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Abstract. We present a cryptanalysis of the ASASA public key cipher
introduced at Asiacrypt 2014 [3]. This scheme alternates three layers
of affine transformations A with two layers of quadratic substitutions
S. We show that the partial derivatives of the public key polynomials
contain information about the intermediate layer. This enables us to
present a very simple distinguisher between an ASASA public key and
random polynomials. We then expand upon the ideas of the distinguisher
to achieve a full secret key recovery. This method uses only linear algebra
and has a complexity dominated by the cost of computing the kernels
of 226 small matrices with entries in F16.

Introduction

A long-standing challenge in asymmetric cryptography is to bring asymmetric
cryptography closer to symmetric cryptography by designing public key schemes
whose overall structure and elementary operations are similar to those used in
mainstream block ciphers such as AES. Solving this appealing but difficult chal-
lenge would not only increase the diversity in asymmetric cryptography, but
might also help reducing the considerable performance gap between asymmetric
cryptography and symmetric cryptography (the latter currently being more ef-
ficient by several orders of magnitude). This might as well allow the emergence
of symmetric algorithms with some extra features, as for instance symmetric en-
cryption schemes with a secure white-box implementation. Until 2014 however,
as far as we know, all attempts of public key scheme designs with block cipher
features, e.g. [10, 16, 15], eventually turned out to be weak [13, 18, 1, 8, 7].

Asymmetric ASASA Schemes. Some new candidate solutions to the above
challenge were proposed in a paper published at Asiacrypt 2014 by Biryukov
et al. [3]. One conducting idea for the new designs stems from the observations
that: (1) Traditional SPN block ciphers such as AES can be viewed as an al-
ternance of (at least partly secret) affine transformations A and S-box layers S,
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and generally comprise a substantial number of A rounds (essentially 10 in the
case of AES-128); as shown by Biryukov and Shamir [4], some efficient generic
attacks exist for the SASAS structure with secret S and A layers and small bi-
jective S-boxes. (2) The efforts to design public key schemes with an alternance
of A and S layers mainly focused so far on multivariate schemes with an ASA
structure, with one single large S-box described by low degree equations over
a finite field.1 Based on the former considerations, the authors of [3] advocate
for use of public multivariate schemes with an ASASA structure, i.e. with the
simplest possible structure for which no generic attack is known in the case of
small bijective S-boxes—or more generally of injective S-boxes whose non-zero
linear combinations of outputs are not too strongly biased.

More precisely, the authors of [3] proposed a public-key encryption scheme
named the asymmetric ASASA scheme with expanding S-boxes, conjecturing that
it offers a comfortable security margin with respect to the potential lines of attack
identified in their security analysis. This scheme uses small input-expanding
injective quadratic S-boxes. Since the these S-boxes have a length expansion
factor of 2, the whole scheme has a length expansion factor of 4. The standard
plaintext and ciphertext length for this scheme are respectively 128 and 512 bits.

While this works focuses exclusively on the ASASA scheme with expanding
S-boxes, the same authors also proposed in [3] a second public-key encryption
scheme based on the SASAS structure, named the χ-scheme. Indeed, this alter-
native construction makes use of Daemen’s bijective quadratic S-box χ based
on cellular automata [5] and also used in various recent hash functions. The
standard plaintext and ciphertext length is 128 bits. In this χ-scheme, one sin-
gle large S-box is used at each S layer. In their security analysis though, the
authors of [3] consider many attacks on weakened versions of the χ-scheme and
conclude that the security margin of the χ-scheme must be lower than that of
the expanding scheme. They therefore express some caveats on its security and
only “offer it as a cryptanalytic challenge, but not for practical use”, unlike the
expanding scheme.

In both ASASA public key encryption schemes, quadratic S-boxes are being
used. The public key consists of the quartic equations of the encryption function
and the private key consists of the specification of the A and S layers and of some
perturbation polynomials, which are added to a few components of the vector
representing the output of the second S layer.2 Another property of these public
key encryption schemes is that they can also be viewed as symmetric ciphers
with a decent encryption and decryption speed and the following extra feature:
1 While a noticeable exception is the multivariate scheme R2 [14] that contains two S
layers with small S-boxes, one weakness highlighted by attacks on R2 or its variant
R2− that were eventually discovered is the fact that the R2 S-boxes are not injective.

2 While the role of perturbations is essential in the case of the χ-scheme since its vari-
ants without perturbations are reported in [3] to be vulnerable to efficient Gröbner
basis attacks, in the case of the expanding scheme, perturbations are mostly intro-
duced to provide some extra resistance against decomposition attacks that could
potentially reduce the ASASA structure to the functional composition of two ASA
structures.
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as an alternative to using the secret key to efficiently encrypt, the public key
provides a slower strong white-box implementation of the encryption function
— i.e. an obfuscated implementation that is conjectured to prevent that the
decryption function be derivable by an adversary who has full access to it.

