
Known-key Distinguisher on Full PRESENT

Céline Blondeau1, Thomas Peyrin2 and Lei Wang2,3?

1 Department of Computer Science, School of Science, Aalto University, Finland
2 Nanyang Technological University, Singapore

3 Shanghai Jiao Tong University, China

celine.blondeau@aalto.fi, thomas.peyrin@ntu.edu.sg, wangleihb83@gmail.com

Abstract. In this article, we analyse the known-key security of the stan-
dardized PRESENT lightweight block cipher. Namely, we propose a known-
key distinguisher on the full PRESENT, both 80- and 128-bit key versions.
We first leverage the very latest advances in differential cryptanalysis on
PRESENT, which are as strong as the best linear cryptanalysis in terms
of number of attacked rounds. Differential properties are much easier to
handle for a known-key distinguisher than linear properties, and we use
a bias on the number of collisions on some predetermined input/output
bits as distinguishing property. In order to reach the full PRESENT, we
eventually introduce a new meet-in-the-middle layer to propagate the
differential properties as far as possible. Our techniques have been im-
plemented and verified on the small scale variant of PRESENT. While the
known-key security model is very generous with the attacker, it makes
sense in practice since PRESENT has been proposed as basic building block
to design lightweight hash functions, where no secret is manipulated. Our
distinguisher can for example apply to the compression function obtained
by placing PRESENT in a Davies-Meyer mode. We emphasize that this is
the very first attack that can reach the full number of rounds of the
PRESENT block cipher.

Key words: PRESENT, known-key model, distinguisher, differential crypt-
analysis, linear cryptanalysis.

1 Introduction

The pervasive deployment of tiny computational devices brings with it many
interesting, and potentially difficult, security issues. Recently, lightweight cryp-
tography has naturally attracted a lot of attention from the symmetric-key cryp-
tography community and many lightweight block ciphers [8,10,18] and hash func-
tions [2,17,7] have been proposed in the past few years. Among these primitives,
PRESENT [8] is probably the one which has been the most scrutinized. It remains
unbroken, even though many lightweight block ciphers have been successfully
attacked. As such, it has become an ISO/IEC standard [19] and is now expected
to be deployed in many industrial applications.

? Corresponding author



It is well known that block ciphers and hash functions are very close crypto-
graphic primitives, as the latter can be built from the former and vice versa. For
example, the Davies-Meyer construction or the Miyaguchi-Preneel construction
can transform a secure block cipher into a secure compression function (which
can in turn be used to build a secure hash function by plugging it into some
domain extension algorithm). However, while the security is usually guaranteed
with a security proof that considers the internal block cipher as a black-box,
it is very important that this internal primitive presents no flaw whatsoever. A
classical example is the devastating effect on the compression function security
of weak keys for a block cipher [33], which are usually considered as a minor flaw
for a block cipher if the set of these weak-keys is small.

Therefore, the security notions to consider for a block cipher will vary de-
pending if this block cipher will be used in a hash function setting or not. In
a hash setting, block cipher security models such as the known-key [22] (the
attacker can know the key) or the chosen-key model (the attacker can choose
the key) make sense since in practice the attacker has full access and control
over the internal computations. Moreover, an attack in these models depicts a
structural flaw of the cipher, while it should be desired to work with a primitive
that does not have any flaw, even in the most generous security model for the
attacker. Several known-key or chosen-key attacks on reduced-round AES-128

were published [22,16,21,14], and Gilbert [15] eventually exhibited a known-key
attack on the full 10 rounds with 264 computations.

PRESENT is a natural candidate to build lightweight compression functions
and hash functions, and such constructions were proposed in [9]. It is there-
fore meaningful to study PRESENT even in security models very generous for the
attacker. Thus far, the best secret-key attacks on PRESENT [12,5] can reach 26
rounds over the 31 total. Related-key attacks (where the key is secret, but the at-
tacker is allowed to ask queries for some keys related to the original one) are thus
far not more powerful, probably due to the impossibility of the attacker to prop-
erly control linear/differential propagation in the PRESENT key schedule. Regard-
ing known or chosen-key model, the best attack could only reach 18 rounds [23]
using rebound attacks and multi-differential cryptanalysis (their distinguisher
worked not only for the internal block cipher, but also for the DM-PRESENT com-
pression function). Only very recently Lauridsen et al. [25] managed to reach 26
rounds of 80-bit key version of PRESENT and 27 rounds of 128-bit key version of
PRESENT by combining rebound attacks with linear cryptanalysis in the known-
key model (it works for only a small portion of keys, e.g. 271.8 out of 2128). It
is noticeable that even though the security margin of PRESENT is rather small,
the best attacks in the classical (secret)-single-key model and in the known or
chosen-key models are almost reaching the same number of rounds. This is quite
surprising as one would expect many more rounds to be broken when the at-
tacker is given so much power. As analogy, one can remark that the best attacks
on AES-128 can break 7 rounds in the single-key or related-key model, but the
full 10-round cipher can be broken when the attacker knows the key [15]. It
seems that, in the case of PRESENT, leveraging the degrees of freedom obtained



by knowing or choosing the key will not greatly help the attacker to improve
linear attacks [25].

Our contribution. In this article, we exhibit the very first known-key at-
tack on the full PRESENT cipher. More precisely, using the framework from [5],
we avoid the issues when trying to improve linear attacks with more freedom
degrees. We start from some of the best differential distinguishers from [5] and
we managed to extend them by several rounds by adding a meet-in-the-middle
layer. Overall, storing 235.58 bytes, we can distinguish the full 31-round PRESENT

in the known-key model in a time corresponding to 256 encryptions. The success
of our known-key distinguisher on the full PRESENT is 50.5% and is equal to 100%
when considering a version reduced to 27 rounds. More details are provided in
Table 3. The distinguishing attacks presented in this paper are independent of
the key-size and are valid for both PRESENT-80 and PRESENT-128.

In order to validate our results, we have implemented and verified our dis-
tinguisher on a small scale variant of PRESENT proposed in [26]. Our findings
indicate that one should avoid using PRESENT as building block to create com-
pression functions and hash functions, as it was proposed in [9]. Actually, our
distinguisher can also apply to DM-PRESENT (both 80 and 128-bit versions) and
to H-PRESENT. We emphasize that this cryptanalysis is the very first non-random
property found for the full PRESENT.

