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Abstract. The common approach to defining secure channels in the lit-
erature is to consider transportation of discrete messages provided via
atomic encryption and decryption interfaces. This, however, ignores that
many practical protocols (including TLS, SSH, and QUIC) offer stream-
ing interfaces instead, moreover with the complexity that the network
(possibly under adversarial control) may deliver arbitrary fragments of
ciphertexts to the receiver. To address this deficiency, we initiate the
study of stream-based channels and their security. We present notions
of confidentiality and integrity for such channels, akin to the notions for
atomic channels, but taking the peculiarities of streams into account.
We provide a composition result for our setting, saying that combining
chosen-plaintext confidentiality with integrity of the transmitted cipher-
text stream lifts confidentiality of the channel to chosen-ciphertext se-
curity. Notably, for our proof of this theorem in the streaming setting
we need an additional property, called error predictability. We finally
give an AEAD-based construction that achieves our notion of a secure
stream-based channel. The construction matches rather well the one used
in TLS, providing validation of that protocol’s design.
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1 Introduction

The most widely-used application for cryptography today is still secure commu-
nications—providing a ‘secure channel’ for the transmission of data between two
parties. Secure channel protocols are numerous and diverse in their features, op-
erating at different network layers and offering different security services. Promi-
nent examples can be found in GSM, UMTS and LTE [1] mobile telecommu-
nications systems, in WEP, WPA and WPA2 [19] (which secure wireless LAN
communications), IPsec [22] (which provides security at the IP layer), TLS [15]
and DTLS [31] (which run over TCP [30] and UDP [29], respectively), Google’s
QUIC protocol [33], and SSH [36] (an ‘application layer’ secure protocol).



AEAD and secure channels in the literature. Authenticated Encryption with
Associated Data (AEAD) [32] has emerged as being the right cryptographic tool
for building secure channels. AEAD provides both confidentiality and integrity
guarantees for data. However, on its own, AEAD is insufficient for construct-
ing secure channels. For example, in most practical situations, a secure channel
should provide more than simple encryption of messages, but also guarantee
detection of (and possibly recovery from) out-of-order delivery and replays of
messages. Furthermore, a secure channel should deal with error handling, with
errors potentially arising from both cryptographic and non-cryptographic pro-
cessing —whether or not to tear-down a secure channel session when an error
is encountered, and how (and indeed whether) to signal errors to the other
side. As another difference, some secure channel designs (such as IPsec and to a
limited extent TLS) have additional features that can be used to provide protec-
tion against traffic analysis. A secure channel may accept messages of arbitrary
length and need to fragment these before encryption, and may reassemble these
fragments again after decryption; alternatively, it may present to applications a
maximum message size that is well-matched to the underlying network infras-
tructure. Finally, and most importantly in the context of the paper here, a secure
channel may be designed to protect a stream of data rather than the series of
discrete messages that is usually found in cryptographic abstractions.

There is, then, a substantial gap between what the AEAD primitive can
reasonably provide and the needs of secure channels. We are not the first to
recognize this gap, of course. For example, Bellare et al. [5] extended the standard
security notions of confidentiality and integrity for symmetric encryption to the
stateful setting, enabling the treatment of security of the ordering of discrete
messages in a secure channel, with application to the analysis of SSH being their
principle motivation. Their notions were later extended by Black et al. [23] to
include a richer variety of features, suitable for handling channels that permit (or
deny) replays, message drops, and reordering. Additional literature concerning
the formalization of secure channels includes [34,12,13,26,25,27,20,24,3].

Stream-based channels. Characteristic of all the above-mentioned prior works is
that they treat secure channels as providing an atomic interface for messages,
meaning that the channel is designed only for sending and receiving sequences
of discrete messages. However, this only captures a fraction of secure channel
designs that are actually used in the real world. In particular, TLS, SSH, and
QUIC all provide a streaming interface for the applications that use them: ap-
plications submit segments (or fragments) of message (or plaintext) streams to
an application programming interface (API), and similarly receive fragments of
message streams from the API. The sending side may arbitrarily buffer and/or
fragment the message stream before encapsulating it for sending. Moreover, in
some cases, even under normal operations, it is not guaranteed by the network
that the resulting stream of ciphertext fragments (which we refer to as cipher-
texts henceforth treating them as opaque bit strings) that is sent will arrive at
the receiver with the same pattern of fragmentation, even if the reconstructed
message streams are in the end identical. Under adversarial conditions, such
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guarantees certainly do not hold: for example, TLS runs over TCP and an ac-
tive man-in-the-middle adversary can tinker with the TCP segments, adding,
removing and reordering TLS data at will. Thus practical secure channels need
to securely process arbitrarily fragmented ciphertexts. Finally, to make things
even more complex, and coming full circle, applications (like HTTP [17]) often
attempt to use stream-oriented secure channels (like TLS) to perform secure,
atomic message delivery.

This discussion points to a mismatch between atomic descriptions of secure
channels in the cryptography literature and the reality of the operation of secure
channels. As one may expect, such mismatches can have negative consequences
for security. The starkest example of this comes from the plaintext recovery at-
tack against SSH given by Albrecht et al. [2]. Their attack specifically exploits the
adversary’s ability to deliver arbitrary sequences of SSH packet fragments to the
receiver (over TCP) and observe the receiver’s behavior in response. The attack
is possible despite the analysis of [5] which proved that the SSH secure channel
satisfies suitable atomic stateful security notions. Related attacks against certain
IPsec configurations (and exploiting IPsec’s need to handle IP fragmentation)
were presented in [14]. Attacks highlighting a disjunction between what applica-
tions expect and what secure channels provide, in the specific context of HTTP
and TLS, can be found in [35,7]. All these attacks show the incompleteness of
previous approaches to modeling and analyzing secure channels.

