
Implicit Zero-Knowledge Arguments
and Applications to the Malicious Setting

Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

ENS, CNRS, INRIA, and PSL, Paris, France
firstname.lastname@ens.fr

Abstract. We introduce implicit zero-knowledge arguments (iZK) and simulation-
sound variants thereof (SSiZK); these are lightweight alternatives to zero-knowl-
edge arguments for enforcing semi-honest behavior. Our main technical contri-
bution is a construction of efficient two-flow iZK and SSiZK protocols for a
large class of languages under the (plain) DDH assumption in cyclic groups in
the common reference string model. As an application of iZK, we improve upon
the round-efficiency of existing protocols for securely computing inner product
under the DDH assumption. This new protocol in turn provides privacy-preserving
biometric authentication with lower latency.

Keywords. hash proof systems, zero-knowledge, malicious adversaries, two-party
computation, inner product.

1 Introduction

Zero-Knowledge Arguments (ZK) enable a prover to prove the validity of a statement
to a verifier without revealing anything else [13, 30]. In addition to being interesting in
its own right, zero knowledge has found numerous applications in cryptography, most
notably to simplify protocol design as in the setting of secure two-party computation [28,
29,46], and as a tool for building cryptographic primitives with strong security guarantees
such as encryption secure against chosen-ciphertext attacks [19, 41].

In this work, we focus on the use of zero-knowledge arguments as used in efficient
two-party protocols for enforcing semi-honest behavior. We are particularly interested
in round-efficient two-party protocols, as network latency and round-trip times can be
a major efficiency bottleneck, for instance, when a user wants to securely compute
on data that is outsourced to the cloud. In addition, we want to rely on standard and
widely-deployed cryptographic assumptions. Here, a standard interactive zero-knowledge
argument based on the DDH assumption would require at least three flows; moreover,
this overhead in round complexity is incurred each time we want to enforce semi-honest
behavior via zero knowledge. To avoid this overhead, we could turn to non-interactive
zero-knowledge proofs (NIZK). However, efficient NIZK would require either the use of
pairings [32] and thus stronger assumptions and additional efficiency overhead, or the
use of random oracles [6, 23].

We would like to point out that, contrary to some common belief, there is no
straightforward way to reduce the number of rounds of zero-knowledge proofs “à

2 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

la Schnorr” [42] by performing the first steps (commitment and challenges) in a prepro-
cessing phase, so that each proof only takes one flow subsequently. Indeed, as noticed
by Bernhard-Pereira-Warinsky in [9], the statement of the proof has to be chosen before
seeing the challenges, unless the proof becomes unsound.

On the Importance of Round-Efficiency. In addition to being an interesting theoretical
problem, improving the round efficiency is also very important in practice. If we consider
a protocol between a client in Europe, and a cloud provider in the US, for example,
we expect a latency of at least 100ms (and even worse if the client is connected with
3g or via satellite, which may induce a latency of up to 1s [14]). Concretely, using
Curve25519 elliptic curve of Bernstein [10] (for 128 bits of security, and 256-bit group
elements) with a 10Mbps Internet link and 100ms latency, 100ms corresponds to sending
1 flow, or 40,000 group elements, or computing 1,000 exponentiations at 2GHz on
one core of current AMD64 microprocessor1, hence 4,000 exponentiations on a 4-core
microprocessor2. As a final remark on latency, while speed of networks keeps increasing
as technology improves, latency between two (far away) places on earth is strongly
limited by the speed of light: there is no hope to get a latency less than 28ms between
London and San Francisco, for example.

Our Contributions. In this work, we introduce implicit Zero-Knowledge Arguments
or iZK and simulation-sound variants thereof or SSiZK, lightweight alternatives to
(simulation-sound) zero-knowledge arguments for enforcing semi-honest behavior in
two-party protocols. Then, we construct efficient two-flow iZK and SSiZK protocols for
a large class of languages under the (plain) DDH assumption in cyclic groups without
random oracles; this is the main technical contribution of our work. Our SSiZK con-
struction from iZK is very efficient and incurs only a small additive overhead. Finally,
we present several applications of iZK to the design of efficient secure two-party com-
putation, where iZK can be used in place of interactive zero-knowledge arguments to
obtain more round-efficient protocols.

While our iZK protocols require an additional flow compared to NIZK, we note that
eliminating the use of pairings and random oracles offers both theoretical and practical
benefits. From a theoretical stand-point, the DDH assumption in cyclic groups is a
weaker assumption than the DDH-like assumptions used in Groth-Sahai pairing-based
NIZK [32], and we also avoid the theoretical pitfalls associated with instantiating the
random oracle methodology [5, 16]. From a practical stand-point, we can instantiate
our DDH-based protocols over a larger class of groups. Concrete examples include
Bernstein’s Curve25519 [10] which admit very efficient group exponentiations, but do not
support an efficient pairing and are less likely to be susceptible to recent breakthroughs
in discrete log attacks [4, 31]. By using more efficient groups and avoiding the use
of pairing operations, we also gain notable improvements in computational efficiency
over Groth-Sahai proofs. Moreover, additional efficiency improvements come from
the structure of iZK which makes them efficiently batchable. Conversely, Groth-Sahai
NIZK cannot be efficiently batched and do not admit efficient SS-NIZK (for non-linear
equations).

1 According to [20], an exponentiation takes about 200,000 cycles.
2 Assuming exponentiations can be made in parallel, which is the case for our iZKs.

Implicit Zero-Knowledge Arguments 3

Interactive ZK

A
x, π1

B

π2

...

π2n+1

x′ if argument valid

NIZK

A
x, π

B

x′ if π valid

iZK

A
x, ipk

B

x′ xorK, c

– x: original flow from (honest) Alice (A) to Bob (B);
– x′: the answer of B, which has to be sent after B is sure

that x is valid;
– π1, . . . , π2n+1: flows of the interactive ZK argument;
– π: non-interactive ZK proof;
– ipk,K, c: public key (associated to x), ephemeral key com-

puted by B, key encapsulation (which can be decapsulated
by A if she generated honestly ipk, using a witness that x
was valid), respectively.

Fig. 1: Enforcing semi-honest behavior of Alice (A)

New Notion: Implicit Zero-Knowledge Arguments. iZK is a two-party protocol exe-
cuted between a prover and a verifier, at the end of which both parties should output an
ephemeral key. The idea is that the key will be used to encrypt subsequent messages and
to protect the privacy of a verifier against a cheating prover. Completeness states that
if both parties start with a statement in the language, then both parties output the same
key K. Soundness states that if the statement is outside the language, then the verifier’s
ephemeral output key is hidden from the cheating prover. Note that the verifier may not
learn whether his key is the same as the prover’s and would not be able to detect whether
the prover is cheating, hence the soundness guarantee is implicit. This is in contrast to a
standard ZK argument, where the verifier would “explicitly” abort when interacting with
a cheating prover. Finally, zero-knowledge stipulates that for statements in the language,
we can efficiently simulate (without the witness) the joint distribution of the transcript
between an honest prover and a malicious verifier, together with the honest prover’s
ephemeral output key K. Including K in the output of the simulator ensures that the
malicious verifier does not gain additional knowledge about the witness when honest
prover uses K in subsequent interaction, as will be the case when iZK is used as part of
a bigger protocol.