In Section 2 we first describe the PRESENT block cipher and then we intro-
duce our attack model in Section 3. Then, we explain the method to build our
distinguisher in Section 4 and finally provide experiments and summarize our
results in Section 5. Section 6 concludes this paper.

2 The PRESENT block cipher

2.1 Description of PRESENT

PRESENT [8] is a 64-bit lightweight block cipher proposed at CHES 2007. It is
composed of 31 rounds and the 64-bit 32 round-keys are derived from a 80-bit or
a 128-bit master key (we will respectively refer to PRESENT-80 or PRESENT-128).
The round function is composed of a round-key XOR, an Sbox layer and a simple
linear bit permutation layer, as depicted in Figure 1.

The permutation layer operates linearly on the 64 bits as follows: the bit i of
the state is moved to the bit position P (i) where

P (i) =

{
16× i mod (63) for 0 ≤ i < 63,

63 for i = 63.

Even though the same Sbox is applied for all nibbles at each round, we
numbered the Sboxes from 0 to 15 (see Figure 1) to simplify the description of
our attacks. Note that, as in the original PRESENT paper, the least significant
bit and the least significant Sbox are on the right. In particular the input of the



⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S15 S14 S13 S12 S11 S10 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

Fig. 1. One round of PRESENT.

Sbox Si, 0 ≤ i ≤ 15, corresponds to the bits 4i, 4i+ 1, 4i+ 2, 4i+ 3 denoted by
[4i, 4i+ 3]. The 4-bit PRESENT Sbox can be described with the following table in
hexadecimal display:

S[] = {0xC, 0x5, 0x6, 0xB, 0x9, 0x0, 0xA, 0xD, 0x3, 0xE, 0xF, 0x8, 0x4, 0x7, 0x1, 0x2}.

We do not describe the key schedule of PRESENT as it has no impact on our
attack, yet we refer to [8] for a more complete description of the cipher.

2.2 Previous results on PRESENT

In the last couple of years, various analyses [12,31,1,13,3,27,32,4,5] on reduced
versions of PRESENT in the (secret)-single-key model have been proposed. Among
these analyses, the most important one remains the multidimensional linear
attack from Cho [12], which takes advantage of the easy-to-trace linear trails
with large correlations, and eventually threatens the security of PRESENT up to
26 rounds. Until 2014, as shown in Table 1, linear cryptanalysis-based attacks
were much more powerful against PRESENT, as only 19 rounds were reachable
using differential cryptanalysis-based attacks. Some of these key-recovery attacks
take advantage of the key-schedule and their time complexity have often been
computed for a single version.

However, based on a link between differential probability and linear corre-
lation, it has recently been shown in [5] that one can convert a multidimen-
sional linear distinguisher into a truncated differential one. In Section 4.2 we
will provide more details on this technique, which permitted to push truncated
differential attacks up to 26 rounds of PRESENT.

Regarding known-key or chosen-key settings, in [23] the authors presented an
analysis of DM-PRESENT, i.e. the compression function built by placing PRESENT

in a Davis-Meyer mode. Based on a combination of differential distinguishers
and rebound techniques, they manage to obtain collision and second-preimage
attacks on 12 rounds of DM-PRESENT-80, but also a distinguisher up to 18 rounds
(this distinguisher can also be applied to the cipher itself). Nevertheless, this ap-
proach does not seem to be the most promising one since using classical methods,
simple differential-based attacks on PRESENT have been much less powerful than
linear-based attacks, as illustrated by Table 1. In the next sections, we will use



Table 1. Relevant attacks on PRESENT in the (secret)-single-key model

#rounds Version Attack Data Time Mem. Ref. Year

16 80 differential 264.0 264.0 232.0 [31] 2008
19 128 algebraic differential 262.0 2113.0 n/r [1] 2009
19 128 multiple differential 262 2120 260 [4] 2013
25 128 linear 264.0 296.7 240.0 [28] 2009
26 80 multidimensional linear 264.0 272.0 232.0 [12] 2010
26 80 truncated differential 263.16 276.0 229.0 [5] 2014

the model provided in [5] to take advantage of much longer truncated differential
distinguishers.

Very recently, Lauridsen et al. [25] combined linear cryptanalysis and rebound
attacks to obtain known-key distinguishers on the PRESENT cipher, for both 80-
bit and 128-bit versions. Eventually, they managed to reach 27 rounds, that
is one more round than the best (secret)-single-key model attack on PRESENT.
Their distinguisher on 27 rounds of PRESENT-128 requires 210 computations and
261.67 steps of verification, but works only with probability 2−56.2 since the dis-
tinguisher is considered valid for 271.8 keys among the 2128 possible. The issue
with this method is that it seems not very well fit for known-key or chosen-key
scenarios, as only one extra round is reached compared to the best attack in the
(secret)-single-key model.

In the next sections, we will describe a meet-in-the-middle approach that fits
very well with differential-based attacks, and that will allow us to reach 5 more
rounds compared to the best attack in the (secret)-single-key model. Moreover,
our distinguishers can apply to DM-PRESENT and H-PRESENT [9] as well.

3 Known-key distinguisher

The known-key model has been introduced by Knudsen and Rijmen [22] to
analyse the security of AES-128 and some Feistel-based ciphers. The goal of this
model was to get a better estimation of the security margin of a cipher, but also
to encompass the scenario of block cipher-based hashing, where the key is known
and even chosen by the attacker. The property exhibited for their distinguisher
was an integral structure on the input and output of a set of plaintext/ciphertext
pairs, for a given known key. Several other types of known-key distinguishers
were subsequently proposed, such as the subspace distinguisher [24], the limited-
birthday distinguisher [16,20], and more recently a quite complex property re-
lated to an integral structure was described by Gilbert [15] to reach the full
AES-128.

