
Secure Computation with
Minimal Interaction, Revisited

Yuval Ishai?, Ranjit Kumaresan??, Eyal Kushilevitz? ? ?, and Anat
Paskin-Cherniavsky†

Abstract. Motivated by the goal of improving the concrete efficiency of
secure multiparty computation (MPC), we revisit the question of MPC
with only two rounds of interaction. We consider a minimal setting in
which parties can communicate over secure point-to-point channels and
where no broadcast channel or other form of setup is available.
Katz and Ostrovsky (Crypto 2004) obtained negative results for such
protocols with n = 2 parties. Ishai et al. (Crypto 2010) showed that
if only one party may be corrupted, then n ≥ 5 parties can securely
compute any function in this setting, with guaranteed output delivery,
assuming one-way functions exist. In this work, we complement the above
results by presenting positive and negative results for the cases where
n = 3 or n = 4 and where there is a single malicious party.
When n = 3, we show a 2-round protocol which is secure with “selective
abort” against a single malicious party. The protocol makes a black-box
use of a pseudorandom generator or alternatively can offer unconditional
security for functionalities in NC1. The concrete efficiency of this protocol
is comparable to the efficiency of secure two-party computation protocols
for semi-honest parties based on garbled circuits.
When n = 4 in the setting described above, we show the following:

– A statistical VSS protocol that has a 1-round sharing phase and 1-
round reconstruction phase. This improves over the state-of-the-art
result of Patra et al. (Crypto 2009) whose VSS protocol required 2
rounds in the reconstruction phase.

– A 2-round statistically secure protocol for linear functionalities with
guaranteed output delivery. This implies a 2-round 4-party fair coin
tossing protocol. We complement this by a negative result, showing
that there is a (nonlinear) function for which there is no 2-round
statistically secure protocol.

– A 2-round computationally secure protocol for general functionalities
with guaranteed output delivery, under the assumption that injective
(one-to-one) one-way functions exist.

? Department of Computer Science, Technion. Email: yuvali@cs.technion.ac.il.
Research supported by the European Union’s Tenth Framework Programme
(FP10/2010-2016) under grant agreement no. 259426 ERC-CaC, ISF grant 1709/14
and BSF grant 2012378.

?? MIT CSAIL. Email: ranjit@csail.mit.edu. Supported by Qatar Computing Re-
search Institute. Work done in part while at the Technion..

? ? ? Department of Computer Science, Technion. Email: eyalk@cs.technion.ac.il. Re-
search supported by ISF grant 1709/14 and BSF grant 2012378.

† Department of Computer Science, Ariel University. Email: anps83@gmail.com



2 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

– A 2-round protocol for general functionalities with guaranteed out-
put delivery in the preprocessing model, whose correlated randomness
complexity is proportional to the length of the inputs. This protocol
makes a black-box use of a pseudorandom generator or alternatively
can offer unconditional security for functionalities in NC1.

Prior to our work, the feasibility results implied by our positive results
were not known to hold even in the stronger MPC model considered by
Gennaro et al. (Crypto 2002), where a broadcast channel is available.

Keywords: Secure multiparty computation, round complexity, efficiency.

1 Introduction

Suppose that two or more parties wish to compute some function on their sensi-
tive inputs while hiding the inputs from each other to the extent possible. One
solution would be to employ an external trusted server. Such a trust assumption
gives rise to the following minimalist protocol: each party sends its input to the
server, who computes the result and sends only the output back to the parties.

However, trusting an external server has several drawbacks, such as being sus-
ceptible to server breaches. To eliminate the single point of failure, the parties
may employ a secure multiparty computation (MPC) protocol for distributing
the trust between the parties. When replacing the external trusted server with
an MPC protocol, a major practical disadvantage is that we lose the minimal-
ist structure of the earlier protocol. Indeed, MPC protocols that offer security
against malicious parties typically require a substantial amount of interaction.
For instance,

– Implementing broadcast (a special case of MPC) over secure point-to-point
channels generally requires more than two rounds [13].

– Even if broadcast is given for free, 3 or more rounds are necessary for gen-
eral MPC protocols that tolerate t ≥ 2 malicious parties and guarantee
fairness [16].

Fortunately, neither of the above limitations rules out the possibility of obtain-
ing 2-round MPC protocols secure against a single malicious party. This was
exploited in the work of Ishai et al. [20], who showed that if only one party can
be corrupted, then n ≥ 5 parties can securely compute any function of their
inputs, with guaranteed output delivery, by using only two rounds of interac-
tion over secure point-to-point channels, and without assuming broadcast or any
additional setup. Since a similar result can be ruled out in the case of n = 2
parties [24], the work of [20] leaves open the corresponding question for n = 3
and n = 4.

This question may be highly relevant to real world situations where the num-
ber of parties is small and the existence of two or more corrupted parties is
unlikely. Indeed, the only real world deployment of MPC that we are aware of is
for the case of n = 3 and t = 1 (cf. [6, 7]). Furthermore, in settings where secure
computation between multiple servers involves long-term secrets, such as cryp-
tographic keys or sensitive databases, it may be preferable to employ three or



Secure Computation with Minimal Interaction, Revisited 3

more servers as opposed to two for the purpose of recovery from faults. Indeed,
in secure 2-server solutions the long-term secrets are lost forever if one of the
servers malfunctions. Finally, the existence of a strict honest majority allows for
achieving stronger security goals, such as fairness and strong forms of compos-
ability, that are provably unrealizable in the two-party setting and, moreover, it
gives hope for designing leaner protocols that use weaker cryptographic assump-
tions and have better concrete efficiency. Thus, positive results in this regime
(i.e., 2-round protocols for n = 3 and n = 4) may have strong relevance to the
goal of practically efficient secure computation.

Our interest in this problem is motivated not only by the quantitative goal
of minimizing the amount of interaction, but also by qualitative advantages of
2-round protocols over protocols with more rounds. For instance, as pointed out
in [20], the minimal interaction pattern of 2-round protocols makes it possible to
divide the secure computation process into two non-interactive stages of input
contribution and output delivery. These stages can be performed independently
of each other in an asynchronous manner, allowing clients to go online only when
their inputs change, and continue to (passively) receive periodic outputs while
inputs of other parties may change.

Our results. We obtain several results on the existence of 2-round MPC pro-
tocols over secure point-to-point channels, without broadcast or any additional
setup, which tolerate a single malicious party out of n = 3 or n = 4 parties.

Three-party setting. In an information-theoretic setting without a broad-
cast channel, the broadcast functionality itself is unrealizable for n = 3 and
t = 1 [25]. Therefore, if we wish to obtain secure computation protocols with
perfect/statistical security, with guaranteed output delivery, then we have to as-
sume a broadcast channel. In the computational setting, broadcast is realizable in
two rounds using digital signatures (assuming a public key infrastructure setup).
Further, assuming indistinguishability obfuscation and a CRS setup, there exist
2-round protocols which tolerate an arbitrary number of corruptions t < n [14,
2]. These protocols guarantee fairness when t = 1 and n = 3 (more generally,
when t < n/2), and also have nearly optimal communication complexity. How-
ever, the above computationally secure protocols require a trusted setup and,
perhaps more importantly, they rely on strong cryptographic assumptions and
have poor concrete efficiency.

