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Abstract. In a functional encryption (FE) scheme, the owner of the
secret key can generate restricted decryption keys that allow users to
learn specific functions of the encrypted messages and nothing else. In
many known constructions of FE schemes, security is guaranteed only
for messages that are fixed ahead of time (i.e., before the adversary
even interacts with the system). This so-called selective security is too
restrictive for many realistic applications. Achieving adaptive security
(also called full security), where security is guaranteed even for messages
that are adaptively chosen at any point in time, seems significantly more
challenging. The handful of known adaptively-secure schemes are based
on specifically tailored techniques that rely on strong assumptions (such
as obfuscation or multilinear maps assumptions).
We show that any sufficiently-expressive selectively-secure FE scheme can
be transformed into an adaptively-secure one without introducing any ad-
ditional assumptions. We present a black-box transformation, for both
public-key and private-key schemes, making novel use of hybrid encryp-
tion, a classical technique that was originally introduced for improving
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the efficiency of encryption schemes. We adapt the hybrid encryption
approach to the setting of functional encryption via a technique for em-
bedding a “hidden execution thread” in the decryption keys of the un-
derlying scheme, which will only be activated within the proof of security
of the resulting scheme. As an additional application of this technique,
we show how to construct functional encryption schemes for arbitrary
circuits starting from ones for shallow circuits (NC1 or even TC0).

Keywords: Functional encryption, adaptive security, generic construc-
tions.

1 Introduction

Traditional notions of public-key encryption provide all-or-nothing access to
data: owners of the secret key can recover the entire message from a ciphertext,
whereas those who do not know the secret key learn nothing at all. Functional
encryption, a revolutionary notion originating from the work of Sahai and Wa-
ters [SW05], is a modern type of encryption scheme where the owner of the
(master) secret key can release function-specific secret keys skf , referred to as
functional keys, which enable a user holding an encryption of a message x to
compute f(x) but nothing else (see [KSW08,LOS+10,BSW11,O’N10] and many
others). Intuitively, in terms of indistinguishability-based security, encryptions
of any two messages, x0 and x1, should be computationally indistinguishable
given access to functional keys for any function f such that f(x0) = f(x1).

While initial constructions of functional encryption schemes [BF03,BCO+04,
KSW08,LOS+10] were limited to restricted function classes such as point func-
tions and inner products, recent developments have dramatically improved the
state of the art. In particular, the works of Sahai and Seyalioglu [SS10] and
Gorbunov, Vaikuntanathan and Wee [GVW12] showed that a scheme support-
ing a single functional key can be based on any semantically-secure encryption
scheme. This result can be extended to the case where the number of func-
tional keys is polynomial and known a-priori [GVW12]. Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich [GKP+13] constructed a scheme with succinct ci-
phertexts based on a specific hardness assumption (Learning with Errors).

The first functional encryption scheme that supports a-priori unbounded
number of functional keys was constructed by Garg, Gentry, Halevi, Raykova,
Sahai and Waters [GGH+13], based on the existence of a general-purpose in-
distinguishability obfuscator (for which a heuristic construction is presented in
the same paper). Garg et al. showed that given any such obfuscator, their func-
tional encryption scheme is selectively secure. At a high level, selective security
guarantees security only for messages that are fixed ahead of time (i.e., before
the adversary even interacts with the system). Whereas security only for such
messages may be justified in some cases, it is typically too restrictive for realistic
applications. A more realistic notion is that of adaptive security (often called full
security), which guarantees security even for messages that can be adaptively
chosen at any point in time.
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Historically, the first functional encryption schemes were only proven selec-
tively secure [BB04, GPS+06, KSW08, GVW13, GKP+13]. The problem of con-
structing adaptively secure schemes seems significantly more challenging and
only few approaches are known. A simple observation is that if a selectively-
secure scheme’s message space is not too large, e.g., {0, 1}n for a relatively small
n, then any adaptively-chosen message x can be guessed ahead of time with
probability 2−n. Starting with a sub-exponential hardness assumption, and tak-
ing the security parameter to be polynomial in n allows us to argue that the
selectively-secure scheme is in fact also adaptively secure. This observation is
known as “complexity leveraging” and is clearly not satisfactory in general.

The powerful “dual system” approach, put forward by Waters [Wat09], has
been used to construct adaptively-secure attribute-based encryption scheme (a
restricted notion of functional encryption) for formulas, as well as an adaptively-
secure functional encryption scheme for linear functions [LOS+10]. However,
this method is a general outline, and each construction was so far required to
tailor the solution based on its specialized assumption. In some cases, such as
attribute-based encryption for circuits, it is still not known how to implement
dual system encryption to achieve adaptive security (although Garg, Gentry,
Halevi and Zhandry [GGH+14a] show how to do this with custom-built methods
and hardness assumptions).

Starting with [GGH+13], there has been significant effort in the research
community to construct an adaptively-secure general-purpose functional encryp-
tion scheme with an unbounded number of functional keys. Boyle, Chung and
Pass [BCP14] constructed an adaptively secure scheme, under the assumption
that differing-input obfuscators exist (these are stronger primitives than the
indistinguishability obfuscators used by [GGH+13]). Following their work, Wa-
ters [Wat14] and Garg, Gentry, Halevi and Zhandry [GGH+14b] constructed
specific adaptively-secure schemes assuming indistinguishability obfuscation and
assuming non-standard assumptions on multilinear maps, respectively. Despite
this significant progress, each of these constructions relies on somewhat tailored
methods and techniques.

1.1 Our Results: From Selective to Adaptive Security

We show that any selectively-secure functional encryption scheme implies an
adaptively-secure one, without relying on any additional assumptions. Our trans-
formation applies equally to public-key schemes and to private-key ones, where
the resulting adaptive scheme inherits the public-key or private-key flavor of
the underlying scheme. The following theorem informally summarizes our main
contribution.

Theorem 1.1 (informal). Given any public-key (resp. private-key) selectively-
secure functional encryption scheme for the class of all polynomial size circuits,
there exists an adaptively-secure public-key (resp. private-key) functional encryp-
tion scheme with similar properties.
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Specifically, the adaptive scheme supports slightly smaller circuits than those
supported by the selective scheme we started with.