When one proposes a new known-key distinguisher, it is important to prove
or at least give very strong arguments that there is no generic attack that can
obtain the same property with an equal or lower complexity than the distin-
guisher. In other words, an attacker having only blackbox access to encryption



and decryption oracles of the cipher should not be able to obtain the same prop-
erty with equal or lower complexity than for the distinguisher. In our case, the
property we will exhibit is quite trivial: we will observe a bias on the number of
collisions on some predetermined input and output bits for a set of many plain-
text/ciphertext pairs. More precisely, let the cipher block size to be n bits and
let s (respectively q) denote the number of bits from the input (respectively the
output) on which we will observe these collisions. We will generate N messages,
such that they all have the same value on the s input bits and such that there
is a bias on the number of collisions observed on the q output bits.

When having blackbox access to encryption/decryption oracles, an attacker
would maximise his success rate by asking only encryption queries. Indeed it
is much harder for him to ensure that he will get exactly the required value
on the s input bits (which is basically the strongest bias possible) when ask-
ing decryption queries, than trying to obtain a weak bias on the q output bits
when asking encryption queries. In other words, the best strategy for him is
to ensure that the strongest bias is pre-verified when building its queries, and
then hoping to observe the weakest bias on the outputs of the oracle. Moreover,
to further maximize his success rate, all its encryption queries should have the
same value on the s input bits. Indeed, since the encryption oracle is a black-
box to him, all the queries which have different value on the s input bits can
be considered completely independent, and therefore will not help him (this is
similar to the reasoning given in the limited-birthday problem proof [20]). To
summarize, in order to validate our distinguisher, we must compare with the
generic attack that consists in simply picking N random inputs (all having the
same value on the s predefined bits), querying them to the encryption oracle,
and counting the number of collisions obtained on the q predefined bits of the
output. In Section 4.2, we will explain the details regarding the computation of
the distinguisher’s success probability against this type of generic attacker.

Moreover, it is important that this exhibited property can be checked ef-
ficiently, and one should count this cost in the overall complexity of the dis-
tinguisher. Our distinguishing property can be very easily checked by simply
verifying that all the N plaintext/ciphertext pairs have indeed the same value
on the s predefined input bits, and by maintaining counters for each possible
value taken by the q predefined ciphertext bits. Then, according to these coun-
ters, the distinguisher will compute a simple scoring function and decide if he
believes to be communicating with PRESENT or with a random permutation (see
Section 4.2). We note that our known-key distinguishers will work for any key
choice. Thus, one can actually have the key value used as challenge for the at-
tacker, which further confirms the validity of our model.

4 Distinguishing full PRESENT

4.1 Distinguisher overview

While previous known-key distinguishers on other ciphers benefit much from a
start-from-the-middle approach, it cannot effectively be applied to PRESENT (at



least in a straightforward way). Typically, those distinguishers are built upon a
differential characteristic with desired input/output differences such that extra
short differential characteristics with high probability can be pre- and post-
added in order to attack as many rounds as possible. The start-from-the-middle
approach is then to firstly find solutions of the intermediate differential charac-
teristic. Although such a characteristic usually has a very low probability, thanks
to the degrees of freedom obtained from knowing or choosing the key and the
internal state values, the distinguisher is able to efficiently compute its solu-
tions. After that, the distinguisher propagates these solutions backwards and
forwards to probabilistically satisfy the pre- and post-added extra characteris-
tics. As demonstrated in [23], a rather straightforward application of the start-
from-the-middle approach works on very limited number of rounds of PRESENT.
The difficulty comes from the impossibility to find an intermediate differential
characteristic with a large number of rounds, while maintaining an affordable
time complexity to find its solutions even leveraging the degree of freedom from
knowing or choosing the key and the internal state values. We refer the interested
readers to [31,23].

Instead of differential characteristic, our distinguisher on PRESENT is built
based on the truncated differential of [5]. This is motivated by the fact that
truncated differential attack reaches the maximum number of attacked rounds
so far as shown in Table 1. Moreover, as far as we know, it is much easier to han-
dle than multidimensional linear attack. Hence, the distinguishing property is a
statistical bias of the number of collisions on a few predetermined output bits,
where the inputs collide on a few predetermined input bits. We note that such
a bias is a very small value and thus cannot be observed with a non-negligible
success probability unless a very large set of input/output pairs are provided.
Moreover, the necessary number of input/output pairs increases with the num-
ber of attacked rounds of truncated differential in order to have a non-negligible
success probability. Therefore, there are two issues when adding extra rounds
to the truncated differential to extend the number of attacked rounds of the
distinguisher. The first one is that we cannot post-add extra rounds, because
the predetermined colliding output bits of truncated differential will be input to
different Sboxes in the next round and as a result the bias cannot be observed
any more from the final outputs. The second one is that if we pre-add a dif-
ferential characteristic, it sets extra constraints on the inputs of the truncated
differential, i.e. the inputs must satisfy the extra differential characteristic, which
consequently reduces the total number of available inputs to the truncated dif-
ferential and, a fortiori, lowers the success probability of the distinguisher. On
one hand, one surely prefers to use a longer extra characteristic in order to at-
tack more rounds. On the other hand, a longer extra characteristic sets more
constraints on the inputs of the truncated differential path. Particularly, if the
total number of the available inputs of truncated differential is lower than the
necessary number to observe the statistical bias, the overall distinguisher fails.

Thus instead of pre-adding extra differential characteristics, we propose a new
layer called meet-in-the-middle (MitM) layer in order to pre-add extra rounds to



the truncated differential. It sets constraints only at its input bits and its output
bits, but not at any of its internal state bits. More precisely, the constraints
on its input bits is trivially due to defining the distinguishing property.4 The
constraints on its output bits are coming from the truncated differential, i.e. the
output difference of the MitM layer must satisfy the input constraints of the
truncated differential.

Before providing the details of our known-key distinguisher on PRESENT, we
give a general overview. As illustrated in Figure 2, the main idea is to take
advantage of a strong truncated differential distinguisher (∆ → Γ ) over the
r1 ≤ 24 last rounds. We denote by p the probability of this distinguisher. From
the knowledge of the key, using a MitM approach, we are able to generate a large
number of plaintexts which fulfill the following property: for all plaintexts with
input difference in the set Λ, their differences after 7 rounds is in the set ∆. The
truncated differential distinguisher is described in Section 4.2, the MitM layer
in Section 4.3.

