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Abstract. We describe a zero-knowledge proof system in which a prover
holds a large dataset M and can repeatedly prove NP relations about
that dataset. That is, for any (public) relation R and x, the prover can
prove that ∃w : R(M,x,w) = 1. After an initial setup phase (which
depends only on M), each proof requires only a constant number of
rounds and has communication/computation cost proportional to that
of a random-access machine (RAM) implementation of R, up to polylog-
arithmic factors. In particular, the cost per proof in many applications is
sublinear in |M |. Additionally, the storage requirement between proofs
for the verifier is constant.

1 Introduction

Zero-knowledge (ZK) proofs are a fundamental concept in cryptography and are
used as a building block in numerous applications. ZK proofs allow a prover with
the knowledge of a witness w to prove statements of the form ∃w : R(x,w) = 1 to
a verifier V , for a public NP statement R and a public input x. The soundness of
such a proof guarantees that a malicious prover cannot prove a false statement to
a verifier, and the zero-knowledge property guarantees that a malicious verifier
cannot learn any information about the witness except for validity of the proved
statement.

Since the conception of zero-knowledge proofs [GMR89], a large body of work
has focused on design of efficient constructions that are practical enough for
use in practice. But until recently, all such constructions were practical only for
proving statements about certain algebraic structures such as proving knowledge
of and relations for discrete logarithms, RSA public keys, and bilinear equations
[Sch90,CDS94,CM99,GS08].

The recent work of [JKO13] proposes a new approach based on garbled cir-
cuits (GC) that is suitable for general-purpose statements represented as boolean
circuits. This is particularly powerful for proving non-algebraic statements, e.g.,
proving knowledge of x such that y = Sha256(x) for a public value y. The con-
struction is very efficient, only requiring a constant number of rounds and com-
munication/computation cost that is similar to that of semi-honest 2PC based
on garbled circuits (i.e., Yao’s protocol). Given the recent advances in design &



implementation of circuit garbling techniques, these ZK proofs are scalable to
statements with billions of gates.

Need for ZK Proof of RAM Programs. But the GC-based approach falls short
when the statement being proven involves access to a large dataset commit-
ted by the prover. For instance, recall the problem solved by zero-knowledge
sets [MRK03]: a prover commits to a set S in an initial phase and is later able
to prove membership and non-membership statements (x ∈ S, x /∈ S) for any
input x without revealing additional information.

A natural extension is to prove membership for a (possibly private) value x
that satisfies a predicate p without leaking any additional information about x
or the set S. For instance, the prover may need to prove knowledge of an x ∈ S
where Sha256(x) = y for a public y in order to prove inclusion of a password in
a password-file. Furthermore, to improve on storage cost, the prover may want
to store his set S in a Bloom filter [Blo70]. This would lead to major storage
improvement, especially when considering the inevitable overhead caused by
crypto for every bit of memory stored. Now, the prover needs to prove knowledge
of an x where Sha256(x) = y and where the Bloom filter stores a bit 1 at each
of the locations H1(x), . . . ,Hk(x) (the Hi’s are the hash functions associated
with the Bloom filter and can be public). Such a statement involves several hash
evaluations and memory lookups. More generally, the prover may want to store
its data in a data-structure of its own choice and still have efficient tools for
proving statements about it.

In all of these scenarios, the statements being proven are naturally expressed
as RAM programs whose running time is sublinear in the size of the large dataset.
By comparison, directly applying a circuit-based approach (i.e., [JKO13]) would
involve garbled circuits that are at least linear in the size of the large dataset.

Existing Solutions for RAM-ZK. One can combine the GC-based proof system
of [JKO13] with the recent garbled RAM constructions [LO13,GHL+14] that
directly garble RAM programs as opposed to circuits. But the existing construc-
tions for garbled RAM are not efficient enough for practical use. In particular,
one needs to perform cryptographic operations inside the garbled circuits for
every step of RAM computation, which is a major bottleneck.

Finally, given that ZK proofs are a special case of secure two-party compu-
tation against malicious adversaries (i.e., a malicious 2PC where one party, the
verifier, has no input), we can obtain a solution by employing an efficient mali-
cious 2PC for RAM programs [AHMR15] and not assigning one party any input.
But for statistical security 2−s, such a proof would be a factor of s more expen-
sive than the semi-honest 2PC for the same RAM program, and the number of
rounds would also be proportional to the running time of the RAM program.

1.1 Our Contribution

We propose a new solution for zero-knowledge proof of statements of the form
∃w : R(M,x,w) = 1 where R is a RAM program and M is its (large) memory.



Here, M is committed upfront by the prover and can in general remain private
from the verifier. Our construction is constant-round, and incurs online compu-
tation and communication cost that is linear in the running time of the RAM
program (upto a polylogarithmic factor), competitive with the best semi-honest
2PC for RAM programs ([GKK+12]), and hence sublinear in |M | for many appli-
cations of interest. Sublinear-time 2PC is not possible in general when expressing
the NP relation as a boolean circuit. Furthermore, in our protocol the verifier
maintains only constant storage space between multiple proofs.

Our construction combines an Oblivious RAM [GO96] and garbled circuits,
but it avoids the use of cryptographic operations inside the garbled circuits as in
current garbled-RAM constructions. Unlike previous 2PC constructions based
on RAM computation [GKK+12,AHMR15], our construction requires only a
constant number of rounds of interaction. We discuss the construction in more
detail next.

