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Abstract. Structure-preserving signatures (SPS) are pairing-based sig-
natures where all the messages, signatures and public keys are group
elements, with numerous applications in public-key cryptography. We
present new, simple and improved SPS constructions under standard as-
sumptions via a conceptually different approach. Our constructions sig-
nificantly narrow the gap between existing constructions from standard
assumptions and optimal schemes in the generic group model.

1 Introduction

Structure-preserving signatures (SPS) [4] are pairing-based signatures where all
the messages, signatures and public keys are group elements, verified by testing
equality of products of pairings of group elements. They are useful building
blocks in modular design of cryptographic protocols, in particular in combination
with non-interactive zero-knowledge (NIZK) proofs for algebraic relations in a
group [29]. Structure-preserving signatures have found numerous applications
in public-key cryptography, such as blind signatures [4,25], group signatures
[27,28,4,25,40], homomorphic signatures [38], delegatable anonymous credentials
[24,11], compact verifiable shuffles [18], network encoding [9], oblivious transfer
[26] and e-cash [13].

A systematic treatment of structure-preserving signatures was initiated by
Abe et al. in 2010 [4], building upon previous constructions in [27,26,17]. In the
past few years, substantial and rapid progress were made in our understand-
ing of the construction of structure-preserving signatures, yielding both efficient
schemes under standard assumptions [4,2,30,3] as well as “optimal” schemes in
the generic group model with matching upper and lower bounds on the effi-
ciency of the schemes [5,6,8,7,10]. The three important measures of efficiency in
structure-preserving signatures are (i) signature size, (ii) public key size (also
per-user public key size for applications like delegatable credentials where we
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need to sign user public keys), and (iii) number of pairing equations during
verification, which in turn affects the efficiency of the NIZK proofs.

One of the main advantages of designing cryptographic protocols starting
from structure-preserving signatures is that we can obtain efficient protocols that
are secure under standard cryptographic assumptions without the use of random
oracles. Ideally, we want to build efficient SPS based on the well-understood k-
Lin assumption, which can then be used in conjunction with Groth-Sahai proofs
[29] to derive protocols based on the same assumption. In contrast, if we start
with SPS that are only secure in the generic group model, then the ensuing
protocols would also only be secure in the generic group model, which offer little
theoretical or practical benefits over alternative – and typically more efficient
and pairing-free – solutions in the random oracle model.

Unfortunately, there is still a big efficiency gap between existing construc-
tions of structure-preserving signatures from the k-Lin assumption and the op-
timal schemes in the generic group model. For instance, to sign a single group
element, the best construction under the SXDH (1-Lin) assumption contains 11
and 21 group elements in the signature and the public key [2], whereas the best
construction in the generic group model contains 3 and 3 elements (moreover,
this is “tight”) [5]. The goal of this work is to bridge this gap.

1.1 Our Results

We present clean, simple, and improved constructions of structure-preserving
signatures via a conceptually novel approach. Our constructions are secure under
the k-Lin assumption; under the SXDH assumption (i.e., k = 1), we achieve 7
group elements in the signature.

Previous constructions use fairly distinct techniques, resulting in a large fam-
ily of schemes with incomparable efficiency and security guarantees. We obtain
a family of schemes that simultaneously match – and in many settings, improve
upon – the efficiency, assumptions, and security guarantees of all of the previ-
ous constructions. Figure 1 summarizes the efficiency of our constructions. (The
work of [41] is independent and concurrent.) Our schemes are fully explicit and
simple to describe. Furthermore, our schemes have a natural derivation from a
symmetric-key setting, and the derivation even extends to a modular and intu-
itive proof of security.

We highlight two results:
– For Type III asymmetric pairings, under the SXDH assumption, we can sign

a vector of n elements in G1 with 7 group elements. This improves upon
the prior SXDH-based scheme in [2] which requires 11 group elements, and
matches the signature size of the scheme in [4] based on (non-standard)
q-type assumptions;

– For Type I symmetric pairings, under the 2-Lin assumption, we can sign a
vector of n elements with 10 group elements, improving upon that in [3]
which requires 14 group elements.

In each of these cases, we also improve the size of the public key, as well as
the number of equations used in verification. Finally, we extend our schemes
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Security Assumption |m| |σ| |pk| # equ.
AFGHO10 [4] OT 2-KerLin (G2) (n1, 0) (3, 0) 2n1 + 5 2
SPSot (Fig 2) OT Dk-KerMDH (G2) (n1, 0) (k + 1, 0) (n1 + 1)k + RE(Dk) k

AGHO11 [5] full Interactive (Generic) (n1, n2) (2, 1) n1 + n2 + 2 2
AGHO11 [5] full Non-interactive (Generic) (n1, n2) (3, 3) n1 + n2 + 2 2
AGHO11 [5] full Non-interactive (Generic) (n1, 0) (3, 1) n1 + 2 2
ACDKNO12 [2] full SXDH, XDLIN (n1, 0) (7, 4) 20 + n1 4
ACDKNO12 [2] full SXDH, XDLIN (n1, n2) (8, 6) 22 + n1 + n2 5
ADKNO13 [3] full 2-Lin (G1 = G2) n 14 22 + n 7
AFGHO10 [4] full q-SFP (n1, 0) (5, 2) 13 + n1 2
LPY15 [41] full SXDH, XDLIN (n1, 0) (9, 1) 2n1 + 21 5
SPSfull (Fig 3) full Dk-MDDH (G1,G2) (n1, 0) (3k + 3, 1) (n1 + 2k + 3)k + RE(Dk) 2k + 1
BSPSfull (Fig 4) full Dk-MDDH (G1,G2) (n1, n2) (4k + 3, k + 2) (n1 + n2 + 3k + 3)k + 2RE(Dk) 3k + 1

Fig. 1. Structure-preserving signatures for message spaceM = Gn1
1 ×Gn2

2 orM = Gn
if G = G1 = G2. Notation (x, y) means x elements in G1 and y elements in G2.
RE(Dk) denotes the number of group elements needed to represent [A]. In case of
k-Lin, we have RE(Dk) = k. Recall that k-Lin is a special case of Dk-MDDH (de-
cisional assumptions) and k-KerLin is a special case of Dk-KerMDH (search assump-
tions), for Dk = Lk, the linear distribution. For k = 1 (SXDH) and n1 = 1, we obtain
(|pk|, |σ|,#equations) = (7, 7, 3) forM = Gn1

1 . For comparison, the known lower bound
[5,6] is (|σ|,#equations) ≥ (4, 2).

to obtain efficient SPS for signing bilateral messages in Gn1
1 × Gn2

2 for Type
III asymmetric pairings. Particularly, under the SXDH assumption, our scheme
can sign messages in Gn1

1 × Gn2
2 with 10 group elements in the signature, 4

pairing product equations for verification, and (n1 + n2 + 8) group elements in
the public key. Prior SXDH-based schemes from [2] required 14 group elements
in the signature, 5 pairing product equations, and (n1+n2+22) elements in the
public key.

