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Abstract. This paper studies the concrete security of PRFs and MACs
obtained by keying hash functions based on the sponge paradigm. One
such hash function is KECCAK, selected as NIST’s new SHA-3 standard.
In contrast to other approaches like HMAC, the exact security of keyed
sponges is not well understood. Indeed, recent security analyses delivered
concrete security bounds which are far from existing attacks.
This paper aims to close this gap. We prove (nearly) exact bounds on
the concrete PRF security of keyed sponges using a random permutation.
These bounds are tight for the most relevant ranges of parameters, i.e.,
for messages of length (roughly) ` ď mint2n{4, 2ru blocks, where n is the
state size and r is the desired output length; and for ` ď q queries (to the
construction or the underlying permutation). Moreover, we also improve
standard-model bounds.
As an intermediate step of independent interest, we prove tight bounds
on the PRF security of the truncated CBC-MAC construction, which
operates as plain CBC-MAC, but only returns a prefix of the output.

1 Introduction

Hash functions are popular building blocks for message-authentication codes
(MACs) and pseudorandom functions (PRFs) [23]. The latter are keyed functions
with the property that their outputs (under a secret key) are indistinguishable
from random, except with a (small) distinguishing gap ε. PRFs are not only
good MACs, but can also be used in a variety of other contexts, from symmetric
encryption to key derivation. The to-date most widely used hash-based PRF
construction is HMAC [4], and a large body of works has studied its concrete
security under different assumptions [3, 26, 18, 21].

It is very likely that hash-based MACs and PRFs will remain popular as
the upcoming SHA-3 hash function will replace older designs like MD5, SHA-1
and SHA-256. In contrast to legacy functions, the SHA-3 [1] competition winner
KECCAK [10] follows the sponge paradigm by Bertoni et al. [11]. A key property
of sponges is that they resist extension attacks, and this enables much simpler
approaches than HMAC to derive a PRF. For example, it is suggested (e.g.
in [11]) that one may simply pre-prend the key to the message.
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Our contributions, in a nutshell. This paper studies the exact security
(i.e., how large is the best distinguishing gap ε?) of keyed sponge constructions.
The existing indifferentiability security proof [11], as well as recent targeted anal-
yses [8, 2] yield upper bounds on ε for several keying approaches. However, it
is not clear that these bounds are the best possible ones. For example, they all
degrade quadratically in the message length, yet no known generic attacks seem
to exploit the message length at all.

In this work, we show that the concrete security of keyed sponges is far su-
perior to what was previously proved, and in particular only minimally depends
on the message length. We provide a nearly exact characterization of the PRF
security of keyed sponges in the model where the underlying n-bit permutation
is random and the adversary is allowed to issue queries to it. We consider both
variants where the key is processed as part of the input (as in HMAC) or where
the initialization value takes the role of key (akin to NMAC). Our bounds are
tight for messages whose length does not exceed (roughly) mint2r, 2n{4u blocks,
where r is the output length of the constructions and n is the underlying block
length – a constraint satisfied in all envisioned application scenarios. 3

The key to our results is a tight analysis of truncated CBC, the construction
operating as plain CBC-MAC without prefix-free encoding, but only returning a
subset of the output bits.

Security of Keyed Sponges.The sponge construction relies on an invertible
permutation π on n-bit strings.4 For a parameter b ă n, it pads the message
M into b-bit blocks M r1s, . . . ,M r`s, and keeps a state Si }Ti, where Si P t0, 1u

b

and Ti P t0, 1u
n´b. It outputs the first r bits of S` for some5 r ď b, where

S0 }T0 Ð 0n , Si }Ti Ð πppSi´1 ‘M risq }Ti´1q for i “ 1, . . . , ` .

We first consider the keyed construction GSponge which sets S0 }T0 to equal the
n-bit key value. We prove that when this key is secret and random, no attacker
making qC queries of length at most ` ă 2n{4 b-bit blocks to GSponge using a
random permutation π, and qπ queries to π itself (and to its inverse π´1), can
distinguish it from a random function, except with distinguishing gap roughly

εpqC , qπ, `q “ O

ˆ

q2C ` qCqπ ` `qC
2n´r

`
`q2C ` `qCqπ

2n

˙

.

The ideal-permutation model is common for sponge-based constructions, and
was used in [11, 8, 2]. For comparison, the previously best known bound was
dominated by a term of much larger magnitude Opp`2q2C ` `qCqπq{2

n´rq.6

3 For SHA-3, we have r ě 224 and n “ 1600, and thus processing messages exceeding
these lengths is practically impossible.

4 Naming consistency with the TCBC setting below forces us to deviate from the usual
naming in the literature on sponges.

5 The sponge paradigm also allows for outputs of r ą b bits obtained by repeated
application of π, an option that does not occur for any of the SHA-3 parameters,
and that we will not consider for simplicity in the present paper.

6 We note that the recently proved bound of Andreeva et al. [2] is slightly more general
and modular, as discussed in the full version [22]. In particular, it uses a somewhat



The Exact PRF Security of Truncation 3

The salient feature of our new bound is that the length ` only affects terms
with denominator 2n, or appears in a term `qC{2

n´r linear in qC . Therefore, the
terms with denominator 2n´r are the dominating ones when ` ď mint2n{4, 2ru,

and in this case, our bound simply becomes of the order Op
q2C`qCqπ``qC

2n´r q. We also
show that this is tight for maxtqC , qπu ě `, which is a very common scenario. We
leave the question of proving tightness of the remaining terms (or, alternatively,
of improving our bound) as a challenging open problem.

Our generalized analysis also shows that with respect to PRF security, we are
not constrained to any block length b ă n – we could well XOR n-bit message
blocks to the whole state. Shorter block lengths can then be enforced by the
padding function setting some of the bits to 0 (e.g. the last n ´ b bits). Note
that full, n-bit blocks were already used in the design of the sponge-based MAC
construction donkeySponge [9], which is implicitly covered by our result.