Boldyreva et al. [9] extended the classical, atomic secure channel notions to
cover the case of SSH-like stream-based secure channels, broadening the SSH-
specific work of [28]. However, while they allow for fragmented delivery of ci-
phertexts to the receiver, their work still assumes that the encryption process on
the sender’s side is atomic, meaning that there is a one-to-one correspondence
between message and ciphertexts. This may be the case for SSH when used in
interactive sessions, but it is not the case for the tunneling mode of SSH, and
never the case for other secure channels protocols. For example, even though the
TLS specification [15] does not include a formal API definition, it is clear that
the design intention is to provide a secure channel for data streams (and the
application programmer is in practice offered a TCP-like socket interface), and,
as noted above, the sending side can arbitrarily buffer and fragment the message
stream when preparing ciphertexts for sending.

Our contributions. In this paper we develop formal functional specifications,
security notions, and a construction (using AEAD as a building block) for stream-
based channels. Our models are in the game-based tradition, and extend those
of [5,9] to handle the streaming nature of the channels that we consider.

While our methodology and modeling closely resemble those of [9], and indeed
build upon them, a crucial difference comes in our treatment of the sending (or
encrypting) function of a stream-based channel: in [9], this is still atomic (while
decryption is not), whereas in our stream-based channel setting, both the send-
ing and receiving function support streams of data, with potentially arbitrary
buffering and fragmentation on the sending and receiving side. This requires
careful modification of the confidentiality definitions of [9]. In addition, we de-
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velop suitable integrity notions for the streaming setting, whereas [9] does not
consider this aspect. This is important because the (informal) security properties
that applications expect a secure channel to provide include confidentiality as
well as integrity, while security in the most powerful ‘chosen fragment attack’
setting of [9] does not provide any integrity guarantees.

Bringing integrity into the picture for stream-based channels also enables us
to prove a composition result analogous to the classical result of [6] for sym-
metric encryption schemes, which states that IND-CPA security in combination
with integrity of ciphertexts (INT-CTXT security) guarantees IND-CCA security.
This provides an easy route to proving that a given stream-based channel con-
struction provides appropriate confidentiality (indistinguishability under chosen
ciphertext-fragment attacks, or IND-CCFA security) and integrity (integrity of
plaintext streams, INT-PST security).

The composition theorem brings an interesting technical challenge to sur-
mount: as was already recognized in [10] for the classical (atomic) setting, the
possibility that realistic models of encryption schemes may involve multiple error
messages means that the original composition proof of [6] does not go through.
In [10], this was overcome by assuming the scheme is such that only one of the
possible error messages has a non-negligible chance of being produced during
operation of the scheme. Here we take a different tack, introducing the concept
of error predictability, which guarantees the existence of an efficient algorithm
that can predict which errors should be output during decryption of a ciphertext
stream.

We demonstrate the feasibility of our security notions by providing a generic
construction for a stream-based channel that uses AEAD as a component and
achieves our strongest confidentiality and integrity notions. The resulting stream-
based channel closely mimics the TLS Record Protocol. So our security results
provide validation for this important real-world protocol design, whilst fully
taking its streaming behavior into account. In the full version of this paper
we moreover propose a generic construction of a stream-based channel from
symmetric encryption supporting fragmentation as per [9].

Also in the full version, we return to the starting point of our discussion
and analyze how applications can use stream-based channels to safely transport
atomic messages by encoding distinguished end-of-message symbols into the sent
message stream to identify the atomic messages’ boundaries. Establishing the
security of this simple and natural approach however requires the introduction of
an additional technical property orthogonal to integrity and confidentiality. Our
analysis sheds a new formal light on the truncation [35] and ‘cookie-cutter’ [7]
attacks on HTTP running over TLS, showing how they can be seen as arising
from a misunderstanding of the security guarantees that can be provided by a
stream-based channel to applications expecting an atomic-message channel.

Further related work. Bhargavan et al. [8] have developed notions of security for
stream-based channels as part of their detailed analysis of the TLS Record Pro-
tocol. Their approach involves expressing channel security properties as types
in a programming language, and then formally proving that the type definitions
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are respected in an adversarial setting (where the adversary is modeled as an-
other program interacting with the code for the send and receive functions of
the channel).

A seemingly similar line of work to ours concerns blockwise-adaptive security
and on-line symmetric encryption schemes, as developed in [4,21,18,11]. There,
the schemes operate in an on-the-fly manner, processing one fixed-size block
of plaintext or ciphertext at a time; meanwhile the adversary is given access to
blockwise encryption (and possibly decryption) oracles. However, in these papers
messages and ciphertexts are ultimately regarded as discrete entities, rather than
as streams of message and ciphertext fragments as in our treatment.

Paper organization. After introducing some basic notation and terminology in
Section 2, we present in Section 3 our formal definition for stream-based channels.
Section 4 contains our security notions for confidentiality and integrity of stream-
based channels as well as our composition theorem. Finally, in Section 5 we show
feasibility of our notions by providing a generic construction of a stream-based
channel. We conclude with open questions arising from this work in Section 6.

2 Preliminaries

Notation. Let Σ be an alphabet and s ∈ Σ∗. We indicate by |s| the length of s,
by s[i] its i-th character, and by s[i, . . . , j] the substring s[i]|| . . . ||s[j], where ||
denotes the string concatenation. Let s, t ∈ Σ∗. We say that s is a prefix of t
and write s ≺ t if there exists r ∈ Σ∗ such that s||r = t; in this case we write
r = t% s. We denote the longest common prefix of s and t by [s, t] = [t, s]. Note
that s ≺ t if and only if [s, t] = s. Using the above notation we will often consider
s% [s, t], i.e., the suffix of s with the longest common prefix of s and t stripped
off. Let s = (s1, . . . , s`) ∈ (Σ∗)` be a vector of strings for some integer `; if s
is empty, i.e., ` = 0, we denote this by s = (). For every 0 ≤ i ≤ j ≤ ` we
denote s[i] = si and s[i, . . . , j] = (si, . . . , sj); we use the shortcut ||s for the
concatenation s1|| . . . ||s`, and conventionally define ||() = ε. We say that two
vectors s = (s1, . . . , s`) and t = (t1, . . . , t`′) are equal and write s = t if and
only if ` = `′ and s[i] = t[i] for all 1 ≤ i ≤ `. Slightly overloading notation, we
denote the merge of two vectors s and t as s||t = (s1, . . . , s`, t1, . . . , t`′).

