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Abstract. An interactive proof of proximity (IPP) is an interactive pro-
tocol in which a prover tries to convince a sublinear-time verifier that
x ∈ L. Since the verifier runs in sublinear-time, following the property
testing literature, the verifier is only required to reject inputs that are
far from L. In a recent work, Rothblum et. al (STOC, 2013) constructed
an IPP for every language computable by a low depth circuit.

In this work, we study the computational analogue, where soundness is
required to hold only against a computationally bounded cheating prover.
We call such protocols interactive arguments of proximity.

Assuming the existence of a sub-exponentially secure FHE scheme, we
construct a one-round argument of proximity for every language com-
putable in time t, where the running time of the verifier is o(n)+polylog(t)
and the running time of the prover is poly(t).

As our second result, assuming sufficiently hard cryptographic PRGs,
we give a lower bound, showing that the parameters obtained both in
the IPPs of Rothblum et al., and in our arguments of proximity, are close
to optimal.

Finally, we observe that any one-round argument of proximity imme-
diately yields a one-round delegation scheme (without proximity) where
the verifier runs in linear time.

1 Introduction

With the prominent use of computers, tremendous amounts of data are available.
For example, hospitals have massive amounts of medical data. This data is very
precious as it can be used, for example, to learn important statistics about vari-
ous diseases. This data is often too large to store locally, and thus is often stored
on cloud platforms (or external servers). As a result, if a hospital (which has
bounded storage and bounded computational power), wishes to perform some
computation on its medical data, it would need to delegate this computation to
the cloud. Since the cloud’s computation may be faulty, the party delegating the
computation (say, the hospital), may want a proof that the computation was
done correctly. It is important that this proof can be verified very efficiently,
and that the prover’s running time is not much larger than the time it takes to
perform the computation, since otherwise, the solution will not be practical.

This problem is closely related to the problem of computation delegation,
where a weak client delegates a computation to a powerful server, and the server



needs to provide the client with a proof that the computation was done correctly.
In contrast to the current setting, in the setting of computation delegation, the
input is thought of as being small and the computation is thought of as being
large. The client (verifier) is required to run in time that is proportional to the
input size (but much smaller than the time it takes to do the computation), and
the powerful server (prover) runs in time polynomially related to the time it
takes to do the computation. Indeed the problem of computation delegation is
extremely important, and received a lot of attention (e.g., [GKR08,Mic94,Gro10,
GGP10, CKV10, AIK10, GLR11, Lip12, BCCT12a, DFH12, BCCT12b, GGPR12,
PRV12,KRR13a,KRR13b]).

In reality, however, the input (data) is often very large, and the client cannot
even store the data. Hence, we seek a solution in which the client runs in time
that is sub-linear in the input size. The question is:

If the client cannot read the data, how can he verify the correctness of a com-
putation on the data?

The work of [CKLR11], on memory delegation, considers this setting where
the input (thought of as the client’s memory) is large, and the client cannot store
it locally. However, in memory delegation, it is assumed that the client (verifier)
stores a short “commitment” of the input, and then can verify computations
in sub-linear time. However, computing such a commitment takes time at least
linear in the input length, which is infeasible in many settings.

Recently, Rothblum, Vadhan and Wigderson [RVW13], in their work on in-
teractive proofs of proximity (IPP, a notion first studied by Ergün, Kumar and
Rubinfeld [EKR04]), provide a solution where the verifier does not need to know
such a commitment. Without such a commitment, the verifier cannot be sure
that the computation is correct (since he cannot read the entire input), however
they guarantee that the input is “close” to being correct. More specifically, they
construct an interactive proof system for every language computable by a (log-
space uniform) low depth circuit, where the verifier is given oracle access to the
input (the data), and the verifier can check whether the input is close to being
in the language in sub-linear time in the input (and linear time in the depth of
the computation). We note that in many settings where the data is large (such
as medical data) and the goal is to compute some statistics on this data, an
approximate solution is acceptable. The work of [RVW13] is the starting point
of our work.

1.1 Our Results in a Nutshell

We depart from the interactive proof of proximity setting, and consider argu-
ments of proximity. In contrast to proofs of proximity, in an argument of proxim-
ity, soundness is required to hold only against computationally bounded cheating
provers. Namely, the soundness guarantee is that any bounded cheating prover
can convince the verifier to accept an input that is far from the language (in
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Hamming distance) only with small probability. By relaxing the power of the
prover we obtain stronger results.

We construct one-round arguments of proximity for every deterministic lan-
guage (without a dependency on the depth). Namely, fix any t = t(n) and any
language L ∈ DTIME(t(n)), we construct a one-round argument of proximity
for L where the verifier runs in time o(n) + polylog(t), assuming the existence of
a sub-exponentially secure fully homomorphic encryption (FHE) scheme.

Our one-round argument of proximity is constructed in two steps, and follows
the outline of the recent works of Kalai et al. [KRR13a,KRR13b]. These works
first show how to construct an MIP for all deterministic languages, that is sound
against no-signaling strategies. Such no-signaling soundness is stronger than the
typical notion of soundness, and is inspired by quantum physics and by the
principal that information cannot travel faster than light (see Section 3.2 for the
definition, and [KRR13a, KRR13b] for more background on this notion). They
then show how to convert these no-signaling MIPs into one-round arguments.

As our first step, we combine the IPPs of [RVW13], and the no-signaling
MIP construction of [KRR13b], to obtain a no-signaling multi-prover interactive
proof of proximity (MIPP). This construction combines techniques and results
of [RVW13] and [KRR13b], and may be of independent interest.

Then, similarly to [KRR13a], we show how to convert any no-signaling MIPP
to a one-round argument of proximity. This transformation relies on a heuristic
developed by Aiello et al. [ABOR00], which uses a (computational) PIR scheme
(or a fully homomorphic encryption scheme) to convert any MIP into a one-round
argument. This heuristic was proven to be secure in [KRR13a] if the underlying
MIP is secure against no-signaling strategies. We extend the result of [KRR13a]
to the proximity setting.

Finally, we provide a negative result, which shows that the parameters we
obtain for MIPP and the parameters obtained in [RVW13], are somewhat tight.
Proving such a lower bound was left as an open problem in [RVW13]. This part
contains several new ideas, and is the main technical contribution of this work.