Black-box keying. In most scenarios, black-box keying by pre-pending a key
to the message is more desirable than altering the initial value. We provide a
complete analysis of key-prepending for arbitrary key-length b ¨w (for simplicity,
we assume that the key length fits exactly in w blocks). Our results are in terms
of the overall number of queries q “ qπ ` ` ¨ qC made to the permutation. We
distinguish two cases: If q2 ď 2n´b, then the additional keying step is secure as
long as q ď 2bw. In contrast, in the high-query regime, the keying step is secure
as long as q ď 2bw{2, which effectively requires doubling the key length to achieve
a similar security level as in the previous case. (This gap is due to the fact that
the high-q regime enables meet-in-the-middle attacks.)

We note that a similar analysis was given in [2] concurrent to our work, but
their initial proof was incorrect for w ě 2. The current version of [2] uses the
results from this paper to obtain a correct bound.

Standard-model bounds. We also show improved standard-model security of
keyed sponges under an assumption on the permutation π introduced by Chang
et al. [13] and further considered in [2]. The assumption is that a block ci-
pher built from the permutation π as EπKpXq “ p0

b }Kq ‘ πpX ‘ p0b }Kqq for
X P t0, 1un and K P t0, 1un´b, where b is the block length, is a pseudorandom
permutation. (Note that this construction is essentially a low-entropy single-key
version of the Even-Mansour cipher [20, 19].)

Our approach: Truncated CBC. Our analysis of keyed sponges builds on
top of a result of independent interest – a tight analysis of truncated CBC. In
particular, our standard-model bounds on sponges are a direct corollary of our
truncated-CBC analysis, whereas our bounds in the random permutation model
are obtained by a modification of the proof for truncated CBC.

In its basic form, the cipher block-chaining mode (or CBC, for short) [15,
28] uses a block cipher E with n-bit block size. The input M P t0, 1u˚ is first
padded into n-bit blocks M “ M r1s . . .M r`s, and then for a key K, CBCKpMq

different parametrization of the attacker complexity for the second term `qCqπ{2
n´r,

which converges to the above in the worst case, but which can make the term smaller
(and incomparable to ours) in some scenarios.
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outputs the value Y` resulting from the following iterative computation: Y0 Ð IV
and Yi Ð EKpYi´1 ‘M risq for all i P r`s, where IV is the initialization value,
e.g., IV “ 0n. The basic CBC construction is only secure for messages of equal
length ` [5]. Otherwise, one can easily mount an extension attack.

Three (variants of) solutions prevent extension attacks: The first one is prefix-
free encoding of messages [33]. The second outputs EK1pCBCKpMqq, under a key
K 1 independent from K. (This has been used in EMAC, developed as part of
the RACE project [35]). Also, combinations of these ideas have been used in
other constructions, like XCBC [12], TMAC [27], and OMAC [24]. The third
solution, considered in this paper, is to use truncation, i.e., to only output the
first r ă n bits of the output. While the first two variants have been extensively
analyzed [5, 33, 36, 29, 25, 6, 7, 34, 31, 30], we are not aware of any explicit analysis
of truncated CBC having ever been published,7 let alone a tight one.

We prove that no attacker making q queries of length at most ` ă 2n{4 to
TCBC using a random permutation can distinguish it from a random function,

except with distinguishing gap εpq, `q “ O
´

qpq``q
2n´r `

`q2

2n

¯

. This implies security

when the random permutation is replaced by a secure block cipher which is a
good PRP. The second term matches the one from the best known analysis of
prefix-free CBC [6], whereas we prove that the first term is tight for q ě `.

Our techniques.The analysis of TCBC immediately appears harder than that
of related constructions. Existing proofs are based on “Bad event analyses”: For
example, for encrypted MAC (as in EMAC), one defines the bad event that
for two distinct query messages M,M 1, CBCπpMq and CBCπpM 1q collide, where
CBCπ denotes (plain) CBC-MAC using a random permutation π. It is not hard
to prove that as long as no such collision occurs, the outputs π1pCBCπpMqq
are indistinguishable from random for an independent permutation π1, and the
distinguishing advantage is upper-bounded by the probability of such collisions.8

This implies indistinguishability when π and π1 are replaced by EK and EK1 ,
respectively, for a block cipher E and independent keys K and K 1. Similarly, for
prefix-free CBC the bad event is that in the evaluation of CBCπpMq, the last
internal query to π is not fresh, i.e., it was already made within the same or an
earlier evaluation of CBCπ.

For TCBC, however, if we make a query M , resulting into output Y (con-
sisting of the first r bits of CBCπpMq), we cannot prevent a later query M 1,
with output Y 1, where M 1 is a prefix of M . Previous machinery only tells us
that CBCπpMq and CBCπpM 1q are unlikely to collide, but this is insufficient to
argue randomness and independence of Y and Y 1. Moreover, the last query to
π within the evaluation of CBCπpM 1q cannot be fresh, as the same query was
made earlier within the evaluation of CBCπpMq. One cannot swap the order of
these queries either, as the choice of M 1 may well depend adaptively on Y .

7 Implicitly, the techniques from sponge analyses [11, 8, 2] yield non-tight bounds of
order Op`2q2{2n´rq.

8 This notwithstanding, proving bounds on the collision probability is far from triv-
ial [6, 34].
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To deal with this, our proof will crucially use Patarin’s H-coefficient tech-
nique [32], as recently revisited by Chen and Steinberger [14]: We fix a (deter-
ministic) adversary A and a compatible transcript pM1, Y1q, . . . , pMq, Yqq (i.e., A
indeed would ask such queries M1, . . . ,Mq if fed with the corresponding answers
Y1, . . . , Yq) and then compare the probabilities that such a transcript would in-
deed occur with A in the real and in the ideal world, respectively. It is easy to
see that the latter ideal-world probability is exactly 2´rq, as all outputs of a
random functions on (distinct) inputs M1, . . . ,Mq are random.