Fortunately, as we show, it turns out that a further relaxation of this notion,
referred to as “security-with-selective-abort,” allows us to obtain statistical secu-
rity even without resorting to the use of a broadcast channel or a trusted setup.
This notion of security, introduced in [18], differs from the standard notion of
security-with-abort in that it allows the adversary (after learning its own out-
puts) to individually decide for each uncorrupted party whether this party will
obtain its correct output or will abort with the special output “⊥”. Our main
result in this setting is the following:

There exists a 2-round, 3-party general MPC protocol over secure point-to-
point channels, that provides security-with-selective-abort in the presence
of a single malicious party. The protocol provides statistical security for



4 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

functionalities in NC1 and computational security for general functionalities
by making a black-box use of a PRG.1

The above protocol is very efficient in concrete terms. There is a large body of
recent work on optimizing the efficiency of 2-party protocols based on garbled cir-
cuits. A recent work of Choi et al. [9] considered the 3-party setting, but required
security against 2 malicious parties and thus did not offer better efficiency than
that of 2-party protocols. Our work suggests that settling for security against
a single party can lead to better overall efficiency while also minimizing round
complexity. In particular, our 3-party protocol is roughly as efficient as 2-party
semi-honest garbled circuit protocols. See discussion in Section 3.

Four-party setting. Gennaro et al. [15] show the impossibility of 2-round per-
fectly secure protocols for secure computation for n = 4 and t = 1, even assuming
a broadcast channel. Ishai et al. [20] show a secure-with-selective-abort protocol
in this setting over point-to-point channels. Their protocol does not guarantee
output delivery. We complete the picture in several ways. We start by focusing
on the simpler question of designing verifiable secret sharing (VSS) protocols.
Prior to our work, for the case when n = 4 and t = 1, it was known that (1)
there exists a 1-round sharing and 2-round reconstruction statistical VSS pro-
tocol [29], and (2) there exists a 2-round sharing and 1-round reconstruction
statistical VSS protocol [1]. We improve the state-of-the-art by showing that:

There exists a 4-party statistically secure VSS protocol over point-to-point
channels that tolerates a single malicious party and requires one round in
the sharing phase and one round in the reconstruction phase.

The above result is somewhat unexpected in light of the results from [29, 1], and
the corresponding protocol is significantly more involved than other 1-round
VSS protocols. Our 1-round VSS protocol implies statistically secure 2-round
protocols for fair coin-tossing and simultaneous broadcast over point-to-point
channels. More generally, we show that:

There exists a 2-round 4-party statistically secure MPC protocol for lin-
ear functionalities (that compute a linear mapping from inputs to outputs)
over secure point-to-point channels, providing full security against a single
malicious party.

We complement the above positive result by proving the following negative re-
sult:

There exists a nonlinear function which cannot be realized by a protocol as
above.

Taken together, the two results above showcase a unique provable separation be-
tween the round complexity of linear functionalities (which capture coin-tossing
and secure multicast as special cases) and that of higher degree functions. Next,
we show that settling for computational security allows us to beat the previous
negative result.

1 Our information-theoretic protocols are limited to NC1 like all known constant-
round protocols, even in the semi-honest model. However, settling for computational
security, all our protocols apply to general circuits by using any PRG as a black box.



Secure Computation with Minimal Interaction, Revisited 5

Assuming the existence of injective (one-to-one) one-way functions, there
exists a 2-round 4-party computationally secure MPC protocol for general
functionalities over secure point-to-point channels, providing full security
against a single malicious party.

None of our previous results require a setup assumption. A natural question is
whether it is possible to obtain statistical security (at least for functionalities in
NC1) in the same setting by relying on some form of setup. Several prior works [5,
10, 11, 19, 8] obtain information-theoretic security in a so-called preprocessing
model, where the parties are given access to a source of correlated randomness
before the inputs are known. However, these protocols either have a higher round
complexity, or alternatively make use of correlated randomness whose size grows
exponentially with the input length [19, 4]. We present a protocol in this setting
where the size of correlated randomness is exactly the length of the inputs. In
the full version, we show that:

Assuming a correlated randomness setup, there exists a 2-round 4-party
MPC protocol over secure point-to-point channels, providing full security
against a single malicious party. The protocol provides statistical security for
functionalities in NC1 and computational security for general functionalities
by making a black-box use of a PRG. The size of the correlated randomness
is linear in the input size.

Prior to our work, our positive results in either the 3-party or 4-party settings
were not known to hold even in the setting considered where a broadcast channel
is available, which was studied in the line of work originating from [15, 16].
Moreover, our protocols are secure against adaptive and rushing adversaries.
Finally, while we analyze our protocols in the standalone setting, they are in
fact composable (in particular, none of our simulators is rewinding).

Technical overview. We now give a very brief and high level overview of some
of our results. The main primitives that we use in our protocols are private
simultaneous message (PSM) protocols [12] and 1-private secret sharing schemes
(cf. Section 2). Our high level strategy is similar to the one used in [20]. The
parties secret share their inputs among other parties in the first round. Then,
in the second round, they make use of PSM subprotocols to reconstruct parties’
inputs from the shares, and also to evaluate a function on the reconstructed
inputs. Given the above, there are still two main issues that need to be resolved:
(1) a malicious PSM client may supply inconsistent shares of honest parties
inputs inside the PSM, and (2) a malicious party may supply inconsistent shares
of its own input to honest parties. Thus, different PSM instances may reconstruct
different inputs thereby generating different outputs all of which seem correct.

Ishai et al. [20] get around (1) and (2) by using (n − 2)-client PSM. Note
that for n ≥ 5 there are at least two honest clients and these two clients hold
all the shares of all parties. Thus, it is easy to detect inconsistent input shares
inside the PSM, and it is possible to either apply a “correction” inside the PSM
or easily ensure that incorrect PSM outputs are discarded. In our setting, i.e.,
n ∈ {3, 4}, we have to deal with 2-client PSMs. This is obviously necessary when
n = 3. We can use 3-client PSM when n = 4, but this PSM cannot be expected



6 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

to deliver output since a malicious client can simply abort this PSM. For these
reasons, techniques from [20] do not work when n ∈ {3, 4}. We can no longer
apply corrections inside the PSM or easily identify incorrect PSM outputs.

To get around (1), we use a novel “view reconstruction” technique (cf. Sec-
tion 3). When n = 3, this technique suffices, together with some additional
ideas, to get around both (1) and (2). To get around (2), when n = 4, we
use information-theoretic MACs for secure linear function evaluation and non-
interactive commitments for general secure function evaluation. Additional com-
plications arise when using MACs inside the PSM and we overcome these by
employing a cut-and-choose technique (cf. Section 4).

2 Preliminaries

In this section, we provide definitions of verifiable secret sharing (VSS) and pri-
vate simultaneous message (PSM) protocols. We also describe the secret sharing
schemes we use.

Verifiable secret sharing (VSS). In this work, we focus on the statistical
variant of verifiable secret sharing. We give the general definition below, but will
construct protocols for the specific case of n = 4 and t = 1.

