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Abstract. Recently, there has been huge progress in the field of con-
cretely efficient secure computation, even while providing security in the
presence of malicious adversaries. This is especially the case in the two-
party setting, where constant-round protocols exist that remain fast even
over slow networks. However, in the multi-party setting, all concretely
efficient fully-secure protocols, such as SPDZ, require many rounds of
communication.
In this paper, we present an MPC protocol that is fully-secure in the
presence of malicious adversaries and for any number of corrupted par-
ties. Our construction is based on the constant-round BMR protocol of
Beaver et al., and is the first fully-secure version of that protocol that
makes black-box usage of the underlying primitives, and is therefore con-
cretely efficient.
Our protocol includes an online phase that is extremely fast and mainly
consists of each party locally evaluating a garbled circuit. For the offline
phase we present both a generic construction (using any underlying MPC
protocol), and a highly efficient instantiation based on the SPDZ proto-
col. Our estimates show the protocol to be considerably more efficient
than previous fully-secure multi-party protocols.

1 Introduction

Background: Protocols for secure multi-party computation (MPC) enable a set
of mutually distrustful parties to securely compute a joint functionality of their
inputs. Such a protocol must guarantee privacy (meaning that only the output
is learned), correctness (meaning that the output is correctly computed from the
inputs), and independence of inputs (meaning that each party must choose its
input independently of the others). Formally, security is defined by comparing
the distribution of the outputs of all parties in a real protocol to an ideal model
where an incorruptible trusted party computes the functionality for the parties.
The two main types of adversaries that have been considered are semi-honest
adversaries who follow the protocol specification but try to learn more than
allowed by inspecting the transcript, and malicious adversaries who can run any
arbitrary strategy in an attempt to break the protocol. Secure MPC has been
studied since the late 1980s, and powerful feasibility results were proven showing
that any two-party or multi-party functionality can be securely computed [22,
10], even in the presence of malicious adversaries. When an honest majority



(or 2/3 majority) is assumed, then security can even be obtained information
theoretically [3, 4, 19]. In this paper, we focus on the problem of security in the
presence of malicious adversaries, and a dishonest majority.

Recently, there has been much interest in the problem of concretely efficient
secure MPC, where “concretely efficient” refers to protocols that are sufficiently
efficient to be implemented in practice (in particular, these protocols should
only make black-box usage of cryptographic primitives; they must not, say, use
generic ZK proofs that operate on the circuit representation of these primitives).
In the last few years there has been tremendous progress on this problem, and
there now exist extremely fast protocols that can be used in practice; see [14, 16,
17, 13, 8] for just a few examples. In general, there are two approaches that have
been followed; the first uses Yao’s garbled circuits [22] and the second utilizes
interaction for every gate like the GMW protocol [10].

There are extremely efficient variants of Yao’s protocol for the two party
case that are secure against malicious adversaries (e.g., [14, 16]). These proto-
cols run in a constant number of rounds and therefore remain fast over slow
networks. The BMR protocol [1] is a variant of Yao’s protocol that runs in a
multi-party setting with more than two parties. This protocol works by the par-
ties jointly constructing a garbled circuit (possibly in an offline phase), and then
later computing it (possibly in an online phase). However, in the case of mali-
cious adversaries this protocol suffers from two main drawbacks: (1) Security is
only guaranteed if at most a minority of the parties are corrupt; (2) The proto-
col uses generic protocols secure against malicious adversaries (say, the GMW
protocol) that evaluate the pseudorandom generator used in the BMR protocol.
This non black-box construction results in an extremely high overhead.

The TinyOT and SPDZ protocols [17, 8] follow the GMW paradigm, and have
offline and online phases. Both of these protocols overcome the issues of the BMR
protocol in that they are secure against any number of corrupt parties, make only
black-box usage of cryptographic primitives, and have very fast online phases
that require only very simple (information theoretic) operations. (A black-box
constant-round MPC construction appears in [11]; however, it is not“concretely
efficient”.) In the case of multi-party computation with more than two parties,
these protocols are currently the only practical approach known. However, since
they follow the GMW paradigm, their online phase requires a communication
round for every multiplication gate. This results in a large amount of interaction
and high latency, especially over slow networks. To sum up, there is no known
concretely efficient constant-round protocol for the multi-party case (with the
exception of [5] that considers the specific three-party case only). Our work
introduces the first protocol with these properties.

