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Abstract. S-Boxes are the key components of many cryptographic primitives and
designing them to improve resilience to attacks such as linear or di�erential crypt-
analysis is well understood. In this paper, we investigate techniques that can be used
to reverse-engineer S-box design and illustrate those by studying the S-Box F of the
Skipjack block cipher whose design process so far remained secret. We �rst show that
the linear properties of F are far from random and propose a design criteria, along
with an algorithm which generates S-Boxes very similar to that of Skipjack. Then
we consider more general S-box decomposition problems and propose new methods
for decomposing S-Boxes built from arithmetic operations or as a Feistel Network of
up to 5 rounds. Finally, we develop an S-box generating algorithm which can �x a
large number of DDT entries to the values chosen by the designer. We demonstrate
this algorithm by embedding images into the visual representation of S-box's DDT.

Keywords: S-box design criteria, Skipjack, linearity, functional decomposition prob-
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1 Introduction

Non-linearity in cryptographic primitives is usually provided by so-called S-Boxes, functions
which map a few inputs bits to a few output bits and which are often speci�ed as look-
up tables. These have been a topic of intensive research since their properties are crucial
for resilience of a cipher against di�erential [1,2,3] and linear [4,5] attacks. Further, the
structure or the method used to build the S-Box can provide other bene�ts.

Indeed, the structure of an S-Box can be leveraged for instance to improve the imple-
mentation of a primitive using it. The hash function Whirlpool [6] and the block ciphers
Khazad [7], Fantomas, Robin [8] and Zorro [9] among others use 8 × 8 bits S-Boxes built
from smaller 4 × 4 ones, since storing several 4 × 4 permutations as tables of 16 4-bits
nibbles is more memory e�cient than storing one 8×8 permutation as a table of 256 bytes.
Except for implementation advantage, knowledge of the internal structure helps to produce
more e�cient masked implementations against side-channel attacks, a notable example here
being the AES [10] with its algebraic S-box based on a power function.

In some cases the design process of an S-Box might be kept secret for the purpose of im-
plementing white-box cryptography, as described e.g. in [11]. In this paper, Biryukov et al.
describe a memory-hard white-box encryption scheme based on a Substitution-Permutation
Network where the S-Boxes are very large and are built using a so-called ASASA or
ASASASA structure where �A� denotes an a�ne layer and �S� a non-linear S-Box layer.
Preventing an adversary from decomposing these S-Boxes into their �A� and �S� layers is
at the core of the security claims for this scheme.

Moreover such memory-hard white-box implementations with hidden structure of com-
ponents can be of use in crypto-currencies, for example in cases where an entity is interested
in issuing a crypto-currency of its own. One of the dangers is that powerful adversaries may



launch a 51% attack taking control of the mining process. Memory hard S-Boxes with hid-
den structure can o�er a distinct advantage in such setting since e�cient implementation
of the proof-of-work function may be kept secret by the owners of the currency.

Examples of algorithms for which the components are known but the rationale behind
their choice is not (at least at the time of release), are the block ciphers designed by or with
the help of the US National Security Agency (NSA), namely the DES [12], Skipjack [13],
SIMON and SPECK [14] (the last two do not use S-Boxes though). Although the design
criteria for the S-Boxes of DES were later released [15] they were kept secret for 20 years
in order to hide the existence of di�erential cryptanalysis, a technique only known by IBM
and NSA at the time. Skipjack also uses an S-Box, denoted F , which is a permutation of
{0, 1}8. However, nothing was known so far about how this S-Box was chosen.

Our Contribution Di�erent methods can be used to recover the hidden structure of an S-
Box. We propose that a cryptanalyst follows the strategy given below to try and decompose
an unknown S-Box S:

1. Draw the "Pollock" visual representation of the LAT and DDT of S (see Section 4.
2. Check whether the linear and di�erential properties of S are compatible with a random

function/permutation (see Section 2).
3. Compute the signature σ(S) of S.
4. If σ(S) is even, you may:

(a) Try an attack on SASAS [16],
(b) Try to distinguish S from a Feistel Network with XOR, using the distinguishers

in [17],
(c) If one of the Feistel Network distinguishers worked, run DecomposeFeistel(S,R,⊕)

for an appropriate R (see Section 3.2).
5. Regardless of σ(S), run DecomposeFeistel(S,R,�) for R ∈ [2, 5] (see Section 3.2).
6. Regardless of σ(S), run BreakArithmetic(S) (see Section 3.1).

We study in Section 2 the seemingly average linear properties of F . After a careful
investigation and despite the fact that these properties are not impressive, we show that
the probability for a random permutation of {0, 1}8 to have linear properties at least as good
as those of F is negligible. This implies three things. First, F was not chosen uniformly at
random. Second, F is very unlikely to have been picked among random candidates according
to some criteria. Third, the method used to build it improved the linear properties. We also
provide a candidate algorithm which can be used to generate S-Boxes with very similar
di�erential and linear properties.

In Section 3 we consider a general problem of decomposition of an S-box with hidden
structure and describe two algorithms which can be used to decompose S-Boxes based on:
a) multiple iterations of simple arithmetic operations (for ex. like those found in a typical
microprocessor) and b) Feistel Networks with up to �ve independent rounds. The �rst
algorithm is an optimised tree-search and the second one involves a SAT-solver.

Finally, we show in Section 4 how visual representations of the di�erence distribution
table (DDT) or the linear approximation table (LAT) of an S-Box can help a cryptographer
to spot non-randomness at a glance. As a bonus, we present an algorithm which generates
non-bijective S-Boxes such that large set of entries in their DDT are set according to the
designer's choices. We illustrate it by embedding images in the visual representation of the
S-Box's DDT.

2 Partially Reverse-Engineering the S-Box of Skipjack

2.1 Overview of the S-Box of Skipjack and Useful De�nitions

Skipjack is a block cipher with a block size of 64 bits and key size of 80 bits. The interested
reader may refer to the o�cial speci�cation [13] or to the best attack on the cipher [18],
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an impossible di�erential attack leveraging its particular round structure. Further analysis
trying to discover the design criteria of Skipjack is given in [19,20].

Skipjack's speci�cation contains and 8x8 bit bijective S-box which is called �F-Table�
and which is given as a lookup table (we list it in the Appendix A). In order to study it we
need to introduce the following concepts.