Our contribution. In this paper, we present an efficient attack on the ASASA
scheme with expanding S-boxes. The starting point for our attack is the analysis
of the homogeneous cubic part of the derivatives of the (quartic) polynomials
of the public key. We first show that this analysis provides a distinguisher that
allows to tell apart the public key of the scheme from a vector of random quartic
polynomials. We then describe how to leverage the first information about the
secret key provided by the distinguisher to retrieve the intermediate values that
lie between the two S-layers, for an equivalent representation of the scheme. At
this point, we are essentially left with the problem of solving two quadratic ASA
layers. Though generic techniques to solve this problem exist, we give our own
algorithm, that is well-adapted to the scheme considered. The overall complexity
of the attack is equivalent to at most 226 computations of kernels of matrices of
size 64×96 over the finite field F16. We estimate the corresponding computational
time to a few CPU-hours, which places this cryptanalysis well within practical
limits.

This paper is organised as follows. Section 1 provides a description of the
expanding ASASA scheme and presents some useful preliminary results. Section 2
introduces a distinguisher for this scheme that can be used to derive some first
information on the secret key. Finally, Section 3 shows how to efficiently derive
an equivalent secret key from the public key.

1 The ASASA Cryptosystem

1.1 Definition and First Notations

The two asymmetric ASASA schemes of [3] are composed of polynomial trans-
formations over the base field k = F16; they are obtained by alternating three
k-affine layers and two non-linear polynomial-based S layers. The ASASA scheme
with expanding S-boxes, on which we are focusing, involves S-boxes whose out-
put is twice as big as their input; 32 perturbation polynomials of degree four are
also applied just before the last affine transform. More precisely, each S-box maps
a 4-tuple of k-values onto an 8-tuple of k-values, defined as degree 2 polynomi-
als over k in the inputs. The resulting scheme, which we simply call the ASASA
cryptosystem in the remaining of this paper for simplification purposes, has then
degree 4 over k. Going into details, the private key of the ASASA cryptosystem
consists of:

– Three uniformly random invertible affine transformations Ax of k32,
Ay of k64, and Az of k128;
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Fig. 1. The ASASA cryptosystem with expanding S-boxes.

– Two sets of uniformly random quadratic functions from k4 to
k8 corresponding to the first and second S-box layer Sx =
{Sx0,0, . . . , Sx0,7, . . . Sx7,0, . . . Sx7,7}, that determines 8 S-boxes Sx0 , . . . Sx7 , and
Sy = {Sy0,0, . . . , S

y
7,0, . . . S

y
15,0, . . . , S

y
15,7}, that determines 16 S-boxes

Sy0 , . . . S
y
15;

– Thirty-two uniformly random quartic perturbation polynomials p0, . . . , p31
on k32.

The public key and the associated public encryption function are derived from
the secret key as illustrated at Figure 1, following those successive steps:

(i) The plaintext state is the tuple of variables x = (x0, . . . , x31) ∈ k32;
(ii) Let x′ = Ax · x ∈ k32;
(iii) Define y = (y0,0, . . . , y7,7) ∈ k64 as yr,i = Sxr,i(x

′
r,0, . . . , x

′
r,3), for r, i = 0 . . . 7;

(iv) Let y′ = Ay · y ∈ k64;
(v) Define z = (z0,0, . . . , z15,7) ∈ k128 as zr,i = Syr,i(y

′
r,0, . . . , y

′
r,3), for i = 0 . . . 7

and r = 0 . . . 15;
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(vi) For r ∈ {0, 15}, do z?8r ← zr,0+p2r(x), z
?
8r+1 ← zr,1+p2r+1(x), and z?8r+i ←

zr,i for i = 2 . . . 7 (the two first components out of 8 contiguous components
of z are modified);

(vii) The public key PK(x) is the vector of 128 polynomials over k, z′ = Az · z? ∈
(k[x0, . . . x31])

128; the public encryption function is the associated function
from k32 to k128.

Dimension of the secret and public key spaces. Since the dimensions
of various vector spaces are central in our analysis, we compute the size of
the secret and public key spaces. We do not find the exact same numbers as
the original authors [3, 2.5], although the order of magnitude is the same. An
affine transform on n variables is representable by a matrix of size n × (n +
1); therefore, the three A layers have a key size of 32 × 33 + 64 × 65 + 128 ×
129 = 21 728 elements of F16. An S-box output is an (inhomogeneous) quadratic
polynomial in four variables, and is therefore described by

(
6
2

)
= 15 coefficients.