At a high level, our constructions and techniques borrow heavily from the re-
cent work of Kiltz and Wee [36] which addresses a different problem of construct-
ing pairing-based non-interactive zero-knowledge arguments [29,33]. We exploit
recent developments in obtaining adaptively secure identity-based encryption
(IBE) schemes, notably the use of pairing groups to “compile” a symmetric-
key primitive into an asymmetric-key primitive [14,44,19], and the dual system
encryption methodology for achieving adaptive security against unbounded col-
lusions [43,37]. Along the way, we have to overcome a new technical hurdle which
is specific to structure-preserving cryptography.

1.2 Our Approach: SPS from MACs

We provide an overview of our construction of structure-preserving signatures.
Throughout this overview, we fix a pairing group (G1,G2,GT ) with e : G1×G2 →
GT , and rely on implicit representation notation for group elements, as explained
in Section 2.1.4 As a warm-up, we explain in some detail how to build a one-time
structure-preserving signature scheme, following closely the exposition in [36].

4 For fixed generators g1 and g2 of G1 and G2, respectively, and for a matrixM ∈ Zn×tq ,
we define [M]1 := gM1 and [M]2 := gM2 (componentwise).
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While we do not obtain significant improvement in this setting (nonetheless,
we do simplify and generalize prior one-time schemes [4]), we believe it already
illustrates the conceptual simplicity and novelty of our approach over previous
constructions of structure-preserving signatures.

Warm-up: One-Time SPS. We want to build a one-time signature scheme
for signing a vector [m]1 ∈ Gn1 of group elements. The starting point of our
construction is a one-time “structure-preserving” information-theoretic MAC for
vectors of group elements. We pick a secret MAC key K←r Z(n+1)×(k+1)

q known
to the verifier (k ≥ 1 is a parameter of the security assumption), and the MAC
on [m]1 is given by

σ := [(1,m>)K]1 ∈ G1×(k+1)
1

Verification is straight-forward: check if

σ
?
= (1,m>)K (1)

Security follows readily from the fact that for any pair of distinct vectorsm,m∗ ∈
Znq , the vectors (1,m>) and (1,m∗>) are linearly independent, and therefore the
quantities

(1,m>)K, (1,m∗>)K ∈ Z(k+1)
q

are two independently random values; this holds even if m∗ 6= m is chosen
adaptively after seeing (1,m>)K.

To achieve public verifiability as is required for a signature scheme, we publish
a “partial commitment” to K in G2 as given by [A]2, [KA]2, where the choice
of A ∈ Z(k+1)×k

q is defined by the security assumption. The signature on [m]1 is
the same as the MAC value, and verification is the natural analogue of (1) with
the pairing:

e(σ, [A]2)
?
= e([(1,m>)]1, [KA]2)

As [A]2, [KA]2 leaks additional information about the secret MAC key K, we
can only prove computational adaptive soundness. In particular, we rely on the
Dk-KerMDH Assumption [42], which stipulates that given a random [A]2 drawn
from a matrix distribution Dk, it is hard to find a non-zero [s]1 ∈ Gk+1

1 such that
s>A = 0; this is implied by the Dk-MDDH Assumption [22], a generalization of
the k-Lin Assumption.5 Therefore, for any ([m∗]1, [σ]1) produced by an efficient
adversary,

σA = (1,m∗>)KA =⇒ (σ − (1,m∗>)K)A = 0

using assumption
=⇒ σ − (1,m∗>)K = 0 =⇒ σ = (1,m∗>)K.

That is, security of the signature reduces to the security for the MAC, with a little
more work to account for the leakage from KA. Moreover, adaptive security for
the MAC (which is easy to analyze via a purely information-theoretic argument)
carries over to adaptive security for the signature.
5 We refer the reader to Section 2.2 for a more detailed treatment of the assumptions.



Structure-Preserving Signatures from Standard Assumptions, Revisited 5

General SPS. To achieve unforgeability against multiple signature queries, we
move from a one-time MAC to a randomized MAC that is secure against multiple
queries. As shown in [36,14], we know that under the Dk-MDDH assumption in
G1, the following construction is a randomized PRF

τ 7→
(
[t>(K0 + τK1)]1, [t

>]1
)
∈ (G1×(k+1)

1 )2, (2)

where K0,K1 is the seed and t is the randomness. We now use the randomized
PRF to additively mask the one-time MAC value [(1,m>)K]1. The new ran-
domized MAC takes as input a vector of group elements [m]1 ∈ Gn1 as before,
picks a random tag τ ∈ Zq and a fresh t and outputs

(σ1, σ2) := ([(1,m>)K]1 + [t>(K0 + τK1)]1 , [t
>]1 ) ∈ (G1×(k+1)

1 )2 (3)

where K and K0,K1 ←r Z(k+1)×(k+1)
q constitute the key. The boxed terms

correspond to the additive mask from (2). We want to argue that an adversary
upon obtaining MAC values on Q message vectors [m1]1, . . . , [mQ]1, cannot
compute the MAC value on a new message vector [m∗]1. First, we may assume
that the MAC values on [m1]1, . . . , [mQ]1 use distinct tags τ1, . . . , τQ. Then, we
consider two cases:
– case 1: the adversary uses a fresh tag for [m∗]1. This immediately breaks the

pseudorandomness of the security of the construction in (2);
– case 2: the adversary reuses tag τi. Again, we know from pseudorandomness

that the MAC values on the remaining Q − 1 tags do not leak any infor-
mation K; therefore, the only leakage about K in the Q queries comes from
(1,m>i )K. We may then rely on the security of the one-time MAC to argue
that given only (1,m>i )K, it is hard to compute (1,m∗>)K.

