slightly super-polynomial security), one-way permutations (with slightly
super-polynomial security) and collision-resistant hash function. Then there ex-
ists a constant-round concurrent zero-knowledge argument for NP.

In more details, our approach proceeds in the following steps:

1. We first observe that a warm-up case considered in [16]—which shows the
existence of constant-round concurrent zero-knowledge based on, so-called,
unique P-certificates (that is, P-certificates for which there exists at most
one accepting certificate for each statement) directly generalizes also to
unique P-certificates in the Common Random String model (a.k.a. the Uni-
form Random String model (URS)) satisfying an adaptive soundness prop-
erty (where the statement to be proved can be selected after the URS).

2. We next show that by appropriately modifying the protocol, we can handle
also unique P-certificates in the URS model satisfying even just a “static”
soundness condition (where the statement needs to be selected before the
URS is picked), and additionally also unique P-certificates (with static sound-
ness) in the Common Reference String (CRS) model, where the reference
string no longer is required to be uniform. Unique P-certificates in the CRS
model (also with non-uniform soundness) can be constructed based on the
existence of diO for (a restricted class of) P/poly [12], and as such this pre-
liminary step already implies the result of [43] in a modular way (but with
worse concrete round complexity).

3. We next show how to use fully homomorphic encryption (FHE) [57, 28] and
iO to modify the protocol to handle also two-round unique P certificates.
Two-round P-certificates are a generalization of P-certificates in the CRS
model, where we allow the CRS (i.e., the “first message” from the verifier to
the prover) to depend on the statement to be proven.

4. We finally leverage recent results on delegation of computation based on iO
from [9, 13, 39] and show that the beautiful scheme of Koppula, Lewko and
Waters [39] can be modified into a two-message unique P-certificate (also
with non-uniform soundness).
More precisely, we show that any “succint” message hiding encoding [39],
which is a relaxed version of a “succint” randomized encoding [35, 9], together
with injective one-way functions yields a two-round unique P-certificate. [39]
shows how to construct succint message-hiding encodings based on iO and
injective PRGs.

The above steps show how to obtain constant-round concurrent ZK based
on collision-resistant hashfunctions, iO for P/poly, one-way permutations, and
FHE. We finally observe that the message-hiding encoding of [39] has a particular
nice structure that enables us to refrain from using FHE in the final protocol,
thus reaching our final theorem.

1.3 Outline of Our Techniques

We here provide a detailed outline of our techniques. As mentioned, our con-
struction heavily relies on a “warm-up” case of the construction of [16], which
we start by recalling (closely following the description in [16]). The starting
point of the construction of [16] is the construction is Barak’s [2] non-black-box
zero-knowledge argument for NP. Below, we briefly recall the ideas behind his
protocol (following a slight variant of this protocol due to [47]).

Barak’s protocol. Roughly speaking, on common input 1n and x ∈ {0, 1}poly(n),
the Prover P and Verifier V , proceed in two stages. In Stage 1, P starts by send-
ing a computationally-binding commitment c ∈ {0, 1}n to 0n; V next sends a
“challenge” r ∈ {0, 1}2n. In Stage 2, P shows (using a witness indistinguishable
argument of knowledge) that either x is true, or there exists a “short” string
σ ∈ {0, 1}n such that c is a commitment to a program M such that M(σ) = r.4

Soundness follows from the fact that even if a malicious prover P ∗ tries to
commit to some program M (instead of committing to 0n), with high probability,
the string r sent by V will be different from M(σ) for every string σ ∈ {0, 1}n.
To prove ZK, consider the non-black-box simulator S that commits to the code
of the malicious verifier V ∗; note that by definition it thus holds that M(c) = r,
and the simulator can use σ = c as a “fake” witness in the final proof. To
formalize this approach, the witness indistinguishable argument in Stage 2 must
actually be a witness indistinguishable universal argument (WIUA) [41, 4] since
the statement that c is a commitment to a program M of arbitrary polynomial-
size, and that M(c) = r within some arbitrary polynomial time, is not in NP.

4 We require that C is a commitment scheme allowing the committer to commit to
an arbitrarily long string m ∈ {0, 1}∗. Any commitment scheme for fixed-length
messages can easily be modified to handle arbitrarily long messages by asking the
committer to first hash down m using a collision-resistant hash function h chosen
by the receiver, and next commit to h(m).

Now, let us consider concurrent composition. That is, we need to simulate the
view of a verifier that starts poly(n) concurrent executions of the protocol. The
above simulator no longer works in this setting: the problem is that the verifier’s
code is now a function of all the prover messages sent in different executions.
(Note that if we increase the length of r we can handle a bounded number of
concurrent executions, by simply letting σ include all these messages).

So, if the simulator could commit not only to the code of V ∗, but also to a
program M that generates all other prover messages, then we would seemingly
be done. And at first sight, this doesn’t seem impossible: since the simulator S
is actually the one generating all the prover messages, why don’t we just let M
be an appropriate combination of S and V ∗? This idea can indeed be imple-
mented [47, 50], but there is a serious issue: if the verifier “nests” its concurrent
executions, the running-time of the simulation quickly blows up exponentially—
for instance, if we have three nested sessions, to simulate session 3 the simulator
needs to generate a WIUA regarding the computation needed to generate a WIUA
for session 2 which in turn is regarding the generation of the WIUA of session 1
(so even if there is just a constant overhead in generating a WIUA, we can handle
at most log n nested sessions).

Unique P-certificates to The Rescue: The “Warm-Up” Case [16]. As
shown in [16], the blow-up in the running-time can be prevented using Unique
P-certificates. Roughly speaking, we say that (P, V) is a P-certificate system
if (P, V) is a non-interactive proof system (i.e., the prover send a single mes-
sage to the verifier, who either accepts or rejects) allowing an efficient prover to
convince the verifier of the validity of any deterministic polynomial-time com-
putation M(x) = y using a “certificate” of some fixed polynomial length (inde-
pendent of the size and the running-time of M) whose validity the verifier can
check in some fixed polynomial time (independent of the running-time of M).
The P-certificate system is unique if there exists at most one accepted proof for
any statement.