Definition 1. Let σ be a statistical security parameter. A two-phase protocol
for parties P = {P1, . . . , Pn}, where a distinguished dealer D ∈ P holds initial
input s ∈ F, is a statistical VSS protocol tolerating t malicious parties if the
following conditions hold for any adversary controlling at most t parties:

Privacy If the dealer is honest at the end of the first phase (the sharing phase),
then at the end of this phase the joint view of the malicious parties is inde-
pendent of the dealer’s input s.

Correctness Each honest party Pi outputs a value si at the end of the second
phase (the reconstruction phase). If the dealer is honest, then except with
probability negligible in σ, it holds that si = s.

Commitment Except with probability negligible in σ, the joint view of the honest
parties at the end of the sharing phase defines a value s′ such that si = s′

for every honest Pi. ♦

The PSM model. A private simultaneous messages (PSM) protocol [12] is a
non-interactive protocol involving m parties P1, . . . , Pm, who share a common
random string r = rpsm, and an external referee who has no access to r. In such
a protocol, each party Pi sends a single message to the referee based on its input
xi and r. These m messages should allow the referee to compute some function
of the inputs without revealing any additional information about the inputs. Our
definitions below are taken almost verbatim from [20].

Formally, a PSM protocol π for a function f : {0, 1}`×m→{0, 1}∗ is defined
by R(`), a randomness length parameter, m message algorithms A1, . . . , Am and
a reconstruction algorithm Rec, such that the following requirements hold.



Secure Computation with Minimal Interaction, Revisited 7

Correctness: for every input length `, all x1, . . . , xm ∈ {0, 1}`, and all r ∈
{0, 1}R(`), we have Rec(A1(x1, r), . . . , Am(xm, r)) = f(x1, . . . , xm).

Privacy: there is a simulator Stransπ such that, for all x1, . . . , xm of
length `, the distribution Stransπ (1`, f(x1, . . . , xm)) is indistinguishable from
(A1(x1, r), . . . , Am(xm, r)).

We consider either perfect or computational privacy, depending on the notion
of indistinguishability. (For simplicity, we use the input length ` also as security
parameter, as in [17]; this is without loss of generality, by padding inputs to the
required length.)

A robust PSM protocol π should additionally guarantee that even if a subset
of the m parties is malicious, the protocol still satisfies a notion of “security with
abort.” That is, the effect of the messages sent by corrupted parties on the output
can be simulated by either inputting to f a valid set of inputs (independently
of the honest parties’ inputs) or by making the referee abort. This is formalized
as follows.

Statistical robustness: For any subset T ⊂ [m], there is an efficient (black-
box) simulator Sextπ which, given access to the common r and to the messages
sent by (possibly malicious) parties P ∗i , i ∈ T , can generate a distribution x∗T
over xi, i ∈ T , such that the output of Rec on inputs AT (x∗T , r), AT (xT , r) is
statistically close to the “real-world” output of Rec when receiving messages
from the m parties on a randomly chosen r. The latter real-world output is
defined by picking r at random, letting party Pi pick a message according
to Ai, if i 6∈ T , and according to P ∗i for i ∈ T , and applying Rec to the m
messages. We allow Sextπ to produce a special symbol ⊥ (indicating abort)
on behalf of some party P ∗i , in which case Rec outputs ⊥ as well.

The following theorem summarizes some known facts about PSM protocols.

Theorem 1 ([12, 20, 28]). (i) For any f ∈ NC1, there is a polynomial-time,
perfectly private, and statistically robust PSM protocol. (ii) For any polynomial-
time computable f , there is a polynomial-time, computationally private, and sta-
tistically robust PSM protocol which uses any PRG as a black box.

Secret sharing. In a t-private n-party secret sharing scheme every t parties
learn nothing about the secret, and every t+ 1 parties can jointly reconstruct it.
A secret sharing scheme is efficiently extendable, if for any subset T ⊆ [n], it is
possible to efficiently check whether the (purported) shares to T are consistent
with a valid sharing of some secret s. Additionally, in case the shares are consis-
tent, it is possible to efficiently sample a (full) sharing of some secret which is
consistent with that partial sharing. In our protocols, we use 2-out-of-2 additive
secret sharing and 1-private 3-party CNF secret sharing.

Additive sharing. In 2-out-of-2 additive sharing over F2, given both shares r1, r2,
we can reconstruct the secret as s = r1⊕r2. On the other hand, given the secret
s and one of the shares r1, we can determine the remaining share r2 = s⊕r1.

CNF sharing [21]. In 1-private 3-party CNF sharing over F2, we choose ran-
dom r1, r2 ∈ F2, compute r3 = s⊕r1⊕r2, and set the CNF shares held by



8 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

P1, P2, P3 as 〈r2, r3〉, 〈r3, r1〉, 〈r1, r2〉 respectively. Given two of the three CNF
shares, say 〈r1, r2〉, 〈r2, r3〉 we can reconstruct the secret s = r1⊕r2⊕r3. Also,
given s and one of the shares say 〈r1, r2〉, we can determine the remaining shares
as 〈r2, s⊕r1⊕r2〉 and 〈s⊕r1⊕r2, r1〉. We say that P1, P2 hold “consistent” CNF
shares if P1, P2 respectively hold 〈r2, r3〉, 〈r′3, r1〉 with r′3 = r3.

Notation. We let n denote the number of parties. In this paper n ∈ {3, 4}. We
denote by Ti (resp. Ti,j) the set [n] \ {i} (resp. [n] \ {i, j}), where the value of
n is clear from the context. Throughout this paper, the number of corrupted
parties t = 1. Since this is the case, we sometimes abuse notation and use t as
a variable to denote parties’ index (e.g., Pt). We let rpsmi,j = rpsmj,i to denote the
shared randomness for PSM executions involving clients Pi and Pj .

3 2-Round 3-Party Computation with Selective Abort
Security

Recall that in security with selective abort, the adversary is able to deny output
to an honest party (i.e., there is no guaranteed output delivery), and further it
can choose to do so individually for each honest party. We wish to stress that
the abort is dependent only on the inputs/outputs of the corrupt party and is
otherwise (statistically) independent of the inputs/outputs of the honest parties.

A first attempt. Consider the following protocol which makes use of additive
sharing and PSM subprotocols. Each party Pi first additively shares its input
xi into xi,j and xi,k (i.e., xi = xi,j⊕xi,k) and sends xi,j to party Pj and xi,k to
party Pk. In the second round, parties execute pairwise (robust) PSMs that first
reconstruct each party’s input from the additive shares possessed by the PSM
clients, and then compute the output from the reconstructed inputs. It should
be clear that the above yields a secure protocol in the semi-honest setting.

Predictably, things go wrong in the presence of a malicious adversary. Specif-
ically, an adversary that corrupts, say, P1 can carry out the following attack:
Party P1 can use input 0 in the PSM execution where P1 and P2 are the PSM
clients and P3 is the PSM referee. Then, P1 uses a different input, say 1 in the
PSM execution where P1 and P3 are the PSM clients and P2 is the PSM ref-
eree. This results in the undesirable situation where P2 and P3 disagree on the
output and, furthermore, are not even aware that there may be a disagreement.
Note that this does not yield security with selective abort, since honest parties
accept outputs that are computed using different values for the corrupt input.
In other words, there is no single effective corrupt input (to be extracted by the
‘simulator’ in the ideal execution) that explains all honest outputs. To counter
this attack, we employ the following “view reconstruction trick.”