As before, to obtain a signature scheme, we then publish [A]2, [KA]2, [K0A]2,
[K1A]2 for public verification:

e(σ1, [A]2)
?
= e([(1,m>)]1, [KA]2) · e(σ2, [K0A]2 · [τK1A]2)

Note that the above verification requires knowledge of τ ∈ Zq to compute
[τK1A]2.

To obtain a structure-preserving signature, we cannot publish τ ∈ Zq in the
signature. The main technical challenge in this work is to find a way to embed
τ as a group element that enables both verification and a security reduction.
The natural work-around is to add [τK1A]2 and [τ ]1 to the signature, but the
proof breaks down. Instead, we add [τ ]2 and [τt>]1 to the signature to enable
verification. This yields a signature with 3k + 4 group elements.

An alternative interpretation. Linearly homomorphic signatures (LHS) [15,21,32]
are signatures where the messages consist of vectors over group G1 such that
from any set of signatures on [mi]1 ∈ Gn1 , one can efficiently derive a signature
σ on any element message [m]1 := [

∑
ωimi]1 in the span of m1, . . . ,mQ. For

security, one requires that it is infeasible to produce a signature on a message
outside of the span of all previously signed messages. Linearly homomorphic
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structure preserving signatures (LHSPS) [38,16,36] have the additional property
that signatures and public keys are all elements of the groups G1,G2,GT , while
allowing the use of a tag which is a scalar.

We can construct a SPS with message space Gn1 from a LHSPS with message
space Gn+1

1 as follows: to sign a message [m]1, we use a LHSPS to sign the
(n+1)-dimensional vector [1,m]1 on a random tag. Suppose the SPS adversary
forges a signature on [m∗]1. First, we may assume that all the signatures from
the signing queries [m1]1, . . . , [mQ]1 are on distinct tags τ1, . . . , τQ. Then, we
consider two cases:
– case 1: the adversary uses a fresh tag. Then, security of LHSPS tells us that

the adversary can only sign the vector 0 ∈ Gn+1
1 , which does not correspond

to a valid message in the SPS.
– case 2: the adversary reuses tag τi. Then, (1,m∗>) must lie in the span of

(1,m>i ), which means m∗ = mi. Here, we crucially rely on the fact that
τ1, . . . , τQ are distinct, which ensures that the adversary has seen at most
one signature corresponding to τi.

At this point, we can then embed τ ∈ Zq as a group element as described earlier.
Our constructions may also be viewed as instantiating the above paradigm with
the state-of-the-art LHSPS in [36].

1.3 Discussion

Optimality. The linearity in the verification equation of SPS poses severe re-
strictions on the efficiency of such constructions. In both Type I and III bilinear
groups, it was proved in [5,8] that any fully secure SPS requires at least 2 verifi-
cation equations, at least 3 group elements, the 3 elements not all the same group
(for Type III asymmetric pairings). In fact, [5] shows the above lower bounds by
giving attacks the weaker security model of unforgeability against two random
message queries. Furthermore, one-time secure SPS against random message at-
tack (RMA) in Type I bilinear groups require at least 2 group elements and 2
equations [8]. Furthermore, SPSs in Type III bilinear groups require at least
4 group elements [6] for unforgeability against adaptive chosen message attack
under non-interactive assumptions (such as k-Lin).

Interestingly, for one-time RMA-security, we can match the lower bounds.
By combining our main result on the one-time CMA-secure SPS and the tech-
niques used in [36] to obtain shorter QANIZK, we obtain an optimal RMA-secure
one-time SPS (Section 5). In Type III asymmetric groups, under the SXDH as-
sumption, signatures requires 1 group element and 1 verification equation which
is clearly optimal; in Type I symmetric groups, under the 2-Lin assumption,
our scheme requires 2 elements and 2 verification equations, matching the lower
bound for one-time RMA-secure SPS from [8].

Comparison with previous approaches. The prior works of Abe, et al. [2,3]
presented two generic approaches for constructing SPS from SXDH and 2-Lin
assumptions: both constructions combine a structure-preserving one-time signa-
ture and random-message secure signatures ala [23], with slightly different syntax
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and security notions for the two underlying building blocks; the final signature
is the concatenation of the two underlying signatures. Our construction has a
similar flavor in that we combine a one-time MAC with a randomized PRF.
However, we are able to exploit the common structure in both building blocks
to compress the output; interestingly, working with the matrix Diffie-Hellman
framework [22] makes it easier to identity such common structure. In particu-
lar, the output length of the randomized MAC with unbounded security is that
of the PRF and not the sum of the output lengths of the one-time MAC and
the PRF; this is akin to combining a one-time signature and a random-message
secure signature in such a way that the combined signature size is that of the
latter rather than the sum of the two.

Signatures from IBE.While our construction of signatures exploits techniques
from the literature on IBE, it is quite different from the well-known Naor’s
derivation of a signature scheme from an IBE. There, the signature on a message
m ∈ Zq corresponds to an IBE secret key for the identity m. This approach
seems to inherently fail for structure-preserving signatures as all known pairings-
based IBE schemes need to treat the identity as a scalar. In our construction,
a signature on [m]1 also corresponds to an IBE secret key: the message vector
(specifically, a one-time MAC applied to the message vector) is embedded into
the master secret key component of an IBE, and a fresh random tag τ ∈ Zq
is chosen and used as the identity. The idea of embedding [m]1 into the master
secret key component of an IBE also appeared in earlier constructions of linearly
homomorphic structure-preserving schemes [38,39,36]; a crucial difference is that
these prior constructions allow the use of a scalar tag in the signature.

Towards shorter SPS? One promising approach to get even shorter SPS
against adaptive chosen message attack by using our approach is to improve
upon the underlying MAC in the computational core lemma (Lemma 3). Cur-
rently, the MAC achieves security against chosen message attacks, whereas it
suffices to use one that is secure against random message attacks. Saving one
group element in this MAC would likely yield a saving of two group elements in
the SPS, which would in turn yield a SXDH-based signature with 5 group ele-
ments. Note that the state-of-the-art standard signature from SXDH contains 4
group elements [20]. Together with existing lower bounds for SPS, this indicates
a barrier of 5 group elements for SXDH-based SPS; breaking this barrier would
likely require improving upon the best standard signatures from SXDH.