De�nition 1 (Permutations Set). We denote S2n the set of all the permutations of
{0, 1}n.

De�nition 2 (Di�erence Distribution Table). Let s : {0, 1}n → {0, 1}n be a function.
Its di�erence distribution table (DDT) is a 2n × 2n matrix where the number at line i and
column j is

di,j = #{x ∈ {0, 1}n | s(x⊕ i)⊕ s(x) = j}.
The maximum coe�cient in this table (minus the �rst line and column) is the di�erential
uniformity of s which we denote ∆(s): ∆(s) = maxi>0,j>0(di,j).

Di�erential cryptanalysis relies on �nding di�erential transitions with high probabilities,
i.e. pairs (a, b) such that s(x⊕ a)⊕ s(x) = b has many solutions which is equivalent to da,b
being high. Therefore, cryptographers usually attempt to use S-Boxes s with as low a value
of ∆(s)) as possible. A function di�erentially 2-uniform, the best possible, is called Almost
Perfect Nonlinear (APN). The existence of APN permutations of GF (2n) for even n was
only proved recently by Browning1 et al. [21] in the case n = 6, while the case n = 8 and
beyond still remains an open problem. Hence, the di�erential uniformity of the S-Boxes of
the AES [10] and of most modern S-Box based ciphers is equal to 4.

The distribution of the coe�cients in the DDT of Skipjack is summarized in Table 1
along with the theoretical distribution identi�ed in [22] for a random permutation ofGF (28).
As we can see it is di�erentially 12-uniform, the same as you would expect from a random
permutation, which is surprising since minimizing the di�erential uniformity is usually one
of the corner stones of provable resilience against di�erential attacks.

Table 1: Distribution of the coe�cients in the DDT of F .

Coe�cient Number Proportion (%) in F Poisson(1/2) (%)

0 39104 60.14 60.65

2 20559 31.62 30.33

4 4855 7.467 7.582

6 686 1.055 1.264

8 69 0.106 0.158

10 5 0.008 0.016

12 2 0.003 0.002

We brie�y mention the linear properties of F before studying them thoroughly in Sec-
tion 2.2. In particular, we de�ne the Linear Approximations Table of an S-Box.

De�nition 3 (Linear Approximations Table). Let s : {0, 1}n → {0, 1}n be a function.
Its linear approximations table (LAT) is a 2n × 2n matrix where the number at line i and
column j is

ci,j = #{x ∈ {0, 1}n | x · i = s(x) · j} − 2n−1 =
1

2

∑
x∈{0,1}m

(−1)i·x⊕j·s(x)

1 The fact that Browning works at the NSA shows that this agency values theoretical considera-
tions, which makes the simplicity of F all the stranger.
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with "·" denoting the scalar product. The maximum absolute value of the ci,j is the linearity
of s, Λ(s), where Λ(s) = maxi>0,j>0(|ci,j |).
The quantity ci,j has di�erent names in the literature. It is called �bias� or �Imbalance�
of the Boolean function x 7→ i · x ⊕ j · s(x) in, for example, [22]. In papers from the
Boolean functions community, it is more often de�ned in terms of Walsh Spectrum, the
Walsh Spectrum of a Boolean function being the multiset {ci,j/2}i≥0,j≥0. The maximum
coe�cient in the LAT of F is Λ(F ) = 28 and it occurs in absolute value 3 times.

For the sake of completeness, we also give the sizes of the cycles in which F can be
decomposed: 2, 10, 45, 68, 131.

2.2 The Linear Properties are Too Good to be True

Figure 1 contains the distribution of the value of the coe�cients of the LAT (minus the
�rst line and column) along with the theoretical proportions for a random permutation of
GF (28) described below.
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Fig. 1: Coe�cients of the LAT of F , random permutations and some outputs of Improve-
R(s).

The probability distribution for the coe�cients ci,j in the LAT of a permutation of S2n

is described in [23]:

P [ci,j = 2z] =

(
2n−1

2n−2+z

)2(
2n

2n−1

) .

Using Section 3.4 of [22], we derived that Λ(s) has a mean over all permutations s ∈ S28

of approximately 34.8 which is notably larger than for F since Λ(F ) = 28.
Given the probability distribution of the coe�cients of the LAT, it is easy to compute the

probability that Λ(f) ≤ 28 assuming that f is a permutation chosen uniformly at random
and that the coe�cients' values correspond to independent sample of the same distribution.
Note that there are only (28 − 1)2 such trials because the �rst line and column are ignored
here.

P [Λ(f) ≤ 28] =
( 14∑
j=−14

P [ci,j = 2j])
)(28−1)2

≈ 2−25.62.
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This probability is low but it would be feasible to generate a set of about 226 random
permutations from S28 and compute the LAT for each of them. In such a set, the best
S-Box s should verify Λ(s) = 28. However, we must also take into account that in order
to resist linear cryptanalysis it is not only best to have a low maximum value, it is also
better to have a low number of occurrences of it. In this regard, F and its only three
occurrences of 28 could almost be considered as having a maximum value of 26 for which
P [Λ(f) = 26] = 2−66.4.

More rigorously, we compute the probability to have at most q coe�cients equal to 28 in
the LAT of a permutation picked uniformly at random from S28 . If we let p(2i) = P [ci,j =
2i], then this probability is equal to P28,q where

P28,q =

q∑
j=0

[((28 − 1)2

j

)(
p(28) + p(−28)

)j( 13∑
k=−13

p(2k)
)(28−1)2−j]

.

Unsurprisingly, we �nd that this probability is equal to 2−66.4 for q = 0, i.e. the proba-
bility to have Λ(s) ≤ 26. It also converges to 2−25.6 = P [Λ(s) ≤ 28] when q increases. For
q = 3, the case of Skipjack's F , we �nd:

P28,3 = 2−54.4.

The probability for a random permutation to have linear properties comparable to those of
Skipjack's F is thus at most 2−54.4. Hence, we claim:

� F was not chosen uniformly at random in S28 ,
� the designers of Skipjack did not generate many random permutation to then pick the
best according to some criteria as they would need to have generated at least about 255

S-Boxes,
� the method used to build F improved its linear properties.