Our contribution: In this paper, we provide the first concretely efficient const-
ant-round protocol for the general multi-party case, with security in the presence
of malicious adversaries. The basic idea behind the construction is to use an ef-
ficient non-constant round protocol – with security for malicious adversaries –
to compute the gate tables of the BMR garbled circuit (and since the computa-
tion of these tables is of constant depth, this step is constant round). A crucial

2



observation, resulting in a great performance improvement, shows that in the
offline stage it is not required to verify the correctness of the computations of the
different tables. Rather, validation of the correctness is an immediate by product
of the online computation phase, and therefore does not add any overhead to
the computation. Although our basic generic protocol can be instantiated with
any non-constant round MPC protocol, we provide an optimized version that
utilizes specific features of the SPDZ protocol [8].

In our general construction, the new constant-round MPC protocol consists
of two phases. In the first (offline) phase, the parties securely compute random
shares of the BMR garbled circuit. If this is done naively, then the result is
highly inefficient since part of the computation involves computing a pseudo-
random generator or pseudorandom function multiple times for every gate. By
modifying the original BMR garbled circuit, we show that it is possible to actu-
ally compute the circuit very efficiently. Specifically, each party locally computes
the pseudorandom function as needed for every gate (in our construction we use
a pseudorandom function rather than a pseudorandom generator), and uses the
results as input to the secure computation. Our proof of security shows that if
a party cheats and inputs incorrect values then no harm is done, since it can
only cause the honest parties to abort (which is anyway possible when there is
no honest majority). Next, in the online phase, all that the parties need to do is
reconstruct the single garbled circuit, exchange garbled values on the input wires
and locally compute the garbled circuit. The online phase is therefore very fast.

In our concrete instantiation of the protocol using SPDZ [8], there are actu-
ally three separate phases, with each being faster than the previous. The first
two phases can be run offline, and the last phase is run online after the inputs
become known.

– The first (slow) phase depends only on an upper bound on the number of
wires and the number of gates in the function to be evaluated. This phase
uses Somewhat Homomorphic Encryption (SHE) and is equivalent to the
offline phase of the SPDZ protocol.

– The second phase depends on the function to be evaluated but not the func-
tion inputs; in our proposed instantiation this mainly involves information
theoretic primitives and is equivalent to the online phase of the SPDZ pro-
tocol.

– In the third phase the parties provide their input and evaluate the function;
this phase just involves exchanging shares of the circuit and garbled values
on the input wire and locally computing the BMR garbled circuit.

We stress that our protocol is constant round in all phases since the depth of
the circuit required to compute the BMR garbled circuit is constant. In addition,
the computational cost of preparing the BMR garbled circuit is not much more
than the cost of using SPDZ itself to compute the functionality directly. However,
the key advantage that we gain is that our online time is extraordinarily fast,
requiring only two rounds and local computation of a single garbled circuit. This
is faster than all other existing circuit-based multi-party protocols.
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Finite field optimization of BMR: In order to efficiently compute the BMR
garbled circuit, we define the garbling and evaluation operations over a finite
field. A similar technique of using finite fields in the BMR protocol was intro-
duced in [2] in the case of semi-honest security against an honest majority. In
contrast to [2], our utilization of finite fields is carried out via vectors of field el-
ements, and uses the underlying arithmetic of the field as opposed to using very
large finite fields to simulate integer arithmetic. This makes our modification in
this respect more efficient.