2 Overview of the Protocol

The JKO protocol. Our starting point is the garbled-circuit-based ZK protocol
of [JKO13], which we summarize here. To prove a statement ∃w : R(x,w) = 1
(for public R and x), the protocol proceeds as follows:

1. The verifier generates a garbled circuit computing R(x, ·). Using a commit-
ting oblivious transfer, the prover obtains the wire labels corresponding to
his private input w. Then the verifier sends the garbled circuit to the prover.

2. The prover evaluates the garbled circuit, obtaining a single garbled output
(wire label). He commits to this garbled output.

3. The verifier opens his inputs to the committing oblivious transfer, giving the
prover all garbled inputs. From this, the prover can check whether the gar-
bled circuit was generated correctly. If so, the prover opens his commitment
to the garbled output; if not, the prover aborts.

4. The verifier accepts the proof if the prover’s commitment holds the output
wire label corresponding to true.

Security against a cheating prover follows from the properties of the circuit
garbling scheme. Namely, the prover commits to the output wire label before
the circuit is opened, so the authenticity property of the garbling scheme ensures
that he cannot predict the true output wire label unless he knows a w with
R(x,w) = true. Security against a cheating verifier follows from correctness of
the garbling scheme. The garbled output of a correctly generated garbled circuit
reveals only the output of the (plain) circuit, and this garbled output is not
revealed until the garbled circuit was shown to be correctly generated.

Note that in this protocol, the prover evaluates the garbled circuit on an
input which is completely known to him. This is the main reason that the garbled
circuit used for evaluation can also be later opened and checked for correctness,
unlike in the setting of cut-and-choose for general 2PC. Along the same lines, it
was further pointed out in [FNO15] that the circuit garbling scheme need not



satisfy the privacy requirement of [BHR12], only the authenticity requirement.
Removing the privacy requirement from the garbling scheme leads to a non-
trivial reduction in garbled circuit size.

Adapting to the ORAM setting, using constant rounds. We follow roughly the
RAM-2PC paradigm of [GKK+12,AHMR15], with some important differences.

LetΠ be an Oblivious RAM program with memory M̂ , that implementsR(M,x, ·).3

We assume a trusted setup phase in which Π’s memory M̂ and state st are ini-
tialized from M . The prover learns M̂ , st, as well as a garbled encoding of these
values (i.e., one wire label for each bit of memory & state); the verifier specifies
the garbled encoding to be used (i.e., both wire labels for each bit). If we follow
[GKK+12,AHMR15] strictly, we would have both parties repeatedly evaluate the

next-memory-access circuit of Π, updating memory M̂ , until it halts. However,
this would result in a protocol with one round of interaction for each memory
access of Π.

To see how to achieve the same effect in a constant number of rounds, imagine
that when executing an ORAM program, the memory access pattern I is known
in advance. Then it is possible to express the entire computation in a single
circuit. The circuit includes many copies of the RAM program’s next-memory-
access circuit, but is wired together under the assumption that the memory
accesses will be I. For example, if I says that Π writes to some memory block
at time 2, and later reads from the same memory block at time 10, then the
memory-output wires of subcircuit copy #2 will be connected to the memory-
input wires of subcircuit copy #10, and so on.

We can leverage this optimization in our setting because the prover knows
all (plaintext) inputs to Π, including the contents of memory and the ORAM
state. Hence, the prover can executeΠ locally to determine the complete memory
access pattern I. Since Π is an oblivious RAM, its access pattern I leaks no
information about the inputs/memory/state, so the prover can safely send I
to the verifier. Using I, the verifier constructs a single garbled circuit Cx,I as
described above. To prevent the prover from lying about the access pattern
I, the circuit recomputes the memory access pattern of Π and compares it to
(hard-coded) I.

Hence, this setting admits a constant-round solution based on ORAM, but
avoiding tools like garbled RAM [LO13,GHL+14] which incorporate expensive
additional crypto circuitry into the garbled circuits.

Reusing M to perform many proofs. We follow the approach of [AHMR15],
where the prover stores the ORAM memory and ORAM state encoded as wire
labels from the various garbled circuits. The idea is that these wire labels can
be reused directly as inputs to subsequent circuits, avoiding oblivious transfers
for garbled circuit input. However, some modifications are required to adapt this
idea to our setting.

3 We use M to refer to the logical RAM memory, and M̂ to refer to the physical
ORAM memory.



After evaluating a garbled circuit, the prover holds a garbled output encoding
of ORAM state & memory. The authenticity property of the garbling scheme
guarantees that the prover knows at most one valid label per wire. As soon as
the garbled circuit is opened, however, the prover learns both labels for each wire
and authenticity is lost. The output wire labels are no longer useful for input to
subsequent circuits, as the prover can now feed arbitrary garbled state/memory
into subsequent garbled circuits. We need a mechanism to restore authenticity
on all wire labels that may be later used (this includes the ORAM internal state
as well as all memory locations that are read or written by the garbled circuit).

Say the two wire labels on some output wire are y0 and y1, and that the
prover knows only yb. Let us call y0 and y1 the temporary wire labels, since they
will soon be discarded. The verifier chooses a random function h from a strongly
universal hash family. Just before the garbled circuit is opened (clobbering wire-
label authenticity), the parties perform a private function evaluation (PFE),
where the prover gives yb, the verifier gives h, and the prover learns h(yb). After
the PFE, the garbled circuit can be opened, revealing y0 and y1.