The protocol proceeds just as Barak’s protocol except that Stage 2 is modified
as follows: instead of having P prove (using a WIUA) that either x is true, or
there exists a “short” string σ ∈ {0, 1}2n such that c is a commitment to a
program M such that M(σ) = r, we now ask P to prove (using a WIUA again)
that either x is true, or

– commitment consistency: c is a commitment to a program M1, and
• input certification: there exists a vector λ = ((1, π1), (2, π2), . . .) and a

vector of messages m such that πj certifies that M1(λ<j) outputs mj in
its j’th communication round, where λ<j = ((1, π1), . . . , (j − 1, πj−1)),
and

• prediction correctness: there exists a P-certificate π of length n demon-
strating that M1(λ) = r.

Soundness of the modified protocol, roughly speaking, follows since by the unique
certificate property, for every program M1 it inductively follows that for every j,
mj is uniquely defined, and thus also the unique (accepting) certificate πj certi-
fying M1(λ<j) = mj ; it follows that M1 determines a unique vector λ that passes

the input certification conditions, and thus there exists a single r that make M1

also pass the prediction correctness conditions. Note that we here inherently
rely on the fact that the P-certificate is unique to argue that the sequence λ
is uniquely defined. (Technically, we here need to rely on a P-certificate that
is sound for slightly super-polynomial-time as there is no a-priori polynomial
bound on the running-time of M1, nor the length of λ.)

To prove zero-knowledge, roughly speaking, our simulator will attempt to
commit to its own code in a way that prevents a blow-up in the running-time.
Recall that the main reason that we had a blow-up in the running-time of the
simulator was that the generation of the WIUA is expensive. Observe that in
the new protocol, the only expensive part of the generation of the WIUA is
the generation of the P-certificates π; the rest of the computation has a-priori
bounded complexity (depending only on the size and running-time of V ∗). To
take advantage of this observation, we thus have the simulator only commit to
a program that generates prover messages (in identically the same way as the
actual simulator), but getting certificates π as input.

In more detail, to describe the actual simulator S, let us first describe two
“helper” simulators S1, S2. S1 is an interactive machine that simulates prover
messages in a “right” interaction with V ∗. Additionally, S1 is expecting some
“external” messages on the “left”—looking forward, these “left” messages will
later be certificates provided by S2.

S1 proceeds as follows in the right interaction. In Stage 1 of every session i,
S1 first commits to a machine S̃1(j′, τ) that emulates an interaction between S1

and V ∗, feeding S1 input τ as messages on the left, and finally S̃1 outputs the
verifier message in the j′’th communication round in the right interaction with
V ∗. (Formalizing what it means for S1 to commit to S̃1 is not entirely trivial
since the definition of S̃1 depends on S1; we refer the reader to the formal proof
for a description of how this circularity is broken.5) S1 next simulates Stage 2
by checking if it has received a message (j, πj) in the left interaction, where j is
the communication round (in the right interaction with V ∗) where the verifier
sends its random challenge and expects to receive the first message of Stage 2; if
so, it uses M1 = S̃1 (and the randomness it used to commit to it), j and σ being
the list of messages received by S1 in the left interaction, as a ”fake” witness to
complete Stage 2.

The job of S2 is to provide P-certificates πj for S1 allowing S1 to complete
its simulation. S2 emulates the interaction between S1 and V ∗, and additionally,
at each communication round j, S2 feeds S1 a message (j, πj) where πj is a P-

certificate showing that S̃1(j, σ<j) = rj , where σ<j is the list of messages already
generated by S2, and rj is the verifier message in the j’th communication round.
Finally, S2 outputs its view of the full interaction.

The actual simulator S just runs S2 and recovers from the view of S2 the
view of V ∗ and outputs it. Note that since S1 has polynomial running-time,
generating each certificate about S̃1 (which is just about an interaction between

5 Roughly speaking, we let S1 take the description of a machine M as input, and we
then run S1 on input M = S1.

S1 and V ∗) also takes polynomial time. As such S2 can also be implemented in
polynomial time and thus also S.

Finally, indistinguishability of this simulation, roughly speaking, follow from
the hiding property of the commitment in Stage 1, and the WI property of the
WIUA in Stage 2. (There is another circularity issue that arises in formalizing
this—as S1 in essence needs to commit to its own randomness—but it can be
dealt with as shown in [16, 15]; in this overview, we omit the details as they are
not important for our modifications to the protocol, but they can be found in
the formal proof.)

Generalizing to Unique P-certificates in CRS model. The key technical
contribution in [16] was to generalize the above approach to deal also with “non-
unique” P-certificates. Here we instead aim to generalize the above approach to
work with P-certificates in the CRS model, but still relying on the uniqueness
property.

Let us first note that if we had access to unique P-certificate in the URS (i.e.,
the uniform reference string) model satisfying an adaptive soundness property
(where the statement to be proved can be selected after the URS, then above-
mentioned protocol can be almost directly generalized to work with them (as
opposed to using unique P-certificates in the “plain” model) by simply having
the Verifier send the URS ρ along with its first message of the protocol.6 The only
issue that needs to be addressed in implementing this change is to specify what
it means that “πj certifies that M1(λ<j) outputs mj” in the input certification
step in Stage 2, since this certification needs to be done with respect to some
URS. We modify Stage two to require that M1 outputs not only messages mi,
but also reference strings ρi. Let us remark that to ensure that soundness still
holds, we require the P-certificate system to satisfy a strong uniqueness property:
uniqueness of accepting proofs needs to hold for all reference strings ρ.

We next note that the protocol can be further generalized to handle also
unique P-certificates in the URS model satisfying even just a static soundness
condition (where the statement needs to be selected before the URS is picked)
by proceeding as follows:

– We add a Stage 1.5 to the protocol where the Prover is asked to provide
a commitment c2 to 0n and then asked to provide a WIUARG that either
x ∈ L or c2 is a commitment to a “well-formed” statement (but not that the
statement is true) for the P-certificate in use in Stage 2.

– Stage 2 of the protocol is then modified to first have the Verifier send the URS
for the P-certificate, and then requiring that the prover uses a P-certificate
for the statement committed to in c2. In other words, we require the Prover
to commit in advance, and prove knowledge of, the statement to be used in
the P-certificate and thus static soundness suffices.

6 To make this work, we need to rely on P-certificates in the URS model with perfect
completeness. This requirement can be removed by additionally performing a coin-
tossing to determine the URS. For simplicity of exposition, we here simply assume
perfect completeness.