More precisely, iZK are key encapsulation mechanisms in which the public key ipk
is associated with a word x and a language iL . In our case, x is the flow3 and iL the
language of valid flows. If x is in iL , knowing a witness proving so (namely, random
coins used to generate the flow) enables anyone to generate ipk together with a secret key
isk, using a key generation algorithm iKG. But, if x is not in iL , there is no polynomial-
time way to generate a public key ipk for which it is possible to decrypt the associated
ciphertexts (soundness).

3 In our formalization, actually, it is the flow together all the previous flows. But we just say it is
the flow to simplify explanations.

4 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

To ensure semi-honest behavior, as depicted in Figure 1, each time a player sends
a flow x, he also sends a public key ipk generated by iKG and keeps the associated
secret key isk. To answer back, the other user generates a key encapsulation c for ipk
and x, of a random ephemeral key K. He can then use K to encrypt (using symmetric
encryption or pseudo-random generators and one-time pad) all the subsequent flows he
sends to the first player. For this transformation to be secure, we also need to be sure that
c (and the ability to decapsulate K for any ipk) leaks no information about random coins
used to generate the flow (or, more generally, the witness of x). This is ensured by the
zero-knowledge property, which states there must exist a trapdoor (for some common
reference string) enabling to generate a public key ipk and a trapdoor key itk (using a
trapdoor key algorithm iTKG), so that ipk looks like a classical public key and itk allows
to decapsulate any ciphertext for ipk.

Overview of our iZK and SSiZK Constructions. We proceed to provide an overview
of our two-flow iZK protocols; this is the main technical contribution of our work. Our
main tool is Hash Proof Systems or Smooth Projective Hash Functions (SPHFs) [18].
We observe that SPHFs are essentially “honest-verifier” iZK; our main technical chal-
lenge is to boost this weak honest-verifier into full-fledged zero knowledge, without
using pairings or random oracles.

Informally speaking, a smooth projective hash function on a language L is a sort
of hash function whose evaluation on a word C ∈ L can be computed in two ways,
either by using a hashing key hk (which can be seen as a private key) or by using the
associated projection key hp (which can be seen as a public key). On the other hand,
when C /∈ L , the hash of C cannot be computed from hp; actually, when C /∈ L ,
the hash of C computed with hk is statistically indistinguishable from a random value
from the point of view of any individual knowing the projection key hp only. Hence,
an SPHF on L is given by a pair (Hash,ProjHash) with the requirements that, when
there is a witness w ensuring that C ∈ L , Hash(hk,L , C) = ProjHash(hp,L , C, w),
while when there is no such witness (i.e. C /∈ L), the smoothness property states that
H = Hash(hk,L , C) is random and independent of hp. In this paper, as in [26], we
consider a weak form of SPHFs, where the projection key hp can depend on C.

Concretely, if we have an SPHF for some language L , we can set the public key ipk
to be empty (⊥), the secret key isk to be the witnessw, the ciphertext c to be the projection
key hp, and the encapsulated ephemeral key K would be the hash value. (Similar
connections between SPHF and zero knowledge were made in [1, 12, 25, 26].) The
resulting iZK would be correct and sound, the soundness coming from the smoothness of
the SPHF: if the word C is not in L , even given the ciphertext c = hp, the hash value
K looks random. However, it would not necessarily be zero-knowledge for two reasons:
not only, a malicious verifier could generate a malformed projection key, for which the
projected hash value of a word depends on the witness, but also there seems to be no
trapdoor enabling to compute the hash value K from only c = hp.

These two issues could be solved using either Trapdoor SPHF [7] or NIZK of
knowledge of hk. But both methods require pairings or random oracle, if instantiated on
cyclic or bilinear groups. Instead we construct it as follows:

First, suppose that a projection key is well-formed (i.e., there exists a corresponding
hashing key). Then, there exists an unbounded zero-knowledge simulator that “extracts”

Implicit Zero-Knowledge Arguments 5

a corresponding hashing key and computes the hash value. To boost this into full-fledged
zero knowledge with an efficient simulator, we rely on the “OR trick” from [22]. We
add a random 4-tuple (g′, h′, u′, e′) to the CRS, and build an SPHF for the augmented
language C ∈ L or (g′, h′, u′, e′) is a DDH tuple. In the normal setup, (g′, h′, u′, e′) is
not a DDH tuple with overwhelming probability, so the soundness property is preserved.
In the trapdoor setup, (g′, h′, u′, e′) := (g′, h′, g′r, h′r) is a random DDH tuple, and the
zero-knowledge simulator uses the witness r to compute the hash value.

Second, to ensure that the projection key is well-formed, we use a second SPHF.
The idea for building the second SPHF is as follows: in most SPHF schemes, proving
that a projected key hp is valid corresponds to proving that it lies in the column span of
some matrix Γ (where all of the linear algebra is carried out in the exponent). Now pick a
random vector tk: if hp lies in the span of Γ , then hpᵀtk is completely determined given
Γ ᵀtk; otherwise, it is completely random. The former yields the projective property
and the latter yields smoothness, for the SPHF with hashing key hk and projection key
tp = Γ ᵀtk. Since the second SPHF is built using the transpose Γ ᵀ of the original matrix
Γ (defining the language L), we refer to it as a “transpose SPHF”. As it turns out, the
second fix could ruin soundness of the ensuing iZK protocol: a cheating prover could
pick a malformed Γ ᵀtk, and then the hash value hpᵀtk computed by the verifier could
leak additional information about his witness hk for hp, thereby ruining smoothness.
To protect against the leakage, we would inject additional randomness into hk so that
smoothness holds even in the presence of leakage from the hash value hpᵀtk. This idea
is inspired by the 2-universality technique introduced in a very different context of
chosen-ciphertext security [18].

Finally, to get simulation-soundness (i.e., soundness even if the adversary can see
fake or simulated proofs), we rely on an additional “OR trick” (mixed up with an
idea of Malkin et al. [40]): we build an SPHF for the augmented language C ∈
L , or (g′, h′, u′, e′) is a DDH tuple (as before), or (g′, h′,W1(C),W2(C)) is not
a DDH tuple (with Wk a Waters function [45], Wk(m) = vk,0

∏|m|
i=1 v

mi

k,i , when
m = m1‖ . . . ‖m|m| is a bitstring, the vk,0, . . . , vk,|m| are random group elements,
and C is seen as a bitstring, for k = 1, 2). In the security proof, with non-negligible
probability, (g′′, h′′,W1(C),W2(C)) is a non-DDH tuple for simulated proofs, and a
DDH tuple for the soundness challenge, which proves simulation-soundness.

Organization. First, we formally introduce the notion of implicit zero-knowledge proofs
(iZK) in Section 2. Second, in Section 3, we discuss some difficulties related to the
construction of iZK from SPHF and provide an intuition of our method to overcome
these difficulties. Next, we show how to construct iZK and SSiZK from SPHF over
cyclic groups for any language handled by the generic framework [7], which encompasses
most, if not all, known SPHFs over cyclic groups. This is the main technical part
of the paper. Third, in Section 4, we indeed show a concrete application of our iZK
constructions: the most efficient 3-round two-party protocol computing inner product in
the UC framework with static corruption so far. We analyze our construction and provide
a detailed comparison with the Groth-Sahai methodology [32] and the approach based on
zero-knowledge proofs “à la Schnorr” [42]. In addition, as proof of concept, we show in
the full version [8] that iZK can be used instead of ZK arguments to generically convert
any protocol secure in the semi-honest model into a protocol secure in the malicious

6 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

model. This conversion follows the generic transformation of Goldreich, Micali and
Wigderson (GMW) in their seminal papers [28, 29]. While applying directly the original
transformation with Schnorr-like ZK protocols blows up the number of rounds by a
multiplicative factor of at least three (even in the common reference string model),
our conversion only adds a small constant number of rounds. Eventually, in the full
version [8], we extend our construction of iZK from SPHF to handle larger classes of
languages described by computational structures such as circuits or branching programs.