We also show that the parameters in our one-round argument of proximity
are somewhat optimal, for arguments with adaptive soundness and are proven
to be (adaptively) sound via a black-box reduction to a falsifiable assumption.
See the full version for further details.

Linear-time Delegation. We observe that both proofs and arguments of prox-
imity, aside from being natural notions, can also be used as tools to obtain new
results for delegating computation in the standard setting (i.e., where soundness
is guaranteed for every x 6∈ L). More specifically, using our results on arguments
of proximity and the [RVW13] results on interactive proofs of proximity for low-
depth circuits, we can construct (standard) one-round argument-systems for any
deterministic computation, and interactive proof systems for low-depth circuits,
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where the verifier truly runs in linear-time. In contrast, the results of [GKR08]
and [KRR13b] only give a quasi-linear time verifier.3

1.2 Our Results in More Detail

Our main result is a construction of a one-round argument of proximity for any
deterministic language. Here, and throughout this work, we use n to denote the
input length. Let t = t(n), let L ∈ DTIME(t) be a language. For a proximity
parameter ε = ε(n) ∈ (0, 1), we denote by ε-IPP an interactive proof for testing
ε-proximity to L.4 Similarly we denote by ε-MIPP a multi-prover interactive
proof for testing ε-proximity to L.

Theorem 1 (Informal). Suppose that there exists a sub-exponentially secure

FHE. Fix a proximity parameter ε
def
= n−(1−β), for some sufficiently small β > 0,

and a security parameter τ (polynomially related to n).
There exists a 1-round argument of ε-proximity for L, where the verifier runs

in time n1−γ + polylog(t) + polyFHE(τ), where γ > 0 is a constant and polyFHE is
a polynomial that depends only on the FHE scheme, and makes n1−γ +polylog(t)
oracle queries to the main input. The prover runs in time poly(t). The total
communication is of length polyFHE(τ).

Note that for languages in DTIME
(
2n

α)
for sufficiently small α > 0 (and in

particular for languages in P), the verifier in Theorem 1 runs in sub-linear time.
As mentioned previously, this result is obtained in two steps. We first con-

struct an MIPP that is sound against no-signaling strategies, and then show how
to convert any such MIPP into a one-round argument of proximity.

Theorem 2 (Informal). Fix a proximity parameter ε = ε(n) ∈ (0, 1). There
exists an ε-MIPP that is secure against no-signaling strategies, where the ver-

ifier makes q = (1/ε)
1+o(1)

oracle queries to the input, the communication
complexity c = (εn)2 · no(1) · polylog(t) and the running time of the verifier

is (εn)2 · polylog(t) +
(
1
ε + εn

)1+o(1)
.

We then show how to convert any no-signaling ε-MIPP to a one-round argu-
ment of ε-proximity. In the following we say that a fully homomorphic encryption
scheme (FHE) is (T, δ) secure if every family of circuits of size T can break the
semantic security of the FHE with probability at most δ.

Theorem 3 (Informal). Fix a proximity parameter ε = ε(n) ∈ (0, 1). Suppose
that the language L has an `-prover ε-MIPP that is sound against δ-no-signaling
strategies, with communication complexity c. Suppose that there exists a (T, δ/`)-
secure FHE, where T ≥ 2c. Then L has a 1-round argument of ε-proximity where

3 Actually, by an observation of Vu et al. [VSBW13] (see also [Tha13, Lemma 3]), the
verifier in the [GKR08] protocol can be directly implemented in linear-time. However
the latter implementation would only guarantee constant soundness error.

4 A string x ∈ {0, 1}n is ε-close to L if there exists x′ ∈ {0, 1}n∩L such that4(x, x′) ≤
εn, where 4 denotes the Hamming distance between the two strings.
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the running time of the prover and verifier and the communication complexity of
the argument system, are proportional to those of the underlying MIPP scheme.

We note that the parameters in Theorem 2 are somewhat similar to the
parameters of the interactive proof of proximity (IPP) in [RVW13]. In particular,
in both constructions it holds that c·q = Ω(n). The work of [RVW13] shows that
this lower bound of c · q = Ω(n) is inherent for IPPs with 2-messages (and that a
weaker bound holds for IPPs with a constant number of rounds), and left open
the question of whether this lower bound is inherent for general (multi-round)
IPPs.

We resolve this question by showing that for every ε-IPP, and every ε-MIPP
that is sound against no-signaling strategies, it must be the case that c·q = Ω(n).
For this result we assume the existence of exponentially hard pseudorandom
generators.

Theorem 4 (Informal). Assume the existence of exponentially hard pseudo-
random generators. There exists a constant ε > 0 such that for every q = q(n) ≤
n, there exists a language L ∈ P such that for every ε-IPP for L , and for every ε-
MIPP for L that sound against no-signaling adversaries, it holds that q·c = Ω(n),
where q is the query complexity and c is the communication complexity.

In fact, assuming a slightly stronger cryptographic assumption, we can re-
place L ∈ P with L ∈ NC1 (which shows that the [RVW13] upper bound for
log-space uniform NC is essentially tight). See Section 4 for details.

We note that the [RVW13] lower bound for 2-message IPPs is uncondi-
tional (and in particular they do not assume that the verifier is computationally
bounded). It remains an interesting open problem to obtain an unconditional
lower bound for multi-message IPPs.

The parameters we obtain for the one-round argument also satisfy q · c =
Ω(n). We show that these parameters are close to optimal for arguments with
adaptive soundness, that are proven sound via a black-box reduction to falsifiable
assumptions. We refer the reader to the full version for details.

Finally, using the [RVW13] protocol or the protocol of Theorem 1 we con-
struct delegation schemes in which the verifier runs in linear-time.

Theorem 5 (Informal). For every language in (logspace-uniform) NC there
exists an interactive proof system in which the verifier runs in time O(n) and
the prover runs in time poly(n).

Theorem 6 (Informal). Assume that there exists a sub-exponentially secure
FHE. Then, for every language in P there exists a 1-round argument-system in
which the verifier runs in time O(n) and the prover runs in time poly(n).