Perspective.As noted at the beginning of the introduction, structure-preserving
signatures have been a target of intense scrutiny in recent years. We presented a
conceptually different yet very simple approach for building structure-preserving
signatures. We are optimistic that our approach will yield further insights into
structure-preserving signatures as well as concrete improvements to the numer-
ous applications that rely on such signatures.
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2 Definitions

Notation. If x ∈ Bn, then |x| denotes the length n of the vector. Further,
x ←r B denotes the process of sampling an element x from set B uniformly at
random. If A ∈ Zn×kq is a matrix with n > k, then A ∈ Zk×kq denotes the upper
square matrix of A and then A ∈ Z(n−k)×k

q denotes the remaining n− k rows of
A. We use span() to denote the column span of a matrix.

2.1 Pairing groups

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description PG = (G1,G2,GT , q, g1, g2, e) of asymmetric pairing
groups where G1, G2, GT are cyclic groups of order q for a λ-bit prime q, g1 and
g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently
computable (non-degenerate) bilinear map. Define gT := e(g1, g2), which is a
generator in GT .

We use implicit representation of group elements as introduced in [22]. For
s ∈ {1, 2, T} and a ∈ Zq, define [a]s = gas ∈ Gs as the implicit representation of
a in Gs. More generally, for a matrix A = (aij) ∈ Zn×mq we define [A]s as the
implicit representation of A in Gs:

[A]s :=

ga11s ... ga1ms

gan1
s ... ganms

 ∈ Gn×ms

We will always use this implicit notation of elements in Gs, i.e., we let
[a]s ∈ Gs be an element in Gs. Note that from [a]s ∈ Gs it is generally hard to
compute the value a (discrete logarithm problem in Gs). Further, from [b]T ∈ GT
it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion
problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zq, one can efficiently
compute [ax]s ∈ Gs. Further, given [a]1, [a]2 one can efficiently compute [ab]T
using the pairing e. For two matrices A,B with matching dimensions define
e([A]1, [B]2) := [AB]T ∈ GT .

2.2 Matrix Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) and the
Kernel Diffie-Hellman assumptions [22,42].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-
bution if it outputs matrices in Z(k+1)×k

q of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A ←r Dk form an
invertible matrix. The Dk-Matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A ←r Dk, w ←r Zkq and
u←r Zk+1

q .
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Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk
be a matrix distribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-
Hellman (Dk-MDDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries A,

Advmddh
Dk,GGen(A) := |Pr[A(G, [A]s, [Aw]s) = 1]−Pr[A(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G ←r GGen(1λ), A ←r Dk,w ←r Zkq ,u ←r

Zk+1
q .

The Kernel-Diffie-Hellman assumption Dk-KerMDH [42] is a natural compu-
tational analogue of the Dk-MDDH Assumption.

Definition 3 (Dk-Kernel Diffie-Hellman Assumption Dk-KerMDH). Let
Dk be a matrix distribution and s ∈ {1, 2}. We say that the Dk-Kernel Diffie-
Hellman (Dk-KerMDH) Assumption holds relative to GGen in group Gs if for all
PPT adversaries A,

Advkmdh
Dk,GGen(A) := Pr[c>A = 0 ∧ c 6= 0 | [c]3−s ←r A(G, [A]s)] = negl(λ),

where the probability is taken over G ←r GGen(1λ), A←r Dk.
Note that we can use a non-zero vector in the kernel of A to test membership

in the column space of A. This means that the Dk-KerMDH assumption is a
relaxation of the Dk-MDDH assumption, as captured in the following lemma
from [42].

Lemma 1. For any matrix distribution Dk, Dk-MDDH ⇒ Dk-KerMDH.

For each k ≥ 1, [22,42] specify distributions Lk, SCk, Uk (and others) such
that the corresponding Dk-MDDH and Dk-KerMDH assumptions are generically
secure in bilinear groups and form a hierarchy of increasingly weaker assump-
tions.

SCk : A =


1 0 0 ... 0
a 1 0 ... 0
0 a 1 0
0 0 a 0

.

.

.
. . .

. . .
0 0 0 ... a

 , Lk : A =


1 1 1 ... 1
a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 0

.

.

.
. . .

. . .
0 0 0 ... ak

 , Uk : A =

( a1,1 ... a1,k

.

.

.
. . .

.

.

.
ak+1,1 ... ak+1,k

)
,

where a, ai, ai,j ← Zq. We define the representation size RE(Dk) of a given matrix
distribution Dk as the minimal number of group elements needed to represent [A]s,
where A ←r Dk. Then RE(SCk) = 1, RE(Lk) = k and RE(Uk) = k(k + 1). As shown
in [22], SCk-MDDH offers the same security guarantees as Lk-MDDH (k-Linear As-
sumption of [31]), while having the advantage of a more compact representation. We
define k-Lin := Lk-MDDH and k-KerLin := Lk-KerMDH. Note that 2-KerLin = SDP
(Simultaneous Double Pairing Assumption of [17]). The relations between the different
assumptions for Dk = Lk are as follows:

DDH 2-Lin 3-Lin . . .

1-KerLin 2-KerLin = SDP 3-KerLin . . . CDH
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2.3 Structure-Preserving Signatures

Let par be some parameters that contain a pairing group PG. In a structure-preserving
signature (SPS) [4], both the messages and signatures are group elements, verification
proceeds via a pairing-product equation.

Definition 4 (Structure-preserving signature). A structure-preserving signature
scheme SPS is defined as a triple of probabilistic polynomial time (PPT) algorithms
SPS = (Gen,Sign,Verify):
– The probabilistic key generation algorithm Gen(par) returns the public/secret key

(pk, sk), where pk ∈ Gnpk for some npk ∈ poly(λ). We assume that pk implicitly
defines a message spaceM := Gn for some n ∈ poly(λ).

– The probabilistic signing algorithm Sign(sk, [m]) returns a signature σ ∈ Gnσ for
nσ ∈ poly(λ).

– The deterministic verification algorithm Verify(pk, [m], σ) only consists of pairing
product equations and returns 1 (accept) or 0 (reject).