Additional Related Work. Using the “OR trick” with SPHF is reminiscent of [2].
However, the methods used in our paper are very different from the one in [2], as we do
not use pairings, but consider weaker form of SPHF on the other hand.

A recent line of work has focused on the cut-and-choose approach for transforming
security from semi-honest to malicious models [34,35, 37–39, 43,44] as an alternative to
the use of zero-knowledge arguments. Indeed, substantial progress has been made to-
wards practical protocols via this approach, as applied to Yao’s garbled circuits. However,
the state-of-the-art still incurs a large computation and communication multiplicative
overhead that is equal to the security parameter. We note that Yao’s garbled circuits do
not efficiently generalize to arithmetic computations, and that our approach would yield
better concrete efficiency for natural functions F that admit compact representations by
arithmetic branching programs. In particular, Yao’s garbled circuits cannot take advan-
tage of the structure in languages handled by the Groth-Sahai methodology [32], and
namely the ones defined by multi-exponentiations: even in the latter case, Groth-Sahai
technique requires pairings, while we will be able to avoid them.

The idea of using implicit proofs (without the zero-knowledge requirement) as a
lightweight alternative to zero-knowledge proofs also appeared in an earlier work of
Aiello, Ishai and Reingold [3]. They realize implicit proofs using conditional disclosure
of secrets [27]. The latter, together with witness encryption [24] and SPHFs, only
provide a weak “honest-verifier zero-knowledge” guarantee.

Recently, Jarecki introduced the concept of conditional key encapsulation mech-
anism [36], which is related to iZK as it adds a “zero-knowledge flavor” to SPHFs
by allowing witness extraction. The construction is a combination of SPHF and zero-
knowledge proofs “à la Schnorr”. Contrary to iZK, it does not aim at reducing the
interactivity of the resulting protocol, but ensures its covertness.

Witness encryption was introduced by Garg et al. in [24]. It enables to encrypt a
message M for a word C and a language L into a ciphertext c, so that any user knowing
a witness w that C ∈ L can decrypt c. Similarly to SPHFs, witness encryption also
only has this “honest-verifier zero-knowledge” flavor: it does not enable to decrypt
ciphertext for words C /∈ L , with a trapdoor. That is why, as SPHF, witness encryption
cannot be used to construct directly iZK.

2 Definition of Implicit Zero-Knowledge Arguments

2.1 Notations

Since we will now be more formal, let us present the notations that we will use. Let
{0, 1}∗ be the set of bitstrings. We denote by PPT a probabilistic polynomial time

Implicit Zero-Knowledge Arguments 7

algorithm. We write y ← A(x) for ‘y is the output of the algorithm A on the in-
put x’, while y $← A(x) means that A will additionally use random coins. Similarly,
X

$← X indicates that X has been chosen uniformly at random in the (finite) set
X . We sometimes write st the state of the adversary. We define, for a distinguisher
A and two distributions D0,D1, the advantage of A (i.e., its ability to distinguish
those distributions) by AdvD0,D1(A) = Prx∈D0 [A(x) = 1] − Prx∈D1 [A(x) = 1].
The qualities of adversaries will be measured by their successes and advantages in
certain experiments ExpsecA or Expsec−bA : Succsec(A,K) = Pr[ExpsecA (1K) = 1] and
Advsec(A,K) = Pr[Expsec−1A (1K) = 1]− Pr[Expsec−0A (1K) = 1] respectively, where
K is the security parameter, and probabilities are over the random coins of the challenger
and of the adversary.

2.2 Definition

Let (iLcrs)crs be a family of NP languages, indexed by a common reference string crs, and
defined by a witness relation iRcrs, namely iL = {x ∈ iXcrs | ∃iw, iRcrs(x, iw) = 1},
where (iXcrs)crs is a family of sets. crs is generated by some polynomial-time algorithm
Setupcrs taking as input the unary representation of the security parameter K. We suppose
that membership to Xcrs and iRcrs can be evaluated in polynomial time (in K). For the
sake of simplicity, crs is often implicit.

To achieve stronger properties (namely simulation-soundness in Section 3.4), we
sometimes also assume that Setupcrs can also output some additional information or
trapdoor Tcrs. This trapdoor should enable to check, in polynomial time, whether a given
word x is in iL or not. It is only used in security proofs, and is never used by the iZK
algorithms.

An iZK is defined by the following polynomial-time algorithms:

– icrs
$← iSetup(crs) generates the (normal) common reference string (CRS) icrs

(which implicitly contains crs). The resulting CRS provides statistical soundness;
– (icrs, iT) $← iTSetup(crs)4 generates the (trapdoor) common reference string icrs

together with a trapdoor iT . The resulting CRS provides statistical zero-knowledge;
– (ipk, isk)

$← iKG`(icrs, x, iw) generates a public/secret key pair, associated to a word
x ∈ iL and a label ` ∈ {0, 1}∗, with witness iw;

– (ipk, itk)
$← iTKG`(icrs, iT , x) generates a public/trapdoor key pair, associated to a

word x ∈ X and a label ` ∈ {0, 1}∗;
– (c,K)

$← iEnc`(icrs, ipk, x) outputs a ciphertext c of a value K (an ephemeral key),
for the public key ipk, the word x, and the label ` ∈ {0, 1}∗;

– K ← iDec`(icrs, isk, c) decrypts the ciphertext c for the label ` ∈ {0, 1}∗, and
outputs the ephemeral key K;

– K ← iTDec`(icrs, itk, c) decrypts the ciphertext c for the label ` ∈ {0, 1}∗, and
outputs the ephemeral key K.

4 When the CRS is word-dependent, i.e., when the trapdoor iT does only work for one word x∗

previously chosen, there is a second argument: (icrs, iT) $← iTSetup(crs, x∗). Security notions
are then slightly different. See details in the full version [8].

8 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

The three last algorithms can be seen as key encapsulation and decapsulation algorithms.
Labels ` are only used for SSiZK and are often omitted. The CRS icrs is often omitted,
for the sake of simplicity.

Normally, the algorithms iKG and iDec are used by the user who wants to (implicitly)
prove that some word x is in iL (and we often call this user the prover), while the
algorithm iEnc is used by the user who wants to (implicitly) verify this (and we often
call this user the verifier), as shown in Figs. 1 and 3. The algorithms iTKG and iTDec
are usually only used in proofs, to generate simulated or fake implicit proofs (for the
zero-knowledge property).

2.3 Security Requirements

An iZK satisfies the four following properties (for any (crs, Tcrs) $← Setupcrs(1
K)):

– Correctness. The encryption is the reverse operation of the decryption, with or with-
out a trapdoor: for any icrs

$← iSetup(crs) or with a trapdoor, for any (icrs, iT) $←
iTSetup(crs), and for any x ∈ X and any ` ∈ {0, 1}∗,
• if x ∈ iL with witness iw, (ipk, isk) $← iKG`(icrs, x, iw), and (c,K)

$←
iEnc`(ipk, x), then we have K = iDec`(isk, c);

• if (ipk, itk) $← iTKG`(iT , x) and (c,K)
$← iEnc`(ipk, x), then we have K =

iTDec`(itk, c).
– Setup Indistinguishability. A polynomial-time adversary cannot distinguish a nor-

mal CRS generated by iSetup from a trapdoor CRS generated by iTSetup. More
formally, no PPT can distinguish, with non-negligible advantage, the two distribu-
tions:

{icrs | icrs $← iSetup(crs)} {icrs | (icrs, iT) $← iTSetup(crs)}.