Channel terminology. Our syntax for channels is intentionally independent of
the targeted security properties as these may vary from one specific application
to another. To reflect the generic functionality of channels and maintain a higher
level of abstraction than, e.g., in the case of authenticated encryption, we de-
fine sending (Send) and receiving (Recv) rather than encryption and decryption
algorithms.

3 Stream-Based Channels

We capture the functionality of channel protocols that offer a reliable trans-
mission of streams like the Transmission Control Protocol (TCP) [30] and, in
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(from application)

m1 m2 m3 m4 m5 message stream

c1 c2 c3 c4 ciphertext stream

Send

(lower-layer transmission)

c′1 c′2 c′3 c′4 c′5 ciphertext stream

m′1 m′2 m′3 m′4 message stream

Recv

(to application)

Fig. 1: Illustration of the behavior of the Send and Recv algorithms of a stream-based
channel, indicating the message and ciphertext fragments being sent (mi resp. ci) and
received (m′i resp. c′i).

a second step, we define confidentiality and integrity properties expected from
(stream-based) secure channel protocols like the Transport Layer Security (TLS)
Record Protocol [15] or the Secure Shell (SSH) Binary Packet Protocol [37].1 To
do so we first need to define the syntax of stream-based channels that, in con-
strast to previous models for channel, send fragments of a message (or plaintext)
stream rather than atomic messages. In order to remain close to real-world im-
plementations we restrict both the message space and the ciphertext space to the
set of bit strings, where we understand ‘messages’ and ‘ciphertexts’ not as atomic
units, but as fragments (i.e., substrings) of a message stream and a ciphertext
stream.

1 Our model inherently assumes that, in a benign scenario, ciphertext fragments are
delivered reliably and in order (i.e., in a TCP-like manner). While we recognize that
efficient and secure transmission protocols can be designed also on top of unreliable
protocols like the User Datagram Protocol (UDP) [29] as done, e.g., in Google’s
Quick UDP Internet Connections (QUIC) protocol [33], we deem these approaches
orthogonal or unrelated to our work. In such cases, a reliable and ordered stream
transmission can be implemented non-cryptographically either by TCP-like prepro-
cessing of the UDP datagrams before handing them over to a stream-based channel
according to our definition or by postprocessing UDP datagrams which are encrypted
and authenticated in an isolated manner (e.g., using an AEAD scheme).

6



Additionally, we do not stipulate a particular input/output behavior on the
sender side, but instead allow the sending algorithm Send to process input data
at its discretion, e.g., implementing some form of buffering. We enforce send-
ing out particular chunks of the message stream by employing the established
concept of ‘flushing a stream’ known from network socket programming, and
provide the Send algorithm with an additional flush flag f ∈ {0, 1} which, if
set to f = 1, ensures that all the message fragments fed so far are sent out in-
stantaneously. Jumping ahead, in our security model this choice conservatively
also allows the adversary to control fragmentation. If the flush flag is set to zero,
Send may internally decide to keep accepting more message fragments or to send
out a ciphertext fragment, depending on its implementation and resources. In
our definition below we demand that each message fragment mi processed by
Send results in a ciphertext fragment ci. Since a ciphertext fragments can be
empty (ci = ε), this implicitly enables Send to wait for more data by outputting
empty ciphertext fragments. Figure 1 illustrates the behavior of the sending and
receiving algorithms of a stream-based channel.

We proceed with defining syntax and correctness of stream-based channels.

Definition 1 (Syntax of stream-based channels). A stream-based chan-
nel Ch = (Init,Send,Recv) with associated sending and receiving state space SS
resp. SR and error space E consists of three efficient probabilistic algorithms:

– Init. On input of a security parameter 1λ, this algorithm outputs initial states
stS,0 ∈ SS, stR,0 ∈ SR for the sender and the receiver, respectively. We write
(stS,0, stR,0)←$ Init(1λ).

– Send. On input of a state stS ∈ SS, a fragment m ∈ {0, 1}∗, and a flush
flag f ∈ {0, 1}, this algorithm outputs an updated state st′S ∈ SS and a
ciphertext fragment c ∈ {0, 1}∗. We write (st′S , c)←$ Send(stS ,m, f).

– Recv. On input of a state stR ∈ SR and a ciphertext fragment c ∈ {0, 1}∗,
this algorithm outputs an updated state st′R ∈ SR and a message fragment
m ∈ {0, 1}∗ ∪ E. We write (st′R,m)←$ Recv(stR, c).

Given a state pair (stS,0, stR,0), an integer ` ≥ 0, and tuples of message
fragments m = (m1, . . . ,m`) ∈ ({0, 1}∗)` and of flush flags f = (f1, . . . , f`) ∈
{0, 1}`, let (stS , c) ←$ Send(stS,0,m,f) be shorthand for the sequential exe-
cution (stS,1, c1) ←$ Send(stS,0,m1, f1), . . . , (stS,`, c`) ←$ Send(stS,`−1,m`, f`)
with c = (c1, . . . , c`) and stS = stS,`. For ` = 0 we define c to be the empty
vector and stS,` = stS to be the initial state. We use an analogous notation for
the receiver’s algorithm.