However, the real world (where TCBC is evaluated), is far more complex.
We are going to show the probability that Pr rTCBCπpMiq “ Yis is at least p1´
εq2´rq, for some small ε, as long as π is uniformly distributed, conditioned on
the following being true:

- For every message Mi, the value Zi Ð CBCπpMiq is unique. (This is equiv-
alent to stating that the π-query leading to the value Zi in the evaluation
of Mi is unique.) Recall that the actual output on input Mi consists of the
first r bits of Zi.

- For every message Mi, and every message Mj such that Mi is a prefix of Mj ,
the value Zi,j Ð CBCπpMi }mq is unique, where m is the first n-bit block in
Mj after the end of Mi.

It turns out that those conditions are satisfied also except with some small
probability δ. The actual indistinguishability bound happens to be ε ` δ by
the H-coefficient method, but determining both values will be at the core of
the proof. While an upper bound on δ follows by using techniques from [6, 34],
upper-bounding ε will require new techniques.

Our security proof for sponges is very similar, and will essentially rely on
the argument that with good probability (roughly `qπqC{2

n), queries to π made
in the evaluation of the sponge queries and direct queries to π by the attacker
are disjoint. However, while this is fairly simple to show when the sponge con-
struction is keyed by setting the initial value pS0, T0q to be an n-bit secret key,
proving the same statement when the key is input through several absorbing
steps turns out to be more involved. We also give a security proof for this more
complex setting using techniques inspired by [17].

Standard-model analysis. A recent paper by Chang et al. [13] also provides
a security analysis of variants of sponge constructions in the standard model.
We note that (a simple twist of) their very elegant trick reduces the security of
the sponge construction with a random IV as the key (this is the construction
GSponge) to the security of TCBC for a random permutation and the PRP
security against `q queries of the block cipher Eπ described above. Our bounds
for TCBC directly yield improved standard-model bounds.

Their technique was generalized further in the recent work of Andreeva et
al. [2].) Beyond the modularity, the main technical contribution of their work is
to reduce (in some contexts) the quantity `q in the reduction to the security of
Eπ. Their contribution is completely orthogonal to ours, and their techniques
can be applied in our context.
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2 Preliminaries

We denote rns :“ t1, . . . , nu. Moreover, for a finite set S (e.g., S “ t0, 1u), we let
Sn, S` and S˚ be the sets of sequences of elements of S of length n, of arbitrary
(but non-zero) length, and of arbitrary length, respectively (with ε denoting the
empty sequence). We denote by Sris the i-th element of S P Sn for all i P rns.
Similarly, we denote by Sri . . . js, for every 1 ď i ď j ď n, the sub-sequence
consisting of Sris, Sri ` 1s, . . . , Srjs, with the convention that Sri . . . is “ Sris.
Moreover, we denote by S }S1 the concatenation of two sequences in S˚, and
also, we let S � T be the usual prefix-of relation: S � T ô pDS1 P S˚ : S }S1 “ T q.

We also let Fcspm,nq be the set of functions mapping m-bit strings to n-bit
strings, and let Permpnq Ď Fcspn, nq be the set of permutations on the set of
n-bit strings. We use the shorthand Fcsp˚, nq to denote the set of functions from
t0, 1u˚ to t0, 1un. Finally, we denote the event that an adversary A, given access
to an oracle O, outputs a value y, as AO ñ y.

Pseudorandom functions.We consider keyed functions F : t0, 1uκˆt0, 1u˚ Ñ
t0, 1ur taking a κ-bit key, arbitrary long messages M P t0, 1u˚ as inputs, and
returning an r-bit output. In particular, we denote as FK the map such that
FpK, ¨q “ FKp¨q. We are typically interested in the security of F as a pseudoran-
dom function (or PRF, for short) [23]. This is defined via the following advantage
measure, involving an adversary A, such that

AdvprfF pAq :“
ˇ

ˇ

ˇ
Pr

”

K
$
Ð t0, 1uκ : AFK ñ 1

ı

´ Pr
”

f
$
Ð Fcsp˚, nq : Af ñ 1

ı
ˇ

ˇ

ˇ
.

We consider constructions Crπs : t0, 1u˚ Ñ t0, 1ur invoking a permutation π P
Permpnq (we sometimes write Cπ instead of Crπs), and denote by C the resulting
keyed function where the key is a permutation π P Permpnq (i.e., there are 2n!
key values).

For our analysis of keyed sponges, we are also going to consider constructions
Fπ : t0, 1uκ ˆ t0, 1u˚ Ñ t0, 1ur invoking a public randomly chosen permutation

π
$
Ð Permpnq, i.e., one that can be evaluated directly by the adversary. For this

case, we use the following notation to express the PRF advantage of A in the
so-called ideal permutation model:

AdvprfF,πpAq :“
ˇ

ˇ

ˇ
Pr

”

K
$
Ð t0, 1uκ, π

$
Ð Permpnq : AFπK ,π,π

´1

ñ 1
ı

´

´ Pr
”

f
$
Ð Fcsp˚, rq, π

$
Ð Permpnq : Af,π,π´1

ñ 1
ı ˇ

ˇ

ˇ
.

MACs and Unpredictability. It is appropriate to note that good PRFs also
yield good message-authentication codes (MACs). A concrete security bound for
unforgeability can be obtained from our PRF bounds via a standard argument.

3 Truncated CBC and its Security

This first part of the paper deals with the concrete security of truncated CBC
(TCBC). On top of being of independent interest, the TCBC analysis of this
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0n ‘ π ‘ π ¨ ¨ ¨ ‘ π /
r

TCBCr,padrπspMq

M r1s M r2s M r`s

Fig. 1. Truncated CBC TCBCr,padrπs. Here, M r1s, . . . ,M r`s are n-bit blocks result-
ing from applying the padding scheme pad to the input message M P t0, 1u˚.

section will be instrumental to analyze the security of keyed sponges in Section 5
below. First off, our analysis of keyed sponges in the ideal permutation model
will rely on a modification of the proof for TCBC. Second, our standard-model
proofs for keyed sponges will directly apply the TCBC result in a black-box way.