1.3 Related Work

As mentioned above, the work of [RVW13] and [KRR13a, KRR13b] are most
related to ours. Both our work, and the work of [RVW13], lie in the intersec-
tion of property-testing and computation delegation. As opposed to property
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testing, where an algorithm is required to decide whether an input is close to
the language on its own in sub-linear time, in our work the algorithm receives
a proof, and only needs to verify correctness of the proof in sub-linear time.
Thus, our task is significantly easier than the task in property testing. Indeed
we get much stronger results. In particular, the works on property testing typ-
ically get sub-linear algorithms for specific languages, whereas our result holds
for all deterministic languages.5

Another very related problem is that of constructing a probabilistically check-
able proof of proximity (PCPP) [BSGH+06] (also known as assignment testers
[DR06]). A PCPP consists of a prover who publishes a long proof, and a verifier,
who gets oracle access to this proof and to the instance x, and needs to decide
whether x is close to the language in sub-linear time. The significant difference
between PCPP and proofs/argument of proximity is that in the PCPP setting the
proof is a fixed string (and cannot be modified adaptively based on the verifier’s
messages).

The fundamental works of Kilian and Micali [Kil92, Mic94] show how to
convert any probabilistically checkable proof (PCP) into a 2-round (4-message)
argument. As pointed out by [RVW13], their transformation can be also used
to convert any PCPP into a 2-round argument of proximity. Thus, obtaining a
2-round argument of proximity follows immediately by applying the transforma-
tion of [Kil92, Mic94] to any PCPP construction. Moreover, the parameters of
the resulting 2-round argument are optimal (up to logarithmic factors); i.e., the
query complexity, the communication complexity and the runtime of the verifier
is poly(log(t), τ) where t is the time it takes to compute if x is in the language,
and where τ is the security parameter.

The focus of this work is on constructing one-round arguments of proximity.
Unfortunately, our parameters do not match those of the two-round arguments
of proximity outlined above. However, we show that using our techniques (i.e., of
constructing one-round arguments of proximity from no-signaling MIPPs), our
parameters are almost optimal.

Other works that are related to ours are the work of Gur and Rothblum
[GR13] on non-interactive proofs of proximity, and of Fischer et al. [FGL14] on
partial testing. The former studies an NP version of property testing (which can
be thought of as a 1-message variant of IPP), whereas the latter studies a model
of property testing in which the tester needs to only accept a sub-property (we
note that the two notions, which were developed independently, are tightly re-
lated, see [GR13,FGL14] for details).

Organization. In this extended abstract we give an overview of our techniques
and only prove some of our results. In Section 2 we give a high level view of our
techniques. In Section 3 we formally define arguments of proximity and the other
central definitions that are used throughout this work. In Section 4 we show our

5 Indeed, as shown by Goldwasser, Goldreich and Ron [GGR98], there are properties
in very low complexity classes that require Ω(n) queries and running-time in order
to test (without the help of a prover).
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lower bound for no-signaling MIPPs. See the full version for the missing proofs
and formal theorem statements.

2 Our Techniques

2.1 Our Positive Results

To construct arguments of proximity for languages in DTIME(t), we adapt the
technique of [KRR13a] to the “proximity” setting. That is, we first construct an
MIPP that has soundness against no-signaling strategies and then employ the
technique of Aiello et al. [ABOR00] to obtain an argument of proximity. We
elaborate on these two steps below. In what follows, we focus for simplicity on
languages in P, though everything extends to languages in DTIME(t).

No-Signaling MIPPs for P. Our first step (which is technically more involved)
is a construction of MIPPs that are sound against no-signaling strategies for
any language L ∈ P. This construction is inspired by (and reminiscent of) the
IPP construction of [RVW13]. The starting point for the [RVW13] IPP is the
“Muggles” protocol of Goldwasser et al. [GKR08], whereas our starting point is
the no-signaling MIP of [KRR13b].

The main technical difficulty in using both the [GKR08] and [KRR13b] pro-
tocols by a sublinear time verifier is that in both protocols, the verifier needs
to compute an error corrected encoding of the input x. More specifically, the
verifier needs to compute the low degree extension of x, denoted LDEx. Since
error-correcting codes are very sensitive to changes in the input, a sub-linear
algorithm has no hope to compute LDEx.

The key point is that in both the [GKR08] and the [KRR13b] protocols, it suf-
fices for the verifier to check the value of LDEx at relatively few randomly selected
points (this property was also used by [CKLR11] in their work on memory dele-
gation). Hence, it will be useful for us to view both the [GKR08] and [KRR13b]
protocols as protocols for producing a sequence of points J in the low degree
extension of x and a sequence of corresponding values v with the following prop-
erties:

– If x ∈ L and the prover(s) honestly follow the protocol then LDEx(J) = v.
– If x /∈ L then no matter what the cheating prover does (resp., no-signaling

cheating prover do), with high probability the verifier outputs J,v such that
LDEx(J) 6= v.

Hence, the verifiers in both protocols first run this subroutine to produce J and
v and then accept if and only if LDEx(J) = v. Remarkably, in both cases, in the
protocol that produces J and v, the verifier does not need to access x.

The next step in [RVW13] is a parallel repetition of the foregoing protocol
in order to reduce the soundness error. Once the soundness error is sufficiently
small, [RVW13] argue that for every x that is ε-far from L, no matter what the
cheating prover does (in the parallel repetition of the base protocol), the verifier
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will output J,v such that not only LDEx(J) 6= v, but furthermore, x is far from
any x′ such that LDEx′(J) = v. This steps simply follows by taking a union
bound over all x′ that are close to x.

We borrow this step almost as-is from [RVW13] except for the following
technical difficulty - it is not known whether parallel repetition decreases the
soundness error of no-signaling MIP protocols.6 However, we observe that the
[KRR13b] protocol already allows for sufficient flexibility in choosing its sound-
ness error so that the parallel repetition step can be avoided.

The last step of [RVW13] is designing an IPP protocol for a language that
they call PVALJ,v (for “polynomial evaluation”). This language, parameterized
by J and v, consists of all strings x such that LDEx(J) = v. Using this IPP
for PVAL, the IPP verifier for a language L first runs the (parallel repetition of
the) [GKR08] protocol, to produce J,v as above. Then, the IPP verifier runs
the PVALJ,v protocol and accepts if and only if the PVAL-verifier accepts. If
x ∈ L then we know that LDEx(J) = v and therefore the PVAL-verifier will
accept, whereas if x is far from L then x is far from PVALJ,v and therefore the
PVAL-verifier will reject. Hence the (parallel repetition of the) [GKR08] protocol
is sequentially composed with the IPP for PVAL.