Our transformation can be applied, in particular, to the selectively-secure
schemes of Garg et al. [GGH+13] and Waters [Wat14], resulting in adaptively-
secure schemes based on indistinguishability obfuscation (and one-way func-
tions).5

We view the significance of our result in a number of dimensions. First of
all, it answers the basic call of cryptographic research to substantiate the exis-
tence of rather complex primitives on that of somewhat simpler ones. We feel
that this is of special interest in the case of adaptive security, where it seemed
that ad-hoc methods were required. Secondly, our construction, being of fairly
low overhead, will allow to focus the attention of the research community in
studying selectively-secure functional encryption schemes, rather than investing
unwarranted efforts in obtaining adaptively-secure ones. Lastly, we hope that our
methods will be extended towards weaker forms of functional encryption schemes
for which adaptive security is yet unattained generically, such as attribute-based
encryption for all polynomial-size circuits.

1.2 Our Techniques

Our result is achieved by incorporating a number of techniques which will be
explained in this section. In a nutshell, our main observation is that hybrid en-
cryption (a.k.a key encapsulation) can be employed in the context of functional
encryption, and has great potential in going from selective to adaptive security
of encryption schemes. At a first glance, hybrid functional encryption should
lead to a selective-to-adaptive transformation, given an additional weak compo-
nent: A symmetric FE which is adaptively secure when only a single message
query is allowed. We show that the latter can be constructed from any one-way
function as a corollary of [GVW12,BS15]. However, the intuitive reasoning fails
to translate into a proof of security. To resolve this issue, we use a technique
we call The Trojan Method, which originates from De Caro et al.’s “trapdoor
circuits” [CIJ+13] (similar ideas had been since used by Gentry et al. [GHR+14]
and Brakerski and Segev [BS15]).

We conclude this section with a short comparison of our technique with
the aforementioned “dual system encryption” technique that had been used to
achieve adaptively secure attribute based encryption.

Hybrid Functional Encryption. Hybrid encryption is a veteran technique in
cryptography and has been used in a variety of settings. We show that in the
context of functional encryption it is especially powerful.

The idea in hybrid encryption is to combine two encryption schemes: An “ex-
ternal” scheme (sometimes called KEM – Key Encapsulation Mechanism) and an
“internal” scheme (sometimes called DEM – Data Encapsulation Mechanism).
In order to encrypt a message in the hybrid scheme, a fresh key is generated for

5 Waters [Wat14] also constructed an adaptively-secure scheme, but using specific
ad-hoc techniques and in a significantly more complicated manner.
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the internal scheme, and is used to encrypt the message. Then the key itself is
encrypted using the external scheme. The final hybrid ciphertext contains the
two ciphertexts: (Encext(k),Encint,k(m)) (all external ciphertexts use the same
key). To decrypt, one first decrypts the external ciphertext, retrieves k and ap-
plies it to the internal ciphertext. Note that if, for example, the external scheme
is public-key and the internal is symmetric key, then the resulting scheme will
also be public key. Hybrid encryption is often used in cases where the external
scheme is less efficient (e.g. in encrypting long messages) and thus there is an
advantage in using it to encrypt only a short key, and encrypt the long message
using the more efficient internal scheme. Lastly, note that the internal scheme
only needs to be able to securely encrypt a single message.

The intuition as to why hybrid encryption may be good for achieving adaptive
security is that the external scheme only encrypts keys for the internal scheme.
Namely, it only encrypts messages from a predetermined and known distribution,
so selective security should be enough for the external scheme. The hardness of
adaptive security is “pushed” to the internal scheme, but there the task is easier
since the internal scheme only needs to be able to encrypt a single message, and
it can be private-key rather than public-key.

Let us see how to employ this idea in the case where both the internal and
external schemes are FE schemes. To encrypt, we will generate a fresh master
secret key for the internal scheme, and encrypt it under the external scheme. To
generate a key for the function f , the idea is to generate a key for the function
Gf (mskint) which takes a master key for the internal scheme, and outputs a
secret key for function f under the internal scheme, using mskint (randomness is
handled using a PRF). This will allow to decrypt in a two-step process as above.
First apply the external secret-key for Gf to the external ciphertext, this will
give you an internal secret key for f , which is in turn applied to the internal
ciphertext to produce f(x).

For the external scheme, we will use a selectively secure FE scheme (for the
sake of concreteness, let us say public-key FE). As explained above, selective
security is sufficient here since all the messages encrypted using the external
scheme can be generated ahead of time (i.e. they do not depend on the actual
x’s that the user wishes to encrypt).

For the internal scheme, we require an FE scheme that is adaptively se-
cure, but only supports the encryption of a single message. Fortunately, such a
primitive can be derived from the works of [GVW12,BS15]. In [GVW12], the au-
thors present an adaptively secure one-time bounded FE scheme. This scheme
allows to only generate a key for one function, and to encrypt as many mes-
sages as the user wishes. This construction is based on the existence of seman-
tically secure encryption, so the public-key version needs public-key encryption
and the symmetric version needs symmetric encryption. While this primitive
seems dual to what we need for our purposes, [BS15] shows how to transform
private-key FE schemes into function private FE. In function-private FE, mes-
sages and functions enjoy the same level of privacy, in the sense that a user that
produces x0, x1, f0, f1 such that f0(x0) = f1(x1) cannot distinguish between
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(Enc(x0), skf0) and (Enc(x1), skf1). Therefore, after applying the [BS15] trans-
formation, we can switch the roles of the functions and messages, and obtain a
symmetric FE scheme which is adaptively secure for a single message and many
functions. (We note that the symmetric version of the [GVW12] scheme can be
shown to be function private even without the [BS15] transformation, however
since this claim is not made explicitly in the paper we choose not to rely on it.)

Whereas intuitively this should solve the problem, it is not clear how to prove
security of the new construction. Standard security proofs for hybrid encryption
follow by first relying on the security of the external scheme and removing the
encapsulated key, and then relying on the security of the internal scheme and
removing the message. However, in our case, removing the encapsulated key is
easily distinguishable, since the adversary is allowed to obtain functional keys
and apply them to the ciphertext (so long as f(x0) = f(x1)). Without the
internal key, the decryption process no longer works. To resolve this difficulty,
we use the Trojan method.