Truncated CBC. We fix two parameters r ă n and a padding scheme pad :
t0, 1u˚ Ñ pt0, 1unq

`
, uniquely encoding arbitrary strings into non-empty se-

quences of n-bit blocks. (We are not requiring the padding to be prefix-free.)
The canonical approach computes padpMq by appending a single 1-bit to M ,
and then sufficiently many 0’s to reach a length which is a multiple of n.9

The (plain) CBC construction for padding scheme pad, using π P Permpnq,
computes CBCπpadpMq by first producing n-bit blocks M r1s, . . . ,M r`s Ð padpMq,
and then outputs S`, where

S0 Ð IV , Si Ð πpM ris ‘ Si´1q for all i “ 1, . . . , `. (1)

Then, truncated CBC (or TCBC, for short) on input M P t0, 1u˚, outputs the
first r ă n bits of CBC evaluated on input M , i.e.,

TCBCπr,padpMq “
`

CBCπpadpMq
˘

r1 . . . rs .

Also cf. Figure 1 for a pictorial representation.

Security analysis.The following theorem characterizes the concrete PRF se-
curity of the TCBC construction in the case where π is randomly sampled from
Permpnq. By a standard argument, this implies that TCBC is a secure PRF
when π is instantiated with a block cipher which is secure as a pseudorandom
permutation (PRP).

Theorem 1 (Security of TCBC). Let A be a prf-adversary making at most q
queries, each of length at most ` ă 2n{4 n-bit blocks (after padding). Let TCBC “
TCBCr,padrπs for a random permutation π P Permpnq. Then, for any t ě 1,

AdvprfTCBCpAq ď p6t` 17q
`q2

2n
`

8n ¨ q2

2n´r
`

8q`

2n´r
`

2q

2n
`

136`4q2

22n
`

2qt`1`t`1

2nt
. (2)

The proof of Theorem 1 is found below in Section 4, where we also give high-
level overviews of the individual components of the proof. Here, we first discuss
the bound and its tightness.

9 In this case, padpMq consist of ` “ r
|M |`1
n

s n-bit blocks.
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Discussion of the bound. First off, note that q ă 2pn´rq{2 for the above
bound to be negligible. We stress in particular that under the constraints ` ă
2n{4, the first three terms are the leading ones: Indeed, 2q{2n is always negligible
if the other terms are, and the second last term is for sure negligible as long as
` ă 2n{4. For the final term, note that q` ă 23n{4 for the previous terms to be
negligible, and the term becomes negligible for t ě 4.

Given this, the most important point is that when additionally ` ă 2r, the
bound is of the order Oppq2 ` q`q{2n´rq, and thus only mildly depends on the
length. In the full version, we also show how to break TCBC with a q-query prf-
adversary achieving distinguishing advantage roughly Ωpq2{2n´rq. The attack
works regardless of the permutation π used to instantiate TCBC. Therefore, the
bound is tight when additionally q ě `. We leave it as an open question to
determine tightness for other parameter cases.

4 Proof of Theorem 1

We start with the high level overview of the proof of Theorem 1, which relies
on Patarin’s H-coefficient technique [32], for which we give a self-contained in-
troduction below. (The notation we use is consistent with the recent revisited
version of the framework by Chen and Steinberger [14].)

Roadmap. Sections 4.1 and 4.2 first introduce the notational framework to
precisely describe interactions between A and the given system – i.e., either

TCBCrπs for π
$
Ð Permpnq or a truly random function f

$
Ð Fcsp˚, nq. Then,

Section 4.3 will review the H-coefficient method, and apply it to our setting.
Finally, Section 4.4 will state and explain the individual probabilistic lemmas
composing the rest of the proof, and combine them into the theorem.

Simplifying assumption. Throughout the proof, we assume that (1) A is de-
terministic, (2) it makes exactly q queries, and (3) it never repeats the same query
twice. All these assumptions are without loss of generality for an information-
theoretic indistinguishability analysis, since any (possibly randomized) adversary
making at most q queries can be transformed into one satisfying these constraints
and achieving advantage which is at least as large.

4.1 Message trees

We start by introducing some graph-theoretic concepts – the message tree, and
its reduced version – which capture the inherent combinatorial structure of any
q messages M1, . . . ,Mq queried by the attacker, as well as the internal values
computed while these messages are processed by TCBC. Then, we will put these
concepts to work to define transcripts describing the adversary’s interaction with
either of TCBC or a random function f .

We stress that our transcripts will release more information than what is
actually seen by the adversary A: This information will make the proof simpler,
and will not help substantially in distinguishing TCBC from random.
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ε
0

0

πp0q

0 }0

πp0‘ πp0qq

0‘
πp
0q

0 }1 πp1‘ πp0qq

0 }1 }1

πp1‘ πp1‘ πp0qqq
1
‘
π
p1
‘
π
p0
qq

1
‘
πp0q

0

1

πp1q

1

Fig. 2. (Reduced) message tree. Message tree for permutation π P Permpnq and
four messages M1 “ 0, M2 “ 0 }0, M3 “ 0 }1 }1, and M4 “ 1, where b “ bn for
b P t0, 1u. The gray vertices correspond to these four messages. Labels are represented
in proximity of the vertices and the edges they are assigned to (as a function of π) and
we let λpεq “ 0 “ IV. The boxed labels are omitted in the reduced message tree.

The message tree. Let q ě 1, π P Permpnq, and let M1, . . . ,Mq P pt0, 1u
nq
`

represent the padded versions of the messages. These q messages induce a labeled
tree TπpM1, . . . ,Mqq “ pV,E, λ, γq – called the message tree, and often simply
denoted as T or Tπ, whenever parameters are clear from the context – defined
as follows:

- The set V of vertices of the tree is V :“
 

M 1 P pt0, 1unq
˚

: Di P rqs : M 1 �Mi

(

,
where | is the prefix-of partial ordering of strings. In particular, note that
the empty string ε is a vertex.

- The set E Ď V ˆV of edges is E :“ tpM,M 1q : Dm P t0, 1un : M 1 “M }mu.
- We label vertices and edges recursively. Concretely, we define λ : V Ñ t0, 1un

and γ : E Ñ t0, 1un. We start with λpεq “ IV. Then, for every vertex
M }m P V where M P V and m P t0, 1un, we set

λpM }mq “ πpλpMq ‘mq .