– Soundness. When the CRS is generated as icrs $← iSetup(crs), and when x /∈ L ,
the distribution of K is statistically indistinguishable from the uniform distribution,
even given c. More formally, if Π is the set of all the possible values of K, for any
bitstring ipk, for any word x /∈ iL , for any label ` ∈ {0, 1}∗, the two distributions:

{(c,K) | (c,K)
$← iEnc`(ipk, x)} {(c,K ′) | (c,K)

$← iEnc`(ipk, x);K ′
$← Π}

are statistically indistinguishable (iEnc may output (⊥,K) when the public key ipk
is not well formed).

– Zero-Knowledge. For any label ` ∈ {0, 1}∗, when the CRS is generated using
(icrs, iT) $← iTSetup`(crs), for any message x∗ ∈ iL with the witness iw∗, the
public key ipk and the decapsulated keyK corresponding to a ciphertext c chosen by
the adversary, either using isk or the trapdoor itk, should be indistinguishable, even
given the trapdoor iT . More formally, we consider the experiment ExpiZK-zk-b in
Figure 2. The iZK is (statistically) zero-knowledge if the advantage of any adversary
A (not necessarily polynomial-time) for this experiment is negligible.

Implicit Zero-Knowledge Arguments 9

ExpiZK-zk-b(A, crs,K)
(icrs, iT) $← iTSetup(crs)

(`, x∗, iw, st)
$← A(icrs, iT)

if iR(x∗, iw) = 0 then return random bit
if b = 0 then (ipk, isk)

$← iKG`(icrs, x∗, iw∗)

else (ipk, itk)
$← iTKG`(iT , x∗)

(c, st)
$← A(st, icrs, iT , ipk)

if b = 0 then K ← iDec`(isk, c)
else K ← iTDec`(itk, c)

return A(st,K)

ExpiZK-ss-b(A, crs,K)
(icrs, iT) $← iTSetup(crs)

(`∗, x∗, ipk, st)
$← AO(icrs)

(c,K)
$← iEnc`(ipk, x∗)

if b = 0 then K′ ← K
else K′ $← Π
b′

$← AO(st, c,K′)
if ∃itk, (`∗, x∗, ipk, itk) ∈ L∪L′ then

return random bit
if x∗ ∈ iL then return random bit
return b′

Fig. 2: Experiments ExpiZK-zk-b for zero-knowledge of iZK, and ExpiZK-ss-b for
simulation-soundness of SSiZK

Prover P Verifier V
(ipk, isk)

$← iKG(icrs, x, iw)
x, ipk

(c,K)
$← iEnc(ipk, x)

c

K′ ← iDec(isk, c) accept if K′ = K
K′

Fig. 3: Three-round zero-knowledge from iZK for a word x ∈ iL and a witness iw

We defined our security notion with a “composable” security flavor, as Groth and
Sahai in [32]: soundness and zero-knowledge are statistical properties, the only compu-
tational property is the setup indistinguishability property. This is slightly stronger than
what is needed, but is satisfied by our constructions and often easier to use.

We also consider stronger iZK, called simulation-sound iZK or SSiZK, which satis-
fies the following additional property:

– Simulation Soundness. The soundness holds (computationally) even when the
adversary can see simulated public keys and decryption with these keys. More
formally, we consider the experiment ExpiZK-ss-b in Figure 2, where the oracle O,
and the lists L and L′ are defined as follows:
• on input (`, x), O generates (ipk, itk) $← iTKG(icrs, iT , x), stores (`, x, ipk, itk)

in a list L, and outputs ipk;
• on input (ipk, c), O retrieves the record (`, x, ipk, itk) from L (and aborts if

no such record exists), removes it from L, and adds it to L′, computes K ←
iTDec`(icrs, itk, c), and outputs K.

The iZK is (statistically) simulation-sound if the advantage of any adversary A (not
necessarily polynomial-time) for this experiment is negligible.

Remark 1. An iZK for some language iL directly leads to a 3-round zero-knowledge
arguments for iL . The construction is depicted in Fig. 3 and the proof is provided in the
full version [8]. If the iZK is additionally simulation-sound, the resulting zero-knowledge
argument is also simulation-sound.

10 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

Remark 2. For the sake of completeness, in the full version [8], we show how to construct
iZK from either NIZK or Trapdoor SPHFs. In the latter case, the resulting iZK is
not statistically sound and zero-knowledge but only computationally sound and zero-
knowledge. In both cases, using currently known constructions over cyclic groups, strong
assumptions such as the random oracle model or pairings are needed.

3 Construction of Implicit Zero-Knowledge Arguments

Let us first recall the generic framework of SPHFs [7] for the particular case of cyclic
groups, and when the projection key hp can depend on the word C, as it is at the core of
our construction of iZK. Second, we explain in more details the limitations of SPHFs
and the fact they cannot directly be used to construct iZK (even with a concrete attack).
Third, we show how to overcome these limitations to build iZK and SSiZK.

3.1 Review of the Generic Framework of SPHFs over Cyclic Groups

Languages. Let G be a cyclic group of prime order p and Zp the field of integers modulo
p. If we look at G and Zp as the same ring (G,+, •), where internal operations are on
the scalars, many interesting languages can be represented as subspaces of the vector
space Gn, for some n. Here are some examples.

Example 3 (DDH or ElGamal ciphertexts of 0). Let g and h be two generators of G.
The language of DDH tuples in basis (g, h) is

L = {(u, e) ∈ G2 | ∃r ∈ Zp, u = gr and e = hr} ⊆ G2,

where r is the witness. It can be seen as the subspace of G2 generated by (g, h). We
remark that this language can also be seen as the language of (additive) ElGamal
ciphertexts of 0 for the public key pk = (g, h). ut

Example 4 (ElGamal ciphertexts of a bit). Let us consider the language of ElGamal
ciphertexts of 0 or 1, under the public key pk = (g, h):

L := {(u, e) ∈ G2 | ∃r ∈ Zp,∃b ∈ {0, 1}, u = gr and e = hrgb}.

Here C = (u, e) cannot directly be seen as an element of some vector space. However, a
word C = (u, e) ∈ G2 is in L if and only there exists λ = (λ1, λ2, λ3) ∈ Z3

p such that:

u = gλ1 (= λ1 • g) e = hλ1gλ2 (= λ1 • h+ λ2 • g)
1 = uλ2gλ3 (= λ2 • u+ λ3 • g) 1 = (e/g)λ2hλ3 (= λ2 • (e− g) + λ3 • h),

because, if we write C = (u, e) = (gr, hrgb) (with r, b ∈ Zp, which is always possible),
then the first three equations ensure that λ1 = r, λ2 = b and λ3 = −rb, while the
last equation (right bottom) ensures that b(b− 1) = 0, i.e., b ∈ {0, 1}, as it holds that
(hrgb/g)bh−rb = gb(b−1) = 1.