2.3 A Possible Design Criteria

We tried to create an algorithm capable of generating S-Boxes with linear and di�erential
properties similar to those of F . It turns out that such an algorithm is easy to write. First,
we introduce a quantity we denote R(f) and de�ne as follows:

R(f) =
∑
`≥0

N` · 2`,

where N` counts coe�cients with absolute value ` in the LAT of f : N` = #{ci,j ∈
(LAT of f), |ci,j | = `}.

Algorithm 1 starts from a random permutation s of S28 and returns a new permutation
s′ such that R(s′) < R(s) and such that s′ is identical to s except for two entries x and y
which are swapped: s′(x) = s(y) and s′(y) = s(x). It works by identifying one of the highest
coe�cient in the LAT, removing it through swapping two entries and checking whether R(s)
was actually improved. This algorithm can be used in two di�erent ways: either we keep
iterating it until it reaches a point at which no swap can improve R(s) or we stop as soon
as R(s) is below an arbitrary threshold.

We implemented both variants. For the second one, we stop when R(s) < 1010 because
R(F ) ≈ 109.92. We denote N` the average number of coe�cient with absolute value ` in
the LAT or the DDT of the S-Boxes obtained. For the LAT, log2(N`) is given in Table 2
and in Figure 1; for the DDT it is in Table 3. �Random� corresponds to the average over
200 S-Boxes picked uniformly at random in S28 ; �F � to the distribution for the S-Box of
Skipjack; �F -like� to the average over 100 S-Boxes obtained using Improve-R() and stopping
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Algorithm 1 Improve-R(s)

c := LAT of s
Find a, b such that |ca,b| = Λ(s)
L := empty list
for all x ∈ {0, 1}8 do

if a · x = b · f(x) then
Append x to L

end if

end for

for all (x, y) ∈ L2, x 6= y do
s′ = s ; s′(x) = s(y) ; s′(y) = s(x)
if R(s′) < R(s) then

return s′

end if

end for

return Fail

Table 2: Distribution of log2(N`) in the LAT of di�erent S-Boxes.

` Random F F -like best R()

20 9.164 9.147 9.230 9.311

22 8.220 8.308 8.336 8.247

24 7.173 7.267 7.280 6.400

26 6.041 5.755 5.688 0.000

28 4.826 1.585 1.157 -

30 3.506 - - -

32 2.146 - - -

34 0.664 - - -

when R(s) < 1010; �best� to the average over 100 S-Boxes obtained using Improve-R() and
stopping only when it fails.

Using Improve-R() with an appropriate threshold allows us to create S-Boxes with both
linear and di�erential properties very close to F . However, in order to achieve this, we need
to choose a threshold value computed from F and which does not correspond to anything
speci�c. In fact, to the best of our knowledge, the quantity R(s) does not have any particular
importance unlike for instance the linearity Λ(s). Still, replacing R(s) by the linearity Λ(s)
or a pair (Λ(s),#{(i, j), ci,j = Λ(s)}) yields S-Boxes which are very di�erent from F . Such
S-Boxes indeed have a value of NΛ(s)−2 much higher than in the random case, which is not
the case for F .

While our de�nition of R(s) may seem arbitrary, it is the only one we could �nd that
leads to linear properties similar to those of F . For instance it may have been tempting
to base R(s) on the square of ` which is used when computing the correlation potential
of a linear trail, a quantity useful when looking for linear attacks. We would thus de�ne
R(s) =

∑
`≥0N``

2. However this quantity is worthless as an optimization criteria since it
is constant: Parseval's equality on the Walsh spectrum of a Boolean function imposes that
the sum of the (ci,j)

2 over each column is equal to 22n−2.

To conclude: we have found new non-random properties of the S-box of Skipjack which
are improving its strength against linear cryptanalysis and we developed and algorithm
which could be used to generate such S-boxes.
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Table 3: Distribution of log2(N`) in the DDT of di�erent S-Boxes.

` Random F F -like best R()

0 15.265 15.246 15.250 15.227

2 14.270 14.327 14.314 14.380

4 12.277 12.245 12.257 12.210

6 9.693 9.422 9.492 9.126

8 6.701 6.109 6.198 5.265

10 3.374 2.322 2.287 0.714

12 -0.059 1.000 -1.786 -5.059

14 -4.059 - -5.059 -

2.4 Public Information About the Design of Skipjack

The only information indirectly published by the NSA on Skipjack corresponds to an �In-
terim Report� [24] written by external cryptographers and it contains no information on
the speci�cs of the design. The most relevant parts of this report as far as the S-Box is
concerned are the following ones.

SKIPJACK was designed to be evaluatable [...]. In summary, SKIPJACK is based on
some of NSA's best technology. Considerable care went into its design and evaluation
in accordance with the care given to algorithms that protect classi�ed data.

Furthermore, after the �leakage� of an alleged version of Skipjack to usenet2, Schneier replied
with a detailed analysis of the cipher [26] which contained in particular the following quote
indicating that the S-box was changed in August 1992.

The only other thing I found [through documents released under FOIA] was a
SECRET memo. [...] The date is 25 August 1992. [...] [P]aragraph 1 reads:

1. (U) The enclosed Informal Technical Report revises the F-table in SKIPJACK
3. No other aspect of the algorithm is changed.

Note also that the �rst linear cryptanalysis of DES [4] had not been published yet in
August 1992 when the F-Table was changed. Gilbert et al. suggested at CRYPTO'90 [27]
to use linear equation to help with key guessing in di�erential attack to attack FEAL.
This block cipher was later attacked at CRYPTO'91 [28] and EUROCRYPT'92 [29] using
directly some linear equations involving plaintext, ciphertext and key bits. We can but
speculate about a connection between these papers and the change of S-Box of Skipjack.

3 Algorithm Decomposing Particular Structures

A powerful tool able to discard quickly some possible structures for an S-Box is its signature,
as shown in Lemma 1.

De�nition 4 (Permutation Signature). A permutation s of {0, 1}n has an odd signa-
ture if and only if it can be decomposed into an odd number of transpositions, a transposition
being a function permuting two elements of {0, 1}n. Otherwise, its signature is even.

The signature of f ◦ g is even if and only if f and g have the same signature.