Additionally, this approach generalizes also to deal with unique P-certificates
in the Common Reference String (CRS) model (where the reference string no
longer needs to be uniform), by having the Verifier provide a zero-knowledge
proof that the CRS was well-formed.7 Let us again remark that to ensure that
soundness still holds, we require the uniqueness property of the P-certificate
system to hold for all reference strings ρ, even invalid ones.

Generalizing to Two-round Unique P-certificates. The notion of a P-
certificate in the CRS model requires that the same CRS can be used to prove
any statement q of any (polynomially-related) length. We will now consider a
weaker notion of a P-certificate in the CRS model, where the CRS is “statement-
dependent”—that is, the CRS is generated as a function of the statement q to be
proved. (On the other hand, while we allow the CRS to depend on the statement
q, we require the length of the CRS to the independent of the lenght of q.) In
essence, we are considering two-round publicly-verifiable delegation protocols.
We refer to such schemes as two-round P-certificates. We now generalize the
above approach to work with unique two-round P-certificates.

– Instead of having the Verifier send the CRS in the clear (which it cannot
compute as it does not know the statement q on which it will be run), it
simply send an FHE encryption α̂ of random coins α needed to run the CRS
generation. (Using PRGs, we may assume wlog that the lenght of α is n.)

– The Prover is then asked to provide a third commitment c3 to 0n and provide
a WIUARG that either x ∈ L or c3 is a commitment to an FHE encryption
ρ̂ obtained by running the CRS-generation procedure (using the appropriate
FHE operations) on the ciphertext α̂. (That is, ρ̂ is an encryption of the CRS
ρ obtained by running the CRS generation algorithm with random coins α.)

– Next, the Verifier sends an indistinguishability obfuscation Π̃ = iO(Π) of
a program Π that on input a decommitment (ρ̂, r′) to c3 decrypts ρ̂ (using
the FHE secret key) into a CRS ρ and outputs it. (The reason that the
Verifier cannot simply decrypt ρ̂ for the Prover is that ρ̂ cannot be sent to
the Verifier in the clear; recall that the honest prover will never compute
any such ciphertext, it is meant to commit to 0n and prove that x ∈ L.)
Additionally, the verifier gives a zero-knowledge proof that the obfuscation
is correctly computed.

– Then, the Prover provides a commitment c4 to 0n and provides a WI proof
of knowledge that x ∈ L or c4 is a commitment to a CRS ρ computed by
applying the obfuscated code Π̃ to a proper decommitment of c3.

– Finally, in Stage 2 of the protocol, we require the Prover to provide P-
certificates w.r.t to the CRS ρ committed to in c4.

Note that if c3 is perfectly binding, then by iO security of the obfuscation,
we can replace Π with a program that has the CRS ρ hardcoded (without any

7 Again, we here rely on P-certificates in the CRS model with perfect completeness.
This requirement can also be avoided by having the prover and the verifier per-
form coin-tossing-in-the-well to determine the secret coins the verifier should use
for generating the CRS. As our instantiations of P-certificates will satisfy perfect
completeness, we do not further formalize this approach.

knowledge of the random coins α used to generate ρ), and this suffices for arguing
that soundness of the protocol still holds. On the other hand, the simulation can
proceed just as before except that the simulator now uses the obfuscated code
Π̃ to generate the CRS ρ and commits to it in c4.

Realizing Unique Two-Round P-Certificates. We finally leverage recent
results on delegation of computation based on iO from [9, 13, 39] and show that
the beautiful scheme of Koppula, Lewko and Waters [39] can be massaged (and
slightly modified) into a two-message unique P-certificate. More precisely, we
show how to use the notion of a “succint” message hiding encoding [39]—a re-
laxed version of a “succint” randomized encoding [35, 9]—together with injective
one-way functions to construct a two-round unique P-certificate. [39] shows how
to construct succint message-hiding encodings (in fact, even succint randomized
encodings) based on iO for P/poly and injective PRGs.

Let is point out that, just as [16], our protocol requires the use of P-certificates
that satisfy a slightly strong soundness condition—namely, we require soundness
to hold against circuits of size T (·) where T (·) is some “nice” (slightly) super-
polynomial function (e.g., T (n) = nlog log logn). To achieve such (delegatable)
P-certificates, we thus rely on iO for P/poly secure against T (·)-size circuits.

Removing the use of FHE. In a final step, we note that by relying on specific
nice properties of the message-hiding encoding of [39], we obtain a two-round
P-certificate satisfying a desirable property: Only a “small” part of the CRS
generation procedure relies on secret coins. More precisely, the CRS generation
procedure proceeds in three steps: 1) first, secret coins are used to generate a
public parameter PP and a secret parameter K (this is done independently
of the statement q), 2) next, only PP is used to deterministically process the
statement q into a “short” digest d (independent of the length of q), and 3) the
digest d and the secret parameter K is efficiently processed to finally generate the
CRS (independent of the length of q). To emphasize, only step 2 requires work
proportional to the length of q, but this work only requires public information.

We refer to such schemes as deletegable P-certificates in the CRS model and
note that if we rely on such a scheme, then we can dispense the need for FHE in
our final protocol, as the computation of the disgest can be directly delegated
to the prover without the need of FHE.

This completes the informal description of our protocol and its proof of se-
curity. In our formal description of the final protocol, for simplicity, we directly
present a solution using such delegetable P-certificates (without going through
the construction using FHE). As mentioned above, the above description ig-
nores certain subtleties required to prevent circularities in the simulation and
the proof of security. To deal with these issue (already considered in [16]) as
well as to streamline the description of the final protocol (to enable a better
concrete round-complexity) the formal description slightly difference from what
is outlined above.

Other Related Works. Since the work of Barak [2], non-black-box simulation
techniques have been used in several other contexts: Non-malleability [3, 45, 48,

49], concurrent secure computation [40, 46, 45, 7], resettable-soundness [5, 23, 10,
18, 20, 17], covert secure computation [32] and more. We believe our techniques
may yield improved constructions also in these settings.