(The dimensions of spaces of homogeneous polynomials are as given below in
section 1.3 of this paper; inhomogeneous polynomials in n variables correspond
bijectively to homogeneous polynomials of the same degree in n + 1 variables).
Therefore, the two S layers have a key size of 24 × 8 × 15 = 2 880 elements
of F16. In total, the secret key size is 24 608 elements of F16, or approximately
213.6 bytes of data. This does not, however, count the perturbation polynomials,
which occupy a space of 32 ×

(
36
4

)
elements, or 219.8 bytes of data. The public

key is a set of 128×
(
36
4

)
elements of F16, or 221.8 bytes of data.

1.2 Equivalent Simple Keys

As for most multivariate cryptosystems, there are multiple private keys that
correspond to a given ASASA public key, and we show here that each secret key
is equivalent to a simpler one, that we describe. We also redefine the ASASA
system in terms of those “simple” keys, which make our attack easier to explain;
we point out that this simplification is purely cosmetic though and that our
attack does apply to the ASASA system as described in [3].

First, since for each r = 0, . . . , 15, the two outputs zr,0, zr,1 of the S-box Syr
are added to arbitrary perturbation polynomials pi, we obtain the same public
key when replacing p2r, p2r+1 by p2r + zr,0, p2r+1 + zr,1 and Syr,0, S

y
r,1 by zero.

Let Ax = Ax + ax and Ay = Ay + ay be the decomposition of Ax and
Ay as their linear part plus their constant. We can actually assume that Ax =
Ax and Ay = Ay, as it is always possible to consider a modified Sy S-box
layer where the first addition by ax and the second addition by ay are absorbed
by the polynomials of Sy. The same goes for Az, where the addition of the
32 components with index 8r and 8r + 1 of az can be viewed as part of the
perturbation polynomials, so that Syr,0 and Syr,1 are still zero. This shows that
we can assume ax = ay = az = 0 and consider from now on Ax, Ay and Az

instead of Ax, Ay and Az.
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Fig. 2. The ASASA cryptosystem with expanding S-boxes, equivalent representation.

Finally, notice that it is always possible to compose the output of the
quadratic map Sxi by a linear transform, and the corresponding input block of the
linear map Ay by its inverse. The same applies to Syi and Az, for i 6= 8r, 8r+1,
i.e. as long as the corresponding 32 zero polynomials of Sy are not affected.

To sum up, the description of the ASASA private key of Section 1.1 is equiv-
alent to the following:

– Three uniformly random invertible linear transformations Ax of k32,
Ay of k64 and Az of k128;

– Two sets of 8 × 8 and 16 × 6 uniformly random quadratic functions on k4,
Sx =

{
Sx0,0, . . . , S

x
7,7

}
and Sy =

{
Sy0,0, . . . , S

y
15,5

}
;

– A set of 32 uniformly random quartic polynomials p0, . . . , p31 on k32.

In the remaining of this paper, we shall always consider such simple private keys;
the corresponding encryption mechanism is illustrated at Figure 2.

1.3 Notations and Preliminaries

We write k = F16 for the finite field with 16 elements. Throughout this work,
we let q = |k| = 16.
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Homogeneous polynomials. We write Hd,n for the space of homogeneous
polynomials of degree d over n variables (over the base field k = F16); it is a
vector space of dimension

(
n+d−1

d

)
[17, 2.2.1]. Throughout this paper, we shall

usually work with the vector spaceHd,32 of homogeneous polynomials of degree d
on the 32 input variables xi. We shall write Hd instead of Hd,32.

Let f(x1, . . . , xn) be a polynomial. For any integer d, we write f(d) for the
degree d homogeneous part of f .

Vector spaces. Given subspaces E ⊂ Hd,n and E′ ⊂ Hd′,n, we define E ·E′ as
the subspace ofHd+d′,n generated by all the products u·u′ for u ∈ E and u′ ∈ E′.
We also define D as the vector space generated by the 32 derivations ∂i = ∂/∂xi.
For any vector space E ⊂ Hd,n, we define DE ⊂ Hd−1,n as the vector space
generated by all δ(u) for δ ∈ D and u ∈ E.

Counting matrices of a given rank. We introduce the following notations,
used in the computation of the number of matrices with given size and rank. For
any integers n ≥ d, we define

[n, d] =

d−1∏
i=0

qn − qi and
[
n
d

]
=

[n, d]

[d, d]
. (1)

We omit the value q from these notations, since we shall always use q = 16. We
use the following classical result (see [12, VII.19]).