(Perfect correctness.) for all (pk, sk) ←r Gen(par) and all messages [m] ∈ M and
all σ ←r Sign(sk, [m]) we have Verify(pk, [m], σ) = 1.

Definition 5 (Unforgeablility against chosen message attack). To an adversary
A and SPS we associate the advantage function

Advcma
SPS (A) := Pr

[
[m∗] /∈ Qmsg ∧ Verify(pk, [m∗], σ∗) = 1

∣∣∣∣ (pk, sk)←r Gen(par)

([m∗], σ∗)←r ASignO(·)(pk)

]
,

where SignO([m]) runs σ ←r Sign(sk, [m]), adds the vector [m] to Qmsg (initialized
with ∅) and returns σ to A. SPS is said to be (unbounded) CMA-secure if for all PPT
adversaries A, Advcma

SPS (A) is negligible. SPS is said to be one-time CMA-secure with
corresponding advantage function Advot-cma

SPS (A), if A is restricted to make at most one
query to oracle SignO.

3 One-Time CMA-Secure SPS

The scheme is given in Figure 2 and its parameters are:

|pk| = (n+ 1)k + RE(Dk), |σ| = k + 1.

As defined in Section 2.2, RE(Dk) denotes the number of group elements needed to
represent [A]s, where A←r Dk. For k-Lin, we achieve 2 group elements in the signature
for k = 1 and 3 group elements for k = 2. Moreover, we note that the verification needs k
pairing product equations: for e(σ, [A]2) = e([(1,m)]1, [C]2) we need to pair the vector
σ with every column of [A]2 and thus this check needs k pairing product equations.

We will exploit the following lemma in the analysis of our scheme. Informally, the
lemma says that m 7→ (1,m>)K is a secure information-theoretic one-time MAC even
if the adversary first sees (A,KA).

Lemma 2 (Core lemma for adaptive soundness). Let n, k be integers. For any
A ∈ Z(k+1)×k

q and any (possibly unbounded) adversary A,

Pr

[
m∗ 6= m ∧ z> = (1,m∗

>
)K

∣∣∣∣∣K←r Z(n+1)×(k+1)
q

(z,m∗)←r AO(·)(A,KA)

]
≤ 1

q
, (4)

where O(m ∈ Znq ) returns (1,m>)K and A only gets a single call to O.
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Gen(par):

A←r Dk;K←r Z(n+1)×(k+1)
q

C := KA ∈ Z(n+1)×k
q

sk := K
pk := ([C]2, [A]2)
Return (pk, sk)

Sign(sk, [m]1):
σ :=

[
(1,m>)K

]
1

Return σ ∈ G1×(k+1)
1

Verify(pk, [m]1, σ):
Check: e(σ, [A]2) = e([(1,m>)]1, [C]2)

Fig. 2. One-time CMA-secure structure-preserving signature SPSot with message-space
M = Gn1 .

This lemma can be seen as an adaptive version of a special case of [36, Lemma 2] in
that we fix t = 1, M to be the matrix (1,m>) ∈ Z1×(n+1)

q , and we use the fact that
if m∗ 6= m, then (1,m∗) /∈ span(M). In our adaptive version, m may depend on KA
but the proof is essentially the same as in [36]. Lemma 2 implies the security of SPSot.
Formal proofs of Lemma 2 and Theorem 1 are given in [35].

Theorem 1. Under the Dk-KerMDH Assumption in G2, SPSot from Figure 2 is a
one-time CMA-secure structure-preserving signature scheme.

4 Unbounded CMA-Secure SPS

4.1 Computational Core Lemma

We present a variant of the computational core lemma from [36, Lemma 3].

Lemma 3 (Computational core lemma for unbounded CMA-security). For all
adversaries A, there exists an adversary B with T(A) ≈ T(B) and

Pr

 τ
∗ /∈ Qtag

∧ b′ = b

∣∣∣∣∣∣∣∣∣∣

A,B←r Dk
K0,K1 ←r Z(k+1)×(k+1)

q

(P0,P1) := (B>K0,B
>K1)

pk := ([P0]1, [P1]1, [B]1,K0A,K1A,A)

b←r {0, 1}; b′ ←r AOb(·),O
∗(·)(pk)


≤ 1

2
+ 2Q ·Advmddh

Dk,GGen(B) +Q/q,

where
– Ob(τ) returns (

[
bµa⊥ + r>(P0 + τP1)

]
1
,
[
r>B>

]
1
) ∈ (G1×(k+1)

1 )2 with µ←r Zq, r←r

Zkq and adds τ to Qmsg. Here, a⊥ is non-zero vector in Z1×(k+1)
q that satisfies

a⊥A = 0.
– O∗([τ∗]2) returns [K0 + τ∗K1]2 . A only gets a single call τ∗ to O∗.
– Q is the number of queries A makes to Ob.

Compared to [36, Lemma 3], oracle O∗ is modified as follows. Instead of getting tag τ∗

and returning K0 + τ∗K1 in the clear, both the query and the output are encoded in
G2. The change is boxed in the lemma. It is straight-forward to check that the proof
goes through as in [36]:
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– the security reduction knows K0,K1, and therefore it can compute [K0 + τ∗K1]2
given [τ∗]2;

– the quantity [K0+τ
∗K1]2 does not reveal any additional information aboutK0,K1

beyond K0 + τ∗K1.

For completeness, a formal proof of the lemma is given in [35].

4.2 Our Scheme

The parameters are:

|pk| = (n+ 1)k + 2(k + 1)k + RE(Dk), |σ| = (3(k + 1), 1),

where notation (x, y) represents x elements in G1 and y elements in G2. For k-Lin, this
yields (n+6, (6, 1)) for k = 1 and (2n+16, (9, 1)) for k = 2. Moreover, we note that the
verification needs 2k+1 pairing product equations: for e(σ1, [A]2) = e([(1,m)]1, [C]2) ·
e(σ2, [C0]2) · e(σ3, [C1]2) we need to pair the vector σ1 with every column of [A]2 and
thus this check needs k pairing product equations; and for e(σ2, [τ ]2) = e(σ3, [1]2) we
need to pair every element from σ2 with [τ ]2 ∈ G2 and thus this requires k+ 1 pairing
product equations.