View reconstruction trick. Essentially this trick tries to reconstruct the (first
round) view of the PSM referee using the views supplied by the PSM clients. Note
that the “view” in the näıve protocol described above consists of additive shares
supplied by the parties. Fortunately, the efficient extendability of linear secret
sharing schemes such as the additive secret sharing and CNF secret sharing,



Secure Computation with Minimal Interaction, Revisited 9

enables us to reconstruct the unique share that must be held by the PSM referee.
(For more details see Section 2 and [20].)

To see this trick in action, consider a concrete example. Suppose Pi and
Pj are PSM clients and Pk is the PSM referee. Note that Pk’s view consists
of the shares xi,k sent by Pi and xj,k sent by Pj . Now in the PSM subprotocol
(instantiated in the näıve protocol) suppose party Pi supplies input x′i and party
Pj supplies input x′j . (If Pi (resp. Pj) is not honest then x′i = xi (resp. x′j = xj)
may not hold.) In the PSM protocol, we now ask Pi to supply in addition to its
input x′i = xi also the shares obtained in round 1, namely x′j,i = xj,i obtained
from Pj and x′k,i = xk,i obtained from Pk. We ask Pj to do the same as well, i.e.,
Pj supplies x′j = xj , x

′
i,j = xi,j , x

′
k,j = xk,j . Of course, a malicious party, say

Pi, may not supply the correct inputs or shares as it obtained from the honest
parties (i.e., it may be the case that x′i 6= xi or x′j,i 6= xj,i or x′k,i 6= xk,i). Anyway,
we can compute the values that ought to be held by Pk using the values supplied
by Pi and Pj . For instance, the values xk,i, xk,j can directly be obtained from
Pi, Pj since they supplied x′k,i, x

′
k,j (respectively) to the PSM subprotocol. The

values xi,k (resp. xj,k) can be reconstructed as x′i⊕x′i,j where x′i was supplied by
Pi and x′i,j was supplied by Pj .

In our modified protocol, we let the PSM referee, say Pk to accept the final
output only if the reconstructed view from the PSM protocol matches its first
round view, i.e., only if x′k,i = xk,i, x

′
k,j = xk,j , x

′
i,k = xi,k, and x′j,k = xj,k all

hold. We prove the following theorem.

Theorem 2. There exists a 2-round 3-party secure-with-selective-abort protocol
for secure function evaluation over point-to-point channels that tolerates a single
malicious party. The protocol provides statistical security for functionalities in
NC1 and computational security for general functionalities by making a black-box
use of a pseudorandom generator.

Proof. The formal protocol is described in Figure 1. We provide a sketch of the
simulation and the analysis below.

Simulation sketch. Denote the corrupt party by P`. Let Pi, Pj be the remaining
(honest) parties. The simulator begins by sending random additive shares to
the corrupt party on behalf of the honest parties. It also sends and receives
randomness to be used in the PSM executions in the next round. Note that the
simulator also receives additive shares from the corrupt party. Using the additive
shares, the simulator computes the effective input say x̂` of the corrupt party
(i.e., by simply xor-ing the additive shares). Then, the simulator sends x̂` to the
trusted party first, and obtains the output z`.

Next the simulator invokes the PSM simulator Stransπi,j
(guaranteed by the

privacy property) on inputs z` and the additive shares sent on behalf of the
honest parties. Denote the output of the Stransπi,j

by τi,` and τj,`. Acting as the
honest party Pi (resp. Pj), the simulator sends τi,` (resp. τj,`) to the corrupt
party. It remains to be shown how the simulator decides which uncorrupted
parties learn the output and which receive ⊥. To do this, the simulator does
the following. First, acting as the honest party Pi the simulator receives the



10 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

PSM message τ`,i that P` sends to Pi as part of PSM execution π`,j . Similarly,
acting as Pj , the simulator also receives τ`,j . Next, the simulator invokes the
PSM simulator Sextπ`,i

on the PSM message τ`,i (and also the PSM randomness)
to decide what effective input P` used in PSM subprotocol π`,j . Depending on
this input, the simulator then decides whether Pi will accept the output of π`,j or
not. Specifically as in the real execution, the simulator checks if the shares input
by P` are consistent with those held by Pi. If this is indeed the case, then the
simulator asks the trusted party to deliver output to Pi, else it asks the trusted
party to deliver ⊥ to Pi. Whether Pj gets the output or not is also handled
similarly by the simulator.

Analysis sketch. We first consider a hybrid experiment which is exactly the same
as the real execution except that the PSM messages sent by the honest parties
to P` are replaced by the simulated PSM transcripts generated by Stransπi,j

. To
generate these transcripts we first extract the input x̂` by xor-ing the additive
shares sent by P`, and then compute the output of πi,j using inputs provided
by honest parties and x̂`. We then supply this output to Stransπi,j

to generate the
simulated PSM transcripts. The privacy property of the PSM protocol implies
that the joint distribution of the view of the adversary and honest outputs in
the real protocol is indistinguishable from the corresponding distribution in the
hybrid execution.

Note that the distribution of the additive shares and the PSM randomness
sent by the simulator in the ideal execution is identical to the distribution of the
corresponding values in the hybrid execution. Thus, to prove indistinguishability
of the hybrid execution and the ideal execution it suffices to focus on the distri-
bution of honest outputs. Note that in the ideal execution the honest outputs
are generated using the true honest inputs and extracted input x̂`.

We first show that honest party Pi (resp. Pj) that accepts a non-⊥ output in
the hybrid execution is ensured that this output is computed using the true hon-
est inputs and the corrupt input x̂`. It is here that we use the view reconstruction
trick. Specifically now, (1) if P` supplied incorrect input, then the reconstructed
share x′`,i (which is revealed as part of the output of π`,j) does not equal x`,i
possessed by Pi and thus the final output is rejected, and (2) if P` supplied
inconsistent share x′i,` 6= xi,` inside π`,j , then since this value is revealed as part
of the output of π`,j , the final output will be rejected by Pi.

Given the above it remains to be shown that the set of honest parties that
receive ⊥ in the ideal execution equals the set of honest parties that output ⊥
in the hybrid execution. To prove the above, we use the fact that for all j ∈ T`,
with all but negligible probability the PSM simulator Sextπ`,j

extracts the input
supplied by P` in the PSM execution π`,j . It follows by simple inspection that
the criterion used to add i to S` in the simulation is essentially the same as the
criterion used by Pi to reject the final output of π`,j in the hybrid execution. ut

Concrete efficiency. Robust PSM subprotocols can be based on Yao garbled
circuits [12, 28]. The concrete cost of such a robust PSM protocol is essentially
the same as a single Yao garbled circuit and incurs an additional cost propor-
tional to the length of the inputs (and is otherwise independent of the complexity



Secure Computation with Minimal Interaction, Revisited 11

Round 1.

For i ∈ [3], each Pi additively shares its input xi into xi,j and xi,k, and sends
xi,j to Pj , and xi,k to Pk for distinct j, k ∈ [3] \ {i}.
Every pair of parties Pi, Pj , i, j ∈ [3] and i < j, exchange randomness rpsmi,j .
(For instance, by letting Pi pick rpsmi,j and send rpsmi,j to Pj .)

Round 2.