We also mention recent work of [15, 31] that constructs public-coin concur-
rent zero-knowledge protocols using non-black-box simulation; these protocols
are not constant-round but instead rely on “standard” assumptions. Let us fi-
nally mention that the constant-round concurrent zero-knowledge protocol of
[16] (which relies on non-interactive P-certificates) actually also is public-coin,
whereas our protocol is not. We leave open the question of basing public-coin
concurrent zero-knowledge on iO.

Organization. In Section 2, we define unique two-message P-certificates, and
the property of delegatable CRS generation. We show how to instantiate them
using message hiding encoding of [39] in the full version of the paper [19]. In
Section 3, we present our constant-round concurrent ZK protocol, and its simu-
lator. We refer the reader to the full version [19] for preliminaries and full proof
of our protocol.

2 Two-Message P-certificates

We consider the following canonical languages for P: for every constant c ∈ N , let
Lc = {(M,x, y) : M(x) = y within |x|c steps}. Let TM (x) denotes the running
time of M on input x.

Definition 1 (Two-Message P-certificate) A tuple of probabilistic interac-
tive Turing machines, (Gen,Pcert,Vcert), is a (Two-Message) P-certificate system
if there exist polynomials lCRS, lπ, and the following holds:

Syntax and Efficiency: For every c ∈ N , every q = (M,x, y) ∈ Lc, and every
k ∈ N , the verification of the statement proceed as follows:

CRS Generation: CRS
$← Gen(1k, c, q), where Gen runs in time poly(k, |q|).

The length of CRS is bounded by lCRS(k).

Proof Generation: π
$← Pcert(1

k, c, q,CRS), where Pcert runs in time
poly(k, |x|,min(TM (x), |x|c)) with TM (x) ≤ |x|c the running time of M
on input x. The length of the proof π is bounded by lπ(k).

Proof Verification: b = Vcert(1
k, c,CRS, q, π), where Vcert runs in time

poly(k, |q|).

(Perfect) Completeness: For every c, d ∈ N , there exists a negligible function
µ such that for every k ∈ N and every q = (M,x, y) ∈ Lc such that |q| ≤ kd,
the probability that in the above execution Vcert outputs 1 is 1.

Definition 2 (Selective Strong Soundness) We say that a P-certificate sys-
tem (Gen,Pcert,Vcert) is (selectively) strong sound if the following holds:
Strong Soundness: There exists some “nice” super-polynomial function (e.g.,
T (n) = nlog log logn) T (k) ∈ kω(1) and some “nice” super-constant function (e.g.,
C(k) = log log log n) C(·) ∈ ω(1) such that for every probabilistic algorithm P ∗

with running-time bounded by T (·), there exists a negligible function µ, such that,
for every k ∈ N , c ≤ C(k),

Pr

 (q, st)
$← P ∗(1k, c)

CRS
$← Gen(1k, c, q)

π
$← P ∗(st,CRS)

: Vcert(1
k, c,CRS, q, π) = 1 ∧ q 6∈ Lc

 ≤ µ(k)

Definition 3 (Uniqueness) We say that a P-certificate system (Gen,Pcert,Vcert)
is unique if for every k ∈ N , every constant c ∈ N , string CRS ∈ {0, 1}∗
and string q ∈ {0, 1}∗, there exists at most one string π ∈ {0, 1}∗, such that
Vcert(1

k, c,CRS, q, π) = 1.

Definition 4 (Delegatable CRS Generation) We say that a (two-message)
P-certificate (Gen,Pcert,Vcert) has delegatable CRS generation if the CRS gener-
ation algorithm Gen consists of three subroutines (Setup,PreGen,CRSGen), and
there are polynomials ld and lκ, such that, the following holds:
Delegatable CRS Generation: Gen(1k, c, q) proceeds in the following steps:

1. Generate parameters: (PP ,K)
$← Setup(1k, c), where Setup is proba-

bilistic and runs in time poly(k). We call PP the public parameter and K
the key.

2. (Public) statement processing: d = PreGen(PP , q), where PreGen is
deterministic and runs in time poly(k, |q|), and the length of d is bounded
by ld(k). We call d the digest of the statement.

3. (Private) CRS generation: κ
$← CRSGen(PP ,K, d), where CRSGen is

probabilistic and runs in time poly(k), and the length of κ is bounded by
lκ(k).

Finally, Gen outputs CRS = (PP , κ).

The reason that we say such a CRS generation procedure is delegatable is because
the only part of computation that depends on the statement is the statement
processing step; all other steps runs in time a fixed polynomial in the security
parameter. However, the statement processing step depends only on the public
parameter and the statement; hence to ensure soundness, one only needs to
ensure the correctness of this computation, without ensuring the “secrecy” of
the computation. Therefore, we also call this step “public” statement processing.

Simple Verification Procedure. Finally, we define an additional property of
P-certificates: We say that the verification algorithm of a P-certificate system is
simple if Vcert only depends on the security parameter 1k, the CRS CRS and the
proof π (independent of the statement q and the language index c). Naturally,
the uniqueness property of this instantiation is that for any 1k and CRS string
CRS, there is at most one unique accepting proof.

Instantiation of P-certificates. In the full version of the paper [19], we show
that unique two-message P certificates can be constructed from any “message
hiding encoding scheme” [39] and injective one-way functions. Furthermore, we
show that the P certificates instantiated using the specific message hiding encod-
ing of [39] has delegatable CRS generation and a simple verification procedure.

3 Our Protocol

Our constant-round concurrent ZK protocol relies on the following primitives:

1. A non-interactive perfectly binding commitment scheme com. We assume
without loss of generality that com only needs n bits of randomness to com-
mit to any n-bit string, (as it can always expand these n bits into a longer
sequence using a PRG).
The requirement for a perfectly binding commitment scheme can be weakened
to rely only on a statistically binding commitment scheme. See Remark 2 in
the full version of the paper [19] for more details.

2. A strong (two-message) P-certificate system (Gen,Pcert,Vcert) with delegat-
able CRS generation Gen = (Setup,PreGen,CRSGen) (and simple verifica-
tion). The strong soundness property is associated with parameter T (·)
and C(·), where T (·) is a “nice” super-polynomial function and C(·) is a
“nice” super-constant function. The uniqueness property ensures that for
every string CRS, there exists at most one proof π that is accepted by
Vcert(1

n,CRS, π) = 1. This allows us to define the following deterministic
oracle OnV cert, which will be used in the CZK protocol later.