Moreover, we let γppM,M }mqq “ λpMq ‘m.

An example of a message tree is given in Figure 2. Note that the vertex labels
λpMq are exactly the values of CBCrπspMq while the edge labels correspond to
the inputs on which π is invoked. Strictly speaking, edge labels are redundant
as they can be reconstructed from the vertex labels and V , but their explicit
definition will occasionally simplify descriptions.

For every vertex M P V (where possibly M R tM1, . . . ,Mqu), we let MM be
the set of n-bit blocks m such that pM,M }mq P E and DM “ |MM | be the
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out-degree of vertex M . It is convenient to denote Di “ DMi
and Mi “ MMi

for all i P rqs. A very useful fact we repeatedly use below is that

q
ÿ

i“1

Di ă q . (3)

This is because every edge pMi,Mi }mq can be uniquely mapped to the shortest
message Mj such that Mi }m is a prefix of Mj .

The reduced message tree.An abridged version of the above tree, called the
reduced message tree and denoted T

π
“ T

π
pM1, . . . ,Mqq, will be used in the defi-

nition of transcripts below. In particular, T
π

is obtained from TπpM1, . . . ,Mqq “

pV,E, λ, γq as follows. First, we check whether the following condition is true for
the given labels λ and γ, and if so, we let T

π
“ ‹:

- There exists i P rqs and M P V ztMiu such that λpMiq “ λpMq; or
- For some i P rqs and m P Mi, there exists M P V ztMi }mu such that
λpMi }mq “ λpMq.

This condition is met when a label of an actual message in tM1, . . . ,Mqu, or of
one of its successor vertices, collides with some other label. (Labels not associated
with messages are allowed to collide with each other.)

If the above condition is not true, we are going to selectively delete some
labels from T (setting them to K) to obtain a new vertex- and edge-labeled tree,
which is the value taken by T . Specifically,

- For all i P rqs, we let λpMiq “ K.
- For all i P rqs and all m PMi, we let γpMi,Mi }mq “ K.

In other words, we remove the information necessary to recover the values λpMiq

for all i P rqs.10

In Figure 2, we explicitly show what is omitted when computing the reduced
message tree in the case where the tree is not reduced to equal ‹.

4.2 Interactions and transcripts

We call a sequence of query/answer pairs pM1, Y1q, . . . , pMq, Yqq valid if the ad-
versary A asks indeed queries M1, . . . ,Mq when fed with answers Y1, . . . , Yq to
its queries. (Since A is deterministic, the first query M1 only depends on A, the
second query only depends on A and the first answer Y1, etc..) Moreover, a valid
transcript has the form

τ “ ppM1, Y1q, . . . , pMq, Yqq, T
π
pM1, . . . ,Mqqq ,

where pM1, Y1q, . . . , pMq, Yqq is valid, π : t0, 1un Ñ t0, 1un is a permutation, and

T
π
pM1, . . . ,Mqq is the reduced message tree for M1, . . . ,Mq with respect to π.

10 Note, however, that some information about these values can be deduced from the
rest of the labels using the fact that π is a permutation. As we will implicitly see
below, this information is irrelevant.
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We differentiate between the ways in which such valid transcripts are gener-
ated in the real and in the ideal worlds, respectively, by defining corresponding
distributions Treal and Tideal over the set of valid transcripts:

Real world. The transcript Treal for the adversary A is obtained by sampling

π
$
Ð Permpnq, and letting

Treal “ ppM1, Y1q, . . . , pMq, Yqq, T
π
pM1, . . . ,Mqqq ,

where we execute A, which asks queries M1, . . . ,Mq answered with Yi “

TCBCrπspMiq for all i P rqs, and we let T
π
pM1, . . . ,Mqq be the correspond-

ing reduced message tree. Note that because A is fixed and deterministic,
Treal only depends on π, and thus we occasionally write Trealpπq for the cor-
responding map.

Ideal world. The transcript Tideal for the adversary A is obtained similarly

to the above. However, here we sample both a random permutation π
$
Ð

Permpnq and q independent random values Y1, . . . , Yq
$
Ð t0, 1ur, and let

Tideal “ TidealpY1, . . . , Yq, πq “ ppM1, Y1q, . . . , pMq, Yqq, T
π
pM1, . . . ,Mqqq ,

where M1, . . . ,Mq are the queries asked when executing A and answering
each query Mi with Yi, for all i P rqs. We stress that here we are augmenting
the ideal world with an additional independent random permutation π which
does not actually exist in the original prf distinguishing game. This is in order
to make real- and ideal-world transcripts alike. In particular, the tree T

π
is

generated according to the permutation π.

Note that the range of Treal is included in the range of Tideal by definition, and
that the range of Tideal is easily seen to contain all valid transcripts.

4.3 The “H-Coefficient Method”: Good and bad transcripts

We upper bound the advantage A in distinguishing TCBCrπs for π
$
Ð Permpnq

from a random function using the statistical distance of the transcripts, i.e.,

AdvprfTCBCpAq ď SDpTreal,Tidealq “
1

2

ÿ

τ

|Pr rTreal “ τ s ´ Pr rTideal “ τ s| , (4)

where the sum is over all valid transcripts. This is because a distinguisher for
Treal and Tideal, whose optimal advantage is exactly SDpTreal,Tidealq, can always
output the same decision bit as A, ignoring any extra information provided by
the transcript.

To this end, we are going to use Patarin’s H-coefficient method [32], recently
revisited in [14]. Concretely, this means that we need to partition the set of
possible transcripts into good transcripts GT and bad transcripts BT to enable
effective usage of the following lemma.

Lemma 1 (The H-Coefficient Method). Let δ, ε P r0, 1s be such that:
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(a) Pr rTideal P BTs ď δ.

(b) For all τ P GT, PrrTreal“τs
PrrTideal“τs

ě 1´ ε.

Then, AdvprfTCBCpAq ď SDpTreal,Tidealq ď ε` δ .