2 The General Protocol

2.1 The BMR Protocol

To aid the reader we provide here a high-level description of the BMR proto-
col of [1]. A detailed description of the protocol can be found in [1, 2] or in
the full version of our paper [15]. We describe here the version of the protocol
that is secure against semi-honest adversaries. The protocol is comprised of an
offline-phase, where the garbled circuit is created by the players, and an online-
phase, where garbled inputs are exchanged between the players and the circuit
is evaluated.

Seeds and superseeds: Each player associates random 0-seed and 1-seed with
each wire. Input wires of the circuit are treated differently, and there only the
player which provides the corresponding input bit knows the seeds of the wire.
The 0-superseed (resp. 1-superseed) of a wire is the concatenation of all 0-seeds
(1-seeds) of this wire, and its components are the seeds.

Garbling: For each of the four combinations of input values to a gate, the
garbling produces an encryption of the corresponding superseed of the output
wire, with the keys being each of the component seeds of the corresponding
superseeds of the input wires.

The offline phase: In the offline-phase, the players run (in parallel) a secure
computation for each gate, which computes the garbled table of the gate as a
function of the 0/1-seeds of each of the players for the input/output wires of the
gate, and of the truth table of the gate. This computation runs in a constant
number of rounds. The resulting garbled table enables to compute the superseed
of the output wire of the gate, given the superseeds of its input wires.

The online phase: In the online-phase each player which is assigned an input
wire, and which has an input value b on that wire, sends the b-superseed of the
wire to all other players. Then, every player is able evaluate the circuit on its
own, without any further interaction with the other players.

2.2 Modified BMR Garbling

In order to facilitate fast secure computation of the garbled circuit in the of-
fline phase, we make some changes to the original BMR garbling above. First,
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instead of using XOR of bit strings, and hence a binary circuit to instantiate
the garbled gate, we use additions of elements in a finite field, and hence an
arithmetic circuit. This idea was used by [2] in the FairplayMP system, which
used the BGW protocol [3] in order to compute the BMR circuit. Note that
FairplayMP achieved semi-honest security with an honest majority, whereas our
aim is malicious security for any number of corrupted parties.

Second, we observe that the external values3 do not need to be explicitly
encoded, since each party can learn them by looking at its own “part” of the
garbled value. In the original BMR garbling, each superseed contains n seeds
provided by the parties. Thus, if a party’s zero-seed is in the decrypted superseed
then it knows that the external value (denoted by Λ) is zero, and otherwise it
knows that it is one.

Naively, it seems that independently computing each gate securely in the
offline phase is insufficient, since the corrupted parties might use inconsistent
inputs for the computations of different gates. For example, if the output wire
of gate g is an input to gate g′, the input provided for the computation of
the table of g might not agree with the inputs used for the computation of
the table of g′. It therefore seems that the offline computation must verify the
consistency of the computations of different gates. This type of verification would
greatly increase the cost since the evaluation of the pseudorandom functions (or
pseudorandom generator in the original BMR) used in computing the tables
needs to be be checked inside the secure computation. This means that the
pseudorandom function is not treated as a black box, and the circuit for the
offline phase would be huge (as it would include multiple copies of a subcircuit
for computing pseudorandom function computations for every wire). Instead, we
prove that this type of corrupt behavior can only result in an abort in the online
phase, which would not affect the security of the protocol. This observation
enables us to compute each gate independently and model the pseudorandom
function used in the computation as a black box, thus simplifying the protocol
and optimizing its performance.

We also encrypt garbled values as vectors; this enables us to use a finite field
that can encode {0, 1}κ (for each vector coordinate), rather than a much larger
finite field that can encode all of {0, 1}n·κ. Due to this, the parties choose keys
(for a pseudorandom function) rather than seeds for a pseudorandom generator.
The keys that Pi chooses for wire w are denoted kiw,0 and kiw,1, which will be
elements in a finite field Fp such that 2κ < p < 2κ+1. In fact we pick p to be
the smallest prime number larger than 2κ, and set p = 2κ + α, where (by the
prime number theorem) we expect α ≈ κ. We shall denote the pseudorandom
function by Fk(x), where the key and output will be interpreted as elements of
Fp in much of our MPC protocol. In practice the function Fk(x) we suggest will
be implemented using CBC-MAC using a block cipher enc with key and block
size κ bits, as Fk(x) = CBC-MACenc(k (mod 2κ), x). Note that the inputs x to

3
The external values (as denoted in [2]) are the signals (as denoted in [1]) observable by the parties
when evaluating the circuit in the online phase.
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our pseudorandom function will all be of the same length and so using naive
CBC-MAC will be secure.