OnV cert(CRS) =

{
π If there exists uniqueπ s.t. Vcert(1

n,CRS, π) = 1

⊥ otherwise

We call OnV cert the P-certificate oracle. Additionally, we consider a univer-
sal emulator Emulatorn that on input (P, x,O) emulates the execution of a
deterministic oracle machine P on input x with oracle OnV cert as follows:
It parses O as an vector; to answer the ith query CRSi from P , it checks
whether Oi is the right answer from this CRS (i.e., Vcert(1

n,CRSi, Oi) = 1);
if so, it returns Oi to P ; otherwise, it aborts and outputs ⊥. Finally, the
emulator outputs the output of P .
For simplicity, we assume that the lengths of the CRS, the proof π, and the
digest of statement d are all bounded by n, the security parameter. This is
without loss of generality, and can be achieved by scaling down the security
parameter.
We assume by default that the two message P-certificate system has a simple
verification procedure (i.e., Vcert depends only on 1k,CRS, π, but not the
statement); this is w.l.o.g., since our instantiation based on the message
hiding encoding of [39] satisfies this property. But this is not necessary. See
Remark 3 in the full version of the paper [19] on how to avoid using this
property.

3. A family of hash functions {Hn}n: to simplify the exposition, we here assume
that both com and {Hn}n are collision resistant against circuits of size T ′(·),
where T ′(·) is “nice” super-polynomial function.
As in [4], this assumption can be weakened to just collision resistance against
polynomial-size circuits by modifying the protocol to use a “good” error-
correcting code ECC (i.e., with constant distance and with polynomial-time

encoding and decoding), and replace commitments com(h(·)) with
com(h(ECC(·))). See Remark 1 in the full version of the paper [19] for more
discussion.

4. An indistinguishability obfuscator iO for circuits.
5. A constant-round WIUA argument system, a constant-round WISSP proof

system, and a constant-round ZK argument system.

Let us now turn to specifying the protocol (P, V). The protocol makes use of
three parameters: m(·) is a polynomial that upper bounds the number of concur-
rent sessions; Γ (·) is a “nice” super-polynomial function such that T (n), T ′(n) ∈
Γ (n)ω(1), and D(·) is a “nice” super-constant function such that D(n) ≤ C(n).
Let m = m(n), Γ = Γ (n) and D = D(n). In the description below, when dis-
cussing P-certificates, we always consider the language LD. For simplicity, below
we do not explicitly discuss about the length of the random strings used by var-
ious algorithms. The prover P and the verifier V , on common input 1n and x
and private input a witness w to P , proceed as follow:

Phase 1–Program Slot: P and V exchanges the following three messages.
(a) V chooses a randomly sampled hash function h← Hn.
(b) P sends a commitment c to 0n using com, and random coins ρ1.
(c) V replies with a random “challenge” r of length 4n.
We call (c, r) the program-slot.
Note: In simulation, the simulator commits to a program S̃1.

Phase 2—Commit to Statement: P and V exchanges the following mes-
sages.
(a) P sends a commitment c2 to 0n using com, and random coins ρ2.
(b) P gives a WIUA argument of the statement that either x ∈ L OR there

exists S̃1 ∈ {0, 1}Γ (n), j ∈ [m], s ∈ {0, 1}n, π ∈ {0, 1}n, σ ∈ {0, 1}Γ (n),
ρ, ρ2 such that,
Knowledge of Statement: c2 = com(h(q); ρ2), where q ∈ {0, 1}3Γ .
Correctness of Statement: The statement q satisfies

– Use of Emulator: q is parsed into (Emulatorn, (S̃1, (1
n, j, s), σ), r).

– Program Consistency: c = com(h(S̃1); ρ).
If the argument is not accepting, V aborts.

Note: By definition of the emulator Emulatorn, on input (S̃1, (1
n, j, s), σ),

it will emulate the execution of the deterministic oracle machine S̃1(1n, j, s)
with oracle OnV cert using answers stored in vector σ.
The purpose of this phase is twofold: First, it enforces a cheating prover
to commit to the “trapdoor” statement before the CRS of the P-certificate is
generated, and hence the soundness of the protocol only relies on the selective
soundness of the P-certificate. Second, it checks whether the “trapdoor” state-
ment has the right structure, in particular, the statement is about whether
S̃OV cert
1 (1n, j, s) = r, when the oracle is emulated by Emulatorn using σ, who

checks the correctness of the proofs in σ.
Note that the soundness of the protocol will crucially rely on the fact that
the input to S̃1 has length at most 3n, much smaller than the length, 4n, of
the output r (and the deterministic oracle OV cert is emulated correctly by

Emulatorn). On the other hand, in the simulation, the simulator will commit
to the “trapdoor” statement, q = (Emulatorn, (S̃1, (1

n, j, s), σ), r) in order to
“cheat”.

Phase 3—Delegate Public Statement Processing: V delegates the public
statement processing to P :

(a) V generates (PP ,K) = Setup(1n, D; ρSetup) using random coins ρSetup,
and sends PP .

(b) P sends a commitment c3 to 0n using com, and random coins ρ3.
(c) P gives a WIUA argument of the statement that either x ∈ L OR there

exists, d ∈ {0, 1}n, q ∈ {0, 1}3Γ , ρ2, ρ3, such that,
Statement Consistency: c2 = com(h(q); ρ2).
Digest Consistency: c3 = com(d; ρ3).
Correctness of Digest: d = PreGen(PP , q).
If the argument is not accepting, V aborts.

Note: The purpose of this Phase is to allow the verifier to delegate the
computation of the digest of the statement to P . In simulation, the simulator
will compute, commit to and prove correctness of d = PreGen(PP , q). V
cannot compute d itself, since (1) it does not know the “trapdoor” statement
q and (2) the computation takes poly(n, |q|), which is too expensive for the
verifier.

Phase 4—Delegate Private CRS Generation: V delegates the private CRS
generation to P :

(a) V sends the indistinguishability obfuscation Λ
$← iO(P) of program

P = Pn,c3,PP ,K,ρCRSGen with c4, K, and a random string ρCRSGen hard-
wired in. P on input (d′, ρ′) checks whether c3 = com(d′, ρ′) and outputs
κ = CRSGen(PP ,K, d; ρCRSGen) if it is the case, and ⊥ otherwise. The
functionality of P is described formally in Figure 1.