For the no-signaling case, we also use the [RVW13] IPP protocol for PVAL.
A technical difficulty that arises is that in contrast to the IPP setting in which
sequential composition (of two interactive proofs) is trivial, here we need to com-
pose a 1-round no-signaling MIP with an IPP protocol, to produce a no-signalling
MIPP. We indeed prove that such a composition holds thereby constructing a
no-signaling MIPP as we desire.

From No-Signaling MIPP to Arguments of Proximity. The transformation
from a no-signaling MIPP to an argument of proximity is based on the assump-
tion that there exists a fully homomorphic encryption scheme (or alternatively, a
computational private information retrieval scheme) and is practically identical
to that in [KRR13a]. More specifically, the argument’s verifier uses the MIPP
verifier to generate a sequence of queries q1, . . . , q` to the ` provers. It encrypts
each query using a fresh encryption key as follows: q̂i ← Encki(qi). The argu-
ment’s verifier sends all the encrypted queries to the prover. Given q̂1, . . . , q̂`,
the prover uses the homomorphic evaluation algorithm to compute the MIPP
answers “underneath” the encryption. It sends these answers back to the veri-
fier, which can decrypt the encrypted answers and decide. As in [KRR13a] we
show that if the MIPP is sound against no-signaling strategies then, assuming
the semantic security of the FHE, the resulting protocol is sound against com-
putationally bounded adversaries.

Linear-time Delegation. We show that using the foregoing one-round argu-
ment of proximity for every language L ∈ P and good error-correcting codes,
one can easily construct a one-round delegation protocol where the verifier

6 Holenstein [Hol09] showed a parallel repetition theorem for no-signaling 2-prover
MIPs. It is not known whether this result can be extended to 3 or more provers.
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runs in linear time (in contrast, the verifier in [KRR13b] runs in quasi-linear
time). A similar observation, in the context of PCPs, was previously pointed out
by [EKR04].

Let L ∈ P and consider L′ = {ECC(x) : x ∈ L} where ECC is an error cor-
recting code with constant rate, constant relative distance, linear-time encoding
and polynomial-time decoding7. Then, L′ ∈ P and so it has an argument of
proximity with a sublinear-time verifier. We construct a delegation scheme for
L by having both the verifier and the prover compute x′ = ECC(x) and run the
argument of proximity protocol with respect to x′. Since the argument of prox-
imity verifier runs in sublinear time, and ECC(x) can be computed in linear-time,
the resulting delegation verifier runs in linear-time. Soundness follows from the
fact that a cheating prover that convinces the argument-system verifier to ac-
cept x /∈ L can be used to convince the argument-of-proximity verifier to accept
ECC(x) which is indeed far from L′.

A similar result can be obtained for interactive proofs for low-depth compu-
tation based on the results of [RVW13] by using an error-correcting code that
can be decoded in logarithmic-depth (such a code was constructed by Spiel-
man [Spi96]).

2.2 Our Negative Results

We prove that assuming the existence of exponentially hard pseudorandom gen-
erators, there exists a constant ε > 0 for which there does not exist a no-signaling
ε-MIPP for all of P with query complexity q and communication complexity c
such that q ·c = o(n) (where n is the input length). We also show a similar result
for ε-IPP.

We start by focusing on our lower bound for MIPP. The high-level idea is
the following: Suppose (towards contradiction) that every language in P has a
no-signaling MIPP with query complexity q and communication complexity c
where q · c = o(n). The fact that q = o(n) implies that (for every language in P),
there is some set of coordinates S ⊆ [n] of size O(n/q) that with high (constant)
probability the verifier does not query.

As a first step, suppose for the sake of simplicity that there is a fixed (univer-
sal) set of coordinates S ⊆ [n] such that with high probability the verifier never
queries the coordinates in S, for every language in P (for example, if the ver-
ifier’s queries are non-adaptive and are generated before it communicates with
the prover, then such a set S must exist). We derive a contradiction by show-
ing that one can use the no-signaling MIPP to construct a no-signaling MIP for
languages in NP \ P with communication c = o(n). The latter was shown to be
impossible, assuming that NP * DTIME(2o(n)) [DLN+04] (see also [Ito10]).

The basic idea is the following: Take any language L ∈ NP\P that is assumed
to be hard to compute in time 2o(n), and convert it into the language L′ ∈ P,
defined as follows: x′ ∈ L′ if and only if x′S is a valid witness of x′[n]\S in the

7 Such codes are known to exist, see, e.g., [Spi96].
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underlying NP language L. The no-signaling MIP for L will simply be the no-
signaling ε-MIPP for L′, where the MIP verifier simulates the ε-MIPP verifier
with oracle access to x′ where x′[n]\S = x, and x′S = 0|S|. Note that the MIP

verifier, which takes as input x (supposedly in L), cannot (efficiently) generate a
corresponding witness w and set x′S = w. But the point is that it does not need
to, since S was chosen so that with high probability the MIPP verifier for L′ will
not query x′ on coordinates in S.

There are several problems with this approach. First, the witness can be very
long compared to x, and the set S may be very small compared to n. In this
case we will not be able to fit the entire witness in the coordinate set S. Second,
after running the MIPP, the verifier is convinced that x′ is close to an instance
in L′. However, this does not imply that x is in L (and can only imply that x is
close to L).

One can fix these two problems with a single solution: Instead of setting
x′[n]\S = x we set x′[n]\S = ECC(x), where ECC is a error-correcting code with
efficient encoding, that is resilient to 2ε-fraction of errors. Now, we can take
ECC(x) so that |ECC(x)| is very large compared to |w|, so that we can fit all
of the witness in the coordinate set S. Moreover, if |ECC(x)| > |w| then if x′

is ε-close to L′ then x′[n]\S is 2ε-close to L. This, together with the fact that

ECC(x) is resilient to 2ε-fraction of errors implies that the encoded element is
indeed in L.

The foregoing idea indeed seems to work if there was a fixed (universal) set S
that the MIPP verifier does not query (with high probability). However, this is
not necessarily the case, and this set S may be different for different languages
in P. In particular, we cannot claim that for the language L′ the set S is exactly
where the witness lies. Namely, it may be that the verifier in the underlying
MIPP always queries some coordinates in S.

We solve this problem by using repetitions. Namely, every element x′ ∈ L′
will consist of many instances (encoded using an error-correcting code) along
with many witnesses; i.e., x′ = (ECC(x1, . . . , xm), w1, . . . , wm), where each wj is
a witness for the NP statement xj ∈ L. Now, suppose that the verifier makes q
queries to x′ (where q = o(n)). Then if we take m = 4q then we know that 3/4
of the (xj , wj)’s are not queried.