Proposition 1. Let m,n, d be three integers.

(i) There are exactly [n, d] injective maps from kd to kn.

(ii) There are exactly
[
n
d

]
subspaces of dimension d of kn.

(iii) There are exactly [n,d]·[m,d]
[d,d] matrices of size m× n with rank exactly d.

ut

Proposition 2. Let V be a vector space of dimension d over k = F16. A set of
n uniformly random, independent vectors vi ∈ V generates V with overwhelming
probability if n ≥ d+ 32.

Proof. Let π(n, d) be the probability that a random matrix of size n × d has
maximal rank d. We see by Proposition 1 that

π(n, d) =
[n, d]

qnd
=

d−1∏
i=0

1− q−(n−i). (2)

For n > d� 0, since q−n � 1, we have the asymptotic expansion

π(n, d) = exp

(
d−1∑
i=0

log(1− q−(n−i))

)
' exp

(
−q−n q

d − 1

q − 1

)
. (3)
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For any ε > 0, we find that

π(n, d) > 1− ε iff n > logq
qd − 1

q − 1
− logq log

1

1− ε
. (4)

Using ε = 2−128 as our definition of “overwhelming probability”, the above con-
dition (4) becomes n ≥ d+ 32. ut

Expected behaviour of derivatives and product of random polyno-
mials. We shall use throughout this work the following heuristics about the
derivatives and products of random polynomials.

For f1, . . . , fr uniformly random, independent elements of Hd,n:

(i) if r < 1
n dimHd−1,n, then the nr derivatives ∂ifj behave like uniformly ran-

dom, independent elements of Hd−1,n;
(ii) if r < 1

n dimHd+1,n, then the nr products xifj behave like uniformly random,
independent elements of Hd+1,n.

In particular, according to Proposition 2, we expect that, with overhelming
probability, if nr ≤ dimHd−1,n − 32, then the ∂ifj are free in Hd−1,n; if nr ≤
dimHd+1,n − 32, then the xifj are free in Hd+1,n. Although giving a detailed
proof of these facts would be out of the scope of this work, we obtained an
empiric confirmation in the cases of interest to us (namely n = 32, and either
d = 4, r = 128 for derivation, or d = 2, r = 64 for multiplication), as well as of
the bounds of validity.

2 A Simple Distinguisher

We shall see that the ASASA cryptosystem presents the same flaw as several
multivariate cryptosystems, that is, it is possible to distinguish the equations
of the public key for the ASASA scheme from random polynomials of the same
degree over k. The distinguisher we present here is extremely simple: namely,
computing the rank of the matrix of partial derivatives of the polynomials is
enough. However, by elaborating on the structure of this distinguisher, we shall
explain in section 3 how it is possible to fully recover the secret key.

2.1 Considerations on the Dimension of Vector Spaces Derived
from the Public Key

The key observation underlying the distinguisher is that, while the space of
homogeneous cubic polynomials H3 = H3,32 has dimension

(
34
3

)
= 5984, the

homogeneous cubic parts of the derivatives of the public key (∂PKi/∂xj)(3) ac-
tually belong to a much smaller subspace ofH3 which happens to have dimension
at most 3 072.
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The case of the ASASA cryptosystem with no perturbation polynomi-
als. As a warm-up, we first consider the encryption of the message (x0, . . . , x31)
under the “non-perturbed” ASASA scheme, i.e. the ASASA scheme with no per-
turbation polynomials. We recall that all intermediate values {yr,i}, {y′r,i}, {zr,i}
and {z′i} introduced at Section 1 can be seen as polynomials in the 32 input vari-
ables xi with coefficients in k = F16 (see Figure 1).

To see that the (∂PKi/∂xj)(3), for i = 0 . . . 127, j = 0 . . . 31, belong to a re-
stricted subspace, we consider the second S-box layer Sy; recall that zr,i denotes
the i-th output of the S-box Syr with input y′r,0, . . . y′r,3. The quadratic polyno-
mials y′r,i may be written y′r,i = (y′r,i)(2) + (y′r,i)(1) + (y′r,i)(0), as the sum of a
homogeneous degree 2 part, a linear part and a constant. We therefore see that
the homogeneous parts of degree 4 of the polynomials zr,i output by the S-box Syr
are linear combinations of the terms (y′r,m)(2) · (y′r,n)(2). Let us write ∂zr,i/∂xj
for the derivative of the output zr,i along the input variable xj . There exists
coefficients am,n ∈ k such that

(∂zr,i/∂xj)(3) =
∑
m,n

am,n(y
′
r,m)(2)(∂y

′
r,n/∂xi)(1). (5)