Every pair of parties Pi and Pj , i, j ∈ [3] and i < j, use shared randomness
ri,j to execute a robust PSM protocol πi,j , that

– takes input x̃i = (x′k,i, x
′
i, x

′
j,i) from Pi where x′k,i = xk,i, x

′
i = xi, x

′
j,i = xj,i,

– takes input x̃j = (x′k,j , x
′
j , x

′
i,j) from Pj where x′k,j = xk,j , x

′
j = xj , x

′
i,j = xi,j ,

– reconstructs x′k = xk,i⊕xk,j ,
– computes z′k = fk(x′1, x

′
2, x

′
3), x′i,k = x′i⊕xi,j , x′j,k = x′j⊕xj,i, and

– delivers output (z′k, x
′
i,k, x

′
j,k, x

′
k,i, x

′
k,j) to Pk for k ∈ [3] and k 6∈ {i, j}.

Output. Each Pk outputs z′k if x′i,k = xi,k, x′j,k = xj,k, x′k,i = xk,i, and x′k,j = xk,j
hold, else it outputs ⊥.

Fig. 1. 2-round 3-party secure-with-selective-abort protocol.

of f). Thus our 3-party protocol costs essentially the same as cost of transmitting
and evaluating 3 garbled circuits, i.e., thrice the cost of semi-honest 2-party Yao.
Contrast this with the concrete cost of realizing state-of-the-art malicously secure
two-party protocols which is essentially the cost of transmitting and evaluating
roughly σ garbled circuits where σ denotes the statistical security parameter. We
previously argued that 3-party protocols provide more redundancy and stability
compared to 2-party protocols. Now by settling for just security-with-selective-
abort, our three-party protocol provides a much better alternative from a cost
perspective as well. All this is in addition to the fact that our 3-party protocol
requires only two rounds over point-to-point channels. In contrast, current im-
plementations of 3-party protocols [6, 7] require rounds proportional to the depth
of the circuit, provide only semi-honest security, or require use of broadcast.

4 4-Party Statistical VSS in a Total of 2 Rounds

Let the set of parties be {D,P1, P2, P3}. First, let us look at a näıve protocol
that assumes the existence of a broadcast channel. Here, the dealer CNF shares
its input in the sharing phase. Then in the reconstruction phase, parties simply
broadcast the CNF shares they obtained from the dealer. To decide on the
output, parties construct an “inconsistency graph” G which tells which parties
broadcasted consistent CNF shares.

Sharing Phase. The dealer CNF shares (according to a 1-private 3-party CNF
scheme) its secret s among P1, P2, P3. That is, it chooses random s1, s2, s3 subject
to
⊕

i=1,2,3si = s, and sends CNF share {sj}j 6=i to party Pi for i ∈ [3].

Reconstruction Phase. Each party Pi broadcasts its share {s(i)j = sj}j 6=i.



12 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

Local Computation. D outputs s and terminates the protocol. For every j, k ∈
[3], define recj,k = s

(k)
j ⊕

⊕
i6=js

(j)
i (i.e., secret reconstructed from CNF shares

possessed by Pj and Pk). Let G denote the 3-vertex inconsistency graph which

contains an edge between vertices i, j ∈ [3] iff ∃k ∈ [3]\{i, j} such that s
(i)
k 6= s

(j)
k .

(That is, Pi and Pj disagree on the share sk.)

(Single-edge case) If G contains exactly one edge, output ⊥.

(Even-edge case) Else, if ∃(j, k) 6∈ G, then each party outputs recj,k.

(Triple-edge case) If there is no such j, k, then output default value say ⊥.

It can be easily shown that the above protocol works as long as G does not
contain exactly one edge. The difficulty in handling the single-edge case comes
because parties do not know which of the inconsistent CNF shares to trust,

i.e., which of s
(i)
k 6= s

(j)
k when (i, j) ∈ G. In the computational setting, this is

solved by a trivial use of signatures. In the information-theoretic setting, we can
substitute signatures with information-theoretic MACs, but this is not sufficient
since such MACs do not have public verification. Fortunately, a combination of
MACs with a cut-and-choose technique helps us in this case.

Protocol overview. The high level idea is to use MACs and then apply the cut-
and-choose technique to ensure that (1) parties reveal their true share when D is
honest, and (2) detect an inconsistent sharing by a dishonest D. In more detail,
now we require D to send, in addition to the CNF shares, also authentication
information in the form of information-theoretic MACs (such that a forgery is
possible only with probability negl(σ)). Specifically for each CNF share sj , the

dealer D sends sj along with σ MAC values {M (i)
j,` }`∈[σ]to each party Pi for each

j 6= i, while each party Pj receives the corresponding keys {K(i)
j,`}`∈[σ] for each

i 6= j. Each share is authenticated multiple times to allow application of the
cut-and-choose technique.

The reconstruction phase is modified to handle, in particular, the case when
the inconsistency graph contains exactly one edge. (All other cases are han-
dled exactly as in the näıve attempt described above.) Now we ask each Pi to

broadcast its CNF share {s(i)j }j 6=i (as in the näıve construction), and in addition

broadcast its MAC values {M (i)
j,` }j 6=i,`∈[σ]. Also we ask each party Pj to pick for

every i 6= j, a random subset Sj,i ⊂ [σ] (this corresponds to the check set for the

cut-and-choose step), and send (1) keys K
(i)
j,` for ` ∈ Sj,i to Pi, and (2) all keys

(i.e., K
(i)
j,` for all ` ∈ [σ]) to Pk where k ∈ [3] \ {i, j}.

Now we explain in more detail how the cut-and-choose technique helps to
resolve the single-edge case. Let (i, j) ∈ G and let k 6∈ {i, j}. We consider two
cases depending on whether D is honest or not. Note that in either case, we are
assured that Pk is honest, and in fact, our protocol will use MAC keys held by
Pk to anchor the parties’ output towards the correct output. First consider the
case when D is honest. Wlog assume Pi is dishonest, and that Pi disagrees with
Pj on the value sk that is supposed to be held by both of them. Note that while

Pk does not hold sk, it does hold the keys {K(i)
k,`}`∈[σ] to verify the MACs that Pi

possesses. Note that the protocol asks Pi to broadcast all its MACs on sk, and Pk



Secure Computation with Minimal Interaction, Revisited 13

to send half its keys, say corresponding to some subset Sk,i ⊂ [σ], to Pi and all
its keys to Pj . While a rushing Pi can wait to receive (half) the keys from Pk to
allow forging the corresponding MACs, note that it cannot forge the MACs for
the remaining half (except with negligible probability) for which it simply does
not know the keys. In other words, when Pi tries to reveal s′k 6= sk along with

MACs {M̃ (i)
k,`}`∈[σ], then with high probability the MAC verification will fail for

all keys that Pi does not know. Thus, by asking honest Pj and Pk to accept Pi’s

reveal only if MACs revealed by Pi is consistent with all keys in {K(i)
k,`}`∈Sk,i

(i.e., those that were sent to Pi) and at least one key in {K(i)
k,`}` 6∈Sk,i

(i.e., those
that were not sent to Pi), we are ensured (except with negligible probability)
that Pi’s reveal s′k 6= sk will be rejected by Pj and Pk. Finally note that honest
Pj ’s share sk is always accepted by the honest parties.