Strong
truncated
differential

distinguisher

Extension using
a MitM layer

r1 ≤ 24

r0 = 7

Λ

∆

Γ

∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Fig. 2. Distinguisher overview. Each symbol represents 4 bits.

4.2 A statistical bias on reduced-round PRESENT

Given an n-bit permutation F , splitting the input space into s + t bits and
the output space into q + r bits, we have the following results which link the
probability of a truncated differential with the capacity of a multidimensional
linear approximation.

Theorem 1 ([5]). Let Fn2 = Fs2 × Ft2 = Fq2 × Fr2 and

F : Fn2 → Fn2 , x = (xs, xt) 7→ (yq, yr).

4 When attacking DM-PRESENT or H-PRESENT, the input bits with constraints of the
MitM layer must be located in the same bit positions with the output bits with
constraints of the truncated differential, due to the feed-forward operation.



Given a multidimensional approximation [(as, 0), (bq, 0)]as∈Fs
2, bq∈F

q
2

with capacity

C =
∑

(as,bq)6=(0,0)

cor2 (as · xs ⊕ bq · yq) ,

and a truncated differential composed of 2t input differences (0, δt) ∈ {0} × Ft2,
and 2r output differences (0, γr) ∈ {0} × Fr2 with probability

p =
1

2q

∑
δt,γr∈Ft

2×Fr
2

P[(0, δt)→(0, γr)],

where P[(0, δt)
F→ (0, ∆r)] = 2−n#{x ∈ Fn2 |F (x) ⊕ F (x⊕ (0, δt)) = (0, γr)}.

We have

p = 2−q(C + 1). (1)

Truncated differential with strong bias. While the previous attack on
DM-PRESENT [23] is derived from a differential with high probability, in this pa-
per, we take advantage of the strong relation between differential probability
and capacity to derive a large truncated differential over up to 24 rounds with
large bias.

Throughout this paper, we make a distinction on the set of output differ-
ences depending if we want to distinguish PRESENT or DM-PRESENT. For our
distinguisher on the PRESENT cipher, the sets of differences Λ and Γ do not need
to be similar and the last permutation can be omitted which is not the case if we
want to distinguish DM-PRESENT or H-PRESENT. Depending of the context, the
set of considered output differences will be denoted Γ if it is placed after the
last permutation layer and Γ ′ if it is placed after the last Sbox layer.

We denote by I (resp. J) the number of Sboxes in the first round (resp. last
round) with no difference in their input. In the context of the distinguishing
attack on PRESENT, we express Theorem 1 as follows.

Corollary 1. Given a multidimensional linear approximation involving the in-
put bits ∪i∈{i1,··· ,iI}[4i, 4i + 3] and the output bits ∪j∈{j1,··· ,jJ}[4j, 4j + 3] with
capacity C, we have a truncated differential with input difference

∆ =
{
δ = (δ0, · · · , δ63) ∈ F64

2 |δb = 0 for b ∈ ∪i∈{i1,··· ,iI}[4i, 4i+ 3]
}
,

and output difference

Γ =
{
γ = (γ0, · · · , γ63),∈ F64

2 |γb = 0 for b ∈ ∪j∈{j1,··· ,jJ}[4j, 4j + 3]
}
.

The probability of this differential is given as p = 2−4J(C + 1) = 2−4J + 2−4JC.
Following the notation of Theorem 1, we have s = 4I and q = 4J . We call
2−4JC the bias of this truncated differential approximation.



While in classical truncated differential attacks only few differentials are in-
volved, for this distinguisher derived from a multidimensional linear distinguisher
the number of involved differentials is 2128−4I−4J (as PRESENT is a 64-bit cipher).

Part of the analysis consists at selecting a truncated differential with high
relative bias. To understand the meaning of high relative bias we first study the
success of a distinguishing truncated differential attack.

Success of the distinguishing attack. Given a truncated differential with
probability p = 2−q(C+1), we use the following method with data complexity N ,
time complexity N encryptions and negligible memory complexity to distinguish
the cipher from a random permutation.

1. Set a table T of size 2q to 0
2. For all N messages x with same value on the bits ∪i∈{i1,··· ,iI}[4i, 4i+ 3]

(a) Compute y = EK(x)
(b) Given yq the truncation of y reduced to q bits, increment T [yq]

3. Compute D =
∑

0≤`≤2q−1 T [`](T [`]− 1)/2
4. If D > τ , consider that this is the cipher

Without comparing the pairs directly, the scoring function D gives us number of
pairs which fulfill the differential [5]. From N messages with same values on the
bits ∪i∈{i1,··· ,iI}[4i, 4i+ 3] we can generate NS = N2/2 pairs of message with no
difference on these bits, meaning that for a random permutation the expected
number of pairs fulfilling the truncated differential should be µW = NS · 2−q =
NS · 2−4J . We can show [6] that the random variable DR corresponding to this
scoring function for the given permutation follows a normal distribution with
mean µR = NS · 2−q(1 +C) and variance σ2

R ≈ NS · 2−q(1 +C) ≈ NS · 2−q. On
the other hand we have µW = NS · 2−q and σ2

W ≈ NS · 2−q. We can show that
when using NS pairs, the success probability PS of the distinguishing attack is
given by,

PS(NS) = Φ

(
µR − µW
σR + σW

)
≈ Φ

(√
2−qNS · C

2

)
(2)

where Φ the cumulative distribution function of the central normal distribution.
This success probability corresponds to a threshold τ = µR − σR · Φ−1(PS) =
µW + σW · Φ−1(PS).

Strong truncated differential on PRESENT. For a fixed NS number of pairs,
we derive from (2) that the best truncated differentials are the ones which max-
imize 2−q/2C. As explained in the previous section the number NS of available
pairs is fixed by the MitM part and the size of Λ, ∆. For the purpose of this
attack, we computed the capacity C of different set of linear approximations.
From this analysis it turns out that in combination with the MitM phase, if
we want to be able to transform this known distinguisher to a distinguisher on
DM-PRESENT, the best choice is achieved for I = 1 and J = 1.