Intuitively, correctness of stream-based channels guarantees that for every
message fragments input to Send, if the corresponding ciphertext stream is pro-
cessed by Recv, then no matter how the ciphertext stream is (re)fragmented at
the receiver side the returned message stream is a prefix of the initial message
stream. Moreover, when Recv consumes a ciphertext fragment generated by a
call to Send with the flush flag set to 1, its output stream contains all the message
fragments input to Send up to that call. We next formalize this intuition.
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Definition 2 (Correctness of stream-based channels). Let Ch = (Init,
Send,Recv) be a stream-based channel. We say that Ch provides correctness if for
all state pair (stS,0, stR,0)←$ Init(1λ), all `, `′ ≥ 0, all choices of the randomness
for algorithms Init,Send and Recv, all message-fragment vectors m ∈ ({0, 1}∗)`,
all flush-flag vectors f ∈ {0, 1}`, all sending output sequences (stS,`, c) ←$

Send(stS,0,m,f), all ciphertext-fragment vectors c′ ∈ ({0, 1}∗)`′ , and all re-
ceiving output sequences (st′R,`′ ,m′)←$ Recv(stR,0, c′), we have

||c = ||c′ =⇒ ||m[1, . . . , i] ≺ ||m′ ≺ ||m,

where i = max({0} ∪ {j : fj = 1}) is the largest index such that the flush
flag fi = 1 (i.e., if all flush flags are set to zero then i = 0 and m[1, . . . , i] = ε).

Remark 1. Correctness implies that if we feed Recv with a prefix of the ciphertext
stream output by Send, i.e., ||c′ ≺ ||c, then the receiver outputs a prefix of the
corresponding message stream, ||m′ ≺ ||m, since

||c′ ≺ ||c⇒ ∃ c′′ ∈ {0, 1}∗ : ||c′ || c′′ = ||c (corr.)====⇒ ||m′ ||m′′ ≺ ||m⇒ ||m′ ≺ ||m

for all receiving output sequences (st′R,`′+1,m
′′)←$ Recv(st′R,`′ , c′′).

Remark 2. It is instructive to compare our correctness definition with that of
Boldyreva et al. [9]. There, correctness requires that if a sequence m of discrete
messages is encrypted, and the resulting ciphertext stream ||c is then decrypted
(possibly in a fragmented manner), then the obtained message sequence (when
message separators ¶ are removed) is identical to the original sequence m. In
the special case of a single message, this implies that encryption ‘always flushes’
in the setting of [9], and is in turn the reason why encryption is necessarily an
atomic operation. By contrast, in our setting the Send algorithm is equipped
with a flush flag and, when the latter is set to zero, potentially the entire mes-
sage fragment is buffered for later sending. This is, then, an essential difference
between the setting of Boldyreva et al. [9] and the streaming one. An additional
difference is that the correctness condition in [9] is stronger than ours as it in-
corporates a certain amount of robustness. More specifically, the sequence of
ciphertext fragments c′ submitted for decryption in the correctness definition of
[9] may extend the sequence produced by encryption (in other words, ||c is only
required to be a prefix of ||c′ for decryption to still work correctly up to ||c).

4 Security for Stream-Based Channels

In the following we introduce both confidentiality and integrity notions attuned
to the stream-based setting and analyze their composition. We provide corre-
sponding notions in terms of asymptotic security; analogous notions in the con-
crete setting are easy to infer.2

2 It is straightforward to define a concrete notion of security by considering the ad-
vantage of the adversary as a concrete function of its running time, the numbers of
oracle queries, and bounds on the size of the input streams for oracle queries.
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4.1 Confidentiality

As in the ciphertext fragmentation setting introduced by Boldyreva et al. [9],
whose confidentiality notion in turn is inspired by the IND-sfCCA notion by
Bellare et al. [5], our security notions have to deal with the fact that stream-
based channels support processing of arbitrary fragments of the message resp.
ciphertext stream. While Boldyreva et al. [9] considered only fragmented de-
cryption (but atomic encryption) and therefore focused their attention on the
CCA-like setting, the fragmented message processing of stream-based channels
in our case also affects the adversarial capabilities in the CPA-like setting. We
hence define security notions both for the case of chosen plaintext-fragment at-
tacks (IND-CPFA) as well as chosen ciphertext-fragment attacks (IND-CCFA).

Adapting the chosen-plaintext capabilities of an adversary to the stream-
based settings is relatively straightforward (incorporating the standard left-or-
right oracle). However, deriving a sound security notion for an adversary control-
ling the fragmentation on the received ciphertext stream turns out to be more
delicate. In general, chosen-ciphertext-like oracles strive to allow decryption of
as much of the input as possible without enabling trivial attacks. We follow the
approach of Bellare et al. [5] to model stateful (decryption) security notions by
considering the receiving oracle ORecv to be in-sync and not returning a response
to the adversary A as long as A supplies (parts of) the original ciphertext stream
output by the left-or-right sending oracle OLoR in correct sequential order. When
A deviates from the original ciphertext stream, the ORecv oracle is considered
out of sync and, from that point on, the output of the Recv algorithm is given
to the adversary.

For a sound definition we are faced with the question: At which point exactly
shallORecv be considered out-of-sync? Boldyreva et al. decided to stay close to the
original definitions of Bellare et al. and conservatively defined synchronization to
be lost at ciphertext boundaries (i.e., their notion reveals the decryption of the
full ciphertext as output by Send whenever any part of it is modified). However
this option is inappropriate in our stream-based setting where the output of Send
is not necessarily an atomic unit.

As an example to illustrate this, consider the case of TLS and the Send
algorithm being called on a (214 + 1)-byte input message with the flush flag set
to 1—mimicking the behavior of many TLS implementations that keep no send
buffer. Obeying the limit of at most 214 bytes payload in a single TLS record,
Send is forced to output a ciphertext fragment which contains (at least) two
TLS records. An adversary which now forwards this fragment to the decryption
oracle in the IND-sfCFA definition of Boldyreva et al. [9, Definition 4] with the
second record modified but the first record untouched will be provided with
the decryption of both records, thereby trivially revealing parts of the challenge
message string.