Before we describe the Trojan method, we pause to note that our idea so far
can be thought of as “boosting” a single-message, many-key, adaptive symmetric-
key FE into a many-message, many-key, adaptive public-key FE (using a selective
public-key FE as a “catalyst”). The recent work of Waters [Wat14] proceeds
along a similar train of thought, and indeed, motivated our approach. However,
while our transformation is simple and general, Waters has to rely on a powerful
catalyst, namely an indistinguishability obfuscator.

The Trojan Method. The Trojan Method, which is a generalization of tech-
niques used in [CIJ+13] and later in [GHR+14, BS15], is a way to embed a
hidden functionality thread in an FE secret-key that can only be invoked by
special ciphertexts generated using special (secret) back-door information. This
thread remains completely unused in the normal operation of the scheme (and
can be instantiated with meaningless functionality). In the proof, however, the
secret thread will be activated by the challenge ciphertext in such a way that
is indistinguishable to the user (= attacker). Namely, the user will not be able
to tell that it is executing the secret thread and not the main thread. This will
be extremely beneficial to prove security. We wish to argue that in the view of
the user, the execution of the main thread does not allow to distinguish between
the encryption of two messages x0, x1. The problem is that for functionality
purposes, the main thread has to know which input it is working on. This is
where the hidden thread comes into the play. We will design the hidden thread
so that in the eyes of the user, it is computationally indistinguishable from the
main thread on the special messages x0, x1. However, in the hidden thread, the
output can be computed in a way that does not distinguish between x0 and
x1 (either by a statistical or a computational argument), which will allow us to
conclude that encryptions of x0, x1 are indistinguishable.

In particular, this method will resolve the aforementioned conundrum in our
proof outline above. In the proof, we will use the Trojan method to embed
a hidden thread in which mskint is not used at all, but rather Gf produces a
precomputed internal skf . This will allow us to remove mskint from the challenge
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ciphertext and use the security properties of the internal scheme to argue that
a internal encryption of x0, x1 are identical so long as f(x0) = f(x1).

We note that an important special case of the above outline is when the trojan
thread is a constant function. This had been the case in [CIJ+13,GHR+14], and
this is the case in this work as well. However, we emphasize that our description
here allows for greater generality since we allow the trojan thread to implement
functionality that depends on the input x. We feel that this additional power
may be useful for future applications.

Technically, the hidden thread is implemented using (standard) symmetric-
key encryption, which in turn can be constructed starting with any one-way
function. In the functional secret-key generation process for a function f , the
secret-key generation process will produce a symmetric-key ciphertext c (which
can just be encryption of 0 or another fixed message, since it only needs to have
meaningful content in the security proof). It will then consider the function Gf,c
that takes as input a pair (x, s), and first checks whether it can decrypt c using s
as a symmetric key. If it cannot, then it just runs f on x and returns the output.
If s actually decrypts c, we consider f∗ = Decs(c) (i.e. c encrypts a description
of a function), and the output is the execution of f∗(x). The value c is therefore
used as a Trojan Horse: Its contents are hidden from the users of the scheme,
however given a hidden command (in the form of the symmetric s) it can embed
functionality that “takes over” the functional secret-key.

We note that in order to support the Trojan method, the decryption keys of
our FE scheme need to perform symmetric decryption, branch operations, and
execution of the function f∗. Thus we need to start with an FE scheme which
allows for the generation of sufficiently expressive keys.

Our Trojan method can be seen as a weak form of function privacy in FE,
but one that can be applied even in the context of public-key FE. In essence,
we cannot hide the main thread of the evaluated function (this is unavoidable
in public-key FE). However, we can hide the secret thread and thus allow the
function to operate in a designated way for specially generated ciphertexts. (This
interpretation is not valid for previous variants of this method such as “trapdoor
circuits” [CIJ+13].)

A simple application of the Trojan method is our reduction in Section 4,
showing that FE that only supports secret-keys for functions with shallow cir-
cuits (e.g. logarithmic depth) implies a scheme that works for circuits of arbitrary
depth (although with a size bound). Essentially, instead of producing a secret
key for the desired functionality, we output a key for the function that computes
a randomized encoding of that functionality. A (computational) randomized en-
coding [IK00,AIK05] of an input-function pair RE(f, x) is, in a nutshell, a repre-
sentation of f(x) that reveals no information except f(x) on one hand, but can
be computed with less resources on the other (in our case, lower depth). To make
the proof work, the Trojan thread will contain a precomputed RE(f, x0) value,
which will allow us to use the security property of the encoding scheme and
switch it to RE(f, x1). See Section 4 for details. We note that a similar approach
is used in [GHR+14] to achieve FE that works for RAM machines.
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Relation to Dual-System Encryption. Our approach takes some resem-
blance to the “Dual-System Encryption” method of Waters [Wat09] and followup
works [LW10,LW12]. This method had been used to prove adaptive security for
Identity Based Encryption and Attribute Based Encryption, based on the hard-
ness of some problems on groups with bilinear-maps. In broad terms, in their
proof the distribution of the ciphertext is changed into “semi-functional” mode
in a way that is indiscoverable by an observer. A semi-functional ciphertext is
still decryptable by normal secret keys. Then, the secret-keys are modified into
semi-functional form, which is useless in decrypting semi-functional ciphertexts.
This is useful since in IBE and ABE, the challenge ciphertext is not supposed
to be decryptable by those keys given to the adversary. Still, a host of alge-
braic techniques are used to justify the adversary’s inability to produce other
semi-functional ciphertexts in addition to the challenge, which would foil the
reduction.