Define y′0 = h(y0) and y′1 = h(y1) to be the permanent wire labels for this
wire. At the time of the PFE, the prover could not have guessed y1−b, and so
learned the output of h on some point that was not y1−b. From strong universality
of h, even if y1−b is later revealed, y′1−b = h(y1−b) is still random from the
prover’s point of view. Hence the PFE “transfers” the authenticity guarantee
from the temporary wire labels y0, y1 to the permanent ones y′0, y

′
1, preserving

authenticity even after both of y0, y1 are revealed. Hence, y′0, y
′
1 are safe to use

as input wire labels to a subsequent garbled circuit. We emphasize that all wire
labels are used only in a single garbled circuit — we use the term “permanent”
since these wire labels will be the long-term representation of the RAM program’s
memory between proof instances. (It may be many proof instances before a
particular block of memory is next accessed.)

For technical reasons, the PFE needs to be committing with respect to the
input h (so that the verifier can later “open” the h that was used). We suggest
two efficient instantiations of committing-PFE for strongly universal families:
one based on oblivious linear function evaluation (OLFE) [WW06] and one based
on the string-select variant of OT presented in [KK12].

Note that all the PFE instances can be run in parallel hence, maintaining
the constant round complexity of the overall protocol.

Eliminating the verifier’s storage requirement. As described so far, the verifier is
required to keep track of two wire labels for each bit of M̂ , at all times. We can
decrease this burden somewhat by letting the verifier derive these wire labels
from a PRF. Let s be a seed to a PRF. For simplicity, suppose a wire label
encoding truth value b on the jth bit of the ith memory block, last accessed at
time t, is chosen as PRF(s, i‖j‖t‖b). In the actual protocol, the choice of wire
labels is slightly more complicated.

Using this choice of wire labels, the verifier need only remember the last-
access time of each block of M̂ . However, this is still storage proportional to
|M̂ |. To reduce the storage even further, we “outsource” the maintenance of



these last-access times to the prover. Let T [i] denote the last-access time of
block i. We let the prover store the array T authenticated by a Merkle tree for
which the verifier remembers only the root node.4

Whenever the verifier is about to garble a circuit, he must be reminded of
T [i] for each memory block i to be read by the RAM in its computation. We
make the prover report each such T [i] to the verifier, authenticating each value

via the Merkle tree. The ORAM circuit performs some reads & writes in M̂ , so
T and the Merkle tree are updated accordingly, for each memory block that was
accessed. Note that all accesses to the Merkle tree are done at the same time (in
parallel), and similarly for the updates at the end of the execution.

Overall, accessing/updating the authenticated array T adds polylogarithmic

(in |M̂ |) communication/computation overhead and only a small constant num-
ber of rounds to the protocol. Instead of remembering two wire labels for each
bit of M̂ , the verifier need now remember only a PRF seed and the root of a
Merkle tree.

3 Preliminaries

Throughout the paper, we let k ∈ N be the security parameter. We say a function
ε : N → [0, 1] is negligible if for any polynomial p, there exists a large enough
k′ such that for all k > k′, ε(k) < 1/p(k). Also, for a integer n, we define
[n] = {1, 2, . . . , n}.

3.1 ZK Proofs & Other Standard Functionalities

Here we define the variant of ZK proofs that we achieve, as well as other standard
ideal functionalities used in our protocol.

Zero-knowledge proofs: Roughly speaking, a zero-knowledge proof is an interac-
tive protocol in which a party P (the prover) can prove to another party V (the
verifier) that some NP statement x is true by using a valid witness w, leaking
no information about w (except that the statement x is true).

More precisely, for any language L ∈ NP with some binary relation RL,
for all valid instances x ∈ L, there exists a string w such that RL(x,w) = 1.
Otherwise, if x /∈ L, then for all string w we have RL(x,w) = 0.

The ideal functionality FRZK is defined in figure 1, which allows for many
proofs to reference a common (secret) value M .

Commitment: The commitment functionality Fcom is described in Figure 2. It
allows a party to commit to a secret value at one time and reveal that value at
a later time.

4 More generally, T can be stored in any authenticated data structure that provides
small storage for the verifier.



FR
ZK is parametrized by a relation R. It involves two parties: a prover P and a verifier

V .

– Setup: On input (init,M) from P , if no previous init command has been given,
then FR

ZK stores M internally.
– Proof: On input (prove, sid, x, w) from P , if R(M,x,w) = 1, output

(accept, sid, x) to V .

Fig. 1. Ideal functionality FR
ZK for zero-knowledge proofs of NP-relation R

Let M denote the space of valid messages. Fcom receives input from party P and
sends output message to party V . It consists of two phases: Commit and Open.

– Commit: On input (commit,m) from P with m ∈ M, if there is no value m
already stored in memory, then Fcom stores m internally and outputs committed
to party V .

– Open: On input open from P , if value m exists in memory, then Fcom outputs
(opened,m) to party V .

Fig. 2. Ideal functionality Fcom for commitment

– Initialization: Fotc takes private input E (an m× 2 array) from party V and the
private input σ ∈ {0, 1}m from party P , then stores (E, σ) internally and output
committed.

– Transfer: On command transfer from V , Fotc sends (transferred, E|σ) to P .
– Open: On command open from V , Fotc sends (opened, E) to P .

Fig. 3. Ideal functionality Fotc for committing oblivious transfer. Notation E|σ is de-
fined in Section 3.4.