Gen(par):

A,B←r Dk;K←r Z(n+1)×(k+1)
q

K0,K1 ←r Z(k+1)×(k+1)
q

C := KA ∈ Z(n+1)×k
q

(C0,C1) := (K0A,K1A)

∈ (Z(k+1)×k
q )2

(P0,P1) := (B>K0,B
>K1)

∈ (Zk×(k+1)
q )2

sk := (K, [P0]1, [P1]1, [B]1)
pk := ([C0]2, [C1]2, [C]2, [A]2)
Return (pk, sk)

Sign(sk, [m]1):
r←r Zkq ; τ ←r Zq;
σ1 :=

[
(1,m>)K+ r>(P0 + τP1)

]
1
∈ G1×(k+1)

1

σ2 :=
[
r>B>

]
1
∈ G1×(k+1)

1

σ3 :=
[
r>B>τ

]
1
∈ G1×(k+1)

1

σ4 := [τ ]2 ∈ G2

Return (σ1, σ2, σ3, σ4)

Verify(pk, [m]1, σ):
Parse σ = (σ1, σ2, σ3, σ4 = [τ ]2)
Check:
e(σ1, [A]2) = e([(1,m)]1, [C]2) · e(σ2, [C0]2) ·
e(σ3, [C1]2)
∧ e(σ2, [τ ]2) = e(σ3, [1]2)

Fig. 3. Structure-preserving signature SPSfull with message-spaceM = Gn1 .

Theorem 2. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption
in G2, SPSfull from Figure 3 is an unbounded CMA-secure structure-preserving signature
scheme.

Proof. Perfect correctness and the structure-preserving property are straight-forward.
We proceed to establish the unbounded CMA-security. We will show that for any ad-
versary A that makes at most Q signing queries, there exists adversaries B0,B1 with
T(A) ≈ T(B0) ≈ T(B1) and

Advcma
SPSfull(A) ≤ Advkmdh

Dk,GGen(B0)+2Q(Q+1)·Advmddh
Dk,GGen(B1)+(Q+1)2/q+Q2/2q. (5)

We proceed via a series of games and we use Advi to denote the advantage of A
in Game i.
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Game 0. This is the CMA-security experiment from Definition 5.

Advcma
SPSfull(A) = Adv0

Game 1. Switch Verify to Verify∗:
Verify∗(pk, [m]1, σ):
Parse σ = (σ1, σ2, σ3, σ4 = [τ ]2)
Check: e(σ1, [1]2) = e([(1,m>)K]1, [1]2) · e(σ2, [K0 + τK1]2)
∧ e(σ2, [τ ]2) = e(σ3, [1]2)

Suppose e(σ2, [τ ]2) = e(σ3, [1]2). We note that

e(σ1, [A]2) = e([(1,m>)]1, [C]2) · e(σ2, [C0]2) · e(σ3, [C1]2)

⇐⇒ e(σ1, [A]2) = e([(1,m>)]1, [KA]2) · e(σ2, [K0A]2) · e(σ3, [K1A]2)

⇐= e(σ1, [1]2) = e([(1,m>)]1, [K]2) · e(σ2, [K0]2) · e(σ3, [K1]2)

⇐⇒ e(σ1, [1]2) = e([(1,m>)]1, [K]2) · e(σ2, [K0 + τK1]2)

Hence, for any ([m]1, σ) that passes Verify but not Verify∗, the value

σ1 − ([(1,m>)K]1 + σ2K0 + σ3K1) ∈ G1×(k+1)
1

is a non-zero vector in the kernel of A, which is hard to be computed under the
Dk-KerMDH assumption in G2. This means that

|Adv0 −Adv1| ≤ Advkmdh
Dk,GGen(B0).

Game 2. Let τ1, . . . , τQ denote the randomly chosen tags in the Q queries to SignO.
We abort if τ1, . . . , τQ are not all distinct.

Adv2 ≥ Adv1 −Q2/2q.

Game 3. We define τQ+1 := τ∗. Now, pick i∗ ←r [Q + 1] and abort if i∗ is not the
smallest index i for which τ∗ = τi. In the rest of the proof, we focus on the case we
do not abort, which means that τ∗ = τi∗ and τ1, . . . , τi∗−1 are all different from τ∗.
This means that given τ , SignO can check whether τ∗ equals τ : for the rest i∗ − 1
queries, answer NO, and starting from the i∗’th query, we know τ∗. It is easy to
see that

Adv3 ≥
1

Q+ 1
Adv2.

Game 4. Switch SignO to SignO∗ where
SignO∗([m]1): // adds µa⊥ for τ 6= τ∗

r←r Zkq ; τ ←r Zq; µ←r Zq;
if τ = τ∗ then µ := 0
σ1 :=

[
(1,m>)K+ µa⊥ + r>(P0 + τP1)

]
1

σ2 :=
[
r>B>

]
1

σ3 :=
[
r>B>τ

]
1

σ4 := [τ ]2

Return (σ1, σ2, σ3, σ4) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G1×(k+1)
1 ×G2

We will use Lemma 3 to show that

|Adv3 −Adv4| ≤ 2QAdvmddh
Dk,GGen(B1) +Q/q

Basically, we pick K ourselves and use Ob to simulate either SignO or SignO∗ and
O∗ to simulate Verify∗ as follows:
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– For the i’th signing query [m]1 where i 6= i∗,we query Ob at τ ←r Zq to obtain

(σ′1, σ2) := (
[
bµa⊥ + r>(P0 + τP1)

]
1
,
[
r>B>

]
1
),

and we return

(σ1 := [(1,m>)K]1 · σ′1, σ2, σ3 := σ2τ, σ4 := [τ ]2)

– For the i∗’th signing query [m]1 where i∗ ≤ Q, we run Sign honestly using our
knowledge of K, [P0]1, [P1], [B]1.

– For Verify∗, we will query O∗ on [τ∗]2 to get [K0 + τ∗K1]2. The latter is
sufficient to simulate the Verify∗ query by computing e(σ2, [K0 + τ∗K1]2).

This allows us to then build a distinguisher for Lemma 3.
Game 5. Switch K ←r Z(n+1)×(k+1)

q in Gen to K := K′ + ua⊥, where K′ ←r

Z(n+1)×(k+1)
q ,u←r Zn+1

q .
Since ua⊥ is masked by a uniform matrix K′, K in Game 5 is still uniformly
random and thus Game 4 and 5 are identical. We have

Adv5 = Adv4.