Next, consider the case when D is dishonest. In this case, a single-edge in
the inconsistency graph is induced by the inconsistent shares dealt to Pi, Pj .
Therefore, the main challenge here is to ensure that all parties agree that D
dealt inconsistent shares (as opposed to suspecting that one of the honest par-
ties is deviating from the protocol). Once again, the keys held by Pk serve to
anchor all honest parties’ decisions on whether to accept or reject reveals made
by Pi, Pj . The crux of the argument is the following: except with negligible prob-
ability, all parties Pi, Pj , Pk unanimously agree on their decision to accept/reject
each of Pi, Pj ’s reveals. Before we show this, observe that this suffices to achieve
resilience against a malicious D. For e.g., suppose both parties’ reveals get ac-
cepted then if they revealed inconsistent values then all parties agree to output
some default value. The case when both parties’ reveals get rejected is handled
similarly. Finally, when only one of Pi, Pj ’s reveal is accepted, then all parties can
simply agree to output the value corresponding to the reveal that got accepted.

Now we argue that except with negligible probability, all parties will unani-
mously agree on whether to accept or reject reveals made by Pi, Pj . First observe
that the reveals made by a party, say Pj , are either unanimously accepted or
unanimously rejected by both Pi and Pk. This is because both Pi and Pk make
decisions using the same algorithm on the same values. Next, in our protocol,
Pj will accept or reject its own reveal by checking whether its reveal is consis-
tent with the keys that Pk sent to it (i.e., those corresponding to the subset
Sk,i). Thus, if Pj ’s reveal is rejected by Pj itself, then obviously it will also be
rejected by Pi and Pk. Therefore, by way of contradiction, wlog assume that
Pj ’s reveal is rejected by Pi, Pk while it is accepted by Pj . Clearly this hap-
pens only if Pk chooses its random subset Sk,j such that all the MAC values
held by Pj corresponding to Sk,j are consistent with the keys held by Pk, while
all the MAC values held by Pj corresponding to [σ] \ Sk,j are not consistent
with the keys held by Pk. Obviously such an event happens with probability(
σ
σ/2

)−1
= negl(σ). Hence we have that with all but negligible probability, all

parties Pi, Pj , Pk unanimously agree whether to accept/reject reveals made by
Pi and Pj . As explained before, this suffices to prove that agreement holds even



14 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

when D is dishonest. Fortunately, we can remove the use of broadcast channel
in the above protocol. In the full version, we prove the following theorem.

Theorem 3. There exists a 4-party statistically secure protocol for VSS over
point-to-point channels that tolerates a single malicious party and requires one
round in the sharing phase and one round in the reconstruction phase.

5 2-Round 4-Party Statistically Secure Computation for
Linear Functions Over Point-to-Point Channels

Overview. In the first round of the protocol parties verifiably secret share their
inputs (using the protocol from the previous section), and also exchange ran-
domness for running pairwise (robust) PSM executions. Loosely speaking, the
PSM executions serve two purposes: (1) parties can evaluate the function on
their inputs while preserving privacy, and (2) parties can learn the inconsistency
graph corresponding to each VSS sharing. To do (1), the PSM protocol first
attempts to reconstruct parties’ inputs from the CNF shares held by the PSM
clients, and if successful, evaluates the function on these inputs. To do (2), the
PSM protocol makes use of the “view reconstruction trick.” Note that in the
case of VSS, learning the inconsistency graphs was trivial, since parties would
broadcast their shares during the reconstruction phase. Unlike VSS, here it is
important to protect privacy of these shares throughout the computation. The
view reconstruction trick enables us to construct the inconsistency graphs while
preserving privacy of the shares.

Recall that each party could potentially receive PSM outputs from three
PSM executions. Computing the final output from these PSM outputs is not
straightforward, and we will need the inconsistency graphs (generated using
outputs of the PSM protocols) to help us. To explain how this is done, we
will adopt the perspective of the simulation extraction procedure. Let m ∈ [4]
denote the index of the corrupt party. The extraction procedure constructs the
inconsistency graph G′ adding edges between vertices if the CNF shares held by
corresponding parties are not consistent. If the graph contains all three edges,
then the effective input used in this case is 0. We call this the identifiable triple-
edge case since it is clear that Pm is corrupt. Next, if the graph contains two edges
or no edges (i.e., an even number of edges), then we are now assured that there
exists a pair of (honest) parties that hold consistent CNF shares of Pm’s input.
In this case, we can extract the effective input as the secret reconstructed from
these consistent CNF shares. We call this case the resolvable even-edge case. As
was the case in VSS, if G′ contains a single-edge then the procedure performs a
vote computation step using the MAC values and the corresponding keys. This is
to find out which of the two parties is supported by Pm. If there is a unique party
that is supported by Pm, then the inconsistency in CNF shares is resolved by
using the CNF share possessed by this party. We call this the resolvable single-
edge case. On the other hand if there is no unique party supported by Pm, then
it is clear that Pm is corrupt. We call this the identifiable single-edge case. In this



Secure Computation with Minimal Interaction, Revisited 15

case, we extract the effective input used for Pm as the xor of all unique shares
(including the inconsistent CNF shares) possessed by all remaining parties.

Observe that the extraction procedure is identical to the VSS extraction
procedure except in the identifiable single-edge case. In VSS, it was possible
to simply output 0 in the identifiable single-edge case. Here we are not able
to replace the corrupt party’s input by 0 and then evaluate the function while
simultaneously preserving privacy of honest inputs. However, if we use the effec-
tive input extracted as described above, then we can exploit the linearity of f
to force parties’ outputs to be consistent with the extracted input.

Clearly we are done if we force honest parties’ outputs in the real protocol to
be consistent with the corrupt input extracted by the simulator while preserving
privacy of honest parties’ inputs. The main obstacle in the implementation is
that different honest parties’ may hold different inconsistency graphs. The chal-
lenge therefore is to design an output computation procedure that allows honest
parties’ to end up with the same correct output even though they may possess
different inconsistency graphs. Also, unlike VSS, here we do not have the luxury
of a reconstruction phase where parties can freely disclose their secret shares.

Our output computation procedure makes use of the view reconstruction
trick to help each party compute its inconsistency graph, and adapts the cut-
and-choose idea from our VSS protocol to help compute the votes (which we
can ensure whp that parties agree on). In addition, our procedure exploits the
linearity of f to compute the correct output in the identifiable single-edge case.
To ensure parties’ compute the same output in the resolvable cases, we make use
of an “accusation graph” which parties use to determine a pair of honest parties
that hold consistent shares of the corrupt input extracted by the simulation
procedure described above. For a detailed step-by-step overview of the protocol,
please see the full version where we prove:

Theorem 4. There exists a 2-round 4-party statistically secure protocol for se-
cure linear function evaluation over point-to-point channels that tolerates a single
malicious party.

5.1 Impossibility of 2-Round Statistically Secure 4-Party
Computation

In this section, we prove the following:

Theorem 5. There exists a function which cannot be information-theoretically
realized by a 2-round 4-party protocol over point-to-point channels that tolerates
a single corrupt party.