As explained in [12], the capacity of a multidimensional linear approximation
can be obtained from the 1-bit linear trails. Given the multidimensional linear
input space involving the bits [4i, 4i+ 3], 0 ≤ i ≤ 15 and an output space after
the Sbox layer involving the bits [4j, 4j+ 3], 0 ≤ j ≤ 15, we denote by U the set
{P (4i), P (4i+1), P (4i+2), P (4i+3)} and V the set {4j, 4j+1, 4j+2, 4j+3}. We
can show (see the explanation in [12]) that an estimate of the capacity C ′r1 over
r1 rounds without the last linear layer is obtained from the following formula

C ′r1 =
∑

u∈U,v∈V
Mr1−2[u, v], (3)

where M denotes the 64 × 64 matrix with coefficients the square correlation
of the 1-bit linear approximations over one round in rest of the paper. On the
other hand, when the last linear layer is included, since the linear trails activate
different Sboxes in the last round, we can estimate the capacity Cr1 over r1
rounds as follows

Cr1 =
∑

u∈U,v∈V
Mr1−1[u, v]. (4)

From our computation we found that when selecting ∆ = {δ|δb = 0 for b ∈
[52, 55]}, the best truncated differentials are obtained for Γ ′i = {γ′|γb = 0 for b ∈
[4i, 4i + 3]} and i = 5, 7, 13, 15. For instance such truncated differential distin-
guisher on 24 rounds has a probability of 2−4(1 + 2−58.77) = 2−4 + 2−62.77 to be
fulfilled. By using 256 messages (the reason of this number is due to the MitM
layer explained in Section 4.3), we can distinguish 24-round of PRESENT from a
random permutation in 50.5% of the cases.

In the next section we explain how in the known-key model we can extend
this distinguisher to reach more rounds. More explicitly we explain how we can
ensure that all the generated messages have a fixed value over the bits [52, 55]
after 7 rounds.

4.3 The meet-in-the-middle layer

This section illustrates the meet-in-the-middle (MitM) layer, which is prepended
to the truncated differential in order to extend the number of attacked rounds of
the known-key distinguisher. It consists of several rounds, and sets constraints
on the differences of input/output bits of these rounds. Moreover, the constraints
on the output bits of the MitM layer must be exactly the same with those set
on the input bits of the truncated differential layer. Then next is to identify a
set of plaintexts which can satisfy the constraints on both input and output of
the MitM layer. Namely, if these plaintexts are input to PRESENT, their internal
state after several rounds as the output of the MitM layer can satisfy the input
constraints of the truncated differential. Thus these plaintexts can be used to
launch a distinguisher on the (reduced) PRESENT consisting of both the MitM
layer and the truncated differential layer. To efficiently identify such a set of
plaintexts, we adopt a meet-in-the-middle approach, which benefits from the



small Sbox and the bit-permutation linear layer of PRESENT. More precisely,
for two rounds of computations, an input bit (or four input bits of an Sbox)
interacts with only few other bits, and with those bits together can determine
partial output bits. Thus we carry out a forward computation to get partial
internal state bits for the first two rounds of the MitM layer by guessing just
few bits. Similarly we carry out an independent backward computation to get
partial internal state bits for the last one and half round of the MitM layer.
Finally we carry out a gradually matching process to link and meanwhile fully
determine the internal states obtained from the forward and from the backward
computations, which can work up to 3 rounds.

We describe in detail the concrete MitM procedure that is used in our attack
on full PRESENT. It consists of 7 rounds. The constraints on the inputs are that
they share the same values at bits [52, 55], i.e. the input bits to S13. The con-
straints on the outputs are that they share the same values at bits [52, 55], i.e.
the input bits to S13 for next round. In this section, we denote by Xi the internal
state after i-th round of PRESENT, and by Yi the internal state after applying
Sbox layer to Xi.

Firstly, we set the bits [52, 55] of plaintext to a randomly chosen 4-bit value,
and compute bits 13, 29, 45 and 61 of X1 in the forward direction. These bits are
input to Sboxes S3, S7, S11 and S15 in the second round. Then we exhaustively
guess the other 12 bits input to these Sboxes, that include bits 12, 14, 15, 28,
30, 31, 44, 46, 47, 60, 62 and 63 of X1, and continue to compute in the forward
direction to get 16 bits of X2, i.e. bits 4i + 3 for 0 ≤ i ≤ 15. It is also depicted
as the first two rounds in Figure 3. In total we get a set of 212 such values of X2

and each value has 16 bits determined.

Secondly, we set the bits [52, 55] of X7 to a randomly chosen 4-bit value, and
compute bits 19, 23, 27 and 31 of Y6 in the backward direction. These bits are
input to compute the inversion of Sboxes S4, S5, S6 and S7 in sixth round. We
guess the other 12 bits input to the inversion of these Sboxes, that include bits
[16, 18], [20, 22], [24, 26] and [28, 30], and continue to compute in the backward
direction to get 16 bits of Y5, i.e. bits 4i + 1 for 0 ≤ i ≤ 15. It is also depicted
as the last two rounds in Figure 3. In total we get a set of 212 such values of Y5
and each value has 16 bits determined.

Finally, we carry out a gradually-matching algorithm for each pair of X2

and Y5 obtained from the forward and the backward computations respectively.
Recall that each of X2 and Y5 has 16 bits fixed, which will be named fixed bits in
the following description. The algorithm is to find a set of internal state values of
X4, whose corresponding values of X2 and Y5 can satisfy all the fixed bits, and
in turn the corresponding plaintexts can satisfy the constraints on the input and
output of the MitM layer. In details, at the third round of the MitM layer, we
re-group the bits of X2 into 4 groups; the i-th group contains bits [16i, 16i+ 15]
for 0 ≤ i ≤ 3. Hence each group contains input bits to 4 consecutive Sboxes,
and has 4 bits fixed, i.e. bits 16i + 3, 16i + 7, 16i + 11 and 16i + 15 for the
i-th group. Then for each group independently, we exhaustively guess its 12
unfixed bits, and compute in the forward direction to get 16 bits of X4, that



⊕⊕⊕⊕

S13

⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕

S15 S11 S 7 S 3

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S15 S14 S13 S12 S11 S10 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S15 S14 S13 S12 S11 S10 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S15 S14 S13 S12 S11 S10 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S15 S14 S13 S12 S11 S10 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 7 S 6 S 5 S 4