More verbally, we require that with very high probability (i.e., 1´δ) a generated
transcript in the ideal world is going to be in GT, and moreover, for each such
good transcript, the probabilities that it occurs in the real and in the ideal worlds
are roughly the same, i.e., at most a multiplicative factor 1´ ε apart.

Transcript-dependent quantities. Concretely, a transcript τ will be de-

fined as “good” if the associated reduced message tree T “ pV,E, γ, λq is not
‹ and not “too degenerate”. This requires introducing two relevant quantities.
Before doing so, however, we first note that T defines a partial permutation π
on the n-bit strings such that πpγpeqq “ λpvq for every edge e with end-node v
with γpeq, λpvq ‰ K, and πpxq “ K for all other inputs.

We will make use of the following quantities, which connect the outputs
Y1, . . . , Yq with T .

Definition 1. Let τ “ ppM1, Y1q, . . . , pMq, Yqq, T “ pV,E, γ, λqq be a valid tran-
script with associated partial permutation π. Then, for all i P rqs we define:

- N
p1q
i pτq is the number of x P t0, 1un with πpxq ‰ K and πpxqr1 . . . rs “ Yi.

- N
p2q
i pτq is defined as

N
p2q
i pτq :“ |tz P t0, 1un : zr1 . . . rs “ Yi ^ De P E,m PMi : γpeq “ z ‘muu| .

Moreover, for a P t1, 2u, let N paq “
řq
i“1N

paq
i . If T “ ‹, then these values are

set to 0.

Let us give some intuition on how the above quantities behave for an ideal-world
transcript. Note that π is defined on at most q ¨ ` values, and the value πpxq,
when first defined, is obtained by sampling a (nearly) uniform random n-bit

string. Thus the expectation of N
p1q
i is roughly q`{2r, and in turn, N p1q should

be roughly q2`{2r.

Also, note that N
p2q
i is the number of n-bit strings z which are consistent

with Yi in their first r bits which have additionally the property that for some
message block m P Mi, z ‘ m is the (non-K) label of an edge in the reduced
message tree. Here, the intuition is that every edge label γpeq in the partial tree
is uniform (this won’t be quite true, but let us assume it is), and therefore the

expectation of N
p2q
i should be (roughly) Diq`{2

r, and thus, the expectation of
N p2q should also be roughly q2`{2r, using

ř

iDi ď q.

Good transcripts.We require that in a good transcript τ the actual values of
N p1q and N p2q are not too far off their (heuristic) expected values we mentioned
above. Moreover, we also want that the reduced message tree is not degenerate,
i.e., even though we can’t see them, we want the guarantee that the labels of
the actual messages (and their successors) are unique – the failure to satisfy this
would be signalled by T “ ‹ by definition.
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Definition 2 (Good Transcripts). Let τ “ ppM1, Y1q, . . . , pMq, Yqq, T q be a
valid transcript. We say that the transcript is good (and thus τ P GT) if the
following properties are true (for t ě 1 as in the theorem statement):

(1) T ‰ ‹.
(2) N p1qpτq ď 3q pqt`{2r ` nq.
(3) N p2qpτq ď p2n` 1qq2 ` p3t` 1qq2`{2r ` 8q2`4{2n`r.

We denote as GT the set of all good transcripts, and BT the set of all bad
transcripts, i.e., transcripts which can possibly occur (i.e., they are in the range
of Tideal) and are not good. More specifically, we denote by BTi the set of all
bad transcripts that do not satisfy the i-th property in the definition of a good
transcript above, hence we have BT “

Ť3
i“1 BTi.

4.4 High-level lemmas and putting pieces together

Bounding the ratio. In Section 4.5 below, we are going to prove the following
lemma.

Lemma 2. For all good transcripts τ P GT,

PrrTreal“τs
PrrTideal“τs

ě 1´
´

Np1q`Np2q

2n´r `
2q2

2n´r

¯

. (5)

Bounding probability of bad transcripts.We now upper bound the prob-
abilities that a transcript sampled according to Tideal is bad via the following
lemmas, proved in the full version [22] for lack of space.

Lemma 3 (Bad-Transcript Analysis for BT1). PrrTideal P BT1s ď 16`q2{2n`
128`4q2{22n.

Lemma 4 (Bad-Transcript Analysis for BT2). For t ě 1 as in the theorem
statement, Pr rBT2s ď q{2n ` pq ¨ `qt`1{2nt.

Lemma 5 (Bad-Transcript Analysis for BT3). For all t ě 1 as in the the-
orem statement, Pr rBT3s ď q{2n ` 8q`{2n´r ` pq ¨ `qt`1{2nt.

The proof of Lemma 3 above uses and extends techniques inherited from the work
of [6] and in particular their analysis of prefix-free CBC. The proof requires some
extra work, since we are considering non-prefix free messages.

One would expect that the proofs of Lemma 4 and 5 follow by application
of a simple Chernoff-like argument. Unfortunately, more work is required: First
off, the sampled values are not uniform, but only close to uniform. But more
importantly, Lemma 5 requires to prove a concentration bound on a series of
random variables (the edge labels) which are defined adaptively by an iterative
process when computing the reduced message tree. Our technique will essentially
show that most of the edge labels will exhibit a high degree of independence,
and only a small number of them will be defined by “recycled values” when
generating the tree.
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Combining pieces. Therefore, we can apply Lemma 1 using ε and δ extracted
from the above lemmas. In particular,

ε “
N p1q `N p2q

2n´r
`

2q2

2n´r
ď
p6t` 1q`q2

2n
`

8nq2

2n´r
`

8q2`4

22n
,

and

δ “
2q

2n
`

8q`

2n´r
`

16`q2

2n
`

128`4q2

22n
` 2

pq ¨ `qt`1

2nt
.

In particular, we simplify

ε` δ ď p6t` 17q
`q2

2n
`

8n ¨ q2

2n´r
`

8q`

2n´r
`

2q

2n
`

136`4q2

22n
`

2qt`1`t`1

2nt
.