Let Y ′(2) ⊂ H32,2 be the vector space spanned by the 64 homogeneous quadratic
parts of the polynomials y′r,m; it has dimension at most 64. Let also (DZ)(3) be
the vector space spanned by the 128 × 32 = 4 096 homogeneous cubic parts of
the derivatives of the polynomials zr,i. The expression (5) above implies

(DZ)(3) ⊂ Y ′(2) ·H1. (6)

The vector space (DZ ′)(3) =
〈
(∂PKi/∂xj)(3)

〉
being a linear image of (DZ)(3)

by Az, we also have
(DZ ′)(3) ⊂ Y ′(2) ·H1, (7)

and
dim(DZ ′)(3) ≤ dimY ′(2) ·H1 ≤ 64× 32 = 2 048. (8)

The general ASASA cryptosystem. For the general ASASA scheme, we have
to slightly adapt the result (7) to take into account the perturbation polynomi-
als. We refer the reader to Figure 2 for the description of ASASA used in this
paragraph.

We established in our analysis of the unperturbed scheme that the homo-
geneous cubic parts of the derivatives of the polynomials {zr,i} belong to the
vector space Y ′(2) ·H1, which has dimension 2 048. This still holds for the general
ASASA scheme, since up to generation z, the perturbation polynomials do not
appear. The next step in the algorithm is the linear transform Az; its input is the
concatenation z||(p0, . . . , p31), where the first 96 elements are the polynomials
of z and the last 32 are the perturbation polynomials. This means that the poly-
nomials of the public key z′ are linear combinations of the polynomials of z and
the perturbation polynomials p0, . . . p15. Let DP be the vector space spanned by
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the homogeneous cubic parts (∂pi/∂xj)(3) of the derivatives of the perturbation
polynomials; it has dimension at most 32× 32 = 1 024. We necessarily have

(DZ ′)(3) ⊂ Y ′(2) ·H1 + DP. (9)

In terms of dimensions, Equation (9) implies

dim(DZ ′)(3) ≤ dim(Y ′)(2) ·H1 + 1024 ≤ 3 072, (10)

as claimed.

2.2 The Distinguisher

We now turn the observation of Section 2.1 into a working distinguisher.

Proposition 3. It is possible to distinguish the public key polynomials of the
ASASA scheme from uniformly random quartic polynomials by computing the
rank of a matrix of size 5 984× 4 096 with coefficients in F16.

Proof. Let T = (T0, . . . , T127) be a vector of 128 polynomials that are either
uniformly random quartic polynomials, or a (perturbed) ASASA public key PK.
We consider the matrix M of size 5 984 × 4 096 whose columns are the vec-
tors (∂Ti/∂xj)(3) ∈ H3,32, with the usual notations. If the Ti are uniformly ran-
dom polynomials, then the rank ofM is 32 times the rank of the family (Ti); since
128×32 < dimH3,32, according to our heuristic, this is usually 32×128 = 4 096.
If on the contrary T is an ASASA public key, then by (10), the rank of M is at
most 3 072.

The distinguisher that returns ASASA if the rank ofM is ≤ 3 072, and random
otherwise, succeeds with overwhelming probability.3 ut

3 Key Recovery

We now present a secret key recovery attack on an ASASA scheme. The ideas
used here are based on the properties already identified in Section 2, namely, the
space of derivatives of PK contains information about the intermediate values
between the two quadratic layers.

To attack the system, we first identify the vector space of quadratic forms
manipulated in the middle of the algorithm (as output of the first S layer, and
input to the second one). This is the crucial point of the cryptanalysis. It enables
us to reduce the problem to two much simpler ASA problems. We then solve each
ASA instance in turn. (Note that although we present a specific way to solve to

3 We may also investigate the case of a reinforced ASASA scheme with more pertur-
bation polynomials, i.e. with 96 “legitimate” outputs and p ≥ 32 perturbations. We
easily find that our distinguisher works at least for p ≤ 90. The same bound applies
to the key recovery attack of section 3 below.

10



these two ASA instances, it is well-known that ASA instances are weak, and
techniques to solve such systems can be found in the literature [2, 9, 11, 6]).

This key-recovery only relies on linear algebra in various spaces of homoge-
neous polynomials. We refer the reader to Section 1.3 for some useful general
results in algebra used in the attack; a few other results will be introduced on
the fly when needed. For simplicity in this whole section 3, we write Y , instead
of Y ′(2), for the space generated by the homogeneous quadratic parts of the poly-
nomials of y.