Mindful of this example and taking into account that the output of Send in
our case is a bit stream without any further structure in general, the natural
choice appears to consider ORecv to become out-of-sync exactly when the first
bit of its ciphertext stream input deviates from the genuine output of Send.
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ExptIND-atk,b
Ch,A (1λ):

1 (stS , stR)←$ Init(1λ)
2 sync← 1
3 CS ← ε, CR ← ε
4 b′ ←$ A(1λ)OLoR(·,·),ORecv(·)

5 return b′

If A queries OLoR(m0, m1, f):
1 if |m0| 6= |m1| then
2 return ε to A
3 (stS , c)←$ Send(stS , mb, f)
4 CS ← CS ||c
5 return c to A

If A queries ORecv(c):
1 if sync = 0 then
2 (stR, m)←$ Recv(stR, c)
3 return m to A
4 else if CR||c ≺ CS then
5 CR ← CR||c
6 (stR, m)←$ Recv(stR, c)
7 return ε to A
8 else
9 sync← 0

10 c̃← [CR||c, CS ] % CR
11 s̃tR ← stR
12 (s̃tR, m̃)←$ Recv(s̃tR, c̃)
13 (stR, m)←$ Recv(stR, c)
14 m′ ← m % [m, m̃]
15 return m′ to A

Fig. 2: Security experiment for confidentiality (IND-atk) of stream-based channels. A
CPFA-attacker only has access to the oracle OLoR.

In more detail, we define our stream-based confidentiality notions IND-CPFA
(indistinguishability under chosen plaintext-fragment attack) and IND-CCFA (in-
distinguishability under chosen ciphertext-fragment attack) through the experi-
ment ExptIND-atk,b

Ch,A (where atk is a placeholder for either CPFA or CCFA), depicted
in Figure 2. The adversary’s goal in the experiment ExptIND-atk,b

Ch,A is to guess the
bit b. In the experiment the OLoR oracle provides the adversary with the re-
sponse of Send to the (left or right) message fragment input. The oracle first
checks if the input message fragments m0 and m1 have the same bit length (i.e.,
|m0| = |m1|). If this is the case, it invokes Send on mb, adds its response c to
the internal ciphertext stream variable CS and provides A with c.

The ORecv oracle in the experiment processes the ciphertext fragment input
(thereby updating the receiving state stR), but artificially suppresses the out-
put of Recv as long as the fragments are in sync. In case synchronization has
been already lost (i.e., sync = 0), ORecv simply passes the output of Recv to A.
Otherwise, it checks whether the concatenation CR of ciphertext fragments seen
so far together with the current fragment c is still a prefix of the ciphertext
stream CS output by OLoR: if this is the case, Recv is invoked on c but its output
is suppressed. Otherwise ORecv is now considered out-of-sync and there are two
definitional options available, both following the paradigm of giving as much in-
formation to the adversary as possible without enabling trivial attacks: The first
option is to split the call to the receiver into two, one for the longest common
prefix c̃ of the received ciphertext c which still matches the ciphertext stream CS
output by OLoR, and one for the remaining ciphertext part where they diverge.
The second option, and this is the one we use here and which turns out to be
more appropriate than the first one (as we discuss in the full version), is to
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run the receiver on the full ciphertext c and later suppress parts of the message
stream which the receiver would have obtained when run on c̃.

More formally, our suppression strategy on the level of the message stream
first simulates a Recv call on a copy of the current state stR and c̃ and registers
its output m̃. Second, Recv is regularly invoked (again for the original state
stR) on the full ciphertext fragment c provided by the adversary, resulting in
a message m being output. Finally, the common prefix of m and m̃ (i.e., any
potential challenge message stream bits in m) is suppressed and the remaining
part of m is passed to A.

Definition 3 (IND-CPFA and IND-CCFA Security). Let Ch = (Init,Send,
Recv) be a stream-based channel and experiment ExptIND-atk,b

Ch,A (1λ) for an adver-
sary A and a bit b be defined as in Figure 2, where atk is a placeholder for ei-
ther CPFA or CCFA. Within the experiment the adversary A is given access to a
(stateful) left-or-right sending oracle OLoR and, in the case of IND-CCFA security,
a (stateful) receiving oracle ORecv. We say that Ch provides indistinguishability
under chosen plaintext-fragment (resp. ciphertext-fragment) attacks (IND-CPFA
resp. IND-CCFA) if for all PPT adversaries A the following advantage function
is negligible in the security parameter:

AdvIND-atk,b
Ch,A (λ) :=

∣∣∣Pr
[
ExptIND-atk,1

Ch,A (1λ) = 1
]
− Pr

[
ExptIND-atk,0

Ch,A (1λ) = 1
]∣∣∣ .

For the sake of completeness we comment on the alternative, intuitively ap-
pealing way for defining the receiving oracle by splitting the ciphertext in our
setting in in the full version, which however leads to a confidentiality notion that
only covers a smaller class of channels.

4.2 Integrity

In this section we formalize integrity notions for stream-based channels. We
highlight that, while integrity properties for atomic messages (and atomic ci-
phertexts) are well-understood, no previous work considered integrity in the
non-atomic setting. In particular Boldyreva et al. [9] only addressed confiden-
tiality in the presence of ciphertext fragmentation. We define integrity notions for
stream-based channels as refinements of standard (stateful) properties of plain-
text integrity (INT-sfPTXT), resp., ciphertext integrity (INT-sfCTXT) from [5]
and refer to the new properties as plaintext-stream integrity, resp., ciphertext-
stream integrity (INT-PST, resp., INT-CST).