– Initialization: On input (init, N) from party V , FAut initialize an array T of size
N . For each T [i], i ∈ {1, . . . , N}, set T [i] = 0.

– Update: On input (update, id, data) from party V , set T [id] = data and output
(updated, id, data) to both parties.

– Open: On input (access, id) from party V , where id ∈ {1, . . . , N}, send
(accessed, id, T [id]) to V .

Fig. 4. Ideal functionality FAut for authenticated array access.

Committing Oblivious Transfer: The definition of committing oblivious transfer
was first given by Kiraz and Schoenmakers [KS06]. In the general OT protocol,
party V inputs a description of wire labels E and party P has input σ. After
running oblivious transfer, P receives a garbled encoding of σ under the encoding
E. See Section 3.4 for more details about the wire-label syntax used in the figure.



Fcpfe is parametrized by a class of functions H, with each h ∈ H having a common
domain A.

– Evaluation: On input h ∈ H from party V and input x ∈ A from party P , give
output h(x) to party P . Remember h internally.

– Open: On input open from party V , give output h to party P .

Fig. 5. Ideal functionality Fcpfe for committing private function evaluation.

The “committing” aspect of committing OT allows party V to reveal E at a later
time. The ideal functionality Fotc is defined in Figure 3.

Authenticated Array: The functionality FAut in Figure 4 simply provides stor-
age of an array, in which the party V has control over modifications. Such a
functionality becomes interesting in our setting when it is realized by a protocol
with minimal (constant) storage for party V . A simple approach is to use an
authenticated Merkle-tree, with V storing only the root of the tree.

3.2 Committing Private Function Evaluation (of a Strongly
Universal Family)

Private function evaluation (PFE) takes input h (a function) from a sender,
input x from a receiver, and gives output h(x) to the receiver. We define and
use a committing variant of PFE in which the sender can later reveal the h that
was used. The formal description is given in Figure 5.

In our final protocol, we require committing PFE supporting a strongly
universal class H of functions. Suppose each function h in H is of the form
h : A → B. Then H is strongly universal if for all distinct a, a′ ∈ A and all
(possibly equal) b, b′ ∈ B,

Pr
h←H

[h(a) = b | h(a′) = b′] = 1/|B|

Below we suggest several efficient choices for PFE of strongly universal fam-
ilies:

Using 1-out-of-2 OT: Let X be an n × 2 matrix of length-m strings. For such
an X, define the function hX : {0, 1}n → {0, 1}m via:

hX(z) =

n⊕
i=1

Xi,zi

Then the class H = {hX | X ∈ ({0, 1}m)n×2} is strongly universal.
A simple protocol for private function evaluation of H uses standard 1-out-

of-2 oblivious transfer (of strings) in the following way: For i = 1 to n, the sender
gives input Xi,0 and Xi,1 as input to an instance of OT. The receiver gives input
zi and obtains ri = Xi,zi . Finally the receiver outputs r1 ⊕ · · · ⊕ rn.



Technically, this protocol is not a secure PFE for the family H, because
the receiver learns more than hX(z). In particular, the receiver learns various
Xi,zi values. However, the protocol suffices for our needs, by considering slightly

relaxed definitions. Let H be a family of pairs of functions. We write (h, ĥ) ∈ H,

where h : A → B and ĥ : A → B̂. Then we say that H is modified strongly
universal if for all distinct a, a′ ∈ A and all (possibly equal) b ∈ B, b̂′ ∈ B̂:

Pr
(h,ĥ)←H

[h(a) = b | ĥ(a′) = b̂′] = 1/|B|

The familyH = {hX} we described above satisfies this definition, taking ĥX(z) =
(X1,z1 , . . . , Xn,zn). That is, the value of hX(z′) is distributed uniformly even after

fixing the output of ĥX(z) for z 6= z′.
Then the protocol just described is secure for a variant of Figure 5 in which

an adversarial receiver obtains not h(x) but ĥ(x). It should be clear that such a
modified functionality suffices for our eventual usage of Fcpfe when the family H
is modified strongly universal. For simplicity we write our eventual ZK protocol
in terms of the simpler Fcpfe defined in Figure 5.

Furthermore, when the underlying OT protocol is a committing OT, then
the PFE protocol is also committing in a natural way (with the sender revealing
all committed-OT inputs). We note that this protocol is essentially the “string-
select oblivious transfer” protocol of [KK12] but without the final verification
step which is not needed here.

Using OLFE: In a finite field F, the class of functions of the form x 7→ ax + b
is strongly universal (with a, b ∈ F). A private function evaluation for this class
therefore accepts a, b ∈ F from the sender, x ∈ F from the receiver, and gives
output ax+b to the receiver. Such a functionality is already known by the name
of oblivious linear function evaluation (OLFE or OLE) [WW06].

The state of the art for malicious-secure OLFE is due to the general protocol
of Ishai, Prabhakaran, and Sahai [IPS09] for evaluating arithmetic circuits in
the OT-hybrid model. Since OLFE can be represented by an arithmetic circuit
with just 2 gates, their construction yields an OLFE protocol with (amortized)
constant number of field elements communicated per OLFE and computation
roughly O(log k) field operations per OLFE.

The general construction of [IPS09] combines an outer MPC protocol among
imaginary parties and an inner 2PC protocol between the real parties. It is easy
to see that if the inner protocol is committing, so is the overall protocol.