Implicit Zero-Knowledge Arguments 11

Therefore, if we introduce the notation Ĉ = θ(C) :=
(
u e 1 1

)
∈ G4, then the

language L can be defined as the set of C = (u, e) such that Ĉ is in the subspace of G4

generated by the rows of the following matrix

Γ :=

g h 1 1
1 g u e/g
1 1 g h

 . ut

Example 5 (Conjunction of Languages). Let gi and hi (for i = 1, 2) be four generators
of G, and Li be (as in Example 3) the languages of DDH tuples in bases (gi, hi)
respectively. We are now interested in the language L = L1 ×L2 ⊆ G4, which is
thus the conjunction of L1 × G2 and G2 ×L2: it can be seen as the subspace of G4

generated by the rows of the following matrix

Γ :=

(
g1 h1 1 1
1 1 g2 h2

)
. ut

This can also be seen as the matrix, diagonal by blocks, with Γ1 and Γ2 the matrices for
L1 and L2 respectively.

More formally, the generic framework for SPHFs in [7] considers the languages
L ⊆ X defined as follows: There exist two functions θ and Γ from the set of words X
to the vector space Gn of dimension n, and to set Gk×n of k × n matrices over G, such
that C ∈ L if and only if Ĉ := θ(C) is a linear combination of the rows of Γ (C). From
a witness w for a word C, it should be possible to compute such a linear combination as
a row vector λ = (λi)i=1,...,k ∈ Z1×k

p :

Ĉ = θ(C) = λ • Γ (C). (1)

For the sake of simplicity, because of the equivalence between w and λ, we will use
them indifferently for the witness.

SPHFs. Let us now build an SPHF on such a language. A hashing key hk is just a
random column vector hk ∈ Znp , and the associated projection key is hp := Γ (C) • hk.
The hash value of a word C is then H := Ĉ • hk, and if λ is a witness for C ∈ L , this
hash value can also be computed as:

H = Ĉ • hk = λ • Γ (C) • hk = λ • hp = projH,

which only depends on the witness λ and the projection key hp. On the other hand, if
C /∈ L , then Ĉ is linearly independent from the rows of Γ (C). Hence, H := Ĉ • hk
looks random even given hp := Γ (C) • hk, which is exactly the smoothness property.

Example 6. The SPHF corresponding to the language in Example 4, is then defined by:

hk = (hk1, hk2, hk3, hk4)
ᵀ $← Z4

p

hp = Γ (C) • hk = (ghk1hhk2 , ghk2uhk3(e/g)hk4 , ghk3hhk4)

H = Ĉ • hk = uhk1ehk2 projH = λ • hp = hpr1 · hp
b
2 · hp

−rb
3 .

For the sake of clarity, we will omit the C argument, and write Γ , instead of Γ (C).

12 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

3.2 Limitations of Smooth Projective Hash Functions

At a first glance, as explained in the introduction, it may look possible to construct an
iZK from an SPHF for the same language L = iL as follows:

– iSetup(crs) and iTSetup(crs) outputs the empty CRS icrs :=⊥;
– iKG(icrs, x, iw) outputs an empty public key ipk :=⊥ together with the secret key

isk := (x, iw);
– iEnc(ipk, x) generates a random hashing key hk

$← HashKG(crs, x) and outputs
the ciphertext c := hp ← ProjKG(hk, crs, x) together with the ephemeral key
K := H ← Hash(hk, crs, x);

– iDec(isk, c) outputs the ephemeral key K := projH ← ProjHash(hp, crs, x, iw).

This construction is sound: if x /∈ L , given only c = hp, the smoothness ensures that
K = H looks random. Unfortunately, there seems to be no way to compute K from
only c, or in other words, there does not seem to exist algorithms iTKG and iTDec.

Example 6 is not Zero-Knowledge. Actually, with the SPHF from Example 6, no such
algorithm iTKG or iTDec (verifying the zero-knowledge property) exists. It is even
worse than that: a malicious verifier may get information about the witness, even if he
just has a feedback whether the prover could use the correct hash value or not (and get
the masked value or not), in a protocol such as the one in Fig. 1. A malicious verifier can
indeed generate a ciphertext c = hp, by generating hp1 honestly but by picking hp2 and
hp3 uniformly at random. Now, a honest prover will compute projH = hpr1hp

b
2hp
−rb
3 ,

to get back the ephemeral key (using iDec). When C is an encryption of b = 1, this
value is random and independent of H , as hp2 and hp3 have been chosen at random,
while when b = 0, this value is the correct projH and is equal to H . Thus the projected
hash value projH , which is the ephemeral output key by the honest prover, reveals some
information about b, part of the witness.

If we want to avoid such an attack, the prover has to make sure that the hp he
received was built correctly. Intuitively, this sounds exactly like the kind of verifications
we could make with an SPHF: we could simply build an SPHF on the language of the
“correctly built” hp. Then the prover could send a projection key for this new SPHF
and ask the verifier to XOR the original hash value H with the hash value of this new
SPHF. However, things are not that easy: first this does not solve the limitation due to
the security proof (the impossibility of computing H for x /∈ iL) and second, in the
SPHF in Example 6, all projection keys are valid (since Γ is full-rank, for any hp, there
exists necessarily a hk such that hp = Γ • hk).

3.3 iZK Construction

Let us consider an SPHF defined as in Section 3.1 for a language iL = L . In this
section, we show how to design, step by step, an iZK for iL from this SPHF, following
the overview in Section 1. At the end, we provide a summary of the construction and a
complete proof. We illustrate our construction on the language of ElGamal ciphertexts
of bits (Examples 4 and 6), and refer to this language as “our example”. We suppose a
cyclic group G of prime order p is fixed, and that DDH is hard in G5.

5 The construction can be trivially extended to DLin, or any MDDH assumption [21] though.

Implicit Zero-Knowledge Arguments 13

We have seen the limitations of directly using the original SPHF are actually twofold.
First, SPHFs do not provide a way to compute the hash value of a word outside the
language, with just a projection key for which the hashing key is not known. Second,
nothing ensures that a projection key has really been derived from an actually known
hashing key, and in such a bad case, the projected hash value may leak some information
about the word C (and the witness).

To better explain our construction, we first show how to overcome the first limitation.
Thereafter, we will show how our approach additionally allows to check the validity of
the projection keys (with a non-trivial validity meaning). It will indeed be quite important
to notice that the projection keys coming from our construction (according to one of
the setups) will not necessarily be valid (with a corresponding hashing key), as the
corresponding matrix Γ will not always be full rank, contrary to the projection keys of
the SPHF in Example 6. Hence, the language of the valid projection keys will make
sense in this setting.

Adding the Trapdoor. The CRS of our construction is a tuple icrs = (g′, h′, u′ =

g′
r′
, e′ = h′

s′
) ∈ G4, with g′, h′ two random generators of G, and

– r′, s′ two random distinct scalars in Zp, for the normal CRS generated by iSetup, so
that (g′, h′, u′, e′) is not a DDH tuple;

– r′ = s′ a random scalar in Zp, for the trapdoor CRS generated by iTSetup, with
iT = r′ the trapdoor, so that (g′, h′, u′, e′) is a DDH tuple.