2 An anonymous member of sci.crypt posted what they claimed to be Skipjack at a time when
this algorithm was still classi�ed [25]. Although the algorithm described, �S-1�, turned out to be
di�erent from Skipjack as we know it, it used similar notations � the S-Box is called �F-Table�
� and the key-schedule leads to identical round keys being used every 5 rounds, just like in the
actual Skipjack.
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Lemma 1. The following b× b permutations always have an even signature:

� Feistel Networks using XOR to combine the output of the Feistel function with the other
branch,

� Substitution-Permutation Networks for which the di�usion layer is linear in GF (2)b or
can be decomposed into a sequence of permutations ignoring a fraction of the internal
state.

Proof. Let b be the block size of the block ciphers considered. The proof for the case of
Feistel Networks with XOR can be found in [30].

Let us look at substitution permutation networks. An S-Box layer consists in the par-
allel application of several invertible S-Boxes operating on n bits, with n dividing b. This
operation can be seen as the successive application of the S-Box on each n bit block, one
after another. Such an operation ignores 2b−n bits, meaning that its cycle decomposition
consists in 2b−n replicas of the same set of cycles. Since 2b−n is even, the application of
each S-Box is even; which in turn implies that the successive application of the S-Box on
each block is even. More generally, any permutation which can be decomposed into a se-
quence of sub-permutations ignoring a fraction of the internal state is even. The fact that
permutations linear in GF (2)b are even is showed in the proof of Lemma 2 in [31]. ut

The restriction put on the di�usion layer of SPN's is usually not important, e.g. the di�usion
layer of the AES �ts the requirement. However, for small block sizes, it must be taken into
account.

So far, we have proved that F has been built in contrast to being picked out of a set
of random S-Boxes according to some criteria. The signature of F is odd so Lemma 1
implies that F cannot be a Feistel Network with XOR. The generic attack on the SASAS
structure [16] fails on F , meaning that it is not a simple SPN either. Finally, F is not a�ne
equivalent to a monomial of GF (2n) like for instance the S-Box of the AES. Indeed, such
functions have the same coe�cients in the lines of their DDT, only the order is di�erent.
This observation lead to the de�nition of the di�erential spectrum by Blondeau et al. [32].
It also implies that, for a monomial, the number of coe�cients equal to d in its DDT must
divide 2n − 1. As it is not the case for F , we can also rule out this structure.

However, this is not su�cient to conclude that F does not have a particular struc-
ture. It could be based on simple operations such as rotations, addition modulo 2n and
multiplication available in a typical microprocessor (thus o�ering the designer a bene�t of
memory-e�cient implementation) or on a Feistel Network which uses modular addition to
combine the output of the Feistel function with the other branch. We study these two possi-
bilities in this section by �rst describing an algorithm capable of decomposing S-Boxes built
from multiple simple arithmetic operations and then by presenting a new attack recovering
all Feistel functions of a small Feistel Network of up to 5-rounds regardless of whether XOR
or modular addition is used.

The purpose of the algorithms we present in this section can be linked to the more
general Functional Decomposition Problem (FDP) tackled notably over two rounds in [33].
In this paper, Faugère et. al. introduce a general algorithm capable of decomposing h =
(h1, ..., hu) into

(
f1(g1, ..., gn), ..., fu(g1, ..., gn)

)
where the hi's, fi's and gi's are polynomials

of n variables. The time complexity of this algorithm (see Theorem 3 of [33]) is lower
bounded by O

(
n3·(dfdg−1)

)
where df (respectively dg) is the maximum algebraic degree of

the fi's (respectively the gi's). Note that this lower bound on the time complexity is not
tight. In fact, the ratio n/u of the number of input variables over the number of coordinates
of h is also of importance, the lower being the better.
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3.1 Iterated Simple Arithmetic Permutation

A plausible assumptions for an e�cient yet compact S-box design is that the S-box is
constructed using a formula containing basic instructions available in the microprocessor.
Indeed, a simple code:

for (i = 0; i < 3; i++) {

y = a * (ROTL8((b * y) ^ c, d)) ^ e;

}

generates an S-box which may have a di�erential uniformity better than Skipjack's F 's for
a proper choice of constants a, b, c, d and e.

We introduce BreakArithmetic(s), an optimized tree-search capable of recovering the
simple operations used to create such an S-Box constructed as an arbitrary sequence of
basic processor instructions. It is based on the following observation. Suppose that s =
φr ◦ ... ◦ φ1, where the φi's are one of the following algebraic operations: constant XOR,
constant addition modulo 2n, multiplication by a constant modulo 2n and bit rotation by
a constant. Then s ◦ φ−11 =

(
φr ◦ ... ◦ φ1

)
◦ φ−11 = φr ◦ ... ◦ φ2, meaning that s ◦ φ−11 is �less

complex�, �closer from the identity� than s itself. The aim of this algorithm is to peel of
the φi's one after another by performing a tree-search among all possible simple operations
which selects operations to consider �rst based on how closer they get us to the identity.

In order for this to work, we need to capture the concept of �distance to the identity�
using an actual metric which can be implemented e�ciently. We chose to base this metric on
the DDT since it is less expensive to compute than the LAT3. We de�ne the following metric:
M(s) =

∑
`≥2N`(`− 2)2. Our tree-search privileges candidates φ1 such that M(s ◦ φ−11 ) is

closer from M(Id), where Id is the identity function.
Our implementation of this algorithm is for example capable of recovering the decom-

position of s : x 7→ ψ
(
ψ
(
ψ(x)

))
with ψ : x 7→ 0xa7 ·

(
(3 ·x⊕0x53) >>> 4

)
⊕0x8b. However,

our algorithm could not �nd any such decomposition for Skipjack's F despite running for
96 hours on a CUDA computer with more than 1000 cores for fast computation of the DDT.

3.2 Decomposing Feistel Structures

Another possible structure for F which is compatible with its having an odd signature is
a Feistel Network where the XOR is replaced by a modular addition. In this section, we
describe an algorithm which uses a SAT-solver to recover the Feistel functions of small
Feistel Networks which use either XOR or modular addition. We describe below the key
idea of this attack, namely the encoding of the truth table of each Feistel function using
Boolean variables and then how we can use this encoding to actually decompose a small
Feistel Network.

Methods to distinguish Feistel Networks from random permutations have been actively
investigated, notably in the work by Luby and Racko� [34] as well as by Patarin [35,36].
Here, we present a method which goes beyond distinguishing: it actually recovers all the
Feistel functions for up to 5-rounds of Feistel Networks with low branch width.