3.3 Oblivious RAM program

Oblivious RAM (ORAM) programs were first introduced by Goldreich & Os-
trosvsky [GO96]. ORAM allows a client to hide its access pattern and data to
the server. In this work we freely identify a RAM program Π with its deter-
ministic next-instruction circuit. We use M to represent the logical memory of a
RAM program and M̂ to indicate the physical memory array in Oblivious RAM



program. We consider all memory to be split into blocks, where M [i] denotes
the ith block of M .

Without loss of generality, we assume that the RAM program is deterministic.
Although constructions of oblivious RAM require randomness, we can allow the
prover to provide that randomness as part of the witness w. Thus, we think of
w as w = wreal‖r, where wreal is the actual witness to the statement and r is
randomness used by the ORAM. An honest prover will choose r uniformly so
that the ORAM memory access sequence hides private information. Allowing a
corrupt prover to choose r does not compromise soundness in practical ORAM
constructions (e.g., [SvDS+13]) — it only affects the probability of an overflow
error event (in which case we can have the ORAM circuit output false).

Let the next-instruction circuit Π have syntax:

(inst, st, block)← Π(st,Σ, block)

where Σ is external input, st is the ORAM state, block is the memory blocks
and inst represents a RAM memory access instruction, which must have one of
the following forms: (read, i), (write, i), or (halt, z), where i is the index of
a memory block.

The execution of an ORAM program Π on input (x,w) using memory M̂ is
as follows:

RAMEval(Π, M̂, (x,w), st)

I := ∅
(inst, st, block) := Π(st, (x,w),⊥)
do until inst has the form (halt,true):

block := [if inst = (read, id) then M̂ [id] else ⊥]
(inst, st, block) := Π(st,⊥, block)

if inst = (write, id) then M̂ [id] := block
I := I‖inst

output I
Note that we have RAMEval output the access sequence I. We say I is an
accepting access sequence if the last instruction in I is (halt,true).

We assume a function Initialize with syntax:

(M̂, st)← Initialize(1k,M)

This function returns the initial value of st and also the initialized physical
memory array M̂ encoding the logical memory M .

The security definition of an oblivious RAM program Π requires that the
memory access sequence I does not leak information about the data set M or
witness wreal. More formally:

Definition 1. We say that Π is a secure ORAM if there exists an efficent
S such that, for all M , all (M̂, st) ← Initialize(1k,M), all (x,wreal) such that
R(M,x,wreal) = 1 and for all PPT A, the following difference:∣∣∣Pr[A(S(1k, |M̂ |, x) = 1]− Pr

r
[A(RAMEval(Π, M̂, (x,wreal‖r), st)) = 1]

∣∣∣



is negligible in k.

Any RAM program can be converted into an oblivious one satisfying our defini-
tions, using standard constructions [SvDS+13,CP13]. Note that I (the output of
RAMEval) contains only the memory locations and not the contents of memory.
Hence, we do not require the ORAM construction to encrypt/decrypt memory
contents.

3.4 Garbling Scheme

We assume some familiarity with standard constructions of garbled circuits. We
employ the abstraction of garbling scheme [BHR12] introduced by Bellare et al. ,
but we use a slightly different syntax for our needs.

We represent a set of wire labels on m wires via a m× 2 array W . For each
wire i, W [i, 0] ∈ {0, 1}k and W [i, 1] ∈ {0, 1}k are two wire labels that encode
false and true, respectively. For a truth value x, the corresponding wire labels
are defined as W |x = (W [1, x1], . . . ,W [m,xm]).

Our protocol adopts the idea of [MGFB14,AHMR15] of re-using wire labels
between different garbled circuits. We require somewhat different syntax for the
garbling scheme in order to facilitate this reuse.

For our purposes, a garbling scheme consists of the following algorithms:

– Gb(1k, f, E,D) → F . Takes as input a boolean circuit f , descriptions of
input wire labels E and output wire labels D, and outputs a garbled circuit
F .

– En(E, x) → X = E|x. Takes as input description of input wire labels E, a
plaintext input x and outputs a garbled input X. In our schemes, encoding
is always done via E|x.

– Ev(F,X) → Y . Takes as input a garbled circuit F and a garbled input X
and returns a garbled output Y .

– Chk(f, F,E) → D or ⊥. Takes as input a boolean circuit, a (purported)
garbled circuit F and input wire label desription E and outputs either D or
an error indicator ⊥.

The correctness and security condition of garbling scheme we require here
is slightly different from those given in [BHR12], but any garbling scheme that
meet the requirements in [BHR12] also works well for our definitions.

Definition 2. A garbling scheme satisfies correctness if:

1. For all circuits f , circuit-inputs x, and valid wire label descriptions E,D,

Chk(f, F,E) = D whenever F ← Gb(1k, f, E,D)

2. For all circuits f , (possibly malicious) garbled circuits F and wire-label de-
scriptions E,

Ev(F,E|x) = D|f(x) whenever Chk(f, F,E) = D 6= ⊥



Definition 3. Let W denote the uniform distribution of m× 2 matrices as de-
scribed above. A garbling scheme has authenticity if for every circuit f , circuit-
input x, and PPT algorithm A, the following probability:

Pr[∃y 6= f(x), D̃ = D|y : E ←W, F ← Gb(1k, f, E,D), D̃ = A(F,E|x)]

is negligible in k.