Similarly to the setting with atomic messages, INT-PST ensures that no
adversarial query to the receiving oracle causes the message stream output
by Recv to deviate from the message stream input to Send. Formalizing the
stronger INT-CST property demands more care. Intuitively, from ciphertext in-
tegrity we expect that when processing any ‘out-of-sync’ ciphertext, the algo-
rithm Recv should return an error message. However, when considering a stream-
based interface it may happen that Recv processes an out-of-sync ciphertext
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ExptINT-atk
Ch,A (1λ):

1 (stS , stR)←$ Init(1λ)
2 sync← 1, win← 0
3 MS , CS ← ε, MR, CR ← ε
4 A(1λ)OSend(·,·),ORecv(·)

5 return win

If A queries OSend(m, f):
1 (stS , c)←$ Send(stS , m, f)
2 MS ←MS ||m
3 CS ← CS ||c
4 return c to A

INT-PST
If A queries ORecv(c):
1 (stR, m)←$ Recv(stR, c)
2 MR ←MR||m
3 if MR 6≺MS and

MR % [MR, MS ] /∈ E∗ then
4 win← 1
5 return m to A

INT-CST
If A queries ORecv(c):
1 if sync = 0 then
2 (stR, m)←$ Recv(stR, c)
3 if m /∈ E∗ then win← 1
4 else if CR||c ≺ CS then
5 (stR, m)←$ Recv(stR, c)
6 CR ← CR||c
7 else
8 sync← 0
9 c̃← [CR||c, CS ] % CR
10 s̃tR ← stR
11 (s̃tR, m̃)←$ Recv(s̃tR, c̃)
12 (stR, m)←$ Recv(stR, c)
13 m′ ← m % [m, m̃]
14 if m′ /∈ E∗ then win← 1
15 return m to A

Fig. 3: Security experiment for integrity (INT-atk) of stream-based channels. An PST-
attacker is provided with access to the middle ORecv oracle (INT-PST), whereas a CST-
attacker is instead granted access to the oracle on the right-hand side (INT-CST).

which does not yet contain ‘enough information’ to be recognized as being in-
valid; in this case the receiving algorithm would buffer (part of) the ciphertext
and wait for further fragments until a sufficiently long ciphertext string is avail-
able to be processed and deemed as valid or invalid. In such a scenario, a naive
adaptation of the INT-sfCTXT definition of [5] would allow trivial attacks by
declaring successful any adversary that makes the Recv buffer (part of) an out-
of-sync ciphertext. Our notion of ciphertext-stream integrity carefully identifies
the case just described and, by letting the receiving oracle wait for further ci-
phertext fragments, declares the adversary successful only if Recv outputs a non-
emtpy message fragment resulting from an out-of-sync portion of the ciphertext
stream.

We formalize integrity of plaintext and ciphertext streams through the se-
curity experiment ExptINT-atk

Ch,A depicted in Figure 3. The experiment provides the
adversary with oracles OSend and ORecv, where the former grants A access to al-
gorithm Send under arbitrarily chosen message fragments and the latter gives A
an interface with algorithm Recv. We highlight that, while the sending ora-
cle OSend is common for both experiments INT-PST and INT-CST, the receiving
oracle ORecv follows different procedures in the two cases, as we further explain
below.
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In the execution of the INT-PST experiment, OSend maintains in string MS

the stream of all sent message fragments and, analogously,ORecv maintains inMR

the stream of all received message fragments (and/or error symbols). The ad-
versary wins the game if it causes MS and MR to deviate in such a way that
their difference contains more than error symbols. Formally, we demand that the
string MR output by the receiver is not a prefix of the sender’s string MS , but
such that this prefix-freeness is not only due to error symbols from E .

In the INT-CST experiment oracles OSend and ORecv maintain strings CS
and CR to record the streams of sent ciphertexts resp. received ciphertext frag-
ments. Furthermore, ORecv decides when the adversary wins by inspecting sent
and received ciphertext streams, an inherently more complex task than looking
for deviations in the underlying sequences of sent/received message fragments.
Indeed, in a stream-based channel the algorithm Recv may need to buffer several
ciphertexts before being able to recover the underlying message stream or detect-
ing that an error occurred; such a behavior is reflected in our experiment. When
processing in-sync ciphertexts ORecv simply appends each new fragment to CR.
In the moment when an out-of-sync ciphertext arrives, the oracle compares the
outputs of algorithm Recv when processing (i) the current input ciphertext c
and (ii) its longest in-sync prefix c̃. The adversary wins if ORecv outputs more in
case (i) than it would in case (ii) and if the difference between the two outputs
is a non-empty, valid message. It also wins if it is able to make Recv output a
non-empty, valid message with a subsequent out-of-sync ciphertext.

Definition 4 (INT-PST and INT-CST Security). Let Ch = (Init,Send,Recv)
be a stream-based channel and experiment ExptINT-atk

Ch,A (1λ) for an adversary A be
defined as in Figure 2, where atk is a placeholder for either PST or CST. Within
the experiment, the adversary A is given access to a sending oracle OSend and
a receiving oracle ORecv. We say that Ch provides integrity of plaintext streams
(resp. ciphertext streams) (INT-PST resp. INT-CST) if for all PPT adversaries
A the following advantage function is negligible in the security parameter:

AdvINT-atk
Ch,A (λ) := Pr

[
ExptINT-atk

Ch,A (1λ) = 1
]
.

Remark 3. Our definitions of integrity do not preclude from being secure those
channels in which message bits can be output as a result of the adversary de-
livering partial ciphertexts to the Recv oracle. This is because in the streaming
setting we care about the adversary’s ability to force the receiver to accept mes-
sage fragments corresponding to a part of the ciphertext stream that has gone
out-of-sync, without attaching importance to ciphertext boundaries. Hence, this
is quite distinct from the usual ‘atomic’ setting. In particular, applications that
use a streaming channel to transmit atomic messages must take extra care to
ensure no partially retrieved message fragment from the streaming channel is
processed as if it was a complete (atomic) message, as such misinterpretation
can lead—and in the past has led—to attacks [35,7].