Proof. Assume by way of contradiction that there exists a 2-round statistically
secure 4-party protocol π for general secure computation. Let us further set up

some notation related to protocol π. Let A
(r)
i,j denote the algorithm specified by

protocol π that is to be executed by (honest) party Pi to generate its r-th round
message to Pj . We use the notation



16 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

m
(r)
i,j ←A

(r)
i,j (xi, {{m(s)

k,i}k∈K(s)
i
}s : 0<s<r;ωi)

where xi (resp. ωi) represents Pi’s input (resp. internal randomness), and m
(r)
i,j

represents Pi’s message to Pj in round r, andK
(s)
i represents the subset of parties

from which Pi receives a message in round s. Wlog, we assume that algorithm

A
(3)
i,i computes the final output of honest Pi.

The function that we consider is a simple non-linear function and is inspired
by the oblivious transfer functionality. Let f be such that f(b,⊥,⊥, (y0, y1)) =
(yb,⊥,⊥,⊥). That is, f takes as input a bit b ∈ {0, 1} from P1 and a pair of
bits y0, y1 ∈ {0, 1} from P4, and returns yb to P1. The parties P2, P3 supply no
inputs, and parties P2, P3, P4 receive no outputs.

The high level strategy is to launch an attack on the real protocol that
cannot be simulated in the ideal execution. We let P1 be the corrupt party, and
show that it can obtain both y0 and y1 in the real protocol with non-negligible
probability. Clearly, no ideal process adversary can do the same, and hence the
negative result is establised. At a high level, the adversarial strategy of P1 is to
set things up such that the joint view of P2 and P4 would infer that P1’s input is
0, while the joint view of P3 and P4 would infer that P1’s input is 1. To do this, P1

chooses internal randomness ω1 and computes its first round messages m̃
(1)
1,2, m̃

(1)
1,4

to send to P2 and P4 assuming that its input equals 0. Then, it samples uniform
randomness ω̃ such that its first round message to P4 computed assuming input

1 and randomness ω̃ matches m̃
(1)
1,4. Since we are in the information-theoretic

regime, note that we can allow P1 to perform arbitrary computations. Then
it will follow from the privacy property of π that P1 will be able to sample ω̃
with all but negligible probability. P1 then computes its first round message to
P3 assuming input 1 and internal randomness ω̃. It then sends its first round
messages to the parties, and accepts messages from them. In the second round,
it does not send any messages and only accepts messages from other parties.
Next, P1 computes a value y′0 by invoking its output computation algorithm
on input 0, internal randomness ω1, round 1 messages received from all parties,
and round 2 messages received from P2 and P4. Similarly, P1 computes y′1 by
invoking its output computation algorithm on input 1, internal randomness ω̃,
round 1 messages from all parties, and round 2 messages from P3 and P4. Finally,
P1 outputs the values y′0, y

′
1 as part of its view. We will show that with all but

negligible probability it will hold that y′0 = y0 and y′1 = y1. Since an ideal-process
adversary has access to P4’s input only via the trusted party implementing f ,
it is clear that it can obtain either y0 or y1 but not both. Thus, this suffices to
establish the theorem. This is the high level idea; we now proceed to the formal
details. Formally, P1 does the following:

Choose randomness ω1 and compute m̃
(1)
1,2←A

(1)
1,2(0,⊥, ω1), and

m̃
(1)
1,4←A

(1)
1,4(0,⊥, ω1).

Choose random ω̃ such that A
(1)
1,4(1,⊥, ω̃) = m̃

(1)
1,4. If no such ω̃ exists, output

fail1 and terminate.



Secure Computation with Minimal Interaction, Revisited 17

Compute m̃
(1)
1,3←A

(1)
1,3(1,⊥, ω̃).

For j = 2, 3, 4, send message m̃
(1)
1,j to Pj in round 1.

Receive round 1 messages m
(1)
2,1, m

(1)
3,1, m

(1)
4,1, from other parties. Do not send

any round 2 messages to any party. Receive round 2 messages m
(2)
2,1, m

(2)
3,1,

m
(2)
4,1, from other parties and terminate the protocol.

Compute and output y′0←A
(3)
1,1(0, {{m(1)

k,i}k∈T1 , {m
(2)
k,i}k∈{2,4}};ω1),

y′1←A
(3)
1,1(1, {{m(1)

k,i}k∈T1
, {m(2)

k,i}k∈{3,4}}; ω̃).

First, we claim that corrupt P1 does not output fail1 with all but negligible
probability, i.e., P1 will be able to successfully find ω̃ satisfying the conditions
above. To show this, we rely on the privacy property of π against an (all-powerful)

P4. Clearly, if there exists no ω̃ such that the output of A
(1)
1,4 on input 1 and

internal randomness ω̃, it is obvious to P4 that P1’s input is 0, and thus privacy
is violated. Therefore, it must hold with all but negligible probability (over the
choice of ω) that such ω̃ exists.

Next, we first assert that y′0 = y0 holds with all but negligible probability. The

key observation is that messages input to A
(3)
1,1 that are distributed identically to

an execution where P1 holds input 0 and a corrupt P3 behaves honestly except
it does not send its round 2 messages (i.e., aborts after round 1). Thus, it follows
from the correctness of π that y0 = y′0 holds with all but negligible probability.
Similarly, we assert that y′1 = y1 holds with all but negligible probability. This

is because the messages input to A
(3)
1,1 are distributed identically to an execution

where P1 holds input 1 and a corrupt party P2 behaves honestly except it does
not send its round 2 messages. Thus it follows from the correctness of π that
y′1 = y1 holds with all but negligible probability.

Finally we claim that no ideal-process adversary can generate a view with
(y′0, y

′
1) such that these equal P4’s inputs with probability greater than 1/2. The

key observation is that an ideal-process adversary has access to P4’s input only
via the trusted party implementing f , it is clear that it can obtain either y0 or
y1 but not both. In such a case, the best strategy for the ideal process adversary
is to obtain one of them, and then simply try and guess the value of the other
(thereby succeeding with probability 1/2). ut

It is instructive to note why the above impossibility does not apply to linear
functions. Specifically for a linear function f , if the adversary P1 can obtain
an evaluation of f on input x1 and honest inputs, then it can trivially obtain
an evaluation of f on input x′1 6= x1 and the same honest inputs. Finally, we
note that our negative result can be easily extended to hold in a setting with
broadcast.

6 2-Round Computationally Secure 4-Party Computation

Protocol overview. For simplicity let us assume the existence of a broadcast
channel. Our protocol proceeds by letting each party to broadcast a commitment



18 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

of its input, and then CNF share the corresponding decommitment among the
remaining parties. In the second round, parties execute pairwise PSMs that first
attempts to reconstruct the inputs of all parties, and then compute the output
from the reconstructed inputs. Unfortunately the general framework described
as-is does not suffice for secure computation. For one, it may not always be possi-
ble to reconstruct input from shares distributed by a malicious party. Further, it
may be the case that one pair of honest parties may hold consistent CNF shares
from the malicious party while a different pair of honest parties may not. This
is exacerbated by the fact that an honest party is guaranteed to receive output
from only one PSM instance. In other words, even guaranteeing agreement on
output seems somewhat nontrivial.