The above definition says that when given F and E|x, there is no efficient
adversary that can forge valid output wire labels D̃ such that D̃ 6= D|f(x).

We emphasize that the garbling scheme we use here only requires only the au-
thenticity property and not any privacy property. Hence, the protocol may use a
more efficient and simpler garbling scheme (e.g., the “privacy-free” constructions
of [FNO15,ZRE15]).

4 Zero-Knowledge by Oblivious RAM

4.1 Notation and Helper Routines

ORAM components: Let I be an ORAM memory access sequence. We define
read(I) = {i | (read, i) ∈ I}, write(I) = {i | (write, i) ∈ I}, and access(I) =
read(I) ∪ write(I); i.e., the indices of blocks that are read/write/accessed in I.
If S = {s1, . . . , sn} is a set of memory-block indices, then we define M [S] =
(M [s1], . . . ,M [sn]).

LetΠ denote the next-instruction circuit of an ORAM. Given a zero-knowledge
statement x and ORAM access sequence I, we let circuit Cx,I denote the fol-
lowing circuit:

Cx,I(st, w, M̂ [read(I)]):

(inst, st, block) := Π(st, (x,w),⊥)
for i = 1 to |I| − 1:

if I[i] = (read, id) then:

(st, inst,⊥)← Π(st,⊥, M̂ [id])
if I[i] = (write, id) then:

(st, inst, block)← Π(st,⊥,⊥)

M̂ [id] = block
I ′ := I ′‖inst

z := [I ?
= I ′]

return (st, z, M̂ [access(I)])

As described in Section 2, Cx,I is the circuit that will be garbled in the
protocol. Note that both x and I are hard-coded into Cx,I . Also, the circuit
verifies that I = I ′, and this entails checking the correctness of the witness since
the final element of I is (halt,true).



Garbling notation: The circuit Cx,I has 3 logical inputs and 3 logical out-
puts, and we must distinguish among them. When garbling the circuit via
F ← Gb(Cx,I , E,D, 1

k), we denote by E a description of input wire labels
(i.e., two labels per wire) and D a description of output wire labels. We write
E = Est‖Ewit‖Emem, denoting the corresponding input wire labels for state, wit-
ness, and memory blocks, respectively. We define D = Dst‖Dz‖Dmem similarly.
When referring to a specific memory block i, we use notation Emem,i and Dmem,i.

We use X to denote the prover’s garbled input, and Y to denote the prover’s
garbled output (i.e., one label per wire). As above, we define Xst, Xwit, Xmem,
Yst, Yz, Ymem. Finally, we have the prover maintain an array Rmem at all times,
containing the current wire labels for all of the ORAM memory M̂ .

For an overview of the notation used in the protocol, see Figure 6.

Cx,I

st
w

M̂ [read(I)]

st
z

M̂ [access(I)]

Et
Etst
Etwit
Etmem



derived from PRF

Dt

Dt
st

Dt
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Dt
mem


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F tXt
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Xt
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Xt
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(garbled) output

“temporary” wire labels

︸ ︷︷ ︸
“permanent”
wire labels

Ev LabelXfer

Fig. 6. Summary of variables and notation used in the protocol.

Temporary & permanent wire labels. Recall from Section 2 that the output wire
labels of a circuit are “temporary” in the sense that their authenticity is lost
when the garbled circuit is opened. We use PFE to transfer the authenticity
property of these temporary wire labels to a different set of “permanent” wire
labels.

We transfer authenticity with the LabelXfer subprotocol, where Y is a list
of “temporary” wire labels (i.e., one label per wire), and h is a list of elements
from a strongly universal hash family H.

prot LabelXfer(Y,h):

for i = 1 to |Y | (in parallel):



V sends Y [i] and P sends h[i] to an instance of Fcpfe

P receives output Z[i] := h[i](Y [i])
P outputs Z

Note that all instances of Fcpfe are run in parallel and hence the protocol
remains constant-round given that Fcpfe is itself constant-round.

Selecting wire labels. Now let’s consider how the verifier generates wire labels
for the circuit. Recall from Section 2 that the verifier uses a PRF to generate
wire labels corresponding to the ORAM memory, in order to reduce storage.

Since permanent wire labels are derived by applying strongly universal func-
tions to temporary wire labels, the verifier must also select strongly universal
functions using the PRF to be able to reconstruct the choice of functions later.

Let s be the seed to a PRF. The verifier derives the temporary wire labels
for a set S of memory block indices, last updated at time t, via the subroutine
TempMemLabels. The verifier derives the choice of strongly universal functions
via the subroutine GenH.

Finally, the verifier derives the current, permanent wire labels for a set S
of memory block indices via the subprotocol PermMemLabels. Since each block
may have been last accessed a different time, the authenticated array FAut is
referenced. For each block, the most recent temporary wire labels and strongly
universal functions are reconstructed to derive the permanent wire labels.

func TempMemLabels(S, t):

D := ∅
for i ∈ S:

for j ∈ {1, . . . , l}, b ∈ {0, 1}:
Di[j, b] = PRF(s, 0‖i‖j‖t‖b)

D := D‖Di

return D

func GenH(S, t):

h = ∅
for i ∈ S:

for j ∈ {1, . . . , l}:
hi[j] = PRF(s, 1‖i‖j‖t)

h := h‖hi

return h

prot PermMemLabels(S):

E := ∅
for all i in S (in parallel):

send (access, i) to FAut

receive ti := T [i]
Di := TempMemLabels({i}, ti)
hi := GenH({i}, ti)
Ei := hi(Di)
E := E‖Ei

return E

When h is an array of functions and D is a matrix of wire labels, the notation
h(D) refers to the matrix E whose entries are E[j, b] = h[j](D[j, b]).