The overall complexity of the attack is about 226 times the computation of
the rank of a square matrix of size 64× 96 with coefficients in F16. We point out
that our method only uses the quadratic terms of the secret quadratic layers; it is
therefore also applicable to homogeneous instances of the ASASA cryptosystem.

3.1 Computing the Middle Layer

As already mentioned, our attack uses the same data as the distinguisher.
More precisely, the key result was given at Equation (9): the vector space DZ ′
of derivatives of PK contains information about the space Y ·H1, i.e. about the
vector space Y of homogeneous quadratic functions produced by the first S layer.
However, the observed vector space deduced from the public key also contains
some unwanted vectors originating in the perturbation polynomials.

To access the space Y ·H1 and see beyond the perturbation polynomials, the
first step is to construct several subspaces of DZ ′ including Y ·H1. We are then
able to recover Y ·H1 as the intersection of all those subspaces. In a second step
we show how, from this recovered vector space, we compute the space Y itself.

Eliminating the perturbations. This first steps aims at computing the vector
space Y ·H1 from the public key.

Recall that a public key PK of the ASASA cryptosystem is given as a vector
of 128 polynomials PKi in the 32 input variables. We define Fi = (PKi)(4) as the
homogeneous quartic part of the public key, and F as the vector space generated
by all Fi.

For any derivation δ ∈ D and for any f ∈ F , we saw when describing the
distinguisher that

δf ∈ Y ·H1 + δP, (11)

where Y is the vector space generated by the 64 quadratic polynomials (yr,i)(2),
and P is the vector space generated by the 32 perturbation polynomials (pi)(4).

Let ∆ ⊂ D be a vector space of dimension d. By (11), we then have

∆F ⊂ Y ·H1 +∆P, (12)

where the right-hand space has dimension at most 64×32+32×d = 2048+32 d.
The space ∆F is generated by 128 d elements δfi, for δ ∈ ∆ and i = 0, . . . , 127.
By Proposition 2, these 128 d elements generate the whole space Y ·H1+∆P as
long as 128 d ≥ 2 048 + 32 d+ 32, or equivalently, d ≥ 22.
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We now consider a family of m vector spaces ∆1, . . . ,∆m ⊂ D, each space ∆i

being of dimension d = 22. We know by what precedes that for each one of them,
∆iF = Y ·H1 +∆iP . This implies that

m⋂
i=1

∆iF = Y ·H1 +

m⋂
i=1

∆iP. (13)

Since dimD = 32 and dim∆i = 22 for each i, the intersection of two spaces ∆i

generally has dimension 12 (this is always the case if we choose the ∆i correctly),
and likewise the intersection of three such spaces has dimension 2, and form ≥ 4,
we easily find ∆1, . . . ,∆m such that ∆1 ∩ . . . ∩∆m = 0. This implies that

m⋂
i=1

∆iP = 0 for m ≥ 4. (14)

Formula (14) means that the intersection
⋂m
i=1∆iF is then exactly the space Y ·

H1:
m⋂
i=1

∆iF = Y ·H1 for m ≥ 4. (15)

Computing the middle terms. This part explains how we recover the 64-
dimensional space Y from the space Y ·H1 ⊂ H3 obtained during the previous
step.

We first prove a short lemma. Let V ⊂ H2 be a vector space of dimension d
and basis (vj). The vector space V · H1 ⊂ H3 is generated by the 32 d ele-
ments xi vj . If d ≤ 186, then 32 d ≤ dimH3 − 32; by Proposition 2, we therefore
expect these 32 d elements to be linearly independent in H3.This implies that
dim(V ·H1) = 32 d. In particular, this means that when V has dimension ≤ 186,
the correspondence between (dimV ) and (dimV ·H1) behaves, with very high
probability, as a strictly increasing function.

We now use this lemma to characterize the space Y . Let Y ⊂ H2 be the
vector space of all functions g such that, for all i, gxi ∈ Y ·H1. Trivially, Y ⊂ Y
and Y ·H1 = Y ·H1. Since dimY = 64 ≤ 186, we are in the conditions of the
previous lemma, which implies that Y = Y with overwhelming probability.

We may easily compute the space Y from Y · H1 as follows. For each i =
0, . . . , 31, we define Gi as the subspace of multiples of xi in Y ·H1; by definition,
Y is the intersection of all spaces x−1i Gi,

Y =

31⋂
i=0

x−1i Gi. (16)

3.2 Solving a Quadratic ASA Layer

As already mentioned, there exists generic techniques [2, 9, 11, 6] for inverting
a public key in the ASA form. We give our own solution here, as it is simple and
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works well in the particular case of an ASA layer based on quadratic S-boxes.
We shall use this technique twice, once for the inner ASA layer, and then once
more for the outer one.