To circumvent the problems mentioned above, our protocol first detects
whether the joint view of honest parties suffices to reconstruct the input of
all parties. We do this by enhancing the PSM functionality in a way that lets
parties ascertain if for every broadcasted commitment, there exists some pair of
parties that hold (consistent) shares of the corresponding decommitment. (In-
deed, this is our strategy for extracting the adversary’s input in the simulation.)
If a pair of parties do not hold consistent shares of a valid decommitment for
some party’s commitment, then the pairwise PSM in which the parties act as
clients delivers as outputs the first round views of the honest clients. This in turn
lets the referee to determine if its own shares coupled with shares from one of
the clients suffices to reconstruct valid decommitments for all commitments. If
this is indeed the case, then the referee can reconstruct all inputs from the joint
views and then evaluate the function from scratch. On the other hand if there
is some party whose commitment cannot be decommitted using the joint views,
then the referee simply substitutes that party’s input with 0, and evaluates the
function from scratch using this new set of inputs. Of course, care must be taken
not to reveal honest inputs to a malicious referee. We achieve this by letting the
PSM check if the referee’s commitment can be decommitted using shares held
by honest clients, and then revealing the client views only if this check passes.

The ideas described above still do not suffice to address the somewhat sub-
tler issue of agreement on output. We describe this issue in more detail below.
Note that a malicious party that distributed shares of an invalid decommitment
can ensure that all inputs are reconstructed successfully in exactly one of the
PSM instances where it participated as a client and supplied shares of a valid
decommitment. Thus, in this PSM instance the function will be evaluated on the
reconstructed inputs. Note that this strategy lets exactly one honest party (that
acted as referee in the PSM instance described above) to obtain directly the
output of the function, while all other honest parties evaluate the function from
scratch after substituting the malicious party’s input with 0. In other words, the
adversary can succeed in forcing different honest parties to obtain evaluations
of the function on different sets of inputs. We use a somewhat counterintuitive
idea to counter this adversarial strategy. Namely, we force the honest referee in
the PSM instance to disregard the output of the function, and instead evaluate
the function from scratch (using honest clients’ views output in a different PSM



Secure Computation with Minimal Interaction, Revisited 19

instance) after substituting the malicious party’s input with 0. To do this, we
design the PSM functionality in a way that allows an honest referee to infer
whether the joint view of the honest parties indeed contains a valid decommit-
ments to all broadcasted commitments. In more detail, the PSM functionality
will attempt to reconstruct the first round view of the referee from the views
of the participating clients. (Note that this is possible due to the efficient ex-
tendability property of CNF sharing schemes.) Upon receiving this reconstructed
view, the referee outputs the PSM output only if its view agrees with the recon-
structed views. For a formal description of the protocol, and how to remove the
use of broadcast, please see the full version where we prove:

Theorem 6. Assuming the existence of one-way permutations (alternatively,
one-to-one one-way functions), there exists a 2-round 4-party computationally
secure protocol over point-to-point channels for secure function evaluation that
tolerates a single malicious party.

References

1. Shashank Agrawal. Verifiable secret sharing in a total of three rounds. In Info.
Process. Lett. 112(22), pages 856–859, 2012.

2. Gilad Asharov, Abhishek Jain, Adriana Lopez-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication,
computation and interaction via threshold fhe. In Eurocrypt, pages 483–501, 2012.

3. A. Beimel. Secure schemes for secret sharing and key distribution. Ph.D. Thesis,
Technion, 1996.

4. A. Beimel, Y. Ishai, R. Kumaresan, and E. Kushilevitz. On the cryptographic
complexity of the worst functions. In TCC, pages 317–342, 2014.

5. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Advances in Cryptology
— Eurocrypt 2011, volume 6632 of LNCS, pages 169–188. Springer, 2011.

6. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In ESORICS 2008: 13th European Symposium
on Research in Computer Security (ESORICS), volume 5283 of LNCS, pages 192–
206. Springer, 2008.

7. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multi-
party computation goes live. In Financial Cryptography and Data Security, volume
5628 of LNCS, pages 325–343. Springer, 2009.

8. Seung Geol Choi, Ariel Elbaz, Tal Malkin, and Moti Yung. Secure multi-party com-
putation minimizing online rounds. In Advances in Cryptology — Asiacrypt 2009,
volume 5912 of LNCS, pages 268–286. Springer, December 2009.

9. S.G. Choi, J. Katz, A. Malozemoff, and V. Zikas. Efficient three-party computation
from cut-and-choose. In Crypto (2), pages 513–530, 2014.

10. I. Damgard, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Crypto, pages 643–662, 2012.

11. Ivan Damgard and Sarah Zakarias. Constant-overhead secure computation of
boolean circuits using preprocessing. In TCC, pages 621–641, 2013.



20 Y. Ishai and R. Kumaresan and E. Kushilevitz and A. Paskin-Cherniavsky

12. Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In 26th Annual ACM Symposium on Theory of Computing
(STOC), pages 554–563. ACM Press, May 1994.

13. M.J. Fischer and N.A. Lynch. A lower bound for the time to assure interactive
consiistency. In Info. Process. Lett. 14(4), pages 183–186, 1982.

14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
mpc from indistinguishability obfuscation. In TCC, pages 74–94, 2014.

15. Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round com-
plexity of verifiable secret sharing and secure multicast. In 33rd Annual ACM
Symposium on Theory of Computing (STOC), pages 580–589. ACM Press, July
2001.

16. Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round se-
cure multiparty computation. In Moti Yung, editor, Advances in Cryptology —
Crypto 2002, volume 2442 of LNCS, pages 178–193. Springer, 2002.

17. Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

18. Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without
agreement. Journal of Cryptology, 18(3):247–287, July 2005.

19. Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat
Paskin-Cherniavsky. On the power of correlated randomness in secure compu-
tation. In TCC, pages 600–620, 2013.

20. Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation
with minimal interaction. In Advances in Cryptology — Crypto 2010, volume 6223
of LNCS, pages 577–594. Springer, 2010.

21. Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing
general access structure. In GLOBECOM, pages 99–102, 1987.

22. Jonathan Katz and Chiu-Yuen Koo. Round-efficient secure computation in point-
to-point networks. In Moni Naor, editor, Advances in Cryptology — Euro-
crypt 2007, volume 4515 of LNCS, pages 311–328. Springer, 2007.

23. Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan. Improving the round
complexity of VSS in point-to-point networks. In 35th Intl. Colloquium on Au-
tomata, Languages, and Programming (ICALP), Part II, volume 5126 of LNCS,
pages 499–510. Springer, 2008.

24. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computa-
tion. In Matthew Franklin, editor, Advances in Cryptology — Crypto 2004, volume
3152 of LNCS, pages 335–354. Springer, 2004.

25. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. In TOPLAS 4(3), pages 382–401, 1982.

26. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Moni Naor, editor, Advances
in Cryptology — Eurocrypt 2007, volume 4515 of LNCS, pages 52–78. Springer,
2007.

27. M. Mahmoody and R. Pass. The curious case of non-interactive commitments -
on the power of black-box vs. non-black-box use of primitives. In Crypto, pages
701–718, 2012.

28. A. Paskin-Cherniavsky. Secure computation with minimal interaction. Ph.D. The-
sis, Technion, 2012.

29. Arpita Patra, Ashish Choudhary, Tal Rabin, and C. Pandu Rangan. The round
complexity of verifiable secret sharing revisited. In Shai Halevi, editor, Advances in
Cryptology — Crypto 2009, volume 5677 of LNCS, pages 487–504. Springer, 2009.