As above, we derive a contradiction by showing that one can use the no-
signaling MIPP to construct a no-signaling MIP for languages in NP\P with o(n)
communication, (which is known to be impossible for languages that cannot be
computed in time 2o(n) [DLN+04, Ito10]). However, now the no-signaling MIP
construction will be different: Given an instance x (supposedly in L), the MIP
verifier will choose a random i∗ ∈R [m], along with m random instance and
witness pairs (x1, w1), . . . , (xm, wm), where xi∗ = x and wi∗ can be arbitrary
(assumed not to be queried).

We need to argue that with probability at least 3/4 the verifier will not query
the coordinates of wi∗ , and thus with probability at least 3/4 the MIP verifier will
successfully simulate the MIPP verifier. If the queries of the MIPP verifier were
chosen before interacting with the prover then this would follow immediately
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from the fact that i∗ ∈ [m] is chosen at random. However, the MIPP verifier may
choose its oracle queries after interacting with the MIPP provers, and therefore
we need to argue that the MIPP provers also do not know i∗. Note that the
MIPP provers see all of x1, . . . , xm. Hence, in order to claim that the provers
cannot guess i∗ it needs to be the case that x is distributed identically to the
other x1, . . . , xm.

Hence, we seek a language L ∈ NP\P for which there exists a distribution D
(distributed over L) such that:

1. It is computationally hard to distinguish between x ∈R D and x 6∈ L (i.e., L
is hard on the average); and

2. x ∈R D can be sampled together with a corresponding NP witness.

We note that the first requirement is needed to obtain a contradiction (and
replaces the weaker assumption that L ∈ NP\P) whereas the second assumption
is required so that we can sample x1, . . . , xm (together with the corresponding
witnesses) so that MIPP protocol cannot distinguish between x and any of the
xj ’s (thereby hiding i∗). In can be easily verified that both requirement are met
by considering D which is the output of a cryptographic pseudorandom generator
(PRG). Hence the language L that we use is precisely the output of such a PRG.

Indeed, we can only argue that our no-signaling MIP has average-case com-
pleteness (with respect to the distribution D), since if x ∈ L is distributed
differently from (x1, . . . , xm) then the verifier of the MIPP may always query the
coordinates where the witness of x is embedded, in which case the MIP verifier
will fail to simulate. However, for random x ∈R L the provers (and verifier) in
the MIPP cannot guess i∗ with any non-negligible advantage, and therefore the
verifier will not query the coordinates of wi∗ with probability at least 3/4, in
which case the MIP verifier will succeed in simulating the underlying ε-MIPP
verifier. We refer the reader to Section 4 for further details.

A Lower Bound for IPP. To obtain a multiplicative lower bound for IPP, we
follow the same paradigm outlined above for MIPP’s with no-signaling soundness.
More specifically, we consider a language L ∈ NP and the corresponding language

L′ =
{(

ECC(x1, . . . , xm), w1, . . . , wm
)

: wj is an NP-witness for xj
}

as above. We show that an IPP protocol for L′ implies a (standard) interactive-
proof for L with similar communication complexity. Here we obtain a contra-
diction by arguing that (assuming exponential hardness) there are languages in
NP\P for which every interactive proof require Ω(n) communication. The lat-
ter is based on the proof that IP ⊆ PSPACE (i.e., the “easy” direction in the
IP = PSPACE theorem).

Given the [RVW13] positive result of IPP for low depth computations, we
would like to show that our lower bound is not just for languages in P but even
for languages, say, in NC1 (thereby showing that the [RVW13] result is tight). To
do so we observe that if (1) the error correcting code that we use has an encoding
procedure that can be computed by an NC1 circuit and (2) the cryptographic
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PRG can be computed in NC1, then indeed L′ ∈ NC1.

A Lower Bound for One-Round Arguments of Proximity. For one-round
arguments of proximity, we show a similar lower-bound of q ·c = Ω(n), assuming
the argument has adaptive soundness, and the proof of (adaptive) soundness is
via a black-box reduction to some falsifiable cryptographic assumption.

Loosely speaking, a cryptographic assumption is falsifiable (a notion due to
Naor [Nao03]) if there is an efficient way to “falsify it”, i.e., to demonstrate that
it is false. We note that most standard cryptographic assumptions (e.g., one-way
functions, public-key encryption, LWE etc.) are falsifiable. A black-box reduction
of one cryptographic primitive to another, is a reduction that, using black-box
access to any (possibly inefficient) adversary for the first primitive, breaks the
security of the second primitive.

Similarly to the MIPP and IPP lower bounds, we consider the languages L
and L′, as above, where L ∈ NP is exponentially hard on average and L ∈ P. We
prove that if there exists an adaptively sound one-round argument of proximity
for L′ with q ·c = o(n) then there exists an adaptively sound one-round argument
for L with o(n) communication (in the crs model).

We then rely on a result of Gentry and Wichs [GW11], which shows that
there does not exist a one-round argument for exponentially hard (on average)
NP languages, with adaptive soundness and black-box reduction to a falsifiable
assumption.

We conclude that P does not have an adaptively sound one-round argument of
proximity with q ·c = o(n), and a black-box reduction to a falsifiable assumption.
We refer the reader to the full version for details.

3 Definitions

In this section we define arguments of proximity and MIPs of proximity (with
soundness against no-signaling strategies). See the full version for additional
standard definitions.

Notation. For x, y ∈ {0, 1}n, we denote the Hamming distance of x and y by

∆(x, y)
def
= |{i ∈ [n] : xi 6= yi}|. We say that x is ε-close to y if ∆(x, y) ≤ δ. We

say that x is ε-close to a set S ⊆ {0, 1}n if there exists y ∈ S such that x is
ε-close to y.

If A is an oracle machine, we denote by Ax(z) the output of A when given
oracle access to x and explicit access to z.

For a vector a = (a1, . . . , a`) and a subset S ⊆ [`], we denote by aS the
sequence of elements of a that are indexed by indices in S, that is, aS = (ai)i∈S .