4.2 Detailed protocol

Now we present the full protocol π. We refer to the prover as P and the verifier
as V . The setup phase uses the initialization functionality Finit defined in Figure
7.



– Initialize: On command (init,M) from P and (init, Dst, Dmem), where M
is logical ORAM memory, and Dst & Dmem are wire label descriptions, run
(st, M̂)← Initialize(1k,M). Give output (st, M̂ ,Dst|st, Dmem|M̂ ) to P .

– Open: On command open from V , give output (Dst, Dmem) to P .

Fig. 7. Ideal functionality Finit for initializing an ORAM program along with wire
labels.

Setup: On input M for prover P , let N denote the number of blocks in the
ORAM encoding of M . Then both parties do the following:

1. V picks random wire label descriptionsD0
st and computesD0

mem = TempMemLabels([N ], 0).
V also chooses a random PRF seed s← {0, 1}k.

2. P sends (init,M) to Finit; V sends (init, D0
st, D

0
mem) to Finit. P receives

output (st, M̂ , Y 0
st = D0

st|st, Y 0
mem = D0

mem|M̂ ).
3. [Transfer wire-label authenticity]:5

(a) V picks random vector h0
st of strongly universal functions and sets E1

st =
h0
st(D

0
st). The parties perform subprotocol LabelXfer(Y 0

st ,h
0
st), with P ob-

taining output h0
st(Y

0
st ) which he stores as X1

st.
(b) V picks vector h0

mem = GenH([N ], 0) and the parties perform subprotocol
LabelXfer(Y 0

memh
0
mem). P receives output h0

mem(Y 0
mem) which he stores as

Rmem.
(c) V sends open to Finit, and P receives output (D0

st, D
0
mem).

4. P sends (init, N) to FAut to initialize authenticated array T (with T [i] = 0
for all i).

Proofs: On input (x,w) for the prover, let this be the tth such proof. The parties
do the following:

4. [ORAM Evaluation]: P runs I ← RAMEval(Π, M̂, x, w, st), then sends
(x, I) to V . V aborts if I is not an accepting access sequence. Note that

RAMEval modifies M̂ for the prover.
5. [Garbling the circuit]: V generates a garbled circuit as follows:

(a) V chooses input wire labels to the circuit as follows: Et
wit are chosen

randomly. Et
mem are chosen as Et

mem ← PermMemLabels(read(I)). Recall
that Et

st has been set previously.
(b) V chooses output wire labels Dt

z and Dt
st randomly, and chooses Dt

mem =
TempMemLabels(access(I), t).

(c) V sets Et = Et
st‖Et

wit‖Et
mem, sets Dt = Dt

st‖Dt
z‖Dt

mem, then invokes gar-
bling algorithm F t ← Gb(1k, Cx,I , E

t, Dt).

6. [Evaluating garbled circuit]:

5 This step could be easily incorporated into Finit, but is written separately so that
the remainder of the protocol has no edge-cases involving t = 0.



(a) The parties invoke Fotc with P giving input w and V giving input Et
wit.

P receives Xt
wit = Et

wit|w. Additionally, P finds Xt
st in its memory and

sets Xt
mem = Rmem[read(I)].

(b) V sends F t to P , and P evaluates the garbled circuit Y t ← Ev(F t, Xt).

(c) P commits to Y t
z (a single wire label) under Fcom.

7. [Transfer wire-label authenticity]:

(a) V picks random vector ht
st of strongly universal functions and sets Et+1

st =
ht
st(D

t
st). The parties perform subprotocol LabelXfer(Y t

st,h
t
st), with P ob-

taining output ht
st(Y

t
st) which he stores as Xt+1

st .

(b) V picks vector ht
mem = GenH(access(I), t) and the parties perform sub-

protocol LabelXfer(Y t
mem,h

t
mem). P receives output ht

mem(Y t
mem) which he

stores as Rmem[access(I)].

8. [Check garbled circuit]:

(a) V sends open to the Fotc-instance from time t, and P receives output
Et

wit.

(b) V sends open to the PFE-instances used for the state wire labels in time
t− 1. The prover thus obtains ht−1

st and sets Et
st = ht−1

st (Dt−1
st ).

(c) For each i ∈ read(I), verifier sends open to the PFE-instances used for

memory block i in time T [i]. The prover thus obtains h
T [i]
mem,i and sets

Et
mem,i = h

T [i]
mem,i(D

T [i]
mem,i).

(d) The verifier sets Et = Et
st‖Et

wit‖Et
mem and runs Dt = Chk(Cx,I , F

t, Et).
If the result is ⊥, then V aborts. Otherwise, V opens his commitment
to Y t

z .

9. [Check prover’s output]: V checks whether Y t
z = Dt

z|true. If not, then V
aborts the protocol. Otherwise, V outputs (accept, t, x).

10. [Update T ]: For all i ∈ access(I) (in parallel), V sends (update, i, t) to
FAut.