To conclude the proof, we bound the adversarial advantage in Game 5 via an
information-theoretic argument. We first consider the information about u leaked
from pk and signing queries:
– C = (K′ + ua⊥)A = K′A completely hides u;
– the output of SignO∗ on (m, τ) for τ 6= τ∗ completely hides u, since (1,m>)(K′+

ua⊥) + µa⊥ is identically distributed to (1,m>)K′ + µa⊥ (namely, (1,m>)u
is masked by µ←r Zq).

– the output of SignO∗ on τ∗ leaks (1,m>)(K′ + ua⊥), which is captured by
(1,m>)u.

To convince Verify∗ to accept a signature σ∗ on m∗, the adversary must correctly
compute

(1,m∗
>
)(K′ + ua⊥)

and thus (1,m∗>)u ∈ Zq. Given (1,m>)u, for any adaptively chosen m∗ 6= m, we
have that (1,m∗>)u is uniformly random over Zq from the adversary’s view-point.
Therefore, Adv5 ≤ 1/q. ut

4.3 Extension: SPS for Bilateral Message Spaces

LetM := Gn1
1 ×Gn2

2 be a message space. In Type III pairing groups,M is bilateral if
both n1 6= 0 and n2 6= 0; otherwise,M is unilateral. We extend the construction from
Section 4.2 to sign bilateral message spaces.

The main idea of our construction is to use the Even-Goldreich-Micali (EGM)
framework [23] and a method of Abe et al. [2]: for m = ([m1]1, [m2]2) ∈ Gn1

1 × Gn2
2

we sign [m1]1 by using a one-time SPS with a fresh public key pkot over G2 and
then sign message ([m2]2, pkot) using an unbounded CMA-secure SPS; the signature
on ([m1]1, [m2]2) is pkot together with the concatenation of both signatures. However,
this yields long signatures as pkot contains O(n1k) group element for the best known
one-time SPS. Next, we observe that our one-time SPS is in fact a so-called “two-
tier” signature scheme [12], i.e. opk can decomposed into a reusable long primary key
plus a one-time short secondary key which contains only k group elements. For the
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transformation sketched above it is sufficient to put the short secondary key in the
signature which leads to short signatures.

Details about our two-tier SPS and generic transformation are given in the full
version [35]. The resulting unbounded CMA-secure SPS for bilateral message spaces is
shown in Figure 4. Its parameters are: |pk| = (n1 + n2)k + 3(k + 1)k + 2RE(Dk), |σ| =
(4k + 3, k + 2), and #equations = 3k + 1. Notation (x, y) represents x elements in
G1 and y elements in G2. Under the SXDH assumption, our scheme achieves (|pk|, |σ|,
#equations) = (n1 +n2 +8, (7, 3), 4). Compared with (n1 +n2 +22, (8, 6), 5) of [2], we
obtain better efficiency under standard assumptions. The following theorem is proved
in the full version [35].

Theorem 3. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption
in both G1 and G2, BSPSfull from Figure 4 is an unbounded CMA-secure structure-
preserving signature scheme.

Gen(par):

A,B←r Dk;K←r Z(n1+k+1)×(k+1)
q

K0,K1 ←r Z(k+1)×(k+1)
q

C := KA ∈ Z(n1+k+1)×k
q

(C0,C1) := (K0A,K1A)

∈ (Z(k+1)×k
q )2

(P0,P1) := (B>K0,B
>K1)

∈ (Zk×(k+1)
q )2

A′ ←r Dk; X←r Zn2×(k+1)
q

Z := XA′ ∈ Zn2×k
q

sk := (K,X, [P0]1, [P1]1, [B]1)
pk := ([C0]2, [C1]2, [C]2, [Z]1, [A]2,
[A′]1)
Return (pk, sk)

Sign(sk, ([m1]1, [m2]2)):
x←r Zk+1

q ; z := x>A′ ∈ Z1×k
q

r←r Zkq ; τ ←r Zq;
σ1 :=

[
(1,m>1 , z)K+ r>(P0 + τP1)

]
1

∈ G1×(k+1)
1

σ2 :=
[
r>B>

]
1
∈ G1×(k+1)

1

σ3 :=
[
r>B>τ

]
1
∈ G1×(k+1)

1

σ4 := [τ ]2 ∈ G2

σ5 := [x+X>m2]2 ∈ Gk+1
2

Return ([z]1, σ1, σ2, σ3, σ4, σ5)

Verify(pk, ([m1]1, [m2]2), σ):
Parse σ = ([z]1, σ1, σ2, σ3, σ4, σ5)
Check:
e(σ1, [A]2) = e([1,m>1 , z]1, [C]2) · e(σ2, [C0]2) ·
e(σ3, [C1]2) ∧ e(σ2, σ4) = e(σ3, [1]2)
∧ e([A′]>1 , σ5) = e([z]>1 , [1]2) · e([Z]>1 ,m2)

Fig. 4. Structure-preserving signature BSPSfull for bilateral message spacesM = Gn1
1 ×

Gn2
2 .

5 Security against Random Message Attacks

In this section, we consider possible efficiency improvements on the structure-preserving
signatures (SPS) from Sections 3 and 4 for the weaker security notion of unforgeability
against random message attacks (RMA). Precisely, we obtain a one-time RMA-secure
SPS with signature size one less than that from Figure 2 and an unbounded RMA-
secure SPS with signature size k+1 less than that from Figure 3. Figure 5 summarizes
our results.

Our rSPSot is optimal for both the Type I and III settings: in the Type I setting,
under the 2-Lin assumption, rSPSot requires 2 elements and 2 verification equations,
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matching the lower bound for one-time RMA-secure SPS from [8]; in the Type III set-
ting, under the SXDH assumption, rSPSot requires 1 element and 1 verification equation,
which is clearly optimal.