Our proof technique also requires changing the distributions of the keys and
challenge ciphertext. However, there are also major differences. Our modified
ciphertext is not allowed to interact with properly generated secret keys, and
therefore the distinction between “normal” and “semi-functional” does not fit
here. Furthermore, in Identity Based and Attribute Based Encryption, the at-
tacker in the security game is not allowed to receive keys that reveal any in-
formation on the message, which allows to generate semi-functional ciphertexts
that do not contain any information, whereas in our case, there is a structured
and well-defined output for any ciphertext and any key. This means that the
information required for decryption (which can be a-priori unbounded) needs
to be embedded in the keys. Lastly, our proof is completely generic and does
not rely on the algebraic structure of the underlying hardness assumption as in
previous implementations of this method.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x← X the process of sampling a value
x from the distribution X. Similarly, for a set X we denote by x← X the process
of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling
a value y from the distribution f(x). A function negl : N → R is negligible if
for any polynomial p(λ) it holds that negl(λ) < 1/p(λ) for all sufficiently large
λ ∈ N.

2.1 Pseudorandom Functions and Symmetric Encryption

Pseudorandom functions. We rely on the following standard notion of a
pseudorandom function family [GGM86], asking that a pseudorandom function
be computationally indistinguishable from a truly random function via oracle
access.



From Selective to Adaptive Security in Functional Encryption 9

Definition 2.1. A family F =
{
PRFK : {0, 1}n → {0, 1}m : K ∈ K

}
of

efficiently-computable functions is pseudorandom if for every PPT adversary
A there exists a negligible function negl(·) such that∣∣∣∣ Pr

K←K

[
APRFK(·)(1λ) = 1

]
− Pr

R←U

[
AR(·)(1λ) = 1

]∣∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where U is the set of all functions from {0, 1}n
to {0, 1}m.

We say that a pseudorandom function family F is implementable in NC1

if every function in F can be implemented by a circuit of depth c · log(n), for
some constant c. We also consider the notion of a weak pseudorandom function
family, asking that the above definition holds for adversaries that may access
the functions on random inputs (that is, the oracles PRFK(·) and R(·) take no
input, and on each query they sample a uniform input r and output PRFK(r)
and R(r), respectively).

Symmetric encryption with pseudorandom ciphertexts. A symmetric
encryption scheme consists of a tuple of PPT algorithms (Sym.Setup,Sym.Enc,
Sym.Dec). The algorithm Sym.Setup takes as input a security parameter λ in
unary and outputs a key KE . The encryption algorithm Sym.Enc takes as input
a symmetric key KE and a message m and outputs a ciphertext CT. The decryp-
tion algorithm Sym.Dec takes as input a symmetric key KE and a ciphertext CT
and outputs the message m.

In this work, we require a symmetric encryption scheme Π where the cipher-
texts produced by Sym.Enc are pseudorandom strings. Let OEncK(·) denote the
(randomized) oracle that takes as input a message m, chooses a random string r
and outputs Sym.Enc(Sym.K,m; r). Let R`(λ)(·) denote the (randomized) oracle
that takes as input a message m and outputs a uniformly random string of length
`(λ) where `(λ) is the length of the ciphertexts. More formally, we require that
for every PPT adversary A the following advantage is negligible in λ:

AdvsymPR
Π,A (λ) =

∣∣∣Pr[AOEncSym.K(·)(1λ) = 1
]
− Pr

[
AR`(λ)(·)(1λ) = 1

]∣∣∣
where the probability is taken over the choice of Sym.K ← Sym.Setup(1λ), and
over the internal randomness of A, OEnc and R`(λ).

We note that such a symmetric encryption scheme with pseudorandom ci-
phertexts can be constructed from one-way functions, e.g. using weak pseudo-
random functions by defining Sym.Enc(K,m; r) = (r,PRFK(r)⊕m) (see [Gol04]
for more details).

2.2 Public-Key Functional Encryption

A public-key functional encryption (FE) scheme ΠPub over a message space
M = {Mλ}λ∈N and a function space F = {Fλ}λ∈N is a tuple (Pub.Setup,
Pub.KeyGen,Pub.Enc,Pub.Dec) of PPT algorithms with the following properties:
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– Pub.Setup(1λ): The setup algorithm takes as input the unary representation
of the security parameter, and outputs a public key MPK and a secret key
MSK.

– Pub.KeyGen(MSK, f): The key-generation algorithm takes as input a secret
key MSK and a function f ∈ Fλ, and outputs a functional key skf .

– Pub.Enc(MPK,m): The encryption algorithm takes as input a public key
MPK and a message m ∈Mλ, and outputs a ciphertext CT.

– Pub.Dec(skf ,CT): The decryption algorithm takes as input a functional key
skf and a ciphertext CT, and outputs m′ ∈Mλ ∪ {⊥}.

We say that such a scheme is defined for a complexity class C if it supports
all the functions that can be implemented in C. In terms of correctness, we
require that there exists a negligible function negl(·) such that for all sufficiently
large λ ∈ N, for every message m ∈ Mλ, and for every function f ∈ Fλ it
holds that Pr [Pub.Dec(Pub.KeyGen(MSK, f),Pub.Enc(MPK,m)) = f(m)] ≥ 1−
negl(λ), where (MPK,MSK)← Pub.Setup(1λ), and the probability is taken over
the random choices of all algorithms.

We consider the standard selective and adaptive indistinguishability-based
notions for functional encryption (see, for example, [BSW11,O’N10]). Intuitively,
these notions ask that encryptions of any two messages, m0 and m1, should
be computationally indistinguishable given access to functional keys for any
function f such that f(m0) = f(m1). In the case of selective security, adversaries
are required to specify the two messages in advance (i.e., before interacting with
the system). In the case of adaptive security, adversaries are allowed to specify
the two messages even after obtaining the public key and functional keys.6

Definition 2.2 (Selective security). A public-key functional encryption sche-
me Π = (Sel.Setup,Sel.KeyGen,Sel.Enc,Sel.Dec) over a function space F =
{Fλ}λ∈N and a message space M = {Mλ}λ∈N is selectively secure if for any
PPT adversary A there exists a negligible function negl(·) such that

AdvSelΠ,A(λ) =
∣∣∣Pr[ExptSelΠ,A(λ, 0) = 1]− Pr[ExptSelΠ,A(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the exper-
iment ExptSelΠ,A(λ, b), modeled as a game between the adversary A and a chal-
lenger, is defined as follows:

1. Setup phase: The challenger samples (Sel.MPK,Sel.MSK)← Sel.Setup(1λ).
2. Challenge phase: On input 1λ the adversary submits (m0,m1), and the

challenger replies with Sel.MPK and CT← Sel.Enc(Sel.MPK,mb).
3. Query phase: The adversary adaptively queries the challenger with any

function f ∈ Fλ such that f(m0) = f(m1). For each such query, the chal-
lenger replies with Sel.skf ← Sel.KeyGen(Sel.MSK, f).