For a distribution A, we denote by a ∈R A a random variable distributed
according to A (independently of all other random variables). We will measure
the distance between two distributions by their statistical distance, defined as
half the l1-distance between the distributions. We will say that two distributions
are δ-close if their statistical distance is at most δ.
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3.1 Arguments of Proximity

An interactive argument of proximity for a language L consists of a polynomial-
time verifier that wishes to verify that x is close (in Hamming distance) to some
x′ such that x′ ∈ L, and a prover that helps the verifier to decide. The verifier is
given as input n ∈ N, a proximity parameter ε = ε(n) > 0 and oracle access to
x ∈ {0, 1}n (and its oracle queries are counted). The prover gets as input ε and
x. The two parties interact and at the end of the interaction the verifier either
accepts or rejects. We require that if x ∈ L then the verifier accepts with high
probability but if x is ε-far from L, then no computationally bounded prover can
convince the verifier to accept with non-negligible (in n) probability.

We focus on 1-round arguments of proximity systems. Such an argument-
system consists of a single message sent from the verifier V to the prover P ,
followed by a single message sent from the prover to the verifier.

Let ε = ε(n) ∈ (0, 1) be a proximity parameter. Let T : N→ N and s : N→
[0, 1] be parameters. We say that (V, P ) is a one-round argument of ε-proximity
for L, with soundness (T, s), if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V x(|x|, ε) accepts with over-
whelming probability, after interacting with P (ε, x).

2. Soundness: For every family of circuits {P ∗n}n∈N of size poly(T (n)) and for
all sufficiently large x /∈ L, the verifier V x(|x|, ε) rejects with probability
≥ 1− s(|x|), after interacting with P ∗|x|(ε, x).

3.2 Multi-Prover Interactive Proofs (MIP)

Let L be a language and let x be an input of length n. In a one-round `-prover
interactive proof, ` computationally unbounded provers, P1, . . . , P`, try to con-
vince a (probabilistic) poly(n)-time verifier, V , that x ∈ L. The input x is known
to all parties.

The proof consists of only one round. Given x and its random string, the
verifier generates ` queries, q1, . . . , q`, one for each prover, and sends them to
the ` provers. Each prover responds with an answer that depends only on its own
individual query. That is, the provers respond with answers a1, . . . , a`, where for
every i we have ai = Pi(qi). Finally, the verifier decides wether to accept or
reject based on the answers that it receives (as well as the input x and its
random string).

We say that (V, P1, . . . , P`) is a one-round multi-prover interactive proof sys-
tem (MIP) for L, with completeness c ∈ [0, 1] and soundness s ∈ [0, 1] (think of
s < c) if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V accepts with probability c,
over the random coins of V , P1, . . . , P`, after interacting with P1, . . . , P`,
where c is a parameter referred to as the completeness of the proof system.

2. Soundness: For every x 6∈ L, and any (computationally unbounded, pos-
sibly cheating) provers P ∗1 , . . . , P

∗
` , the verifier V rejects with probability
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≥ 1 − s, over the random coins of V , after interacting with P ∗1 , . . . , P
∗
` ,

where s is a parameter referred to as the error or soundness of the proof
system.

Important parameters of an MIP are the number of provers, the length of
queries, the length of answers, and the error. We say that the proof-system has
perfect completeness If completeness hold with probability 1 (i.e. c = 1).

No-Signaling MIP. We will consider a variant of the MIP model, where the
cheating provers are more powerful. In the MIP model, each prover answers
its own query locally, without knowing the queries that were sent to the other
provers. The no-signaling model allows each answer to depend on all the queries,
as long as for any subset S ⊂ [`], and any queries qS for the provers in S, the
distribution of the answers aS , conditioned on the queries qS , is independent of
all the other queries.

Intuitively, this means that the answers aS do not give the provers in S
information about the queries of the provers outside S, except for information
that they already have by seeing the queries qS .

Formally, denote by D the alphabet of the queries and denote by Σ the
alphabet of the answers. For every q = (q1, . . . , q`) ∈ D`, let Aq be a distribution
over Σ`. We think of Aq as the distribution of the answers for queries q.

We say that the family of distributions {Aq}q∈D` is no-signaling if for every
subset S ⊂ [`] and every two sequences of queries q, q′ ∈ D`, such that qS = q′S ,
the following two random variables are identically distributed:

– aS , where a ∈R Aq
– a′S where a′ ∈R Aq′

If the two distributions are δ-close, rather than identical, we say that the family
of distributions {Aq}q∈D` is δ-no-signaling.

An MIP (V, P1, . . . , P`) for a language L is said to have soundness s against
no-signaling strategies (or provers) if the following (more general) soundness
property is satisfied:

2. Soundness: For every x 6∈ L, and any no-signaling family of distributions
{Aq}q∈D` , the verifier V rejects with probability ≥ 1 − s, where on queries
q = (q1, . . . , q`) the answers are given by (a1, . . . , a`) ∈R Aq, and s is the
soundness parameter.

If the property is satisfied for any δ-no-signaling family of distributions
{Aq}q∈D` , we say that the MIP has soundness s against δ-no-signaling strategies
(or provers).

MIP of proximity (MIPP). Let L be a language, let x be an input of length
n (which we refer to as the main input) and let ε = ε(n) ∈ (0, 1) be a proximity
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parameter. In a one-round `-prover interactive proof of proximity, ` computation-
ally unbounded provers, P1, . . . , P`, try to convince a (probabilistic) polynomial-
time verifier, V , that the input x is ε-close (in relative Hamming distance) to
some x′ ∈ L. The provers have free access to n, ε and x. The verifier has free
access to n and ε and oracle access to x (and the number of oracle queries is
counted).

We say that (V, P1, . . . , P`) is a one-round multi-prover interactive proof sys-
tem of ε-proximity (ε-MIPP) for L, with completeness c ∈ [0, 1] and sound-
ness s ∈ [0, 1], if the following properties are satisfied:

1. Running Time: The verifier runs in polynomial time, i.e., time polynomial
in the communication complexity and the number of oracle queries.

2. Completeness: For every x ∈ L the verifier V accepts with probability c,
after interacting with P1, . . . , P`.

3. Soundness: For every x that is ε-far from L, and any (computationally
unbounded, possibly cheating) provers P ∗1 , . . . , P

∗
` , the verifier V rejects with

probability ≥ 1− s, after interacting with P ∗1 , . . . , P
∗
` .

We denote such a proof system by ε-MIPP (and omit the soundness and complete-
ness parameters from the notation). We say that the proof-system has perfect
completeness if completeness hold with probability 1 (i.e. c = 1). The parame-
ters we are mainly interested in are the query complexity and the communication
complexity.