Then, we build an SPHF for the augmented language Lt defined as follows: a
word Ct = (C, u′, e′) is in Lt if and only if either C is in the original language L
or (u′, e′) is a DDH tuple. This new language Lt can be seen as the disjunction of
the original language L and of the DDH language in basis (g′, h′). Construction of
disjunctions of SPHFs were proposed in [2] but require pairings. In this article, we use
an alternative more efficient construction without pairing6. Let us show it on our example,
with Ct = (C, u′, e′). We set Ĉt := (g′−1, 1, 1, 1, 1, 1, 1) and Γt(Ct) ∈ G(k+3)×(n+3)

as

Γt(Ct) :=

1 Γ (C)

g′ 1 1 Ĉ = θ(C)
1 g′ h′ 1 . . . 1
g′ u′ e′ 1 . . . 1

 =

1 1 1 g h 1 1
1 1 1 1 g u e/g
1 1 1 1 1 g h
g′ 1 1 u e 1 1
1 g′ h′ 1 1 1 1
g′ u′ e′ 1 1 1 1

 . (2)

Let us show the language corresponding to Γt and Ĉt is indeed Lt: Due to the first
column of Γt and the first element of Ĉt, if Ĉt is a linear combination of rows of Γt
with coefficients λt (i.e., Ĉt = λt • Γt), one has λt,4 + λt,6 = −1, and thus at least
λt,4 or λt,6 is not equal to zero.

6 Contrary to [2] however, our matrix Γt depends on the words Ct, which is why we get this
more efficient construction.

14 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

– If λt,6 6= 0, looking at the second and the third columns of Γt gives that:

λt,5 • (g′, h′) + λt,6 • (u′, e′) = (1, 1) , i.e., (u′, e′) = (g′λt,5/λt,6 , h′λt,5/λt,6),

or in other words (u′, e′) is a DDH tuple in basis (g′, h′);
– if λt,4 6= 0, looking at the last four columns of Γt gives that: λt,4 • Ĉ = λt,4 •
(u, e, 1, 1) is a linear combination of rows of Γ , hence Ĉ too. As a consequence, by
definition of L , C ∈ L .

Now, whatever the way the CRS is generated (whether (u′, e′) is a DDH tuple or not), it
is always possible to compute projH as follows, for a word C ∈ L with witnesses r
and b:

projH = λt • hp λt = (λ,−1, 0, 0) = (r, b,−rb,−1, 0, 0)

When the CRS is generated with the normal setup, as shown above, this is actually the
only way to compute projH , since (u′, e′) is not a DDH tuple and so Ĉt is linearly
dependent of the rows of Γt if and only if C ∈ L . On the opposite, when the CRS is
generated by the trapdoor setup with trapdoor r′, we can also compute projH using the
witness r′: projH = λ′

t • hp with λ′
t = (0, 0, 0, 0, r′,−1).

However, the latter way to compute projH gives the same result as the former way,
only if hpt,5 and hpt,6 involve the correct value for hk1. A malicious verifier could
decide to choose random hpt,5 and hpt,6, which would make λ′

t • hp look random and
independent of the real hash value!

Ensuring the Validity of Projection Keys. The above construction and trapdoor would
provide zero-knowledge if we could ensure that the projection keys hp (generated by
a potentially malicious verifier) is valid, so that, intuitively, hpt,5 and hpt,6 involve the
correct value of hk1. Using a zero-knowledge proof (that hp derives from some hashing
key hk) for that purpose would annihilate all our efforts to avoid adding rounds and
to work under plain DDH (interactive ZK proofs introduce more rounds, and Groth-
Sahai [32] NIZK would require assumptions on bilinear groups). So we are left with
doing the validity check again with SPHFs.

Fortunately, the language of valid projection keys hp can be handled by the generic
framework, since a valid projection key hp is such that: hp = Γt • hk, or in other words,
if we transpose everything hpᵀ = hkᵀ • Γ ᵀ

t . This is exactly the same as in Equation (1),
with Ĉ ↔ hpᵀ, Γ ↔ Γ ᵀ

t and witness λ ↔ hkᵀ. So we can now define a smooth
projective hash function on that language, where the projection key is called transposed
projection key tp, the hashing key is called transposed hashing key tk, the hash value
is called transposed hash value tH and the projected hash value is called transposed
projected hash value tprojH .

Finally, we could define an iZK, similarly to the one in Section 3.2, except, ipk con-
tains a transposed projection key tp (generated by the prover from a random transposed
hashing key tk), and c contains the associated transposed projected hash value tprojH in
addition to hp, so that the prover can check using tk that hp is valid by verifying whether
tprojH = tH or not.

An Additional Step. Unfortunately, we are not done yet, as the above modification
breaks the soundness property! Indeed, in this last construction, the prover now learns an

Implicit Zero-Knowledge Arguments 15

additional information about the hash value H: tprojH = hkᵀtp, which does depend on
the secret key hk. He could therefore choose tp = Ĉᵀ

t , so that tprojH = hkᵀĈᵀ
t = Ĉthk

is the hash value H = K of C under hk.
We can fix this by ensuring that the prover will not know the extended word Ĉt

on which the SPHF will be based when he sends tp, using an idea similar to the
2-universality property of SPHF introduced by Cramer and Shoup in [18]. For that
purpose, we extend Γt and make Ĉt depends on a random scalar ζ ∈ Zp chosen by the
verifier (and included in c).

Detailed Construction. Let us now formally show how to build an iZK from any SPHF
built from the generic framework of [7], following the previous ideas. We recall that we
consider a language L = iL , such that a word x = C is in iL , if and only if Ĉ = θ(C)
is a linear combination of the rows of some matrix Γ ∈ Gk×n (which may depend on
C). The coefficients of this linear combination are entries of a row vector λ ∈ Z1×k

p :
Ĉ = λ • Γ , where λ = λ(iw) can be computed from the witness iw for x.

The setup algorithms iSetup(crs) and iTSetup(crs) are defined as above (page 13).
We define an extended language using the generic framework:

θt(x, ζ) = Ĉt = (g′−1, 1, . . . , 1, g′−ζ , 1, . . . , 1) ∈ G1×(2n+6)

Γt(x) =

(
Γ ′t (x) 1

1 Γ ′t (x)

)
∈ G(2k+6)×(2n+6),

where Γ ′t (x) is the matrix (initially called Γt(x) in Equation (2), 1 is the matrix of
G(2k+3)×(2n+3) with all entries equal to 1, and ζ is a scalar used to ensure the prover
cannot guess the word Ĉt which will be used, and so cannot choose tp = Ĉt. As
explained above, this language corresponds to a 2-universal SPHF for the disjunction of
the language of DDH tuples (g′, h′, u′, e′) and the original language L . We write:

λt(ζ, iw) = (λ(iw),−1, 0, 0, ζλ(iw),−ζ, 0, 0)
λt(ζ, iT) = (0, . . . , 0, r′,−1, 0, . . . , 0, ζr′,−ζ) with iT = r′,

so that:

Ĉt =

{
λt(ζ, iw) • Γt(x) if (g′, h′, u′, e′) is a DDH tuple, with witness iT
λt(ζ, iT) • Γt(x) if x ∈ iL with witness iw.

The resulting iZK construction is depicted in Fig. 4. This is a slightly more efficient
construction that the one we sketched previously, where the prover does not test anymore
explicitly tprojH , but tprojH (or tH) is used to mask K. Thus, tprojH no more needs
to be included in c.

Variants. In numerous cases, it is possible to add the trapdoor in a slightly more efficient
way, if we accept to use word-dependent CRS. While the previous construction would
be useful for security in the UC framework [15], the more efficient construction with
a word-dependent CRS is enough in the stand-alone setting. Independently of that
improvement, it is also possible to slightly reduce the size of hp, by computing ζ with an
entropy extractor, and so dropping it from hp. Details for both variants are given in the
full version [8].