6 Our notions of security consider a single challenge, and in the public-key setting
these are known to be equivalent to their multi-challenge variants via a standard
hybrid argument.
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4. Output phase: The adversary outputs a bit b′ which is defined as the output
of the experiment.

Definition 2.3 (Adaptive security). A public-key functional encryption sche-
me Π = (Ad.Setup,Ad.KeyGen,Ad.Enc,Ad.Dec) over a function space F = {Fλ}λ∈N
and a message space M = {Mλ}λ∈N is adaptively secure if for any PPT adver-
sary A there exists a negligible function negl(·) such that

AdvAdΠ,A(λ) =
∣∣∣Pr[ExptAdΠ,A(λ, 0) = 1]− Pr[ExptAdΠ,A(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the ex-
periment ExptAdΠ,A(1λ, b), modeled as a game between the adversary A and a
challenger, is defined as follows:

1. Setup phase: The challenger samples (Ad.MPK,Ad.MSK)← Ad.Setup(1λ),
and sends Ad.MPK to the adversary.

2. Query phase I: The adversary adaptively queries the challenger with any
function f ∈ Fλ. For each such query, the challenger replies with Ad.skf ←
Ad.KeyGen(Ad.MSK, f).

3. Challenge Phase: The adversary submits (m0,m1) such that f(m0) =
f(m1) for all function queries f made so far, and the challenger replies with
CT← Ad.Enc(Ad.MSK,mb).

4. Query phase II: The adversary adaptively queries the challenger with any
function f ∈ Fλ such that f(m0) = f(m1). For each such query, the chal-
lenger replies with Ad.skf ← Ad.KeyGen(Ad.MSK, f).

5. Output phase: The adversary outputs a bit b′ which is defined as the output
of the experiment.

3 Our Transformation in the Public-Key Setting

In this section we present our transformation from selective security to adap-
tive security for public-key functional encryption schemes. In addition to any
selectively-secure public-key functional encryption scheme (see Definition 2.2),
our transformation requires a private-key functional encryption scheme that is
adaptively-secure for a single message query and many function queries. Based
on [GVW12,BS15], such a scheme can be based on any one-way function7.

More specifically, we rely on the following building blocks (all of which are
implied by any selectively-secure public-key functional encryption scheme):

7 Gorbunov et al. [GVW12] constructed a private-key functional encryption scheme
that is adaptively secure for a single function query and many message queries based
on any private-key encryption scheme (and thus based on any one-way function).
Any such scheme can be turned into a function private one using the generic trans-
formation of Brakerski and Segev [BS15], and then one can simply switch the roles
of functions and messages [AAB+13,BS15]. This results in a private-key scheme that
is adaptively secure for a single message query and many function queries.
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1. A selectively-secure public-key functional encryption scheme Sel = (Sel.Setup,
Sel.KeyGen,Sel.Enc,Sel.Dec).

2. An adaptively-secure single-ciphertext private-key functional encryption sch-
eme8 OneCT = (OneCT.Setup,OneCT.KeyGen,OneCT.Enc,OneCT.Dec).

3. A symmetric encryption scheme with pseudorandom ciphertexts SYM =
(Sym.Setup,Sym.Enc,Sym.Dec).

4. A pseudorandom function family F with a key space K.

Our adaptively-secure scheme Ad = (Ad.Setup,Ad.KeyGen,Ad.Enc,Ad.Dec)
is defined as follows.

– The setup algorithm: On input 1λ the setup algorithm Ad.Setup samples
(Sel.MPK,Sel.MSK) ← Sel.Setup(1λ), and outputs Ad.MPK = Sel.MPK and
Ad.MSK = Sel.MSK.

– The key-generation algorithm: On input the secret key Ad.MSK =
Sel.MSK and a function f , the key-generation algorithm Ad.KeyGen first
samples CE ← {0, 1}`1(λ) and τ ← {0, 1}`2(λ) uniformly and independently.
Then, it computes and outputs Ad.skf = Sel.skG ← Sel.KeyGen(Sel.MSK,
Gf,CE ,τ ), where the function Gf,CE ,τ is defined in figure 1.

– The encryption algorithm: On input the public key Ad.MPK = Sel.MPK
and a message m, the encryption algorithm Ad.Enc first samples K ← Kλ
and OneCT.MSK ← OneCT.Setup(1λ). Then, it outputs CT = (CT0,CT1),
where

CT0 ← OneCT.Enc(OneCT.MSK,m) and

CT1 ← Sel.Enc(Sel.MPK, (OneCT.MSK,K, 0λ, 0)).

– The decryption algorithm: On input a functional key Ad.skf = Sel.skG
and a ciphertext CT = (CT0,CT1), the decryption algorithm Ad.Dec first
computes OneCT.skf ← Sel.Dec(Sel.skG,CT1). Then, it computes m ←
OneCT.Dec(OneCT.skf ,CT0) and outputs m.

Gf,CE,τ (OneCT.MSK,K, Sym.K, β):

1. If β = 1 output OneCT.skf ← Sym.Dec(Sym.K, CE).
2. Otherwise, output OneCT.skf ← OneCT.KeyGen(OneCT.MSK, f ;PRFK(τ)).

Figure 1: The function Gf,CE ,τ .

The correctness of the above scheme easily follows from that of its underlying
building blocks, and in the remainder of this section we prove the following
theorem:
8 That is, a private-key functional encryption scheme that is adaptively-secure for a

single message query and many function queries (as discussed above).
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Theorem 3.1. Assuming that: (1) Sel is a selectively-secure public-key func-
tional encryption scheme, (2) OneCT is an adaptively-secure single-ciphertext
private-key functional encryption scheme, (3) SYM is a symmetric encryption
scheme with pseudorandom ciphertexts, and (4) F is a pseudorandom function
family, then Ad is an adaptively-secure public-key functional encryption scheme.