We interpret the κ-bit output of Fk(x) as an element in Fp where p = 2κ+α.
Note that a mapping which sends an element k ∈ Fp to a κ-bit block cipher key
by computing k (mod 2κ) induces a distribution on the key space of the block
cipher which has statistical distance from uniform of
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The output of the function Fk(x) will also induce a distribution which is close
to uniform on Fp. In particular the statistical distance of the output in Fp, for a
block cipher with block size κ, from uniform is given by
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(note that 1− 2κ

p = α
p ). In practice we set κ = 128, and use the AES cipher as

the block cipher enc. The statistical difference is therefore negligible.

Functionality 1 (The SFE Functionality: FSFE)

The functionality is parameterized by a function f(x1, . . . , xn) which is input
as a binary circuit Cf . The protocol consists of 3 externally exposed commands
Initialize, InputData, and Output and one internal subroutine Wait.

Initialize: On input (init , Cf ) from all parties, the functionality activates
and stores Cf .

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , Pi, varid , xi) from Pi and (input , Pi, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , xi). The functionality then calls Wait.

Output: On input (output) from all honest parties the functionality computes
y = f(x1, . . . , xn) and outputs y to the adversary. The functionality then
calls Wait. Only if Wait does not abort it outputs y to all parties.

The goal of this paper is to present a protocol ΠSFE which implements the
Secure Function Evaluation (SFE) functionality of Functionality 1 in a constant
number of rounds in the case of a malicious dishonest majority. Our constant
round protocol ΠSFE implementing FSFE is built in the FMPC-hybrid model, i.e.
utilizing a sub-protocol ΠMPC which implements the functionality FMPC given
in Functionality 2. The generic MPC functionality FMPC is reactive. We require
a reactive MPC functionality because our protocol ΠSFE will make repeated
sequences of calls to FMPC involving both output and computation commands.
In terms of round complexity, all that we require of the sub-protocol ΠMPC is
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that each of the commands which it implements can be implemented in constant
rounds. Given this requirement our larger protocol ΠSFE will be constant round.

Functionality 2 (The Generic Reactive MPC Functionality: FMPC)

The functionality consists of five externally exposed commands Initialize, In-
putData, Add, Multiply, and Output, and one internal subroutine Wait.

Initialize: On input (init , p) from all parties, the functionality activates and
stores p. All additions and multiplications below will be mod p.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , x). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functional-
ity retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y mod p). The
functionality then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the function-
ality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y mod p). The
functionality then calls Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present
in memory), the functionality retrieves (varid , x) and outputs either
(varid , x) in the case of i 6= 0 or (varid) if i = 0 to the adversary. The
functionality then calls Wait, and only if Wait does not abort then it
outputs x to all parties if i = 0, or it outputs x only to party i if i 6= 0.

In what follows we use the notation [varid ] to represent the result stored in
the variable varid by the FMPC or FSFE functionality. In particular we use the
arithmetic shorthands [z] = [x] + [y] and [z] = [x] · [y] to represent the result of
calling the Add and Multiply commands on the FMPC functionality.

2.3 The Offline Functionality: preprocessing-I and preprocessing-II

Our protocol, ΠSFE, is comprised of an offline-phase and an online-phase, where
the offline-phase, which implements the functionality Foffline, is divided into two
subphases: preprocessing-I and preprocessing-II. To aid exposition we first present
the functionality Foffline in Functionality 3. In the next section, we present an
efficient methodology to implement Foffline which uses the SPDZ protocol as the
underlying MPC protocol for securely computing functionality FMPC; while in
the full version of the paper [15] we present a generic implementation of Foffline

based on any underlying protocol ΠMPC implementing FMPC.
In describing functionality Foffline we distinguish between attached wires and

common wires: the attached wires are the circuit-input-wires that are directly
connected to the parties (i.e., these are inputs wires to the circuit). Thus, if every
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party has ` inputs to the functionality f then there are n · ` attached wires. The
rest of the wires are considered as common wires, i.e. they are directly connected
to none of the parties.