This section and the next one (Section 3.3) are mutually independent. We
present the inner layer ASA first since it is easier to explain.

Notations. The inner ASA layer is represented as the (known) vector space Y
generated by the 64 (unknown) quadratic forms yr,i in the 32 input variables xi.
We restrict ourselves here to the homogeneous part of the yr,i, since this case is
more difficult to solve, but easier to present.

For each fixed r, the eight functions yr,0, . . . , yr,7 are quadratic forms in the
same 4 fixed linear combinations x′r,0, . . . , x′r,3 of the input variables xi. We
write Xr for the vector space generated by the x′r,i. We may also decompose the
space of differentials D = 〈∂/∂xi〉 according to the S-boxes; namely, for each r,
we define Dr as the set of all elements δ ∈ D whose restriction to Xr is zero.

We note that dimXr = 4 and dimDr = 28. Therefore, for a given r, an
uniformly random element of D belongs to Dr with probability q−4 = 2−16.

Separating the inputs of the S-boxes. We show that we are able to identify
the elements of Dr, i.e. the differentials that vanish on the inputs of a particular
S-box.4

For any quadratic form f ∈ Y and any δ ∈ D, the function δf is a linear form
of x ∈ X; this means that (δf)(x) is a trilinear function of (δ, f, x). Therefore,
for a fixed value of δ, it is a bilinear function of (f, x). We write Fδ for this
bilinear form. It is represented by a matrix of size 64× 32 whose coefficients are
the (δfi)(xj), where (fi) is a basis of Y and (xj) is the standard basis of X.

Let f ∈ Y ; we can write f as a sum
∑
fs for s = 0, . . . , 7, where fs is a

quadratic form on Xs. For any δ ∈ Dr, we have δfr = 0, so that δf is the sum of
the δfs for s 6= r. Since each one of these terms uses only the variables from Xs,
this means that (δf)(x) = 0 for x ∈ Xr. Put differently, the kernel of Fδ (here
seen as a linear map from X to the dual of Y ) contains Xr.

Now let δ be an element of D not belonging to any of the Dr: since the
maps (δfi) are 64 random linear forms on the 32-dimensional space X; by Propo-
sition 2, with overwhelming probability, the intersection of their kernels is zero.

As a result, we see that the rank of the matrix Fδ is always ≤ 28 if δ belongs to
at least one of the Dr and 32 with overwhelming probability otherwise. This also
provides a test, given two elements δ and ε of Dr and Ds, for the equality r = s:
since the kernels of the matrices Fδ, Fε contain respectively Xr and Xs, their
intersection is non-trivial when r = s.
4 Since the elements of Y are quadratic forms, their differentials are exactly the asso-
ciated polar forms. This means that we may represent the derivations as elements
of X, using the relation (δf)(x) = f(x+ δ)− f(x)− f(δ); in this view, the space Dr

is the direct sum of all the Xs for s 6= r. However, we chose to use an explanation
based on differentials, since this is both closer to the differential cryptanalysis point
of view, and easier to generalize to polynomials of higher degree.
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The algorithm. We compute the spaces Xr and Dr at the same time, and up
to a permutation of {0, . . . , 7}, since we do not know the labeling of the S-boxes.
For each r = 0, . . . , 7, we keep candidates Ur and Vr for the spaces Xr and Dr;
initially, Ur is the whole space X while the space Vr is empty. During the whole
algorithm, we have Ur ⊃ Xr and Vr ⊂ Dr, with both inclusions being equalities
at the end. We also note that, at every step of the alorithm, Ur is the intersection
of the kernels of all elements of Vr.

We now describe the algorithm. We randomly generate elements δ of D and
compute the kernel K ⊂ X of the matrix Fδ. If this kernel has dimension at
least 4, then it intersects non-trivially one of the spaces Ur and the intersection
also has dimension at least 4. We then update Vr to Vr⊕〈δ〉 and Ur to Ur∩K. The
algorithm ends when each space Vr has the required dimension 28, as then Vr =
Dr as required, and therefore Ur = Xr.

Recovering the S-boxes. Once the spaces Xr are known, computing the
S-boxes is easy. We write Yr for the vector space generated by the 8 outputs of
the S-box Sxr , andXr for the direct sum of allXs for s 6= r. Then Yr is exactly the
set of elements of Y that vanish on all points ofXr. We may therefore compute Yr
with linear algebra. (Another possibility is to use the derivations spaces Dr, also
computed in the previous step, since Yr is the set of elements f ∈ Y such that,
for all δ ∈ Dr, δf = 0). Once bases of both Xr and Yr are known, we recover
the secret functions Sxr by interpolation.