We further note that stream-based integrity providing weaker guarantees
than atomic-message integrity seems to be an intrinsic consequence of the na-
ture of stream-based channels. In particular, apparent avenues of strengthening
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the given integrity definition lead to notions which are clearly inappropriate in
the streaming setting. On the one hand, requiring a channel to output an er-
ror immediately after processing the first bit deviating from the sent ciphertext
stream is, for most constructions, an unattainable goal as it is in general impos-
sible to decide if an initial bit received is genuine or not. On the other hand,
requiring that a channel does not output any message bit until a full ciphertext
output by Send is received inappropriately enforces an atomic structure on the
channel, i.e., basically the one of [9] which, as already discussed, is too strong
for channels that, like TLS, might output ciphertexts which contain multiple,
independent parts.

4.3 Relations Amongst Notions and Generic Composition Theorem

Due to space restrictions we comprehensively discuss the relations among the
introduced security notions for the streaming setting only in the full version. In
short, we show that, for both confidentiality and integrity, the stronger notion
implies the weaker one, i.e., IND-CCFA⇒ IND-CPFA and INT-CST⇒ INT-PST,
as one might expect. Further, we extend the composition result from [6]—
that (stateful) IND-CPA and INT-CTXT together imply (stateful) IND-CCA—
to our streaming setting. Interestingly, the analogous prerequisites IND-CPFA
and INT-CST alone are not sufficient to establish the composition result in our
case: we additionally require the channel to be error predictable (ERR-PRE). The
latter notion, defined only in the full version due to space restrictions, formalizes
the ability to efficiently predict the error messages that should be obtained when
the receiving algorithm fails.

Error predictability assists the security proof for our composition theorem
in two ways. First, it allows us to deal with the problem of having multiple
decryption errors [10]. This problem also appears in the atomic setting and
has been surmounted there by considering only single error messages [6] or by
restricting the likelihood of different error messages to appear [10]. Our notion
of error predictability gives a more general approach which is also applicable in
the atomic setting. Secondly, error predictability directly supports the reduction
to the integrity property INT-CST in our proof. In our stream-based scenario we
basically must be able to tell if the receiver is still buffering ciphertext fragments,
or if it can already produce an error message. Error predictability gives us exactly
this.

We stress, and will expand in Section 5, that error predictability can be met
by natural constructions. The composition result for stream-based channels is
summarized in the theorem below. We provide a formal proof of this result in
the full version.

Theorem 1 (INT-CST ∧ IND-CPFA ∧ ERR-PRE ⇒ IND-CCFA). Let Ch = (Init,
Send,Recv) be a (correct) stream-based channel with associated error space E.
If Ch provides integrity of ciphertext streams, error predictability, and indis-
tinguishability under chosen plaintext-fragment attacks then it also provides in-
distinguishability under chosen ciphertext-fragment attacks. Formally, for ev-
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ery efficient IND-CCFA adversary A there exist efficient INT-CST adversary B,
ERR-PRE adversary C, and IND-CPFA adversary D such that

AdvIND-CCFA
Ch,A ≤ 2 · AdvINT-CST

Ch,B + 2 · AdvERR-PRE
Ch,C + AdvIND-CPFA

Ch,D .

5 Construction of Stream-Based Channels

In this section we demonstrate the feasibility of our security notions by providing
a generic construction of stream-based channels which directly bases on the
well-established primitive of authenticated encryption with associated data and
provides strong security in terms of confidentiality as well as integrity. Although
it is rather illustrative than definitive, we remark that our construction is quite
close to the TLS Record Protocol.

We define the generic construction of a stream-based channel ChAEAD =
(Init,Send,Recv) based on an authenticated encryption with associated data
(AEAD) scheme AEAD = (Enc,Dec) with key space K and distinguished error
symbol ⊥ as introduced by Rogaway [32].3 The encryption algorithm Enc : K ×
{0, 1}∗×{0, 1}∗ → {0, 1}∗ on input a key, an associated data string, and a mes-
sage, outputs a ciphertext. The decryption algorithm Dec : K×{0, 1}∗×{0, 1}∗ →
({0, 1}∗ ∪ {⊥}) on input a key, an associated data string, and a ciphertext, out-
puts either a message or the distinguished error symbol. We assume that the
AEAD scheme allows the encryption of variable-length messages of up to il bits
and that the ciphertext output for such messages has length at most 2ol−1 bits.
This enables us to encode the length of ciphertexts with a fixed-size string of ol
bits.

Our channel construction ChAEAD is displayed in Figure 4 and has sending
state space SS = K×N× {0, 1}∗, receiving state space SR = K×N× {0, 1}∗ ×
{0, 1}, and error space E = {⊥}. The channel works as follows.

– The Init algorithm first draws uniformly at random a key K for the AEAD
scheme. It then initializes the sending and receiving state respectively as tu-
ples containing key K, a sequence number set to 0, and a message-fragment
resp. ciphertext-fragment buffer initially empty; the receiving state also con-
tains a failure flag, initially set to 0.

– The Send algorithm keeps on buffering input message strings until it has col-
lected at least il bits. If sufficiently many bits have been collected, then Send
encrypts message chunks m′ of length il bits using the AEAD scheme on in-
put message m′ and associated data a running sequence number seqno.4 The
ciphertext generated is then prepended with the binary encoding of its size

3 Although our construction does not incorporate nonces it can easily be extended to
the nonce-based setting as originally defined by Rogaway [32].

4 A more natural construction in the nonce-based setting would use seqno as the
encryption nonce and have empty associated data input. We have chosen the current
construction because of its closeness to TLS, which treats its sequence number as
associated data.
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(with the fixed number of ol bits) and the result appended to the ciphertext
string c to be output. Note that the size encoding is not authenticated. In
case the Send algorithm was called with the flush flag set to 1, in a final step
it also encrypts any remaining buffered message in the same way, in order to
empty the message buffer (this message will potentially be of length smaller
than il).

– The Recv algorithm outputs an error (without any further state modification)
once a first error has emerged from the AEAD decryption algorithm in some
previous call; otherwise, it appends the incoming ciphertext fragment to its
buffer. In case enough bits to parse the length field of ol bits were received
it does so. Next, it checks whether the buffer contains the complete AEAD
ciphertext of the indicated length and, if so, strips it from the buffer, decrypts
it (incrementing the sequence number used in the associated data), and
appends the result to the message to be output. This process is repeated
until there is no completely parsable ciphertext left. However, in case the
AEAD decryption algorithms outputs an error, after appending this error
symbol to the output message, the Recv algorithm sets the failure flag fail
to 1 and stops parsing further input.