16 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

iSetup(crs)

(g′, h′)
$← G∗2

(r′, s′)
$← Z2

p \ {(a, a) | a ∈ Zp}
(u′, e′)← (g′

r′
, h′

s′
) ∈ G2

icrs← (g′, h′, u′, e′)
return icrs

iTSetup(crs)

(g′, h′)
$← G∗2

r′
$← Zp

(u′, e′)← (g′
r′
, h′

r′
) ∈ G2

icrs← (g′, h′, u′, e′); iT ← r′

return (icrs, iT)

iKG(icrs, x, iw)

tk
$← Z2k+6

p

ipk := tp← Γt(x)
ᵀ • tk ∈ G2n+6

isk := (x, tk, iw)
return (ipk, isk)

iTKG(icrs, x, iT)
tk

$← Z2k+6
p

ipk := tp← Γt(x)
ᵀ • tk ∈ G2n+6

itk := (x, tk, iT)
return (ipk, itk)

iEnc(icrs, ipk, x)

tp← ipk; hk $← Z2n+6
p ; ζ $← Zp

hp← Γt(x) • hk ∈ Z2k+6
p

tprojH ← hkᵀ • tp ∈ G

H ← θt(x, ζ) • hk ∈ Zp

K ← H · tprojH ∈ G
c := (ζ, hp)
return (K, c)

iDec(icrs, isk, c)
(x, tk, iw)← isk
(ζ, hp)← c
tH ← hpᵀ • tk ∈ Zp

projH ← λt(ζ, iw) • hp ∈ G
return K := projH · tH ∈ G

iTDec(icrs, itk, c)
(x, tk, iT)← itk
(ζ, hp)← c
tH ← hpᵀ • tk ∈ Zp

trapH := λt(ζ, iT) • hp ∈ G
return K := trapH · tH ∈ G

Fig. 4: Construction of iZK

3.4 SSiZK Construction

Our SSiZK construction is similar to our iZK construction, except that, in addition
both iSetup and iTSetup add the CRS icrs, a tuple (vk,i)

k=1,2
i=0,...,2K of group elements

constructed as follows: for i = 0 to 2K (with K the security parameter): r′i
$← Zp, v1,i ←

g′
r′i , v2,i ← h′

r′i . We also define the two Waters functions [45]Wk : {0, 1}2K → G, as
Wk(m) = vk,0

∏2K
i=1 v

mi

k,i , for any bitstring m = m1‖ . . . ‖m2K ∈ {0, 1}2K. Finally, the

CRS is also supposed to contain a hash functionH : {0, 1}∗ → {0, 1}2K drawn from a
collision-resistant hash function familyHF .

Next, the language Lt is further extended by adding 3 rows and 2 columns (all equal
to 1 except on the 3 new rows) to both the sub-matrices Γ ′t (x) of Γt(x), where the 3 new
rows are: 1 1 1 1 . . . 1 g′ h′

1 1 1 1 . . . 1 u′′ e′′

g′ 1 1 1 . . . 1 g′ 1

 ∈ G3×(n+5),

with u′′ = W1(H(`, x)) and e′′ = W2(H(`, x)). The vector Ĉt becomes Ĉt =
(g−1, 1, . . . , 1, g−ζ , 1, . . . , 1) (it is the same except for the number of 1’s). Due to lack
of space, the full matrix is depicted in the full version [8], where the security proof can
also be found. The security proof requires that Setupcrs also outputs some additional

Implicit Zero-Knowledge Arguments 17

information or trapdoor Tcrs, which enables to check, in polynomial time, whether a
given word x is in iL or not.

Here is an overview of the security proof. Correctness, setup indistinguishability, and
zero-knowledge are straightforward. Soundness follows from the fact that (g′, h′, u′′, e′′)
is a DDH-tuple, when parameters are generated by iSetup (and also iTSetup actually),
and so (g′, 1) is never in the subspace generated by (g′, h′) and (u′′, e′′) (as h′ 6= 1),
hence the corresponding language Lt is the same as for our iZK construction. Finally, to
prove simulation-soundness, we use the programmability of the Waters function [33]
and change the generation of the group elements (vk,i) so that for the challenge proof
(generated by the adversary) (g′, h′, u′′, e′′) is not a DDH-tuple, while for the simulated
proofs it is a DDH-tuple. Then, we can change the setup to iSetup, while still being able
to simulate proofs. But in this setting, the word Ĉt for the challenge proof is no more in
Lt, and smoothness implies simulation-soundness.

4 Application to the Inner Product

In case of biometric authentication, a server S wants to compute the Hamming distance
between a fresh user’s feature and the stored template, but without asking the two players
to reveal their own input: the template y from the server side and the fresh feature x from
the client side. One can see that the Hamming distance between the `-bit vectors x and y
is the sum of the Hamming weights of x and y, minus twice the inner product of x and y.
Let us thus focus on this private evaluation of the inner product: a client C has an input
x = (xi)

`
i=1 ∈ {0, 1}` and a server S has an input y = (yi)

`
i=1 ∈ {0, 1}`. The server S

wants to learn the inner product IP =
∑`
i=1 xiyi ∈ {0, . . . , `}, but nothing else, while

the client C just learns whether the protocol succeeded or was aborted.

Semi-Honest Protocol. C can send an ElGamal encryption of each bit under a public
key of her choice and then S can compute an encryption of IP + R, with R ∈ Zp a
random mask, using the homomorphic properties of ElGamal, and sends this ciphertext.
C finally decrypts and sends back gIP+R to S who divides it by gR to get gIP. Since IP is
small, an easy discrete logarithm computation leads to IP.

Malicious Setting. To transform this semi-honest protocol into one secure against
malicious adversaries, we could apply our generic conversion presented in the full
version [8]. Here, we propose an optimized version of this transformation for this
protocol. We use the ElGamal scheme for the encryption Epk, where pk is a public key
chosen by C and the secret key is sk = (skj)

log p
j=1 , and the Cramer-Shoup scheme [17]

for commitments Com, of group elements or multiple group elements with randomness
reuse, where the public key is in the CRS. The CRS additionally contains the description
of a cyclic group and a generator g of this group. The construction is presented on
Figure 5. First, the client commits to her secret key (this is the most efficient alternative
as soon as n� `) and sends encryptions (ci)i≤n of her bits. Then, the server commits
to his inputs (yi)i and to two random integers (R,R′), computes the encryption (û, ê)
of gR·IP+R

′
), re-randomized with a randomness ρ, masked by an iZK to ensure that

the ci’s encrypt bits under the key pk whose corresponding secret key sk is committed
(masking one of the two components of an ElGamal ciphertext suffices). The client

18 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

C
pk, (ci = Epk(gxi))`i=1

S∏`
i=1 c

yi
i · Epk(g

R) ≡ Epk(gIP+R)

gIP+R

C
pk,Com((gskj)log p

j=1), (ci = (ui, ei) = Epk(gxi))`i=1 , ipkC
S

Com((gyi)`i=1, g
R, gR

′
,
∏
uyi
i ,

∏
eyii), (û, ê), ipkS , cC

gR·IP+R′ ·KS , cS

Fig. 5: Semi-Honest and Malicious Protocols for Secure Inner Product Computation

replies with gR·IP+R
′
, masked by a SSiZK (this is required for UC security) to ensure

that the Com(gyi) contains bits, and that the masked ciphertext has been properly built.
The server then recovers gR·IP+R

′
, removes R and R′, and tries to extract the discrete

logarithm IP. If no solution exists in {0, . . . , `}, the server aborts. This last verification
avoids the 2-round verification phase from our generic compiler: if the client tries to
cheat on R · IP + R′, after removing R and R′, the result would be random, and thus
in the appropriate range with negligible probability `/p, since ` is polynomial and p is
exponential. We prove in the full version [8] that the above protocol is secure against
malicious adversaries in the UC framework with static corruptions, under the plain
DDH assumption, and in the common reference string setting.