X0

X1

X2

X3

X4

Y5

Y6

X7

Fig. 3. MitM over the 7 first rounds of PRESENT

is bits 4j + i, 0 ≤ j ≤ 15, for the i-th group. We store the values of partially
determined X4 computed from the i-th group in a table TFi. See Figure 3 for
an example group in red color. Independently and similarly, at the sixth round
of the MitM layer, we also re-group the bits of Y5 to 4 groups; the i-th group
contains bits [4i, 4i+3]

⋃
[4i+16, 4i+19]

⋃
[4i+32, 4i+35]

⋃
[4i+48, 4i+51] for

0 ≤ i ≤ 3. Then for each group independently, we exhaustively guess the unfixed
12 bits, and compute in the backward direction to get 16 bits of X4, that is bits
[16i, 16i+15], for the i-th group. We store the values of partially determined X4

computed from the i-th group in a table TBi. See Figure 3 for an example group
in blue color. After that, we merge those tables to find a set of fully-determined
values of X4. To begin with, we merge TFi and TBi, and the merged table is
denoted as Ti, independently for each 0 ≤ i ≤ 3. By merging these two tables, we
mean to merge every two partially-determined values of X4, each from a table
and sharing the same bit values at the common determined bit positions, into a
new (partially-determined) value of X4 with all their determined bits, and then
to include this new value of X4 in table Ti. Note that each value of TFi and each
value of TBi share 4 determined bit positions. Hence table Ti has on average
220 values. Then, we merge T0 and T1 and merge T2 and T3 independently, and
store the results in two tables T0,1 and T2,3 respectively. As T0 (respectively T2)



shares 8 common bits with T1 (respectively T3), we get that each of resulted
tables has on average 232 values. In the end, we merge T0,1 and T2,3, which gives
on average 232 values of fully-determined X4 since they share 32 common bits.

Overall, there are 224 pairs of partially-determined X2 and Y5 obtained from
the forward and the backward computations respectively, and each pair results
on average 232 fully-determined values of X4. Thus in total we can get on average
256(=24+32) plaintexts by inversely computing from the fully-determined values
of X4, and these plaintexts can satisfy the constraints on the input and output
of the MitM layer.

It is important to note that by running over all pairs of X2 and Y5, we have
filtered out all the plaintexts that can satisfy the constraints on both input and
output of the MitM layer. In fact it is trivial to evaluate the expected number of
such plaintexts. Since there are 4 bit-constraints at bits [52, 55] of plaintext and
4 bit-constraints at bits [52, 55] of X7, the expected number of desired plaintexts
should be 256(=64−4−4). This means that on average (at most) 256 values can be
input to the truncated differential, which contributes to 2111 pairs, to observe
the bias. It has an impact to the success probability of overall distinguisher.
More details are given in Section 5.

Complexity. The complexities of both the forward computation and the back-
ward computations are 212 computations of 2 PRESENT-rounds. For the gradually-
matching phase, the algorithm is executed 224 times since there are 212 X2 from
the forward computation and 212 Y5 from the backward computations. The com-
plexity of each execution is obviously dominated by merging T0,1 and T2,3, which
needs 232 table lookups. Hence in total the complexity of the gradually-matching
phase is 256 table lookups.

Once a match of the MitM layer has been found, we can encrypt this value
X4 over the r1 + 3 rounds and increment the counter D given in the previous
section. Therefore the memory complexity of this attack is dominated by the
storage of the table T0,1 and T2,3 which is 2 · 232 · 6 bytes. Overall the total time
complexity of the distinguisher is 256 table lookups and 256 encryptions.

5 Results

5.1 Experiments

To confirm the validity of the distinguisher presented in this paper, we imple-
mented a similar known-key distinguisher on SMALLPRESENT-[8], a 32-bit scaled-
version of PRESENT [26]. A general overview of the cipher as well as a description
of the parameters for this known-key distinguishing attack are provided in Fig-
ure 4.

For this experimental attack with I = 2 and J = 2, the expected number
of messages obtained from the MitM layer should be 232−4I−4J = 216. We re-
peated the experiments with different keys by 100000 times, and computed that
the average number of generated messages was 216.0009. We also computed the



⊕⊕⊕⊕ ⊕⊕⊕⊕
S 5 S 1

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0

MitM

truncated
differential

* * 0 * * * 0 *

* 0 0 * * * * *

* * 0 * * * 0 *

r1

r0 = 4

Λ

∆

Γ ′

Fig. 4. Left: The MitM part of our experiments on SMALLPRESENT-[8]. Right:
Description of the differential involved in our experimental attacks.

standard deviation of these experiments, which was 212.73. Based on this de-
viation, we got that for more than 99.9% of the experiments, the number of
messages generated by the MitM phase was greater than 215. Therefore we take
the value N = 215 (NS = N2/2 = 229) into consideration to compute a con-
servative success probability of the attack. A resume of the obtained results for
5 ≤ r1 ≤ 8 and a comparison with the theoretical success probability obtained
by formula (2) are given in Table 2.

Table 2. Experimental attacks on SMALLPRESENT-[8]

#Rounds
C

PS(229) Exp. PSover r − 4 rounds

9 2−5.42 100% 100%

10 2−8.46 98.0% 96.6%

11 2−10.30 75.6% 78.9%

12 2−16.17 54.3% 54.6%

As expected, these results confirm the validity of the known-key distinguish-
ing model presented in this paper.