Encoding of the Feistel Function Let f : {0, 1}n → {0, 1}n be an unknown function.
We associate to each of its output bits i on each possible input x a unique variable zxi . The
truth-table of f is thus as shown in Table 4 for n = 3. We encode the fact that a vector of
Boolean variables yi, i ∈ [0, n− 1] is the output of f given input variables xi, i ∈ [0, n− 1]

3 One can also notice that linear operations do not alter the DDT pro�le of the permutation and
thus one has to recompute the metric only after non-linear operations.
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using the truth-table of f by building a CNF4 involving {xi}i<n, {yi}i<n and {zxi }i<n, x<2n

which is true if and only if (yn−1, ..., y0) = f(xn−1, ..., x0).

x2 x1 x0 y2 y1 y0

0 0 0 z02 z01 z00

0 0 1 z12 z11 z10

... ... ... ... ... ...

1 1 1 z72 z71 z70
Table 4: The variables used to encode an unknown function f : {0, 1}3 → {0, 1}3, where
(y2, y1, y0) = f(x2, x1, x0).

We denote biti(b) the i-th of the binary expansion of any integer b < 2n in little-endian
notation so that b =

∑
i<n biti(n)2

n−i. We also denote a1 the variable a itself and a0 its
negation. The procedure used to build this CNF is based on the following implication: if
{xi}i<n corresponds to the binary expansion of an integer x < 2n and {yi}i<n to the binary
expansion of the integer y = f(x), then yi ⊕ zxi = 0 for all i < n. Using the notations we
just introduced, this idea can be written as n implications, the conjunction of which for
j < n must hold: ( ∧

i<n

x
biti(x)
i

)
=⇒

(
yj ⊕ zxj = 0

)
.

Each of these can be turned into a CNF made of two clauses using that (a =⇒ b) ≡
(a0 ∨ b1), that (a⊕ b = 0) ≡

(
(a1 ∨ b0) ∧ (a0 ∨ b1)

)
and basic linear algebra as follows:(( ∨

i<n

x
1−biti(x)
i

)
∨ y1j ∨ z0j

)
∧
(( ∨

i<n

x
1−biti(x)
i

)
∨ y0j ∨ z1j

)
.

If we concatenate the CNF generated in this way for all values of x < 2n, we obtain a
CNF which we denote �CNF

(
f, {xi}, {yi}

)
� with 2n2n clauses involving n2n+2n variables.

It holds if and only if the assignment of the variables {xi}i<n and {yi}i<n is such that
(yn−1, ..., y0) = f(xn−1, ..., x0).

Generating the Full CNF and Solving Using CNF
(
f, {xi}, {yi}

)
, a SAT-solver and

the full codebook of a S-Box S : {0, 1}2n → {0, 1}2n, we can recover the Feistel functions
used to generate S if it was indeed generated using a Feistel network or prove that it was
not constructed in this fashion using DecomposeFeistel(S,R, operation) (see Algorithm 2).
To describe it, we introduce variables {xri }i<2n, {yri }i<n and, if the combining function is
a modular addition instead of a XOR, {cri }i<n for r < R where R is the number of rounds
we consider were used. These are summarized in Figure 2.

The general idea consists in building the CNF representation of the fact that S(p) = c
for each input/output pair (p, c) separately, concatenate these CNF's and then have a
SAT-solver solve the CNF obtained in this fashion. To each Feistel functions is associated
a unique set of n2n variables as described in the previous section. These are used when
encoding that half of the internal state at round r + 1 of the Feistel Network goes through
the corresponding Feistel function. The only di�culty left is the combination of the left
branch with the output of the Feistel function. In the case where a XOR is used, we can
simply encode that xr+1

i = yri ⊕ xri+n separately for each bit i. However, in the case of a

4 A formula in Conjunctive Normal Form is the conjunction of multiple clauses, each of them
being the disjunction of some possibly negated variables.
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xri , i < 2n

xr+1
i , i < 2n

Sr
yri ,
i < n

cri ,
i < n

Fig. 2: The variables used to encode round r of a Feistel Network operating on blocks of 2n
bits.

modular addition, we need to introduce a new set of variables for each evaluation of the
addition corresponding to the carry bits: {cri }i<n. The addition is then encoded into a CNF
using the CNF encoding of the following equations:

xri+1 = cri ⊕ xri+n ⊕ yri ,
cri+1 =

(
cri ∧ xri+n

)
∨
(
yri ∧ xri+n

)
∨
(
cri ∧ yri

)
.

Algorithm 2 DecomposeFeistel(S,R, operation)

C := empty CNF
for all p ∈ [0, 2n − 1] do

for all r ∈ [0, R− 1] do
{xp,r+1

i+n }i<n = {xp,ri }i<n
C := Concatenation of CNF

(
Sr, {xp,ri }i<n, {y

p,r
i }

)
and C

if operation is ⊕ then

Append CNF repr. of {xp,r+1
i }i<n = {yp,ri }i<n ⊕ {x

p,r
i+n}i<n to C

else

Append CNF repr. of {xp,r+1
i }i<n = {yp,ri }i<n � {xp,ri+n}i<n to C

end if

end for

for all i ∈ [0, n− 1] do
Append clause only made of literal (xp,0i )biti(p) to C
Append clause only made of literal (xp,Ri )biti(S(p)) to C

end for

end for

Run SAT-solver on C
if C is satis�able then

Extract truth-table of all Sr's from the variable assignment
return �Feistel Network with R rounds�

else

return �Not a Feistel Network with R rounds�
end if

A useful heuristic when trying to decompose more than 4 rounds is to look for decom-
positions with particular patterns in the sequence of the Feistel functions. For instance,
decomposing a 5-rounds Feistel Network with round functions (Sa, Sb, Sc, Sd, Sa) is easier
than decomposing a similar structure with round functions (Sa, Sb, Sc, Sd, Se) if this knowl-
edge is hard-coded in the CNF by using the same sets of variables to encode both Se and
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Sa. In this case, DecomposeFeistel(S,R, operation) also takes the assumed sequence of the
S-Boxes as an additional input.