Security Assumption |m| |σ| |pk| # equ.
AGOT14 (Fig. 2) [8] OT Generic (Type I) 1 2 3 2
AGOT14 (Fig. 3) [8] OT Generic (Type III) n (1, 0) n+ 3 1
ACDKNO12 [2] full 2-Lin 6 8 13 7
rSPSot (Fig 6) OT Dk-KerMDH (G2) n (k, 0) (n+ 1)k + RE(Dk) k
rSPSfull (Fig 7) full Dk-MDDH (G1,G2) n (2k + 2, 1) (n+ 2k + 3)k + RE(Dk) 2k + 1

Fig. 5. Structure-preserving signatures secure against random message attacks for
M = Gn1 in the Type I and III setting. For the Type I setting we have G = G1 = G2.
Notation (x, y) represents x elements in G1 and y elements in G2.

5.1 Unforgeability against random message attacks

RMA-security states that it is hard for an adversary to forge a signature even if he
sees many signatures on randomly chosen messages. The security is formally defined
as follows:

Definition 6 (Unforgeability against random message attacks). To an adver-
sary A and SPS we associate the advantage function

Advrma
SPS (A) := Pr

[
[m∗] /∈ Qmsg ∧ Verify(pk, [m∗], σ∗) = 1

∣∣∣∣ (pk, sk)←r Gen(par)

([m∗], σ∗)←r ASignO()(pk)

]
,

where SignO() chooses a random message [m] ←r Gn, runs σ ←r Sign(sk, [m]), adds
the vector [m] to Qmsg (initialized with ∅) and returns ([m], σ) to A. SPS is said to
be RMA-secure if for all PPT adversaries A, Advrma

SPS (A) is negligible. SPS is said to
be one-time RMA-secure with corresponding advantage function Advot-rma

SPS (A), if A is
restricted to make at most one query to oracle SignO.

5.2 One-time RMA-secure SPS

Motivated by the techniques used in [34,1,36] to obtain shorter QANIZK proofs for lin-
ear subspaces, we construct a one-time RMA-secure SPS in Figure 6 with the following
parameters:

|pk| = (n+ 1)k + RE(Dk), |σ| = k.

For k-Lin, this yields (n+ 2, 1) for k = 1 and (2n+ 4, 2) for k = 2. Moreover, we note
that verification needs k pairing product equations for e(σ1,

[
A
]
2
) = e([(1,m)]1, [C]2).

Compared with SPSot, we reduce the signature size by one element.

Theorem 4. Under the Dk-KerMDH Assumption in G2, rSPSot from Figure 6 is a
one-time RMA-secure structure-preserving signature scheme.

Our proof is similar to that in [36, Theorem 2]. As we choose m ∈ Znq in the
security game ourselves, we can compute the kernel basis M⊥ ∈ Z(n+1)×n

q of (1,m>)
such that (1,m>) ·M⊥ = 0 and then we embed M⊥ in the secret key K. This way we
do not need to compute the kernel of [A]2 when answering the signing query. However,
for the forgery m∗ 6= m, since (1,m∗>)M⊥ 6= 0, the adversary has to compute an
element from the kernel to break RMA-security, which is infeasible under the Dk-
KerMDH Assumption.
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Gen(par):

A←r Dk;K←r Z(n+1)×k
q

C := KA ∈ Z(n+1)×k
q

sk := K
pk := ([C]2, [A]2)
Return (pk, sk)

Sign(sk, [m]1):
σ :=

[
(1,m>)K

]
1

Return σ ∈ G1×k
1

Verify(pk, [m]1, σ):
Check: e(σ,

[
A
]
2
) = e([(1,m>)]1, [C]2)

Fig. 6.One-time RMA-secure structure-preserving signature rSPSot with message-space
M = Gn1 . Recall that A denotes the upper k × k submatrix of A.

5.3 Unbounded RMA-Secure SPS

Consider the scheme SPSfull from Figure 3 with the modification that in the signing
algorithm, vector Br is chosen as a random vector as t ←r Zk+1

q . Clearly, under the
Dk-MDDH Assumption, this modified scheme is also a CMA-secure SPS. Suppose that
the message space is Gn1 with n = n′ + k + 1 ≥ k + 1. Then we can view the random
vector [t]1 ∈ Gk+1

1 as part of the message space which reduces the signature size from
3k+4 elements to 2k+3. The modified scheme is presented in Figure 7. Its parameters
are:

|pk| = (n+ 1)k + 2(k + 1)k + RE(Dk), |σ| = (2(k + 1), 1),

where notation (x, y) represents x elements in G1 and y elements in G2. For k-Lin,
(|pk|, |σ|) = (n+ 6, (4, 1)) for k = 1 and (2n+ 16, (6, 1)) for k = 2. Moreover, we note
that the verification needs 2k + 1 pairing product equations. Compared to the SPSfull

from Figure 3, rSPSfull requires (k + 1) elements less in the signature.

Gen(par):

A←r Dk;K←r Z(n+1)×(k+1)
q

K0,K1 ←r Z(k+1)×(k+1)
q

C := KA ∈ Z(n+1)×k
q

(C0,C1) := (K0A,K1A)

∈ (Z(k+1)×k
q )2

sk := (K,K0,K1)
pk := ([C0]2, [C1]2, [C]2, [A]2)
Return (pk, sk)

Sign(sk, [m]1):

Parse [m]1 = ([s]1, [t]1) ∈ Gn
′

1 ×Gk+1
1

τ ←r Zq;
σ1 :=

[
(1,m>)K+ t>(K0 + τK1)

]
1

σ2 :=
[
τt>
]
1

σ3 := [τ ]2

Return (σ1, σ2, σ3) ∈ G1×(k+1)
1 ×G1×(k+1)

1 ×G2

Verify(pk, [m]1, σ):
Parse σ = (σ1, σ2, σ3 = [τ ]2)
Parse [m]1 = ([s]1, [t]1)
Check:
e(σ1, [A]2) = e([(1,m>)]1, [C]2) · e([t>]1, [C0]2) ·
e(σ2, [C1]2)
∧ e(σ2, [1]2) = e([t>]1, [τ ]2)

Fig. 7. An unbounded RMA-secure structure-preserving signature rSPSfull with
message-spaceM = Gn1 where n = n′ + k + 1 ≥ k + 1.
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Theorem 5. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption in
G2, rSPSfull from Figure 7 is an unbounded RMA-secure structure-preserving signature
scheme.

The proof is given in [35].

Acknowledgments. We thank Olivier Blazy and Georg Fuchsbauer for helpful dis-
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