4.5 Lower bounding the probability ratio (Proof of Lemma 2)

We fix a good transcript τ “ ppM1, Y1q, . . . , pMq, Yqq, T q P GT, where T “

pV,E, λ, γq ‰ ‹. To start with, we define the set Ωrτ s of π’s consistent with
τ in the real world, i.e.,

Ωrτ s :“ tπ P Permpnq : Trealpπq “ τu .

Moreover, let Ω1rτ s be the set of permutations π which are consistent with the
labels of the reduced message tree T , however TCBCπpMiq does not need to
equal Yi for all i. More formally,

Ω1rτ s :“
!

π P Permpnq : T
π
pM1, . . . ,Mqq “ T

)

.

Now, we define

ppτq :“
|Ωrτ s|

|Ω1rτ s|
“ Pr

”

π
$
Ð Ω1rτ s : π P Ωrτ s

ı

.

This is the probability that a random permutation π consistent with the con-
straints on the reduced message tree also yields TCBCπpMiq “ Yi for all i P rqs.11

The following claim will reduce lower bounding the probability ratio to lower
bounding ppτq for τ P GT, and its proof is omitted here.

Claim (1). For all good transcripts τ P GT, PrrTreal“τs
PrrTideal“τs

“ 2r¨q ¨ ppτq .

It is easy to see that the ordering of pM1, Y1q, . . . , pMq, Yqq does not affect ppτq,
and we therefore assume without loss of generality that it is prefix-preserving,
i.e., if Mi �Mj , then i ă j. Let ei be the edge leading to Mi.

To study ppτq, we consider an iterative process where we extend π defined
by T as above, setting the values of πpγpeiqq “ λpMiq for i “ 1, . . . , q one after
the other in this order. Moreover, upon setting λpMiq “ πpγpeiqq Ð Zi, for all
m PMi, we do the following:

11 Note that sampling such a π is not the same as sampling a random π which is
consistent with π. The latter may allow for some permutations which are not possibly
generating a message tree which can be reduced to T .
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- We set γpMi,Mi }mq Ð Zi ‘m
- If we know the value λpMi }mq, we set πpZi ‘mq Ð λpMi }mq.

12

Note that depending on the choice of the Zi’s, the resulting π may or may not
be a partial permutation, or we may overwrite values, etc. We will of course be
only interested in sequences of Zi’s which maintain the permutation property.

To this end, let L “ LpT , pM1, Y1q, . . . , pMq, Yqqqq be the set of sequences
pz1, . . . , zqq of distinct q values such that zir1 . . . rs “ Yi for all i P rqs and when
assigning λpMiq Ð zi for all i P rqs in the above process, at the end of the process
the labels λpMiq “ zi are unique (i.e., no other vertex has the same label) and
moreover, for all i P rqs and all m PMi, we also have that λpMi }mq is a unique
label.

The following claim is proved in the full version [22] and reduces the problem
of lower bounding ppτq to that of lower bounding the size of L.

Claim (2). For all good transcripts τ P GT, ppτq ě |L|
2nq .

The lower bound on |L|.Here, to lower bound |L|, we go through the above
process, and assuming z1, . . . , zi´1 have been fixed, we see how many ways we
still have to fix zi satisfying the invariant that it is still possible to reach sequence
pz1, . . . , zqq P L. In particular, at every step, we are going to exclude values zi
with the following properties:

(1) zir1 . . . rs ‰ Yi
(2) There exists 1 ď j ă i such that zj “ zi.
(3) There exists M R tM1, . . . ,Mqu with λpMq “ zi.
(4) There exists 1 ď j ă i, m1 PMj , m PMi such that m‘ zi “ m1 ‘ zj .
(5) There exists a n-bit value m PMi and an edge e P E with tail node not in

tM1, . . . ,Mqu such that γpeq “ zi ‘m.

It is clear that we reach a sequence in L if at every step we pick a non-excluded
value. In particular, note that (4) and (5) are necessary for us to ensure that
the edge labels leading to successor vertices of Mi are fresh, which is necessary
to ensure that the sequence is in L.

Now, for every i, note that due to condition (1) there are initially 2n´r

possible values for zi, i.e., all strings with the first r bits equal to Yi. However,
we need to remove all strings satisfying any of (2)-(5) above. These can be
counted as follows:

(2) There are at most i ď q such values.
(3) In order for M to be such that λpMq “ zi, we need to have λpMqr1 . . . rs “

Yi, but we know that there are at most N
p1q
i such vertices by definition.

(4) Note that for every j P ri´1s, there are exactly Dj possible values m1 PMj

which can be combined with a value m PMi (there are Di of those) to get
a possible “forbidden” value zi “ zj ‘m‘m

1, and thus we need to exclude

Di ¨
ři´1
j“1Dj ď q ¨Di possible values.

12 Note that if for some m PMi, we have λpMi }mq “ K, then pMi,mq “ ej for j ą i,
and will be set later in the process.
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(5) This is exactly the definition of N
p2q
i .

Therefore, we can now lower bound |L| as

|L| ě
q
ź

i“1

p2n´r ´N
p1q
i ´N

p2q
i ´ q ´ q ¨Diq

ě 2q¨pn´rq ¨

ˆ

1´
N p1q `N p2q

2n´r
´

2q2

2n´r

˙

, (6)

where we used the fact that
ś

ip1´ xiq ě 1´
ř

i xi, and that
řq
i“1 q ¨Di ď q2.

5 Security Analysis of Sponge-Based PRFs

In this final section, we turn to discussing security of sponge-based PRFs. We
first discuss the constructions considered in this section.

Sponge-Based MAC. As in the TCBC case above, we fix parameters n, r and
an injective padding scheme pad : t0, 1u˚ Ñ pt0, 1unq

`
. Then, the construc-

tion Sponge “ Sponger,padrπs : t0, 1uκ ˆ t0, 1u˚ Ñ t0, 1ur, using a permuta-
tion π P Permpnq, on input M P t0, 1u˚ and key K P t0, 1uκ, first computes
Kr1s . . .KrwsM r1s . . .M r`s Ð padpK }Mq. Then, it outputs S`r1 . . . rs (the first
r bits of S`), where

V0 Ð 0n , Vi Ð πpKris ‘ Vi´1q for i “ 1, . . . , w ,

S0 Ð Vw , Si Ð πpM ris ‘ Si´1q for i “ 1, . . . , `.