Another improvement comes from the observation that constants can be XOR-ed (or
added/subtracted) in the input of Feistel functions in the �rst R − 2 rounds � provided
they are cancelled by XOR-ing (or adding/substracting) in the later rounds � without
changing the output of the function. Using this, we can arbitrarily decide that the �rst
Feistel functions all map, say, 0 to 0. This simpli�cation of the CNF helps the SAT-solver
a lot and is actually necessary to attack 5 independent rounds.

We implemented Algorithm 2 and used the SAT-solver Minisat [37] to solve the CNF
formula generated. The time taken to decompose S-Boxes actually made of small Feistel
Networks is smaller than the time taken to discard an S-Box which is not based on such a
structure. Decomposing 8× 8 S-Boxes built using 4-rounds Feistel Networks, regardless of
whether ⊕ or � is used, takes less than a second on a regular desktop PC5 and discarding
S-Boxes built in other ways requires about 5 seconds. Decomposing 5-rounds requires a
bit less than a minute but discarding this structure takes longer, for instance 3 minutes to
prove that F is not a 5-rounds ⊕-Feistel and 23 minutes to show that is it not a 5-rounds
�-Feistel. It is also possible to attack larger instances provided enough RAM is available. A
4-rounds Feistel Network corresponding to a 14× 14 S-Box can be broken in about 2 hours
using up to about 38 Go of RAM6.

The CNF formulas equivalent to F being a Feistel Network with 3,4 or 5 rounds, using
either ⊕ or � are all unsatis�able, meaning that F is not a Feistel Network with at most 5
rounds.

For the sake of completeness, we mention the existence of another time e�cient attack
on 5-round Feistel Networks by Gaëtan Leurent based on a boomerang-like property [38].
Indeed one of the open problems is how far cryptanalytic techniques can go in analysis of
ciphers with small block, where the full code-book is available to the attacker.

4 From an S-Box to a Picture and Back Again

In order to distinguish an S-Box from a random one we propose a new method which we
call Pollock's Pattern Recognition7. It is based on turning the DDT and the LAT of the
S-Box into a picture and then use the natural pattern �nding power of the human eye to
identify not-random properties. We also describe a method to perform (partially) the inverse
operation: Seurat's Steganography8. It creates an S-Box such that an image is embeded in
the picture representation of its DDT.

4.1 Pollock's Pattern Recognition

As is clear from Section 2, the distribution of the coe�cients in the LAT of an S-Box
provides a powerful tool to distinguish a random-looking S-Box from a permutation chosen
uniformly at random from the set of all permutations. We suggest here another method
for looking at these coe�cients which can also be applied to the DDT. The idea is to look
at the whole table at once, be it a DDT or LAT, and then rely on the pattern matching
capabilities of the pair human eye/human brain to possibly discard that the S-Box was

5 The PC used for the experiments has a Intel(R) Core(TM) i7-3770 CPU (3.40GHz) for a cpu
and 8 Go of RAM.

6 This experiment was performed on a single core of a dedicated server with 500 Go of RAM.
7 The pictures obtained in this fashion have a strong abstract feel to them, hence a name refering
to the painter Jackson Pollock for this algorithm.

8 As will be explained later, this algorithm works by drawing the image to embed point after point
just like in a pointillist painting, hence the name of the painter who invented this method.
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chosen uniformly at random. In order to look at the whole table, we associate to the values
of the coe�cients di�erent colors. Exactly which color scale to use is a question which can
only be answered by trying di�erent ones. As an illustration of the power of this method, we
provide pictures allowing us to discard the randomness of 4 S-Boxes using merely a quick
glance in Appendix B.

Zorro The S-Box of this cipher [9] is based on a 4-rounds Feistel Network with a complex
di�usion layer. As a consequence, the algorithm presented in Section 3.2 fails on it.
The picture representation of its LAT, given in Figure 4a, contains �stripes�. These
correspond to coe�cients equal to 6 (orange) and 2 (green). These never appear for
half of the input masks according to a repeating pattern. Such a behaviour is not
expected from a random permutation. The color scheme was chosen so as to highlight
this property. We note that the congruence modulo 2k for some k of the coe�cients of
the LAT is related to the algebraic degree of i · x ⊕ j · S(x) as explained for example
in [39] (Proposition 6.1).

CLEFIA This block cipher [40] uses two distinct S-Boxes. The one denoted S0 has a
particular structure based on smaller 4x4 S-Boxes. The LAT of this S-Box is given in
Figure 4b: note the �dents� on the top and left side of the picture as well as the low
number of colors compared to Figure 4c which also depicts a LAT and uses the same
color-scale. This low number of colors is a consequence of the fact that no coe�cient
in the LAT is congruent to 2 modulo 4 which in turn is related to this S-Box having
an algebraic degree equal to 6 on all of its coordinates. Neither this nor the �dents� are
expected from a random permutation.

SAFER+ This block cipher [41] uses an S-Box based on exponentiation in Z/256Z. Its
LAT is given in Figure 4c; note in particular the vertical lines whih appear in this
representation.

Arithmetic The DDT can also be used in the same fashion. For example, we can look
at the DDT of an S-Box generated using a simple algebraic expression similar to those
discussed in Section 3.1, namely s : x 7→ ψ

(
ψ(x)

)
with ψ : x 7→ 3 ·

(
(3 · x⊕ 0x53) >>>

4
)
⊕ 0x8b. The representation of its DDT is in Figure 4d. Note the white rectangles

corresponding to subsets of impossible di�erentials and the loose similarity between
the top left and bottom right quadrants on one hand and the top right and bottom
left quadrants on the other hand. None of these characteristics are expected from the
DDT of a random permutation. Note that with 3 iterations of φ this S-box becomes
reasonably good.

We however were not able to spot any particular pattern in the Pollock representation of
neither the DDT nor the LAT of Skipjack's F . Such representations are given respectively in
Figures 3a and 3b in Appendix B. We used the function matrix_plot from the SAGE [42]
software package to draw the Pollock representations.

4.2 Seurat's Steganography

In this section, we present an algorithm allowing the creation of a non-bijective S-Box such
that the picture representation of its DDT contains a particular image. Since we draw this
image dot after dot like in pointillism and since it hides said image, we call the method
we present below Seurat's Steganography. The pictures we embed are black and white, the
white parts corresponding to places where di�erentials are impossible and black parts to
places where the di�erentials have non-zero probability.