5.2 Results

Distinguisher on PRESENT. The results of our known-key distinguishing attack
on PRESENT are given in Table 3. The input difference set is Λ = {λ | λb =
0 for b ∈ [52, 55]}. For this distinguishing attack we selected the output difference
set after the last Sbox layer to be Γ ′ = {γ′ | γ′b = 0 for b ∈ [52, 55]}. From this
set Γ ′ we derive the following set of output differences after the last linear layer
{γ | γb = 0 for b ∈ {13, 29, 45, 61}}



As from the MitM phase we can extend the truncated differential distin-
guisher over 7 rounds, its probability has been computed over r − 7 rounds.
As explained in Section 4.3, from the MitM phase we can generate in average
2111 plaintext pairs with difference in the set Λ leading after 7 rounds to 2111

pairs with difference in ∆. As from the MitM phase the number of generated
pairs is not the always same, we computed a conservative success probability
assuming that from the MitM phase only 2109 pairs are generated. Note that
we have conducted experiments on the 7 first rounds of PRESENT showing that
when merging TFi and TBi, 0 ≤ i ≤ 3, the expected number of matches was,
as expected, 220 and the standard deviation was dependent of the group and
lower than 214.5. These experiments support the fact that assuming that only
2109 pairs are generated should gives us an underestimate of the success of the
attack. The memory complexity of this distinguishing attack is dominated by

Table 3. Success probability of the known-key distinguisher (Λ → Γ ′) on
PRESENT. The probability of the truncated differential over r − 7 rounds is ob-
tained from the formula p = 2−4(C ′r−7 + 1) with C ′r−7 computed from (3).

#Rounds C′r−7 PS(2111) PS(2109)

27 2−48.33 100% 100%

28 2−50.94 99.8% 93.0%

29 2−53.55 68.6% 59.5%

30 2−56.16 53.2% 51.5%

31 2−58.77 50.5% 50.3%

the storage of the tables in the MitM phase and corresponds to the storage of
235.58 bytes. The time complexity of this known-key distinguisher on the full
PRESENT is 256 table lookups plus 256 encryptions.

Using multiple truncated differentials. In contrary to the distinguishers
on DM-PRESENT and H-PRESENT, for the distinguisher on PRESENT the input and
output differences can be selected independently of each other, in particular it
is possible to consider different sets of output differences simultaneously. For
instance we can simultaneously check that the output pairs have difference in
the set Γ ′5 or Γ ′7 or Γ ′13 or Γ ′15 (see Section 4.2 for the notation). Meaning that
we can simultaneously check that the output pairs have no-difference on the bits
[20, 23] or [28, 31] or [52, 55] or [60, 63]. Given the four multidimensional linear
approximations with input masks involving the bits [52, 55] and output masks
involving the bits of one of the previous set with same capacity C we derive that
the probability of the union of these four events is p ≈ 4 ·2−4(1+C). The success



of such multiple truncated differential distinguisher is

PS ≈ Φ
(
NS · 4 · 2−4C
2
√
NS · 4 · 2−4

)
= Φ

(
2−2
√
NSC

)
.

Using this multiple truncated differential distinguisher, having 2109 plaintext
pairs the success of the attack on 31 rounds is 50.5%. Using different distribution
table Ti and different counter values Di for each set of differentials 1 ≤ i ≤ 4,
the time complexity of this attack remains the same than that of the simple
distinguisher.

Distinguisher on DM-PRESENT and H-PRESENT. For these two compression
functions DM-PRESENT and H-PRESENT, the last linear layer has to be considered.
In particular, as explained in Section 4.2 the probability of a truncated differ-
ential distinguisher with output difference equal to 0 on the bits [52, 55] after
the last linear layer can be computed from the capacity of the related multi-
dimensional linear approximation using (4). From the linear properties of the
Sbox of PRESENT, we derive the particularity that for all v ∈ {4j}0≤j<16 we have
M [u, v] = 0. Meaning that (4) is equivalent to

Cr1 =
∑

u∈U,v∈V
Mr1−1[u, v],

where V = {4j+ 1, 4j+ 2, 4j+ 3}. Reducing the output multidimensional linear
space from 24 values to 23 values we can increase the success of our distinguish-
ing attack on PRESENT. In this case we define the set Γ̃ = {γ|γb = 0 for b ∈
[53, 55]}. Our truncated differential distinguisher (∆ → Γ̃ ) has a probability
p = 2−3(Cr1 + 1).

In this case the value of X0[52] does not have to be fixed and the MitM
presented in Section 4.3 can be repeated for the two values of X0[52], meaning
that in average 257 messages (2113 pairs) with fixed X0[53, 55] and X7[52, 55]
can be generated. The set Λ is now equal to {λ|λb = 0 for b ∈ [53, 55]}. Meaning
that an attack on 31-round DM-PRESENT and H-PRESENT can be performed in
time 257 table lookups and 257 encryptions with success probability 50.3%. This
distinguishing attack requires the storage of 235.58 bytes. The success of this
distinguishing attack on reduced-round DM-PRESENT and H-PRESENT is given in
Table 4.

The same attack with same success probability could also be performed on
PRESENT. However, the time complexity of this new known-key distinguishing
attack on PRESENT is twice the one of the previous attack.

6 Conclusion

In this article, we proposed a known-key distinguisher on the full PRESENT block
cipher, in both 80- and 128-bit versions. This is the very first non-random prop-
erty exhibited for the full number of rounds of this standardized cipher. It seems



Table 4. Success probability of the known-key distinguisher (Λ → Γ ′) on
DM-PRESENT and H-PRESENT. The probability of the truncated differential over
r−7 rounds is obtained from the formula p = 2−3(Cr−7+1) with Cr−7 computed
from (4). NS = 2111 has been chosen in a conservative way to have a good
estimate of the success probability.

#Rounds Cr−7 PS(2113) PS(2111)

27 2−50.94 100% 100%

28 2−53.55 100% 97.3%

29 2−56.16 73.7% 62.4%

30 2−58.77 54.1% 52.1%

31 2−61.39 50.7% 50.3%

an interesting future work to analyse what an attacker would be able to do
when not only knowing the key, but when he can actually choose it (chosen-key
model). Similarly to the previous strange situation that no attack improvement
could be obtained when switching from the secret-key model to the known-key
model, it would be surprising that no further improvement could be obtained in
the chosen-key model.

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments. The second and third authors are supported by
the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-
06). Lei Wang is also supported by Major State Basic Research Development
Program (973 Plan) (2013CB338004), National Natural Science Foundation of
China (61472250), and Innovation Plan of Science and Technology of Shanghai
(14511100300).