Other discussion. Our protocol is written in a hybrid model with access to var-
ious setup functionalities. In particular, Fcpfe is a reactive functionality, and our

protocol involves many (O(|M̂ |)) instances of Fcpfe that remain “active” between
ZK proofs. We have shown how the verifier’s inputs to the Fcpfe instances can
be derived from a PRF, eliminating the need to explicitly store them. However,
when these Fcpfe instances are realized by concrete protocols, both parties are re-
quired to keep internal state between the PFE phase and opening phase. Hence,
the verifier’s random coins for the Fcpfe-protocols should also be derived from a
PRF. In that way, the verifier’s entire view can be reconstructed as needed when
it is time to open each Fcpfe instance.

4.3 Security Proof

Theorem 1. The protocol π presented in Section 4.2 is a secure realization of
the FRZK functionality.



Proof. We describe two simulators, depending on which party is corrupted.

Prover is corrupt: The primary role of the simulator in this case is to extract the
witness from P . We construct the simulator in a sequence of hybrid interactions:

H0: Simulator plays the role of an honest verifier V (who has no input) and all
ideal functionalities. In particular, the simulator obtains all of P ’s inputs to
the ideal functionalities. This interaction is identical to the real interaction
with π.

H1: Same as H0 except that instead of using a PRF, the simulated verifier
chooses output wire labelsDt

mem and ht
mem functions uniformly (in TempMemLabels

and GenH). We have H1 ≈ H0 by the security of the PRF.
H2: Same as H1 except that the simulator aborts in certain cases as follows.

The simulator has initially generated M̂ and st (while simulating Finit) and
obtains w as P ’s input to Fotc in each step (6a). Hence, each time in step

6, the simulator executes Cx,I(st, w, M̂ [read(I)]) → (st, z, M̂ [access(I)]),

updating its internal st and M̂ .
In the LabelXfer subprotocols in steps (3) and (7), P is meant to provide
his garbled output Y t

mem and Y t
st to the Fcpfe functionalities. Similarly, in

step (6c), the prover is expected to commit to Y t
z |true. In H2, the simulator

artificially aborts if P provides a valid encoding Dt|y for y not equal to the
simulated output of Cx,I at time t.
Now we claim that the simulator artificially aborts with only negligible
probability (so H1 ≈ H2) and that the prover’s view of Et during step (7)
in time t can be simulated given only Et

mem|M̂ [read(I)] and Et
st|st. This follows

essentially from the authenticity property of the garbling scheme and the
strong-universal hashing property of H.
Consider the LabelXfer subprotocol in step (3) (i.e., time t = 0). At this
time, all wire labels in D0 besides D0

mem|M̂ and D0
mem|st are independent

of the adversary’s view by definition of the Finit functionality. Hence, the
simulator artificially aborts with negligible probability during these steps.
Conditioned on not aborting, the action of the strongly universal hash func-
tions on the “wrong” wire labels ofD0 — and hence the value of the “wrong”
input wire labels in E1 — is distributed independently of P ’s view. Thus
P ’s view in step (6) can be simulated given only the claimed subset of E1.
Inductively, the prover’s view of Et at the time of the LabelXfer steps de-
pends only on the “expected” input wire labels. Hence, the simulator arti-
ficially aborts with negligible probability, due to the authenticity property
of the garbling scheme. As above, conditioned on not aborting, the strong
universal hashing property ensures that the prover’s view of Et+1 depends
only on the claimed subset of Et+1.

H3: Same as H2 except that in step (2) the simulator sends P ’s input M to FRZK.
In step (9), if the simulated verifier does not abort, then the simulator sends
(x,wreal) to FRZK (where w was extracted from the prover in step (6a). We
claim that the output of the ideal verifier always matches that of the simu-
lated verifier. The simulated verifier accepts the proof if P has committed



to Dt
z|true. Provided that the simulator has not artificially aborted, then it

must be that the simulated Cx,I has output z = true. By the correctness
of the RAM program, it must be that wreal is a valid witness for x.

Hence, the simulator implicit in H3 is our final simulator.

Verifier is corrupt: In this case, the primary role of the simulator is to simulate
its view without knowledge of the witness w. We note that the only information
that needs to be simulated in each proof is the memory access sequence I and
the opened commitment to output wire label Y t

z . Again we proceed in a sequence
of hybrid interactions.

H0: Simulator plays the role of an honest prover P (including M and witnesses
w as input) and all ideal functionalities. Hence, the simulator obtains all of
V ’s inputs to the ideal functionalities. This interaction is identical to the
real interaction with π.

H1: Same as H0 except for the following changes. An honest prover computes
Dt in step (8d) when the verifier decommits to certain inputs to ideal func-
tionalities. Here we have the simulator perform the same computations, but
as soon as possible given the ability to see the verifier’s inputs to the func-
tionalities. Hence, in step (6c), the simulator will know the entire contents
of Dt. Instead of evaluating the garbled circuit to obtain garbled output
Y t
z , we have the simulator simply commit to Dt

z|true.
This commitment is only opened when the garbled circuit F t is shown to
be correct. Hence, H0 ≡ H1.

H2: Same as H1 except for the following changes. Note that in H1 the simulator
uses secret values M and w only to generate the memory access sequence
I. All of the simulated prover’s other inputs to ideal functionalities can be
set to dummy values, as V gets no outputs. So in H2 we have the simulated
prover generate I in step (4) using the ORAM simulator instead of actually
executing the RAM program itself. We have H1 ≈ H2 by the security of
the ORAM.

The simulator implicit in H2 defines our final simulator, since it no longer re-
quires the secret values M and w to operate.

This completes the security proof of our protocol.
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