Proof. We show that any PPT adversary A succeeds in the adaptive security
game (see Definition 2.3) with only negligible probability. We will show this in
a sequence of hybrids. The advantage of the adversary in Hybridi.b is defined
to be probability that the adversary outputs 1 in Hybridi.b and this quantity is
denoted by AdvAi.b. For b ∈ {0, 1}, we define the following hybrids.

Hybrid1.b: This corresponds to the real experiment when the challenger encrypts
the message mb. More precisely, the challenger produces an encryption CT =
(CT0,CT1) where

CT0 ← OneCT.Enc(OneCT.MSK,m) and

CT1 ← Sel.Enc(Sel.MPK, (OneCT.MSK,K, 0λ, 0)).

Hybrid2.b: The challenger replaces the hard-coded ciphertext CE in every func-
tional key corresponding to a query f made by the adversary, with a symmetric
key encryption of OneCT.skf (note that each key has its own different CE).
Here, OneCT.skf is the output of OneCT.KeyGen(OneCT.MSK∗, f ;PRFK∗(τ))
and K∗ is a PRF key drawn from the key space K. Further, the symmetric
encryption is computed with respect to Sym.K∗, where Sym.K∗ is the output
of Sym.Setup(1λ) and τ is the tag associated to the functional key of f . The
same Sym.K∗ and K∗ are used while generating all the functional keys, and K∗

is used for generating the challenge ciphertext CT∗ = (CT∗0,CT
∗
1) (that is, CT∗0 ←

OneCT.Enc(OneCT.MSK∗,mb) and CT∗1 ← Sel.Enc(Sel.MSK, (OneCT.MSK∗,K∗, 0λ,
0))). The rest of the hybrid is the same as the previous hybrid, Hybrid1.b.

Note that the symmetric key Sym.K∗ is not used for any purpose other than
generating the values CE . Therefore, the pseudorandom ciphertexts property of
the symmetric scheme implies that Hybrid2.b and Hybrid1.b are indistinguishable.

Claim 3.2. Assuming the pseudorandom ciphertexts property of SYM, for each
b ∈ {0, 1} we have |AdvA1.b − AdvA2.b| ≤ negl(λ).

Proof. Suppose there exists an adversary such that the difference in the ad-
vantages is non-negligible, then we construct a reduction that can break the
security of SYM. The reduction internally executes the adversary by simulating
the role of the challenger in the adaptive public-key FE game. It answers both
the message and the functional queries made by the adversary as follows. The
reduction first executes OneCT.Setup(1λ) to obtain OneCT.MSK∗. It then sam-
ples K∗ from K. Further, the reduction generates Sel.MSK, which is the output
of Sel.Setup(1λ) and Sym.K∗, which is the output of Sym.Setup(1λ). When the
adversary submits a functional query f , the reduction first picks τ at random.
The reduction executes OneCT.KeyGen(OneCT.MSK∗, f ;PRF(K∗(τ))) to obtain
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OneCT.skf . It then sends OneCT.skf to the challenger of the symmetric en-
cryption scheme. The challenger returns back with CE , where CE is either a
uniformly random string or it is an encryption of OneCT.skf . The reduction
then generates a selectively-secure FE functional key of Gf,CE ,τ and denote the
result by Sel.skG which is sent to the adversary. The message queries made
by the adversary are handled as in Hybrid1. That is, the adversary submits
the message-pair query (m0,m1) and the reduction sends CT∗ = (CT∗0,CT

∗
1)

back to the adversary, where CT∗0 = OneCT.Enc(OneCT.MSK∗,mb) and CT∗1 =
Sel.Enc(Sel.MSK, (OneCT.MSK∗,K∗, 0λ, 0)).

If the challenger of the symmetric key encryption scheme sends a uniformly
random string back to the reduction every time the reduction makes a query
to the challenger then we are in Hybrid1.b, otherwise we are in Hybrid2.b. Since
the adversary can distinguish both the hybrids with non-negligible probability,
we have that the reduction breaks the security of the symmetric key encryption
scheme with non-negligible probability. From our hypothesis, we have that the
reduction breaks the security of the symmetric key encryption scheme with non-
negligible probability. This proves the claim.

Hybrid3.b: The challenger modifies the challenge ciphertext CT∗ = (CT∗0,CT
∗
1)

so that CT∗1 is an encryption of (0λ, 0λ,Sym.K∗, 1). The ciphertext component
CT∗0 is not modified (i.e., CT∗0 = OneCT.Enc(OneCT.MSK∗,mb)). The rest of the
hybrid is the same as the previous hybrid, Hybrid2.b.

Note that the functionality of the functional keys generated using the under-
lying selectively-secure scheme is unchanged with the modified CT∗1. Therefore,
its selective security implies that Hybrid3.b and Hybrid2.b are indistinguishable.

Claim 3.3. Assuming the selective security of Sel, for each b ∈ {0, 1} we have
|AdvA2.b − AdvA3.b| ≤ negl(λ).

Proof. Suppose the claim is not true for some adversary A, we construct a
reduction that breaks the security of Sel. Our reduction will internally execute
A by simulating the role of the challenger of the adaptive FE game.