References

1. Albrecht, M., Cid, C.: Algebraic Techniques in Differential Cryptanalysis. In:
Dunkelman, O. (ed.) FSE. Lecture Notes in Computer Science, vol. 5665, pp. 193–
208. Springer (2009)

2. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight
Hash. In: Mangard, S., Standaert, F.X. (eds.) CHES. Lecture Notes in Computer
Science, vol. 6225, pp. 1–15. Springer (2010)

3. Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Prac-
tice. In: Joux, A. (ed.) FSE. Lecture Notes in Computer Science, vol. 6733, pp.
35–54. Springer (2011)

4. Blondeau, C., Nyberg, K.: New Links between Differential and Linear Cryptanaly-
sis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT. Lecture Notes in Com-
puter Science, vol. 7881, pp. 388–404. Springer (2013)

5. Blondeau, C., Nyberg, K.: Links between Truncated Differential and Multidimen-
sional Linear Properties of Block Ciphers and Underlying Attack Complexities.



In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT. Lecture Notes in Computer
Science, vol. 8441, pp. 165–182. Springer (2014)

6. Blondeau, C., Nyberg, K.: Links Between Truncated Differential and Multidimen-
sional Linear Properties of Block Ciphers and Underlying Attack Complexities. In:
Oswald, E., Nguyen, P.Q. (eds.) Eurocrypt 2014. vol. 8441. Springer-Verlag (2014)

7. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: A Lightweight Hash Function. In: Preneel and Takagi [29], pp. 312–
325

8. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES. Lecture Notes in Computer Science,
vol. 4727, pp. 450–466. Springer (2007)

9. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash Functions and RFID Tags: Mind the Gap. In: Oswald, E., Rohatgi, P.
(eds.) CHES. Lecture Notes in Computer Science, vol. 5154, pp. 283–299. Springer
(2008)

10. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A Family
of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES. Lecture Notes in Computer Science, vol. 5747, pp. 272–288. Springer
(2009)

11. Canteaut, A. (ed.): Fast Software Encryption - 19th International Workshop, FSE
2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, Lecture
Notes in Computer Science, vol. 7549. Springer (2012)

12. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk,
J. (ed.) CT-RSA. Lecture Notes in Computer Science, vol. 5985, pp. 302–317.
Springer (2010)

13. Collard, B., Standaert, F.: A Statistical Saturation Attack against the Block Ci-
pher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. Lecture Notes in Computer
Science, vol. 5473, pp. 195–210. Springer (2009)

14. Fouque, P.A., Jean, J., Peyrin, T.: Structural Evaluation of AES and Chosen-Key
Distinguisher of 9-Round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
(1). Lecture Notes in Computer Science, vol. 8042, pp. 183–203. Springer (2013)

15. Gilbert, H.: A Simplified Representation of AES. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part I. Lecture Notes in Computer Science, vol. 8873, pp.
200–222. Springer (2014)

16. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. Lecture Notes in Computer
Science, vol. 6147, pp. 365–383. Springer (2010)

17. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway [30], pp. 222–239

18. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In:
Preneel and Takagi [29], pp. 326–341

19. ISO/IEC: Information Technology – Security Techniques –Lightweight
cryptography– Part 2: Block ciphers. ISO/IEC 29192-2:2012 (2012)

20. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-Birthday Distinguishers for Hash
Functions - Collisions beyond the Birthday Bound Can Be Meaningful. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT (2). Lecture Notes in Computer Science, vol.
8270, pp. 504–523. Springer (2013)

21. Jean, J., Naya-Plasencia, M., Peyrin, T.: Multiple Limited-Birthday Distinguishers
and Applications. In: Lange, T., Lauter, K.E., Lisonek, P. (eds.) Selected Areas in



Cryptography. Lecture Notes in Computer Science, vol. 8282, pp. 533–550. Springer
(2013)

22. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 4833,
pp. 315–324. Springer (2007)

23. Koyama, T., Sasaki, Y., Kunihiro, N.: Multi-differential Cryptanalysis on Reduced
DM-PRESENT-80: Collisions and Other Differential Properties. In: Kwon, T., Lee,
M.K., Kwon, D. (eds.) ICISC. Lecture Notes in Computer Science, vol. 7839, pp.
352–367. Springer (2012)

24. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schlffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 5912, pp. 126–143.
Springer (2009)

25. Lauridsen, M.M., Rechberger, C.: Linear Distinguishers in the Key-less Setting:
Application to PRESENT. In: Leander, G. (ed.) Fast Software Encryption - FSE
2015 - to appear. Lecture Notes in Computer Science, Springer (2015)

26. Leander, G.: Small Scale Variants Of The Block Cipher PRESENT. Cryptology
ePrint Archive, Report 2010/143 (2010), https://eprint.iacr.org/2010/143

27. Leander, G.: On Linear Hulls, Statistical Saturation Attacks, PRESENT and a
Cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT. Lecture Notes
in Computer Science, vol. 6632, pp. 303–322. Springer (2011)

28. Nakahara, J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and Algebraic
Cryptanalysis of the Block Cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) Cryptology and Network Security, CANS 2009, Proceedings. Lecture
Notes in Computer Science, vol. 5888, pp. 58–75. Springer (2009)

29. Preneel, B., Takagi, T. (eds.): Cryptographic Hardware and Embedded Systems -
CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings, Lecture Notes in Computer Science, vol. 6917. Springer (2011)

30. Rogaway, P. (ed.): Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings,
Lecture Notes in Computer Science, vol. 6841. Springer (2011)

31. Wang, M.: Differential Cryptanalysis of Reduced-Round PRESENT. In: Vaude-
nay, S. (ed.) Progress in Cryptology - AFRICACRYPT 2008. Lecture Notes in
Computer Science, vol. 5023, pp. 40–49. Springer (2008)

32. Wang, M., Sun, Y., Tischhauser, E., Preneel, B.: A Model for Structure Attacks,
with Applications to PRESENT and Serpent. In: Canteaut [11], pp. 49–68

33. Wei, L., Peyrin, T., Sokolowski, P., Ling, S., Pieprzyk, J., Wang, H.: On the
(In)Security of IDEA in Various Hashing Modes. In: Canteaut [11], pp. 163–179

https://eprint.iacr.org/2010/143

	Known-key Distinguisher on Full PRESENT
	Céline Blondeau, Thomas Peyrin and Lei Wang