Circuit P = Pn,c3,PP ,K,ρCRSGen : On input (d′, ρ′) where d′ ∈ {0, 1}n and ρ′ ∈
{0, 1}n, does:

(a) Check if c3 = com(d′; ρ′); if not, output ⊥.
(b) Otherwise output κ = CRSGen(PP ,K, d′; ρCRSGen).

Circuit Q = Qn,c3,κ: On input (d′, ρ′) where d′ ∈ {0, 1}n and ρ′ ∈ {0, 1}n,
does:

(a) Check if c3 = com(d′; ρ′); if not, output ⊥.
(b) Otherwise output κ.

The above circuits are padded to their maximum size.

Fig. 1. Circuits used in the construction and proof of CZK protocol 〈P, V 〉

(b) V gives a ZK argument of the statement that there exists K ∈ {0, 1}n,
ρSetup, ρCRSGen, ρiO, such that,
Correctness of Public Parameter: (PP ,K) = Setup(1n, D; ρSetup).
Correctness of Obfuscation: Λ = iO(Pc3,PP ,K,ρCRSGen ; ρiO)
If the argument is not accepting, P aborts.

(c) P sends commitment c4 of 0n using com and random coins ρ4.
(d) P gives a WISSP proof of the statement that either x ∈ L OR there

exists CRS ∈ {0, 1}n, d′ ∈ {0, 1}n, ρ′, ρ4, such that,
CRS Consistency: c4 = com(CRS; ρ4).
Correctness of CRS: CRS = (PP , κ) and κ = P(d′, ρ′).
If the proof is not accepting, V aborts.

Note: The purpose of this Phase is to allow the verifier to delegate the
computation of CRS to P . In simulation, the simulator will compute, commit
to, and prove correctness of CRS = (PP , κ), with κ = P(d, ρ3). V cannot
compute κ itself, even though the computation takes only polynomial time in
n, since d cannot be revealed to V in order to ensure the indistinguishability
of the simulation. On the other hand, to ensure the “privacy” of the CRS
computation, V delegates this computation via obfuscation.

Phase 5—Final Proof: P gives the final proof:
(a) P gives a WISSP proof of the statement that either x ∈ L OR there

exists π ∈ {0, 1}n, CRS ∈ {0, 1}n, ρ4, such that,
CRS Consistency: c4 = com(CRS; ρ4),
Proof Verification: π verifies w.r.t. CRS, Vcert(1

n,CRS, π) = 1.
V accepts if the proof is accepting.

Note: In simulation, the simulator computes proof π
$← Pcert(1

k, D, q,CRS),
and succeed in the final proof by using π and CRS, ρ4 generated in the last
phase as “trapdoor” witness.

Theorem 1 Assume indistinguishability obfuscation for P/poly, an injective
pseudo-random generator, and collision resistant hash functions that are super-
polynomially secure. Then, the above protocol 〈P, V 〉 is a concurrent ZK argu-
ment system for NP.

The completeness of the protocol follows from the completeness of the WIUA ar-
gument of knowledge, WISSP, and the ZK argument. In the next subsection,
we describe the concurrent zero knowledge simulator. The analysis of the sim-
ulator and the proof of concurent ZK property, as well as the soundness proof,
are provided in the full version of the paper [19].

3.1 Contruction of the Simulator

The goal of our simulator is to try to “commit to its own code” and prove
about its own execution using P-certificates in a way that prevents a blow-
up in the running-time. Note that the only expensive part of this process is
the generation of the P-certificates π; the rest of the computation has a-priori
bounded complexity (depending only on the size and running-time of V ∗). To
take advantage of this observation, we thus have the simulator only commit to
an oracle program that generates prover messages (in identically the same way
as the actual simulator), but getting certificates π from the P-certificate oracle.

To describe the actual simulator S, let us first describe two “helper” simula-
tors S1, S2. Roughly speaking, S1 is an interactive machine that simulates prover

messages in a “right” interaction with V ∗. Additionally, S1 excepts to have ac-
cess to oracle OV cert on the “left”, in particular, at any point, it can send a CRS
string CRS and gets back the π = OV cert(CRS) the unique accepting certificate
w.r.t. this CRS (or ⊥, if such a certificate does not exist); the oracle will be
simulated by S2, who provides these “left” certificates.

Let us turn to a formal description of the S1 and S2. To simplify the expo-
sition, we assume w.l.o.g that V ∗ has its non-uniform advice z hard-coded, and
is deterministic (as it can always get its random tape as non-uniform advice).

On a high-level, S1(1n, x,M, s, `) acts as a prover in a “right” interaction,
communicating with a concurrent verifier V ∗, while accessing oracle on the “left”.
(The input x is the statement to be proved, the input M will later be instantiated
with the code of S1, and the input (s, `) is used to generate the randomness for
S1; s is the seed for the forward secure pseudorandom generator g, and ` is the
number of n-bit long blocks to be generated using g.) A communication round in
the “right” interaction with V ∗ refers to a verifier message (sent by V ∗) followed
by a prover message (sent by S1).

Procedure of simulator S1: Let us now specify how S1 generates prover

messages in its “right” interaction with V ∗. SOV cert
1 (1n, x,M, s, `) acts as follows:

Generate Randomness: Upon invocation, S1 generates its “random-tape” by
expanding the seed s; more specifically, let (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1)
be the output of g(s, `). We assume without loss of generality that S1 only
needs n bits of randomness to generate any prover message (it can always
expand these n bits into a longer sequence using a PRG); in order to generate
its jth prover message, it uses qj as randomness.

Simulate Phase 1–Commit to its own code: Upon receiving a hash func-
tion hi in session i during the jth communication round, S1 provides a com-
mitment ci to (the hash of) the deterministic oracle machine S̃1(1n, α, s′) =
wrap(M(1n, x,M, s′, α), V ∗, α), where wrap(A,B, α) is the program that
lets A communicate with B for α rounds, while allowing A to access oracle
OV cert, and finally outputting B’s message in the jth communication round.
Note: That is, S̃1(1n, α, s′, τ) emulates α rounds of an execution between
S1 and V ∗ where S1 expands out the seed s′ into α blocks of randomness and
additionally have access to OV cert.