Correctness of ChAEAD follows from the correctness of the AEAD scheme.

Security analysis. Our generic stream-based channel construction ChAEAD from
Figure 4 provides indistinguishability under chosen plaintext-fragment attacks
(IND-CPFA), integrity of ciphertext streams (INT-CST), and error predictability
(ERR-PRE), given that the underlying authenticated encryption with associated
data scheme AEAD provides indistinguishability under chosen plaintext attacks
(IND-CPA) and authenticity (AUTH) as defined by Rogaway [32].5 Using The-
orem 1 we can moreover infer that it also provides indistinguishability under
chosen ciphertext-fragment attacks (IND-CCFA). We provide the detailed secu-
rity analysis in the full version of this paper.

5.1 A Note on the TLS Record Protocol

As discussed earlier, the Transport Layer Security (TLS) Record Protocol im-
plements a stream-based channel whose complete analysis as such lies outside
of the scope of this work. However we do pause to note that our construction
of a stream-based channel based on authenticated encryption with associated
data is actually very close to the TLS Record Protocol when using an AEAD
scheme as specified for TLS version 1.2 [15, Section 6.2.3.3] and in the current
draft for TLS version 1.3 [16, Section 6.2.2]: the Record Protocol also incorpo-
rates a sequence number which is authenticated but not sent on the wire and a
length field which is sent and authenticated in TLS 1.2 (and which is sent but
5 Note that Rogaway [32] actually defines the stronger IND$-CPA notion which implies

IND-CPA security based on a standard left-or-right encryption oracle. We only require
IND-CPA though as it is sufficient for our security proof.
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Init(1λ):
1 K ←$ K
2 stS,0 = (K, 0, ε)
3 stR,0 = (K, 0, ε, 0)
4 return (stS,0, stR,0)

Send(stS , m, f):
1 parse stS as (K, seqno, buf)
2 buf ← buf||m
3 c← ε
4 while |buf| ≥ il do
5 m′ ← buf[1, . . . , il]
6 buf ← buf % m′

7 c′ ← EncK(seqno, m′)
8 seqno← seqno + 1
9 c← c || |c′| || c′ for |c′| ∈ {0, 1}ol

10 if f = 1 and buf 6= ε then
11 c′ ← EncK(seqno, buf)
12 seqno← seqno + 1
13 c← c || |c′| || c′ for |c′| ∈ {0, 1}ol

14 buf ← ε
15 stS ← (K, seqno, buf)
16 return (stS , c)

Recv(stR, c):
1 parse stR as (K, seqno, buf, fail)
2 if fail = 1 then
3 return (stR,⊥)
4 buf ← buf||c
5 m← ε
6 while |buf| ≥ ol do
7 parse buf[1, . . . , ol] as integer `
8 if |buf| ≥ ol + ` then
9 len← buf[1, . . . , ol]

10 c′ ← buf[ol + 1, . . . , ol + `]
11 buf ← buf % len||c′
12 m′ ← DecK(seqno, c′)
13 seqno← seqno + 1
14 m← m||m′
15 if m′ = ⊥ then
16 fail← 1
17 break
18 else
19 break
20 stR ← (K, seqno, buf, fail)
21 return (stR, m)

Fig. 4: A generic construction of a stream-based channel ChAEAD = (Init, Send, Recv)
from any authenticated encryption with associated data (AEAD) scheme AEAD =
(Enc, Dec) with key space K and distinguished error symbol ⊥ which allows to encrypt
variable-length messages of up to il bits and for which the ciphertext output has length
at most 2ol − 1 bits.

not authenticated in TLS 1.3).6 However, the TLS Record Protocol additionally
includes a 2-byte version number and a 1-byte content type; these are both sent
and authenticated in the associated data. Moreover, the AEAD schemes used
are considered to be nonce-based, though the exact nonce generation is left to
be specified by the particular cipher suite in use.

The content type field in particular allows TLS to multiplex data streams
for different purposes within a single connection stream, as TLS does for the
Handshake Protocol, the Alert Protocol, the ChangeCipherSpec protocol, and
the Application protocol. While our model does not capture multiplexing several
message streams into one ciphertext stream, it can be augmented to do so. This
brings additional complexity and is an avenue for future work.

6 That is, our approach of using a length field which is sent on the wire but not part of
the authenticated associated data conforms with the approach adopted in TLS 1.3.
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6 Conclusion

In this work we approached the security of channels designed to (securely) con-
vey a stream of data from one party to another, narrowing the gap between
real-world transport layer security protocols (like TLS or SSH) and our theoret-
ical understanding of them. For this purpose, we formalized the syntax of such
stream-based channels, explored strong security notions, and demonstrated their
feasibility by providing a natural and secure construction which closely mimics
the operation of the TLS Record Protocol.

Our approach sheds a formal light on recent attacks, in particular concern-
ing the use of HTTP over TLS, confirming a disjunction between applications’
expectations on the one hand and the guarantees that secure streaming channels
provide on the other. This highlights that there is a need for detailed specifica-
tions of APIs and security guarantees for such protocols.

Our work also raises new research questions. Naturally, exploring the exact
relation between stream-based and atomic-message channels is an avenue that
should be pursued, with the development of detailed relations between secu-
rity notions in our work and those in [9] as a specific task. Considering estab-
lished techniques, the open question remains whether the well-accepted concept
of length-hiding encryption can be incorporated in the stream-based setting de-
spite being intrinsically connected to atomic messages. It also seems worthwhile
to extend our stream-based model to encompass channel protocol designs (such
as TLS and QUIC) that allow multiplexing of several data streams within a
single channel.
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