No-Signaling MIPP. An ε-MIPP, (V, P1, . . . , P`) for a language L is said to
have soundness s against no-signaling strategies (or provers) if the following
(more general) soundness property is satisfied:

2. Soundness: For every x that is ε-far from L, and any no-signaling family of
distributions {Aq}q∈D` , the verifier V rejects with probability ≥ 1−s, where
on queries q = (q1, . . . , q`) the answers are given by (a1, . . . , a`) ∈R Aq, and
s is the error parameter.

If the property is satisfied for any δ-no-signaling family of distributions {Aq}q∈D` ,
we say that the MIP has soundness s against δ-no-signaling strategies (or provers).

4 Lower Bound for No-Signaling MIPP

In this section we prove a lower bound, showing that there does not exist a
no-signaling MIPP for all of P with query complexity q and communication
complexity c such that q·c = o(n) (where n is the input length). More specifically,
for every q we construct a language L in P and prove that if exponentially hard
pseudo-random generators exist then for any no-signaling ε-MIPP for L with
query complexity q and communication complexity c, it must be the case that
q · c = Ω(n). In the full version we show how to extend the result to IPPs and
to arguments of proximity.

In what follows we denote by τ the security parameter.
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Definition 1. A pseudo-random generator G : {0, 1}n → {0, 1}`(n) (with stretch
`(n) > n) is said to be exponentially hard if for every circuit family {Aτ}τ of
size 2o(τ),∣∣∣∣ Pr

s∈R{0,1}τ
[Aτ (1τ , G(s)) = 1]− Pr

y∈R{0,1}`(τ)
[Aτ (1τ , y) = 1]

∣∣∣∣ = negl(τ).

Theorem 7. Assume the existence of exponentially hard pseudo-random gener-
ators. There exists a constant ε > 0 such that for every q = q(n) ≤ n, there exists
a language L ∈ P such that every MIPP for testing ε-proximity to L with com-
pleteness 2/3, soundness 1/3, query complexity q and communication complexity
c it holds that q · c = Ω(n).

Remark 1. The above theorem holds with respect to any constant completeness
parameter c > 0 and constant soundness parameter s such that s < c, and we
chose c = 2/3 and s = 1/3 only for the sake of concreteness.

Remark 2. The assumption in Theorem 7 can be reduced to sub-exponentially

hard pseudo-random generators (i.e., it is infeasible for circuits of size 2τ
δ

to
distinguish the output of the generator from uniform, for some δ > 0), rather
than exponential hardness, at the cost of a weaker implication (i.e., q·c = Ω(nδ)).

Proof of Theorem 7. We start by defining the notion of average-case no-
signaling MIP (in the crs model), which is used in the proof of Theorem 7. We
note that this average-case completeness seems too weak for applications and we
define this weak notion only for the sake of the proof of Theorem 7.

Definition 2. An average-case no-signaling MIP in the common random string
(crs) model, for a language L, with completeness c and soundness s, consists of
(V, P1, . . . , P`, crs), where as before V is the verifier, P1, . . . , P` are the provers,
and crs is a common random string of length poly(n), chosen uniformly at ran-
dom and given to all parties. In particular, V ’s queries and decision may depend
on the crs, and the answers generated by both honest and cheating provers may
depend on the crs. The following completeness and soundness conditions are re-
quired:

– Average-case completeness. For all sufficiently large n ∈ N,

Pr
[
(V, P1, . . . , P`)(x, crs) = 1

]
≥ c,

where the probability is over uniformly distributed x ∈R L ∩ {0, 1}n, over
uniformly generated crs ∈R {0, 1}poly(n), and over the random coin tosses of
the verifier V .

– Soundness against no-signaling provers. For every x 6∈ L, and every
family of distributions {Aq,crs}q∈D`,crs∈{0,1}poly(n) such that for every crs ∈
{0, 1}poly(n) the family of distributions {Aq,crs}q∈D` is no-signaling, the ver-
ifier V rejects with probability ≥ 1 − s, where the answers corresponding to
(q, crs) are given by (a1, . . . , a`) ∈R Aq,crs.
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The following proposition, which we use in the proof of Theorem 7, follows
from [DLN+04] (see also [Ito10]).

Proposition 1. Suppose that a language L has an average-case no-signaling
MIP in the crs model, communication complexity c = c(n) (where n is the in-
stance length), and with constant completeness and soundness (where the sound-
ness parameter is smaller than the completeness parameter). Then, there exists
a randomized algorithm D that runs in time poly(n, 2c) such that:

– For every n ∈ N,
Pr

x∈RL∩{0,1}n
[D(x) = 1] ≥ 2/3

where the probability is also over the coin tosses of D.
– For every x 6∈ L it holds that

Pr[D(x) = 1] ≤ 1/3

where the probability is over the coins tosses of D.

We note that [DLN+04, Ito10] did not consider the crs model nor average-case
completeness, but the claim extends readily to this setting as well.

We are now ready to prove Theorem 7.

Proof of Theorem 7. Assume that there exists a pseudo-random generator (PRG),
denoted by G : {0, 1}τ → {0, 1}2τ , that is exponentially secure. Namely, every
adversary of size 2o(τ) cannot distinguish between uniformly distributed r ∈R
{0, 1}2τ and G(s) for uniformly distributed s ∈R {0, 1}τ , with non-negligible
advantage. For sake of simplicity, we assume that G is injective8.

Let ε > 0 be a constant for which there exists a (good) error-correcting-code,
denoted by ECC, with constant rate and efficient encoding that is resilient to
(2ε)-fraction of adversarially chosen errors.

Fix any query complexity q = o(n).9 We show that there exists a language
L ∈ P such that for every no-signaling ε-MIPP for L with query complexity q
and communication complexity c (and completeness 2

3 and soundness 1
3 ) it must

be the case that q · c = Ω(n).
Consider the following language:

L =
{

(ECC(r1, . . . , rm), s1, . . . , sm) : ∀i ∈ [m], G(si) = ri
}
,

where m = 4q and τ = |si| = Θ(n/q), where n = |(ECC(r1, . . . , rm), s1, . . . , sm)|.
The fact that |si| = Θ(n/q) follows from the fact that ECC has constant rate
(i.e., |ECC(z)| = O(|z|)).