The Algorithm We de�ne white and black equations as those giving the corresponding
pixel color in the Pollock representation of the DDT of an S-Box.
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White Equations Wa,b : ∀x ∈ {0, 1}m, S(x+ a) + S(x) 6= b.
Black Equations Ba,b : ∃x ∈ {0, 1}m, S(x+ a) + S(x) = b.

The inputs considered in this Section are:

B The complete list of the black equations.
Tw A table of booleans of size u× v (the dimensions of the image) where Tw[a, b] is false if

and only if the pixel at (a, b) cannot be white.
S A partially unspeci�ed S-Box such that all equations Bj for j < i hold and such that

none of the Wj has a solution for any j.
i The index of the equation in B for which we need to �nd a solution.

We �rst need a sub-routine checking if adding an entry S(x) = y to a partially assigned
S-Box, i.e. an S-Box for which some of the outputs are unspeci�ed, leads to at least one of
the white equations not holding anymore. It is described in Algorithm 3.

Algorithm 3 checkW(S, x, y, Tw).

for all a ∈ {0, 1}m, if S(x+ a) is speci�ed, do

if Tw[a, S(x+ a) + S(x)] is false then return false

end for

return true

We now describe Seurat's Steganoraphy, namely Algorithm 4, which uses two lists of
equations to iteratively build an S-Box such that a particular picture appears in its DDT.
It works by �rst making a list L of all the ways entries could be added to the S-Box in order
to satisfy the black equation Bi. If none are found, the function fails. The function is �nally
called recursively on the candidates found to look for a solution for the next equation. If
no solution are found for the next equation, the function fails.

Some optimizations are possible. First of all, it is not necessary to write this algorithm
using recursion. It is also not necessary to let L be as large as possible. In fact |L| ≤ 2 is
su�cient, although |L| = 1 does not work unless the picture is very simple. It is also possible
to allow some noise by tweaking CheckW(S, x, y, Tw) to return true with low probability
for pairs (x, y) even if they blacken a white pixel.

Two outputs of this algorithm are presented in Appendix C: the S-Boxes are given along
with the Pollock representation of their DDT which clearly show the pictures we chose to
embed in them. The di�erential and linear properties of the S-Box described in Table 6 are
close from what would be expected from a random function (di�erential uniformity of 14,
linearity of 39), meaning that it could be used in a context were a 8 × 8 random function
would be su�cient.

Counting Possible S-Boxes Let S be a random function from {0, 1}m to {0, 1}n.
Then Wa,b holds if and only if da,b = 0, which happens with probability P [da,b = 0] =
exp

(
− 2m−n−1

)
because the coe�cients in the DDT of a random function follow approx-

imately a Poisson distribution with parameter 1/2 (see [22]). Hence, if we have b black
equations, w white ones and if we consider that their having solutions are independent
events, then the probability that an S-Box has the correct image at the center of its DDT

is Psuccess =
(
exp(−2m−n−1)

)w × (1− exp(−2m−n−1)
)b
. In the case where m = n, we use

that log2(exp(−1/2)) ≈ −1.35 and that log2(1 − exp(−1/2)) ≈ −0.72 to approximate this
probability by

Psuccess = 2−(0.72·w+1.35·b).
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Algorithm 4 Seurat(S,B, Tw, i).

δin := input di�erence in Bi
δout := output di�erence in Bi
L := empty list of S-Boxes
if Bi is already satis�ed by S then

Append S to L and return L
end if

for all x ∈ {0, 1}m do

if S(x) is not de�ned but S(x+ δin) is de�ned then

y = S(x+ δin) + δout
if CheckW(S, x, y, Tw) then

S′ = S ; S′(x) = y
Append S′ to L

end if

else if S(x+ δin) is not de�ned either then
for all y ∈ {0, 1}n do

if CheckW(S, x, y, Tw) and CheckW(S, x+ δin, y + δout, Tw) then
S′ = S ; S′(x) = y ; S′(x+ δin) = y + δout
Append S′ to L

end if

end for

end if

end for

If L is still empty then return Fail

for all S′ ∈ L do

If Seurat(S′, B, Tw, i+ 1) does not fail then return S′

end for

return Fail

As there are 2n2
n

possible n× n S-Boxes, we expect to have very roughly the following
amount of solutions:

NSolutions = 2n2
n−(0.72·w+1.35·b).

Therefore, we need 0.72 · w + 1.35 · b < n2n in order to have a non-empty set of S-Box
with the image we want inside their DDT. Black pixels are about twice as expensive as
white ones according to this model. However, in practice, it is only possible to build a S-
Box such that its DDT contains a black square of size 22× 22 or a white one of size 62× 62
without any noise, meaning that black pixels are, from our algorithm's point of view, about
8 times more expensive. Stirling's equation gives an approximate number of 2(n−1.44)·2

n

permutations of {0, 1}n, so we need that 0.72 · w + 1.35 · b < (n − 1.44)2n in order for
permutations with the correct black/white pixels to exist with non negligible probability.
However, our algorithm will require signi�cant changes in order to search for permutations.

Since our algorithm does not require the pixels to be organised inside a square, we can
also use it to force white or black pixels to appear anywhere in the DDT of an S-Box.
This could be used to place a sort of trapdoor by for instance ensuring that a truncated
di�erential compatible with the general structure of a cipher is present. Another possible
use could be to �sign� a S-Box: Alice would agree with Bob to generate a S-Box for him
and tell him before hand where some black/white pixels will be. Bob can then check that
those are placed as agreed.

5 Conclusion

Knowledge of the internal structure of an S-box gives clear advantages to the designer of a
cipher in terms of e�cient or side-channel resistant implementation. It is also crucial in the
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the white-box or crypto-currency setting. Hiding the S-box's structure can be also a way
to hide superior cryptanalysis techniques or trapdoors.

In this paper we have introduced several approaches and algorithms to decompose an
S-Box with unknown structure and we illustrated them by studying the S-Box of the NSA's
block cipher Skipjack. This allowed us to rule out some possible structure, and to prove
that its linear properties are too unlikely to have happened at random. We also provided
an algorithm capable of generating very similar S-Boxes.