Complexity. Since we need to generate on average q4×28×8 ≈ 15·106 elements
of X, the expected cost for the execution of this algorithm is approximately 223.8

times that of the computation of the kernel of a matrix of size 32×64 with entries
in F16.

3.3 Solving the Outer ASA Layer

We again use the representation of the middle layer as a 64-dimensional
vector space Y of quadratic forms computed in 3.1. We now determine the output
functions Fi as linear combinations of quadratic forms in the elements of Y and
the 32 perturbation polynomials pi.

Computing the outputs of the S-boxes. We recall that F is the vector
space generated by the homogeneous quartic part of the ASASA public key.
This vector space is the direct sum of the 32-dimensional space P generated
by the homogeneous quartic parts of the perturbations, and the 96-dimensional
vector space Z generated by the outputs of the 16 S-boxes Syr . Since the middle
layer Y is known as a result of Section 3.1, we may compute Z as the intersection
Z = (Y · Y ) ∩ F .
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Reducing to a quadratic ASA layer. We now study the 16 S-boxes Syr . We
already know the 64-dimensional vector space Y of their (quadratic) inputs and
the 96-dimensional vector space Z of their (quartic) outputs. Our goal for now
is to rewrite each element of Z as an explicit quadratic function of the elements
of Y , so as to be able to apply the techniques of Section 3.2.5

We represent Y by its Hermite normal basis relative to a particular basis
of H2: the first 32 elements of Y have the form ui = x2i + . . . for i = 1, . . . , 32,
the next 31 elements have the form vi = x1xi + . . . for i = 2, . . . , 32, and the
last one is w = x2x3 + . . . , where none of the omitted “. . . ” expressions contain
either squares or terms x1xi or x2x3. In the (unlikely) case where the Hermite
normal form of Y does not contain the monomials x21, . . . , x2x3, we may always
replace the public key F by its composition F ◦ σ by a random invertible linear
transformation of the input variables, such that Y ◦ σ has the suitable Hermite
normal form.

We now consider a basis of the space Z. Any term of the form λx4i appearing
in a basis element of Z comes, in its expression as a quadratic forms over Y , from
a term λu2i . Likewise, any term of the form µx31xi comes from a term µu1vi,
and so on.

In this way, we identify the second ASA layer as a quadratic map from Y
to Z.

Solving the ASA problem. The problem we have to solve is now almost
identical to the one we solved in Section 3.2, except that we now have 16 instead
of 8 S-boxes, and 96 instead of 64 quadratic forms.

Applying the previous algorithm to this case thus has a global complexity of
approximately q4 × 60× 16 ≈ 225.9 times the cost of computing the kernel of a
matrix of size 64× 96 with entries in F16. This is the dominant step in the key
recovery procedure. We estimate the corresponding computational cost to a few
CPU-hours.

3.4 Computing the Inhomogeneous Terms

We just presented an algorithm computing the homogeneous part (of de-
gree two) of the quadratic S layers of the ASASA public key. These homogeneous
terms represent the largest part of the secret key. Once they are computed,
recovering the inhomogeneous terms (of degree one) is quite simple.

Each output S-box has one such linear term, represented by four coefficients;
in total, there are therefore (64+96)×4 = 640 unknown coefficients. We consider
the homogeneous parts of degree one and three of the public key PKi. These
5 We note that in the (very unlikely) case where the computation of the space Y
performed in Section 3.1 returned a space Y ′ ) Y , the computation performed here
will allow us to remove the few extra elements of Y ′: namely, since the elements
of Z are quadratic forms in the elements of Y , the unneeded elements of Y ′ will
not appear in these expressions. This means that, in practice, this step (Section 3.3)
should be performed before the inner step (Section 3.2).
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functions are linear in the unknown inhomogeneous terms. Since there are exactly
(dimH1+dimH3)×32 = 192 512 such functions, we have enough linear equations
to recover all inhomogeneous terms.

Conclusion

We presented a very efficient distinguisher on the main ASASA scheme propo-
sition of [3], that evolved into a full key-recovery algorithm with very reasonable
complexity. The complexity of the attack can be approximated by the cost of
computing the kernels of 226 matrices of size 64×96 with entries in F16. This cost
is well within practical limits. A classical venture to “repairing” a multivariate
cryptosystem is to consider the homogeneous variant of the broken scheme. We
point out that our cryptanalysis works by considering the homogenous quartic
parts of the polynomials of the public key, thus defeats any such attempt. An-
other possibility would be to reinforce the scheme by adding more perturbation
polynomials. However, our attack still works without any modification even for
a larger number of perturbations.
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