We are explicitly assuming (for simplicity) that the (padded) keys and the actual
message end up in different blocks, and hence our naming conventions.13

Different from the actual hash-function instantiations, the presented Sponge
construction is more general in that it allows for processing n-bit input blocks
in the absorption phase. We can retrieve the originals sponge construction and
SHA-3 instantiations as special case — shorter blocks can be enforced by the
padding function pad, which we only require to be injective, but an added benefit
of our analysis is that it shows that such shorter blocks are not necessary. The
construction Sponger,padrπs using a customary padding padb that enforces b-bit
blocks is depicted in Figure 3.

We also consider a variant of the construction – called GSponge – that takes
an n-bit key K and differs from Sponge in that it directly sets S0 Ð K instead
of absorbing the key to obtain Vw. The construction is similar to some other
MAC designs such as donkeySponge [9] and Pelican [16].

13 Our results can be extended to the more general case, but we avoid the notational
overhead in this version of the paper.
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π
‘

Kr1s

0b

0n´b
¨ ¨ ¨

¨ ¨ ¨

‘

Krws

π
‘

M r1s

π
¨ ¨ ¨

¨ ¨ ¨

‘

M r`s

π
{

{

r

n´ r

Sponger,padrπspMq

Fig. 3. Sponge construction. Representation of Sponger,padb rπs used with a padding
scheme padb that enforces b-bit blocks.

Security analysis of GSponge. We prove the following theorem:

Theorem 2 (Security of GSponge). Let A be a prf-adversary in the ideal-
permutation model, making at most qπ queries to π and at most qC queries of
length at most ` ă 2n{4 blocks to the construction (either GSponger,padrπs for a
random n-bit key K or a random function). Then, for all t ě 1,

AdvprfGSponger,pad,π
pAq ď p6t` 17q`q2C ` 7`qπqC ` 2qC

2n
`

6nq2C ` 8`qC ` qπqC
2n´r

`

`
136`4q2C

22n
`

2p`qCq
t`1

2nt
. (7)

This bound substantially improves the previously known bound from [8], which

was of the order Op
`2q2C``qCqπ

2n´r q. (We discuss the subtleties of the bound in [2] in

detail in the full version [22].) For sufficiently large t and for ` ă 2n{4, the first
two terms are the leading terms. If we additionally assume that ` ă 2r, then the

bound becomes of order Op
q2C`qCqπ``qC

2n´r q. In the full version [22], we prove that
this is tight when additionally maxtqπ, qCu ě `.

The proof of Theorem 2 adapts the proof strategy of Theorem 1 to the set-
ting of sponges. The GSponge and TCBC constructions are in fact the same, with
the main difference that the initial value in GSponge is set to a random secret
key and the underlying permutation π can be evaluated by the adversary. Intu-
itively, however, one can show that thanks to the random secret key, no internal
permutation query in a construction query intersects with a direct permutation
query by the attacker, except with probability Op` ¨ qCqπ{2

nq. Conditioned on
the event that such intersection does not occur, the distinguishing bound (in
terms of construction queries) is roughly the same as the one of TCBC.

Replacing the Uniform Key. We now address security of the Sponge con-
struction when using the customary padding padb, where the pκ “ w ¨ bq-bit
key K is first split into w b-bit blocks as Kr1s ¨ ¨ ¨Krws, each of them is padded
with n´ b trailing zeroes and absorbed by the construction, as depicted in Fig-
ure 3. The proof of the following theorem is found in the full version [22], and
relies on a detailed analysis of the key absorption mechanism which shows that
the behaviors of GSponge and Sponge are indistinguishable given enough key
material.



18 Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro

Theorem 3 (Security of Sponge). Let A be a prf-adversary in the ideal-
permutation model, making at most qπ queries to π and at most qC queries
of length at most ` ă 2n{4 blocks to the construction (either Sponger,padbrπs with
the padding padb and a random pw ¨ bq-bit key, or a random function). Then, for
all t ě 1, and q “ qπ ` `qC ă 2n´b, we have

AdvprfSponger,padb
,πpAq ď Atpqc, qπ, `q `

wq

2n
`min

"

q

2
b´logp3nq´1

2 w
,

q

2bw
`

q2

2n´b

*

,

where At denotes the expression on the right-hand side of inequality (7). More-
over, if w “ 1 then one can replace the whole min-term by q{2bw.

We remark that our proof is highly involved for the case where q2 ą 2n´b, where
q “ qπ ` qC ¨ ` is the overall number of queries to π in the experiment, and
requires an adaptation of combinatorial techniques proposed in [17].

The standard-model bounds.We combine an approach by Chang et al. [13]
(also used in [2]) with our improved bound for TCBC. In particular, we measure

security of the underlying permutation π in terms of the advantage Advpr,‘q-prpπ pBq
of an adversary in distinguishing the map M ÞÑ p0r }Kq‘πpM‘p0r }Kqq under

a random secret key K
$
Ð t0, 1un´r from τ

$
Ð Permpnq. In the full version [22],

we prove and discuss the following theorem.

Theorem 4 (Standard-model security of GSponge). Let π P Permpnq and
pad : t0, 1u˚ Ñ pt0, 1unq

`
a padding scheme. Let A be a prf-adversary making

at most q queries, each of length at most ` ă 2n{4 n-bit blocks (after padding).
Then, there exists an p‘, rq-prp-adversary B such that for any t ě 1,

AdvprfGSponger,padrEs
pAq ď Advpr,‘q-prpπ pBq `Bpq, `, n, r, tq ,

where B has TimepBq “ TimepAq `Opq ¨ `q and makes at most q ¨ ` permutation
queries, and Bpq, `, n, r, tq is the term on the right-hand-side of Theorem 1.
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