Efficiency and Comparison with Other Methodologies. In the full version [8], we
provide a detailed analysis of our inner product protocol in terms of complexity. Then,
we estimate the complexity of this protocol when, instead of using iZK, the security
against malicious adversaries in the UC model is ensured by using the Groth-Sahai
methodology [32] or Σ-protocols. In this section, we sum up our comparisons in a
table. The notation > indicates that the given complexity is a lower bound on the real
complexity of the protocol (we have not taken into account the linear blow-up incurred
by the conversion of NIZK into SS-NIZK), and� indicates a very loose lower bound.
We stress that with usual parameter, an element of G2 is twice as big as an element of
G1 (or G) and the number of rounds in the major efficiency drawback (see Section 1).
The efficiency improvement of iZK compared to NIZK essentially comes from their
“batch-friendly” nature.

Proofs Pairings Exponentiations Communication Rounds

Σ-proofs 0 38` 20` 5
GS proofs > 14` � 28`(G1) + 6`(G2) > 11`(G1) + 10`(G2) 3
iZK (this paper) 0 67` 21` 3

Moreover, our iZKs do not require pairings, which allows us to use more efficient
elliptic curves than the best existing curves for the Groth-Sahai methodology. With a
reasonable choice of two curves, one without pairing and one with pairing, for 128 bits
of security, we get the following results: (counting efficiency as a multiple of the running
time of an exponentiation in G1)

Implicit Zero-Knowledge Arguments 19

Curve \ Efficiency Pairings Exponentiations in G1 Exponentiations in G2

Curve25519 [10] no pairings 1 7

[11] ≈ 8 ≈ 3 ≈ 6

Acknowledgments. This work was supported in part by the CFM Foundation, ANR-
14-CE28-0003 (Project EnBid), and the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no.
339563 – CryptoCloud).

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-friendly non-
interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol.
8269, pp. 214–234. Springer (Dec 2013)

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof systems: New
constructions and applications. Cryptology ePrint Archive, Report 2014/483 (2014), http:
//eprint.iacr.org/2014/483

3. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer (May 2001)

4. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial algorithm for
discrete logarithm in finite fields of small characteristic. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer (May 2014)

5. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model scheme for a
hybrid-encryption problem. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 171–188. Springer (May 2004)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Ashby, V. (ed.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993)

7. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques
for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer (Aug 2013)

8. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge arguments
and applications to the malicious setting. Cryptology ePrint Archive, Report 2015/246 (2015),
http://eprint.iacr.org/2015/246

9. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the Fiat-Shamir
heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 626–643. Springer (Dec 2012)

10. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M., Dodis, Y.,
Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer (Apr 2006)

11. Beuchat, J.L., González-Díaz, J.E., Mitsunari, S., Okamoto, E., Rodríguez-Henríquez, F.,
Teruya, T.: High-speed software implementation of the optimal Ate pairing over Barreto-
Naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) PAIRING 2010. LNCS, vol. 6487,
pp. 21–39. Springer (Dec 2010)

12. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving protocols with
smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
94–111. Springer (Mar 2012)

13. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput.
Syst. Sci. 37(2), 156–189 (1988), http://dx.doi.org/10.1016/0022-0000(88)
90005-0

http://eprint.iacr.org/2014/483
http://eprint.iacr.org/2014/483
http://eprint.iacr.org/2015/246
http://dx.doi.org/10.1016/0022-0000(88)90005-0
http://dx.doi.org/10.1016/0022-0000(88)90005-0

20 Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck Wee

14. Brodkin, J.: Satellite internet faster than advertised, but latency still awful (Feb
2013), http://arstechnica.com/information-technology/2013/02/
satellite-internet-faster-than-advertised-but-latency

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001)

16. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM
51(4), 557–594 (Jul 2004), http://doi.acm.org/10.1145/1008731.1008734

17. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 13–25.
Springer (Aug 1998)

18. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 45–64. Springer (Apr / May 2002)

19. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd
ACM STOC. pp. 542–552. ACM Press (May 1991)

20. ECRYPT II: eBATS, http://bench.cr.yp.to/results-dh.html
21. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-

Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 129–147. Springer (Aug 2013)

22. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based
on a single random string (extended abstract). In: 31st FOCS. pp. 308–317. IEEE Computer
Society Press (Oct 1990)

23. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer (Aug
1987)

24. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh,
D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467–476. ACM Press (Jun
2013)

25. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In:
Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer (May 2003),
http://eprint.iacr.org/2003/032.ps.gz

26. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. ACM
Transactions on Information and System Security 9(2), 181–234 (2006)

27. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information
retrieval schemes. In: 30th ACM STOC. pp. 151–160. ACM Press (May 1998)

28. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness
theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC. pp. 218–229.
ACM Press (May 1987)

29. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-knowledge,
and a methodology of cryptographic protocol design. In: Odlyzko, A.M. (ed.) CRYPTO’86.
LNCS, vol. 263, pp. 171–185. Springer (Aug 1987)

30. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof
systems. SIAM J. Comput. 18(1), 186–208 (1989)

31. Granger, R., Kleinjung, T., Zumbrägel, J.: Breaking ’128-bit secure’ supersingular binary
curves - (or how to solve discrete logarithms in F24·1223 and F212·367). In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 126–145. Springer (Aug
2014)

32. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer (Apr 2008)

33. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. Journal of
Cryptology 25(3), 484–527 (Jul 2012)

http://arstechnica.com/information-technology/2013/02/satellite-internet-faster-than-advertised-but-latency
http://arstechnica.com/information-technology/2013/02/satellite-internet-faster-than-advertised-but-latency
http://doi.acm.org/10.1145/1008731.1008734
http://bench.cr.yp.to/results-dh.html
http://eprint.iacr.org/2003/032.ps.gz

Implicit Zero-Knowledge Arguments 21

34. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric
cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 18–35. Springer (Aug 2013)

35. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure compu-
tation. In: Kleinberg, J.M. (ed.) 38th ACM STOC. pp. 99–108. ACM Press (May 2006)

36. Jarecki, S.: Practical covert authentication. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 611–629. Springer (Mar 2014)

37. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer
(Aug 2013)

38. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78.
Springer (May 2007)

39. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer (Mar 2011)

40. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage
on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106.
Springer (Mar 2011)

41. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext
attacks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990)

42. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer (Aug 1990)

43. shelat, a., Shen, C.H.: Two-output secure computation with malicious adversaries. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer (May 2011)

44. shelat, a., Shen, C.H.: Fast two-party secure computation with minimal assumptions. In:
Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13. pp. 523–534. ACM Press (Nov
2013)

45. Waters, B.R.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer (May 2005)

46. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS. pp.
162–167. IEEE Computer Society Press (Oct 1986)

	Implicit Zero-Knowledge Arguments and Applications to the Malicious Setting
	Introduction
	Definition of Implicit Zero-Knowledge Arguments
	Notations
	Definition
	Security Requirements

	Construction of Implicit Zero-Knowledge Arguments
	Review of the Generic Framework of SPHFs over Cyclic Groups
	Limitations of Smooth Projective Hash Functions
	iZK Construction
	SSiZK Construction

	Application to the Inner Product