Our reduction first executes OneCT.Setup(1λ) to obtain OneCT.MSK∗. It
then samples K∗ from K. It also executes Sym.Setup(1λ) to obtain Sym.K∗. The
reduction then sends the message pair

(
(OneCT.MSK∗,K∗, 0λ, 0), (0λ, 0λ,Sym.K∗, 1)

)
to the challenger of the selective game. The challenger replies back with the
public key Sel.MPK and the challenge ciphertext CT∗1. The reduction is now
ready to interact with the adversary A. If A makes a functional query f then
the reduction constructs the circuit Gf,CE ,τ as in Hybrid2.b. It then queries
the challenger of the selective game with the function G and in return it gets
the key Sel.skG. The reduction then sets Ad.skf to be Sel.skG which it then
sends back to A. If A submits a message pair (m0,m1), the reduction exe-
cutes OneCT.Enc(OneCT.MSK∗,m0) to obtain CT∗0. It then sends the ciphertext
CT∗ = (CT∗0,CT

∗
1) to the adversary. The output of the reduction is the output

of A.
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We claim that the reduction is a legal adversary in the selective security
game of Sel, i.e., for challenge message query (M0 = (OneCT.MSK∗,K∗, 0λ, 0),
M1 = (0λ, 0λ,Sym.K∗, 1)) and every functional query of the form Gf,CE ,τ made
by the reduction, we have that Gf,CE ,τ (M0) = Gf,CE ,τ (M1): By definition,
Gf,CE ,τ (M0) is the functional key of f , with respect to key OneCT.MSK∗ and
randomness PRFK∗(τ). Further, Gf,CE ,τ (M1) is the decryption of CE which is
nothing but the functional key of f , with respect to key OneCT.MSK∗ and ran-
domness PRFK∗(τ). This proves that the reduction is a legal adversary in the
selective security game.

If the challenger of the selective game sends back an encryption of (OneCT.MSK∗,
K∗, 0λ, 0) then we are in Hybrid2.b else if the challenger encrypts (0λ, 0λ,Sym.K∗, 1)
then we are in Hybrid3.b. By our hypothesis, this means the reduction breaks the
security of the selective game with non-negligible probability that contradicts
the security of Sel. This completes the proof of the claim.

Hybrid4.b: For every function query f made by the adversary, the challenger
generates CE by executing Sym.Enc(Sym.K∗,OneCT.skf ), with OneCT.skf being
the output of OneCT.KeyGen(OneCT.MSK∗, f ;R), where R is picked at random.
The rest of the hybrid is the same as the previous hybrid.

Note that the PRF key K∗ is not explicitly needed in the previous hybrid,
and therefore the pseudorandomness of F implies that Hybrid4.b and Hybrid3.b
are indistinguishable.

Claim 3.4. Assuming that F is a pseudorandom function family, for each b ∈
{0, 1} we have |AdvA3.b − AdvA4.b| ≤ negl(λ).

Proof. Suppose the claim is false for some PPT adversary A, we construct a
reduction that internally executes A and breaks the security of the pseudoran-
dom function family F . The reduction simulates the role of the challenger of
the adaptive game when interacting with A. The reduction answers the func-
tional queries, made by the adversary as follows; the message queries are an-
swered as in Hybrid3.b (or Hybrid4.b). For every functional query f made by
the adversary, the reduction picks τ at random which is then forwarded to the
challenger of the PRF security game. In response it receives R∗. The reduc-
tion then computes CE to be Sym.Enc(Sym.K∗,OneCT.skf ), where OneCT.skf =
OneCT.KeyGen(OneCT.MSK∗, f ;R∗). The reduction then proceeds as in the pre-
vious hybrids to compute the functional key Ad.skf which it then sends to A.

If the challenger of the PRF game sent R∗ = PRFK∗(τ) back to the reduction
then we are in Hybrid3.b else if R∗ is generated at random by the challenger then
we are in Hybrid4.b. From our hypothesis this means that the probability that the
reduction distinguishes the pseudorandom value from random (at the point τ) is
non-negligible, contradicting the security of the pseudorandom function family.

We now conclude the proof of the theorem by showing that Hybrid4.0 is
computationally indistinguishable from Hybrid4.1 based on the adaptive security
of the underlying single-ciphertext scheme.
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Claim 3.5. Assuming the adaptive security of the scheme OneCT, we have
|AdvA4.0 − AdvA4.1| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A, such that the claim is false. We
design a reduction B that internally executes A to break the adaptive security
of OneCT.

The reduction simulates the role of the challenger of the adaptive public-
key FE game. It answers both the functional as well as message queries made
by the adversary as follows. If A makes a functional query f then it forwards
it to the challenger of the adaptively-secure single-ciphertext FE scheme. In
return it receives OneCT.skf . It then encrypts it using the symmetric encryption
scheme, where the symmetric key is picked by the reduction itself, and denote the
resulting ciphertext to be CE . The reduction then constructs the circuit Gf,CE ,τ ,
with τ being picked at random, as in the previous hybrids. Finally, the reduction
computes the selective public-key functional key of Gf,CE ,τ , where the reduction
itself picks the master secret key of selective public-key FE scheme. The resulting
functional key is then sent to A. If A makes a message-pair query (m0,m1), the
reduction forwards this message pair to the challenger of the adaptive game. In
response it receives CT∗0. The reduction then generates CT∗1 on its own where
CT∗1 is the selective FE encryption of (0λ, 0λ,Sym.K∗, 1). The reduction then
sends CT∗ = (CT∗0,CT

∗
1) to A. The output of the reduction is the output of A.

We note that the reduction is a legal adversary in the adaptive game of
OneCT, i.e., for every challenge message query (m0,m1), functional query f ,
we have that f(m0) = f(m1): this follows from the fact that (i) the functional
queries (resp., challenge message query) made by the adversary (of Ad) is the
same as the functional queries (resp., challenge message query) made by the
reduction, and (ii) the adversary (of Ad) is a legal adversary. This proves that
the reduction is a legal adversary in the adaptive game.

If the challenger sends an encryption of m0 then we are in Hybrid4.0 and if
the challenger sends an encryption of m1 then we are in Hybrid4.1. From our
hypothesis, this means that the reduction breaks the security of OneCT. This
proves the claim.

4 From Shallow Circuits to All Circuits

In this section we show that a functional encryption scheme that supports func-
tions computable by shallow circuits can be transformed into one that supports
functions computable by arbitrarily deep circuits. In particular, the shallow class
can be any class in which weak pseudorandom functions can be computed and
has some composition properties.9 For concreteness we consider here the class
NC1, which can compute weak pseudorandom functions under standard cryp-
tographic assumptions such as DDH or LWE (a lower complexity class such as

9 Similarly to the class WEAK defined in [App14].
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TC0 is also sufficient under standard assumptions). We focus here on private-key
functional encryption schemes, and note that an essentially identical transfor-
mation applies for public-key scheme.