Simulate Phase 2–Commit to the trapdoor statement: Upon receiving a
challenge ri in session i during the jth communication round, S1 needs to
commit to the “trapdoor” statement it will later prove in the final proof.
To do so, it prepares statement qi = (Emulatorn, (S̃1, (1

n, j, sj), τj−1), ri),
where τj−1 is the list of oracle answers received by S1 in the first j − 1
communication rounds.
Note: That is, the “trapdoor” statement is that the execution of S̃1(1n, j, sj),
emulated by Emulatorn, outputs r, when its kth oracle queries is answered
using τj−1,k; additionally, the validity of each answer is checked by Emulatorn

(i.e., the answer must be an accepting proof w.r.t. the query CRS string).
By construction of S̃1, this means after j communication rounds between S1

and V ∗, where S1 uses randomness expanded out from sj, and oracle answers

τj−1, V ∗ outputs ri in the jths communication round. Note that since we only

require S̃1 to generate the jth verifier message, giving him the seed (sj , j) as
input suffices to generate all prover messages in rounds j′ < j. It follows
from the consistency requirement of the forward secure PRG that S̃1 using
(sj , j) as seed will generate the exact same random sequence for the j − 1

first blocks as if running S̃1 using (s, `) as seed. Therefore, the “trapdoor”
statement holds.
In later communication rounds, when S1 receives a message from V ∗ belong-
ing to the WIUA in Phase 2 of session i, S1 proves honestly that it knows the
statement qi it is committing to in session i, and the statement is correctly
formatted and consistent with the program S̃1 committed to in Phase 1 of
session i.

Simulate Phase 3–Process the trapdoor statement: Upon receiving a pub-
lic parameter PP i in session i during the jth communication round, S1 needs
to commit to the digest di of the “trapdoor” statement qi of session i. To

do so, it computes honestly di
$← PreGen(PP i, qi) and commits to di using

com, and randomness ρi.
In later communication rounds, when S1 receives a message from V ∗ belong-
ing to the WIUA in Phase 3 of session i, S1 proves honestly that it knows di
committed to in Phase 3 of session i and it is computed correctly w.r.t. PP i
and a statement qi committed to in Phase 2 of session i.

Simulate Phase 4–Compute the CRS: Upon receiving an obfuscated pro-
gram Λi, S1 acts as an honest verifier of the ZK argument to verify that PP i
and Λi in session i are correctly generated. Upon receiving the last message
of the ZK argument, in the jth communication round, S1 needs to commit
to the CRSi of session i. To do so, it computes κi = Λi(di, ρi). If the output
is ⊥, S1 aborts. Otherwise, it commits to CRSi = (PP i, κi) using com.
In later communication rounds, when S1 receives a message from V ∗ belong-
ing to the WISSP in Phase 4 of session i, S1 proves honestly that it knows
κi committed to in Phase 4 of session i and it is computed correctly w.r.t.
Λi and a digest di committed to in Phase 3 of session i.

Simulate Phase 5–Prove the trapdoor statement using P-certificate:
Upon receiving the last message from V ∗ in Phase 4 of session i, during the
jth communication round, S1 needs to prove in the WISSP proof that
there is a P-certificate that verifies the validity of the “trapdoor” state-
ment qi w.r.t. the CRS string CRSi committed to in Phase 4 of session
i. To do so, it sends query CRSi to its oracle OV cert, and obtains answer
πi. It aborts if πi = ⊥. Otherwise, S1 provides an honest WISSP that
Vcert(1

n,CRSi, πi) = 1 w.r.t. CRSi which is the committed value in Phase 4
of session i.

Procedure of simulator S2: S2(1n, x,M, s, `) internally emulates `messages
of an execution between S1(1n, x,M, s, `) and V ∗, and simulates the oracle
OV cert for S1. In a communication round j when S1 sends an oracle query CRSi
for a session i, S2 generates a certificate πi of the statement qi = (Emulatorn, (S̃1,

(1n, j′, sj′), τj′−1), rj′) w.r.t. CRSi, that is, πi
$← Pcert(1

n, D, qi,CRSi) (where j′

is the round in which the challenge ri is sent by V ∗, qi and CRSi are generated by
S1 (emulated internally by S2) in Phase 2 and 4 of session i). S2 checks if indeed
Vcert(1

n,CRSi, πi) = 1, it outputs fail if this is not the case, and otherwise, feeds
πi to S1. Finally, S2 outputs its view (which in particular, contains the view of
V ∗) at the end of the execution.

Procedure of the final simulator S: The final simulator S(1n, x) simply
runs S2(1n, x, S1, s, T (n + |x|)), where s is a uniformly random string of length
n and T (n + |x|) is a polynomial upper-bound on the number of messages sent
by V ∗ given the common input 1n, x, and extracts out and outputs, the view of
V ∗ from the output of S2. (In case that S2 outputs fail, S outputs fail as well.)

Due to the lack of space, the analysis of the simulator, including its running
time, and the correctness of its output distribution is provided in the full version
of the paper [19], which also contains the soundness proof.

References

1. P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfus-
cation and applications. 2013.

2. B. Barak. How to go beyond the black-box simulation barrier. In FOCS, volume 0,
pages 106–115, 2001.

3. B. Barak. Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In FOCS, pages 345–355, Washington, DC, USA,
2002. IEEE Computer Society.

4. B. Barak and O. Goldreich. Universal arguments and their applications. SIAM J.
Comput., 38(5):1661–1694, 2008.

5. B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell. Resettably-sound zero-
knowledge and its applications. In FOCS, pages 116–125, 2001.

6. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptol-
ogy CRYPTO 2001, pages 1–18. Springer, 2001.

7. B. Barak and A. Sahai. How to play almost any mental game over the net -
concurrent composition via super-polynomial simulation. In FOCS, pages 543–
552, 2005.

8. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. In ASIACRYPT, pages 48–62, 2004.

9. Bitansky, Garg, Lin, Pass, and Telang. Succint randomized encodings and obfus-
cations. Manuscript (subsuming an early version appearing as Succint Garbling
Schemes and Applications [Lin-Pass, Eprint Report 2014/766]), 2014.