An open problem related to this work is the study of block ciphers with small block
sizes: how far can cryptanalysis go given a whole codebook? How many rounds of small-
block Feistel Network or SPN is it feasible to break?
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A The S-Box of Skipjack

Table 5: Skipjack's S-Box, F , in hexadecimal notation. For example, F (7a) = d6.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. a3 d7 09 83 f8 48 f6 f4 b3 21 15 78 99 b1 af f9
1. e7 2d 4d 8a ce 4c ca 2e 52 95 d9 1e 4e 38 44 28
2. 0a df 02 a0 17 f1 60 68 12 b7 7a c3 e9 fa 3d 53
3. 96 84 6b ba f2 63 9a 19 7c ae e5 f5 f7 16 6a a2
4. 39 b6 7b 0f c1 93 81 1b ee b4 1a ea d0 91 2f b8
5. 55 b9 da 85 3f 41 bf e0 5a 58 80 5f 66 0b d8 90
6. 35 d5 c0 a7 33 06 65 69 45 00 94 56 6d 98 9b 76
7. 97 fc b2 c2 b0 fe db 20 e1 eb d6 e4 dd 47 4a 1d
8. 42 ed 9e 6e 49 3c cd 43 27 d2 07 d4 de c7 67 18
9. 89 cb 30 1f 8d c6 8f aa c8 74 dc c9 5d 5c 31 a4
a. 70 88 61 2c 9f 0d 2b 87 50 82 54 64 26 7d 03 40
b. 34 4b 1c 73 d1 c4 fd 3b cc fb 7f ab e6 3e 5b a5
c. ad 04 23 9c 14 51 22 f0 29 79 71 7e � 8c 0e e2
d. 0c ef bc 72 75 6f 37 a1 ec d3 8e 62 8b 86 10 e8
e. 08 77 11 be 92 4f 24 c5 32 36 9d cf f3 a6 bb ac
f. 5e 6c a9 13 57 25 b5 e3 bd a8 3a 01 05 59 2a 46

B Picture Representation of the DDT and LAT of Some S-Boxes

(a) The LAT of Skipjack's F (b) The DDT of Skipjack's F

Fig. 3: The Pollock representations of the LAT and DDT of Skipjack's F . For both, 0 is in
white and anything equal to or above 10 is black.
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(a) The LAT of the S-Box of Zorro (b) The LAT of the S-Box S0 of CLEFIA

(c) The LAT of the S-Box of SAFER+ (d) The DDT of a simple S-Box

Fig. 4: The Pollock representation of the LAT or DDT of di�erent S-Boxes. The scales all
go from 0 to 10 (anything above 10 is treated as equal to 10).

(a) The DDT of the S-Box in Table 6 (b) The DDT of the S-Box in Table 7

Fig. 5: The DDT of some outputs of Seurat's Steganography: |di,j | = 0 is in white, |di,j | ≥ 2
is in black.
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C S-Boxes Built from Pictures

The S-Box described in Tables 6 and 7 were built using the method described in Section 4.2.
Note that these are not bijections. The picture representations of their DDT are given in
Figures 5a and 5b.

Table 6: An output of the algorithm described in Section 4.2.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 7a b3 b9 b6 53 b1 26 6e b9 43 86 ec 94 4b 9e 43
1. 5d 83 d5 57 16 4c 44 d5 5d 81 7f 79 b3 8d e6 f8
2. 0d 59 b3 8d 04 4c 8d ec d9 � 7f 7a 7e 9a 92 61
3. 05 fc e3 1a ed 12 1e 52 1a e5 30 34 ef e5 97 e5
4. 9e 69 29 d6 29 cd b8 3a d2 c4 1b d1 1c 17 c3 3b
5. 44 ba bd 19 57 0c 5a 5f bb 55 b7 4a 5e 3f a6 fe
6. 7f c8 7e 65 be 1e b3 bf 8b 85 83 83 87 12 b2 26
7. a6 b4 bc ef 9e 9d 6c 9e 90 5e 68 25 30 97 9f 71
8. bf 64 65 9a 77 18 da 60 05 97 58 b2 88 d5 25 a1
9. 58 00 db 85 ca 9f 8d 42 db bc b2 b6 e7 85 44 78
a. ac be 5b 21 45 e9 40 4d 73 5f af 93 4b bd 45 42
b. 55 37 e2 c8 c8 20 d1 ee 7e 36 c5 28 32 37 2f d4
c. 86 21 79 70 08 b6 91 89 e3 e5 10 e5 c6 cf 02 ca
d. cc b9 e1 9a 8c 8c f3 70 ec 13 0f 00 17 7e 57 5c
e. 09 27 27 85 a0 87 3f 53 74 e3 b1 bd de b1 8d 61
f. 4b 84 9c f3 72 04 7e 9c 25 3e 98 9e 43 8d b2 9d

Table 7: An output of the algorithm described in Section 4.2.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 1b 1e e7 1b 00 1b 4f e7 07 a8 b7 1c 00 06 1c 1c
1. 30 a9 ab af 54 50 36 57 65 01 17 7c 53 99 fb 65
2. 86 b5 33 78 c9 80 f5 7f 79 7d 87 7a 4d 14 49 2b
3. 66 d5 c8 54 a9 57 54 ab aa 98 a8 a8 32 17 d2 cb
4. d4 e7 73 1b 51 b3 af 50 51 68 ac 6b d7 52 1b d5
5. 71 75 8a 97 c8 36 37 33 74 ce 75 4a 77 88 8f 77
6. 1b � e4 b5 � 1f 1e fa b3 4a b1 4c fd fc 4b 01
7. ca c8 a0 5b 5e a1 5b a6 9d c8 98 84 cb 31 ca cb
8. 33 ca 33 cc 7b 83 98 cb a2 7f a3 ce 34 33 cb cd
9. e7 fd � 03 7f 2d 00 b5 05 e5 � 02 03 06 fc 06
a. 88 8e 74 8b 8c 8e 8c 51 c9 03 88 c9 8a c9 70 fc
b. 94 2b d4 29 ae 69 6b af b7 91 b7 b7 8b 89 d4 75
c. d1 c9 98 99 61 ab aa 61 99 66 12 65 15 2d 2d 33
d. b3 b3 7c 86 83 7a 7f 78 cf 98 81 30 7e cf c9 c9
e. 01 a9 57 ad e3 80 ad 61 56 53 53 28 56 a8 c8 ae
f. 18 1d 00 06 df 52 52 af 1d 61 e2 60 e2 e6 fa e2
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