While we present a direct reduction below, we notice that this property can
be derived from the transformation in Section 3, by recalling some properties
of Gorbunov et al.’s [GVW12] single-key functional encryption scheme. One
can verify that their setup algorithm can be implemented in NC1 (under the
assumption that it can evaluate weak pseudorandom functions), regardless of
the depth of the function being implemented. This property carries through
even after applying the function privacy transformation of Brakerski and Segev
[BS15]. Lastly, to implement our approach we need a symmetric encryption
scheme with decryption in NC1, which again translates to the evaluation of a
weak pseudorandom function [NR04,BPR12].

(Computational) Randomized encodings [IK00, AIK05]. A (computa-
tional) randomized encoding scheme for a function class F consists of two PPT
algorithms (RE.Encode,RE.Decode). The PPT algorithm RE.Encode takes as in-
put (1λ, F, x, r), where λ is the security parameter, F : {0, 1}λ → {0, 1} is a
function in F , instance x ∈ {0, 1}λ and randomness r. The output is denoted
by F̂ (x; r). The PPT algorithm RE.Decode takes as input F̂ (x; r) and outputs
y = F (x).

The security property states that there exists a PPT algorithm Sim that takes
as input (1λ, F (x)) and outputs SimOutF (x) such that any PPT adversary cannot

distinguish the distribution {F̂ (x; r)} from the distribution {SimOutF (x)}. The
following corollary is derived from applying Yao’s garbled circuit technique using
a weak PRF based encryption algorithm.

Corollary 4.1. Assuming a family of weak pseudorandom functions that can
be evaluated in NC1, there exists a randomized encoding scheme (RE.Encode,
RE.Decode) for the class of polynomial size circuits, such that RE.Encode is com-
putable in NC1.

Our transformation. Let NCFE = (NCFE.Setup,NCFE.KeyGen,NCFE.Enc,
NCFE.Dec) be a private-key functional encryption scheme for the class NC1. We
assume that NCFE supports functions with multi-bit outputs, as otherwise it
is always possible to produce a functional key for each output bit separately.
We also use a pseudorandom function family denoted by F = {PRFK(·)}K∈K
and a symmetric encryption scheme SYM = (Sym.Setup,Sym.Enc,Sym.Dec).
We construct a private-key functional encryption scheme PFE = (PFE.Setup,
PFE.KeyGen,PFE.Enc,PFE.Dec) as follows.

– The setup algorithm: On input 1λ the algorithm PFE.Setup samples and
outputs MSK ← NCFE.Setup(1λ).

– The key-generation algorithm: On input the secret key MSK and a
circuit F , the algorithm PFE.KeyGen first samples CE ← {0, 1}`1(λ) and
τ ← {0, 1}λ uniformly and independently. Then, it computes a functional
key SKG ← NCFE.KeyGen(MSK,GF,CE ,τ ), where the function GF,CE ,τ is
defined in figure 2, and outputs SKG.



18 P. Ananth, Z. Brakerski, G. Segev, V. Vaikuntanathan

– The encryption algorithm: On input the secret key MSK and a message
x, the algorithm PFE.Enc first samples KP ← {0, 1}λ, and then computes
and outputs C ← NCFE.Enc(MSK, (x,KP , 0

λ, 0)).
– The decryption algorithm: On input a functional key SKF = SKG,

and a ciphertext C, the decryption algorithm PFE.Dec computes F̂ (x) ←
NCFE.Dec(SKG, C) and then outputs RE.Decode(F̂ (x)).

GF,CE,τ (x,KP ,KE, β):

1. If β = 1 output Sym.DecKE (CE).

2. Otherwise, output F̂ (x;PRFKP (τ)) = RE.Encode(F, x;PRFKP (τ)).

Figure 2: The function GF,CE ,τ .

The correctness of the above scheme easily follows from that of its underlying
building blocks, and in the remainder of this section we provide a sketch for
proving the following theorem:

Theorem 4.2. Assuming that: (1) NCFE is a selectively-secure private-key
functional encryption scheme for NC1, (2) SYM is a symmetric encryption scheme
with pseudorandom ciphertexts whose decryption circuit is in NC1, (3) PRF is
a weak pseudorandom function family which can be evaluated in NC1, and (4)
(RE.Encode,RE.Decode) is a randomized encoding scheme with encoding in NC1,
then PFE is a selectively-secure private-key functional encryption scheme for
P .

Proof Sketch. The proof proceeds by a sequence of hybrids. For simplicity, we
consider the case when the adversary submits a single challenge pair (m0,m1),
and the argument can be easily generalized to the case of multiple challenges.

Hybrid0: This corresponds to the real experiment where the challenger sends an
encryption of m0 to the adversary.

Hybrid1: For every functional query F , the challenger replaces CE with a sym-

metric encryption Sym.Enc(KE , F̂ (m0;PRFKP (t)) in the functional key for F . By
a sequence of intermediate hybrids (as many as the number of function queries),
Hybrid1 can be shown to be computationally indistinguishable from Hybrid0 based
on the pseudorandom ciphertexts property of the symmetric encryption scheme.

Hybrid2: The challenge ciphertext will consist of an encryption of (m0, 0,KE , 1)
instead of (m0,KP , 0

λ, 0). This hybrid is computationally indistinguishable from
Hybrid1 by the security of the underlying functional encryption scheme.

Hybrid3: For every function query F , the challenger replaces CE in all the func-

tional keys with Sym.Enc(KE , F̂ (m0; r)) for a uniform r. By a sequence of in-
termediate hybrids (as many as the number of function queries), Hybrid3 can
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be shown to be computationally indistinguishable from Hybrid2 based on the
security of PRF.

Hybrid4: Finally, for every function query F , the challenger replaces F̂ (m0; r) in
the ciphertext hardwired in the functional key for F by the simulated randomized
encoding Sim(1λ, F (m0)). By a sequence of intermediate hybrids (as many as
the number of function queries), Hybrid4 can be shown to be computationally
indistinguishable from Hybrid3 based on the security of randomized encodings.
Note that the this hybrid does not depend on whether m0 or m1 was encrypted
since for all function queries F it holds that F (m0) = F (m1), and this proves
the security of PFE .
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