10. N. Bitansky and O. Paneth. From the impossibility of obfuscation to a new non-
black-box simulation technique. In FOCS, pages 223–232, 2012.

11. E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In TCC, pages
52–73, 2014.

12. E. Boyle and R. Pass. Limits of extractability assumptions with distributional
auxiliary input. Cryptology ePrint Archive, Report 2013/703, 2013. http://
eprint.iacr.org/.

13. R. Canetti, J. Holmgren, A. Jain, and V. Vaikuntanathan. Indistinguishability
obfuscation of iterated circuits and ram programs. Cryptology ePrint Archive,
Report 2014/769, 2014.

14. R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-box concurrent zero-
knowledge requires ω̃(logn) rounds. In STOC, pages 570–579, 2001.

15. R. Canetti, H. Lin, and O. Paneth. Public-coin concurrent zero-knowledge in the
global hash model. In TCC, pages 80–99, 2013.

16. K. Chung, H. Lin, and R. Pass. Constant-round concurrent zero knowledge from
p-certificates. In 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 50–59, 2013.

17. K. Chung, R. Ostrovsky, R. Pass, M. Venkitasubramaniam, and I. Visconti. 4-
round resettably-sound zero knowledge. In Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26,
2014. Proceedings, pages 192–216, 2014.

18. K. Chung, R. Pass, and K. Seth. Non-black-box simulation from one-way functions
and applications to resettable security. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 231–240, 2013.

19. K.-M. Chung, H. Lin, and R. Pass. Constant-round concurrent zero-knowledge
from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2014/991, 2014. http://eprint.iacr.org/.

20. K.-M. Chung, R. Ostrovsky, R. Pass, and I. Visconti. Simultaneous resettability
from one-way functions. 2013.

21. I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In CRYPTO, pages 445–456, 1991.

22. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT, pages 418–430, 2000.

23. Y. Deng, V. Goyal, and A. Sahai. Resolving the simultaneous resettability con-
jecture and a new non-black-box simulation strategy. In FOCS, pages 251–260,
2009.

24. C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. J. ACM, 51(6):851–
898, 2004.

25. C. Dwork and A. Sahai. Concurrent zero-knowledge: Reducing the need for timing
constraints. In CRYPTO, pages 177–190, 1998.

26. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. Proc. of
FOCS 2013, 2013.

27. S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. Tech-
nical report, Cryptology ePrint Archive, Report 2013/860, 2013. 6, 2013.

28. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178,
Bethesda, Maryland, USA, May 31 – June 2, 2009. ACM Press.

29. C. Gentry, A. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309, 2014. http://eprint.iacr.org/.

30. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

31. V. Goyal. Non-black-box simulation in the fully concurrent setting. In D. Boneh,
T. Roughgarden, and J. Feigenbaum, editors, 45th Annual ACM Symposium on
Theory of Computing, pages 221–230, Palo Alto, CA, USA, June 1–4, 2013. ACM
Press.

32. V. Goyal and A. Jain. On the round complexity of covert computation. In STOC,
pages 191–200, 2010.

33. D. Gupta and A. Sahai. On constant-round concurrent zero-knowledge from a
knowledge assumption. Cryptology ePrint Archive, Report 2012/572, 2012. http:
//eprint.iacr.org/.

34. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols.
In H. Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 408–423. Springer, 1998.

35. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In 41st Annual Symposium

on Foundations of Computer Science, pages 294–304, Redondo Beach, California,
USA, Nov. 12–14, 2000. IEEE Computer Society Press.

36. Y. Ishai, O. Pandey, and A. Sahai. Public-coin differing-inputs obfuscation and its
applications. Cryptology ePrint Archive, Report 2014/942, 2014. http://eprint.
iacr.org/.

37. J. Kilian and E. Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In STOC, pages 560–569, 2001.

38. J. Kilian, E. Petrank, and C. Rackoff. Lower bounds for zero knowledge on the
internet. In FOCS, pages 484–492, 1998.

39. V. Koppula, A. B. Lewko, and B. Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. Cryptology ePrint Archive, Report
2014/925, 2014. http://eprint.iacr.org/.

40. Y. Lindell. Bounded-concurrent secure two-party computation without setup as-
sumptions. In STOC, pages 683–692, 2003.

41. S. Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

42. M. Naor. On cryptographic assumptions and challenges. In D. Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 96–109.
Springer, 2003.

43. O. Pandey, M. Prabhakaran, and A. Sahai. Obfuscation-based non-black-box sim-
ulation and four message concurrent zero knowledge for np. Cryptology ePrint
Archive, Report 2013/754, 2013. http://eprint.iacr.org/.

44. R. Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In EUROCRYPT, pages 160–176, 2003.

45. R. Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In STOC, pages 232–241, New York, NY, USA, 2004. ACM.

46. R. Pass and A. Rosen. Bounded-concurrent secure two-party computation in a
constant number of rounds. In FOCS, pages 404–, 2003.

47. R. Pass and A. Rosen. How to simulate using a computer virus. Unpublished
manuscript, 2003.

48. R. Pass and A. Rosen. Concurrent non-malleable commitments. In FOCS, pages
563–572, 2005.

49. R. Pass and A. Rosen. New and improved constructions of non-malleable crypto-
graphic protocols. In STOC, pages 533–542, 2005.

50. R. Pass, A. Rosen, and W.-L. D. Tseng. Public-coin parallel zero-knowledge for
np. J. Cryptology, 2011.

51. R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, pages 500–517, 2014.

52. R. Pass, W.-L. D. Tseng, and M. Venkitasubramaniam. Concurrent zero-
knowledge, revisited. Journal of Cryptology, 2012.

53. R. Pass and M. Venkitasubramaniam. Private coins versus public coins in zero-
knowledge proofs. To appear in TCC 2010, 2010.

54. K. Popper. Conjectures and Refutations: The Growth of Scientific Knowledge.
Routledge, 1963.

55. M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent zero knowledge with loga-
rithmic round-complexity. In FOCS, pages 366–375, 2002.

56. R. Richardson and J. Kilian. On the concurrent composition of zero-knowledge
proofs. In Eurocrypt, pages 415–432, 1999.

57. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy
homomorphisms, 1978.

58. A. Rosen. A note on the round-complexity of concurrent zero-knowledge. In
CRYPTO, pages 451–468, 2000.