The fact that ECC is efficiently decodable and G is efficiently computable
implies that L ∈ P. Suppose for contradiction that there exists a no-signaling

8 We note that this assumption can be easily removed by replacing the use of the
uniform distribution over the language L′ (defined below) with the distribution G(s)
for s ∈R {0, 1}τ .

9 Note that for q = Ω(n) the theorem is trivially true.
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ε-MIPP for L, denoted by (V, P1, . . . , P`), with communication complexity c such
that c = o(n/q).

Consider the following NP language

LG = {r : ∃s s.t. G(s) = r}.

Proposition 1, together with the fact that G is exponentially secure, im-
plies that LG does not have an average-case MIP in the crs model with sound-
ness against no-signaling strategies, with communication complexity o(τ) for
instances of length τ .

We obtain a contradiction by constructing an average-case MIP in the crs
model with soundness against no-signaling strategies, with communication com-
plexity o(τ). To this end, consider the following MIP in the crs model for LG,
denoted by (V ′, P ′1, . . . , P

′
` , crs).

– The crs consists of m uniformly distributed seeds s1, . . . , sm ∈R {0, 1}τ , and
a random coordinate i ∈R [m].

– The verifier V ′, on input r ∈ {0, 1}2τ , does the following:
1. Let ri = r, and for every j ∈ [m] \ {i}, let rj = G(sj).
2. Emulate V with oracle access to (ECC(r1, . . . , rm), s1, . . . , sm).

(Note that with overwhelming probability r 6= G(si), and thus ri 6=
G(si). However V will not notice this unless it queries coordinates that
belong to si.)

– The provers P ′1, . . . , P
′
` , emulate P1, . . . , P` on input (ECC(r1, . . . , rm), s1, . . . , sm),

while setting ri = r and setting si = s where r = G(s) (assuming that such s
exists).10 If such s does not exist then the provers P ′1, . . . , P

′
` send a reject

message, and abort.

Note that the communication complexity of (V ′, P ′1, . . . , P
′
` , crs) is equal to

the communication complexity of (V, P1, . . . , P`, crs), denoted by c. By our as-
sumption, c = o(n/q) = o(τ), as desired.

Average-case completeness. We need to prove that Pr[(V ′, P ′1, . . . , P
′
`)(r, crs) =

1] ≥ 1
2 , where the probability is over uniformly distributed r ∈R (LG)τ , over uni-

formly generated crs = (s1, . . . , sm, i) where each sj ∈R {0, 1}τ , i ∈R [m], and
over the random coin tosses of the verifier V .

Let GOOD denote the event that V ′ does not query any of the coordinates
that belong to si, where i ∈ [m] is the random coordinate chosen by V ′. Notice
that for every r ∈ LG,

Pr
[
(V ′, P ′1, . . . , P

′
`)(r, crs) = 1 | GOOD

]
=

Pr
[
(V, P1, . . . , P`)(ECC(r1, . . . , rm), s1, . . . , sm) = 1 | si is not queried

]
≥ 2

3

10 This step can be done by a brute force search (since the honest provers are also
computationally unbounded). Nevertheless, we note that typically in proof-systems
for languages in NP the prover is given the NP witness and so this step can also be
done efficiently.
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where the probabilities are over a uniformly distributed crs and the random coin
tosses of V ′ and V , and where in the second equation ri = r and si = s, where
r = G(s). Recall that the fact that r ∈ LG implies that such s exists.

The fact that

Pr[(V ′, P ′1, . . . , P
′
`)(r, crs) = 1] ≥ Pr[(V ′, P ′1, . . . , P

′
`)(r, crs) = 1| GOOD]·Pr[GOOD]

implies that it suffices to prove that Pr[GOOD] ≥ 3
4 , where the probability is over

uniformly distributed r ∈R LG, uniformly distributed crs, and over the random
coin tosses of V ′.

Note that r1, . . . , rm are all distributed identically to r, and thus V, P1, . . . , P`,
which all receive as input (ECC(r1, . . . , rm), s1, . . . , sm), where ri = r, do not
have any advantage in guessing i (here we crucially use the fact that the MIPP
provers are not given access to the crs). Therefore, since V makes at most q
queries, and since m = 4q, it follows from the union bound that V queries any
location of si with probability at most q

m = 1
4 . Hence, Pr[GOOD] ≥ 3

4 and
(average-case) completeness follows.

Soundness against No-Signaling Strategies. We prove that for every r /∈
LG, every crs = (s1, . . . , sm, i), and every no-signaling cheating strategy PNS =
(P ∗1 , . . . , P

∗
` ), it holds that Pr[(V ′, PNS)(r, crs) = 1] ≤ 1

3 , where the probability
is over the random coin tosses of V ′ and PNS.

To this end, fix any r /∈ LG and any crs = (s1, . . . , sm, i) where each sj ∈
{0, 1}τ and i ∈ [m]. Suppose for the sake of contradiction that there exists a no-
signaling cheating strategy PNS = (P ∗1 , . . . , P

∗
` ) such that Pr[(V ′, PNS)(r, crs) =

1] > 1
3 , where the probability is over the random coin tosses of V ′ and PNS.

Recall that V ′ runs V on input (ECC(r1, . . . , rm), s1, . . . , sm), where ri = r
and where rj = G(sj) for every j ∈ [m] \ {i}. We prove that there exists a

no-signaling cheating strategy, denoted by P̂NS, such that

Pr
[(
V, P̂NS

)
(ECC(r1, . . . , rm), s1, . . . , sm) = 1

]
>

1

3
, (1)

where the probability is over the random coin tosses of V and P̂NS.

The cheating strategy P̂NS simply emulates PNS. Namely, P̂NS, upon re-
ceiving queries (q1, . . . , q`), will emulate PNS(r, crs) upon receiving (q1, . . . , q`),
where r = ri and crs = (s1, . . . , sm, i). Note that P̂NS simulates PNS perfectly,
and therefore indeed Equation (1) holds. Also note that the fact that PNS is a
no-signaling strategy immediately implies that P̂NS is also a no-signaling strat-
egy.

To get a contradiction, it thus remains to show that (ECC(r1, . . . , rm), s1, . . . , sm)
is ε-far from L. Indeed, the fact that ECC is an error correcting code resilient to
2ε-fraction of adversarial errors, together with the fact that r /∈ LG implies that
(ECC(r1, . . . , rm), s1, . . . , sm) is ε-far from L, as desired.

ut
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