Our preprocessing-I takes as input an upper bound W on the number of wires
in the circuit, and an upper bound G on the number of gates in the circuit.
The upper bound G is not strictly needed, but will be needed in any efficient
instantiation based on the SPDZ protocol. In contrast preprocessing-II requires
knowledge of the precise function f being computed, which we assume is encoded
as a binary circuit Cf .

In order to optimize the performance of the preprocessing-II phase, the secure
computation does not evaluate the pseudorandom function F (), but rather has
the parties compute F () and provide the results as an input to the protocol. Ob-
serve that corrupted parties may provide incorrect input values Fkix,j () and thus

the resulting garbled circuit may not actually be a valid BMR garbled circuit.
Nevertheless, we show that such behavior can only result in an abort. This is due
to the fact that if a value is incorrect and honest parties see that their key (co-
ordinate) is not present in the resulting vector then they will abort. In contrast,
if their seed is present then they proceed and the incorrect value had no effect.
Since the keys are secret, the adversary cannot give an incorrect value that will
result in a correct different key, except with negligible probability. This is impor-
tant since otherwise correctness would be harmed. Likewise, a corrupted party
cannot influence the masking values λ, and thus they are consistent throughout
(when a given wire is input into multiple gates), ensuring correctness.

2.4 Securely Computing FSFE in the Foffline-Hybrid Model

We now define our protocol ΠSFE for securely computing FSFE (using the BMR
garbled circuit) in the Foffline-hybrid model, see Protocol 1. In the full version of
this paper [15], we prove the following theorem:

Theorem 1. If F is a pseudorandom function, then Protocol ΠSFE securely com-
putes FMPC in the Foffline-hybrid model, in the presence of a static malicious
adversary corrupting any number of parties.

2.5 Implementing Foffline in the FMPC-Hybrid Model

At first sight, it may seem that in order to construct an entire garbled circuit (i.e.
the output of Foffline), an ideal functionality that computes each garbled gate can
be used separately for each gate of the circuit (that is, for each gate the parties
provide their PRF results on the keys and shares of the masking values asso-
ciated with that gate’s wires). This is sufficient when considering semi-honest
adversaries. However, in the setting of malicious adversaries, this can be prob-
lematic since parties may input inconsistent values. For example, the masking
values λw that are common to a number of gates (which happens when any wire
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Functionality 3 (The Offline Functionality – Foffline)

This functionality runs the same Initialize, Wait, InputData and Output
commands as FMPC (Functionality 2). In addition, the functionality has two
additional commands preprocessing-I and preprocessing-II, as follows.

preprocessing-I: On input (preprocessing-I,W,G), for all wires w ∈ [1, . . . ,W ]:
– The functionality chooses and stores a random masking value [λw]

where λw ∈ {0, 1}.
– For 1 ≤ i ≤ n and β ∈ {0, 1},
• The functionality stores a key of user i for wire w and value β,

[kiw,β ] where kiw,β ∈ Fp
• The functionality outputs [kiw,β ] to party i by running Output

as in functionality FMPC.
preprocessing-II: On input of (preprocessing-II, Cf ) for a circuit Cf with at

most W wires and G gates.
– For all wires w which are attached to party Pi the functionality opens

[λw] to party Pi by running Output as in functionality FMPC.
– For all output wires w the functionality opens [λw] to all parties by

running Output as in functionality FMPC.
– For every gate g with input wires 1 ≤ a, b ≤ W and output wire

1 ≤ c ≤W .
• Party Pi provides the following values for x ∈ {a, b} by running

InputData as in functionality FMPC:

Fkix,0
(0‖1‖g), . . . , Fkix,0

(0‖n‖g) Fkix,0
(1‖1‖g), . . . , Fkix,0

(1‖n‖g)

Fkix,1
(0‖1‖g), . . . , Fkix,1

(0‖n‖g) Fkix,1
(1‖1‖g), . . . , Fkix,1

(1‖n‖g)

• Define the selector variables

χ1 =

{
0 if fg(λa, λb) = λc

1 otherwise
χ2 =

{
0 if fg(λa, λb) = λc

1 otherwise

χ3 =

{
0 if fg(λa, λb) = λc

1 otherwise
χ4 =

{
0 if fg(λa, λb) = λc

1 otherwise

• Set Ag = (A1
g, . . . , A

n
g ), Bg = (B1

g , . . . , B
n
g ), Cg = (C1

g , . . . , C
n
g ),

and Dg = (D1
g , . . . , D

n
g ) where for 1 ≤ j ≤ n:

Ajg =

(
n∑
i=1

Fkia,0
(0‖j‖g) + Fki

b,0
(0‖j‖g)

)
+ kjc,χ1

Bjg =

(
n∑
i=1

Fkia,0
(1‖j‖g) + Fki

b,1
(0‖j‖g)

)
+ kjc,χ2

Cjg =

(
n∑
i=1

Fkia,1
(0‖j‖g) + Fki

b,0
(1‖j‖g)

)
+ kjc,χ3

Dj
g =

(
n∑
i=1

Fkia,1
(1‖j‖g) + Fki

b,1
(1‖j‖g)

)
+ kjc,χ4

• The functionality stores the values [Ag], [Bg], [Cg], [Dg].
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Protocol 1 (ΠSFE: Securely Computing FSFE in the Foffline-Hybrid Model)

On input of a circuit Cf representing the function f which consists of at most
W wires and at most G gates the parties execute the following commands.

Pre-Processing: This procedure is performed as follows
1. Call Initialize on Foffline with the smallest prime p in {2κ, . . . , 2κ+1}.
2. Call Preprocessing-I on Foffline with input W and G.
3. Call Preprocessing-II on Foffline with input Cf .

Online Computation: This procedure is performed as follows
1. For all input wires w for party Pi the party takes his input bit ρw and

computes Λw = ρw⊕λw, where λw was obtained in the preprocessing
stage. The value Λw is broadcast to all parties.

2. Party i calls Output on Foffline to open [kiw,Λw ] for all his input wires
w, we denote the resulting value by kiw.

3. The parties call Output on Foffline to open [Ag], [Bg], [Cg] and [Dg]
for every gate g.

4. Passing through the circuit topologically, the parties can now locally
compute the following operations for each gate g

– Let the gates input wires be labeled a and b, and the output wire
be labeled c.

– For j = 1, . . . , n compute kjc according to the following cases:
• Case 1 – (Λa, Λb) = (0, 0): compute

kjc = Ajg −

(
n∑
i=1

Fkia(0‖j‖g) + Fki
b
(0‖j‖g)

)
.

• Case 2 – (Λa, Λb) = (0, 1): compute

kjc = Bjg −

(
n∑
i=1

Fkia(1‖j‖g) + Fki
b
(0‖j‖g)

)
.

• Case 3 – (Λa, Λb) = (1, 0): compute

kjc = Cjg −

(
n∑
i=1

Fkia(0‖j‖g) + Fki
b
(1‖j‖g)

)
.

• Case 4 – (Λa, Λb) = (1, 1): compute

kjc = Dj
g −

(
n∑
i=1

Fkia(1‖j‖g) + Fki
b
(1‖j‖g)

)
.

– If kic /∈ {kic,0, kic,1}, then Pi outputs abort. Otherwise, it proceeds.
If Pi aborts it notifies all other parties with that information. If
Pi is notified that another party has aborted it aborts as well.

– If kic = kic,0 then Pi sets Λc = 0; if kic = kic,1 then Pi sets Λc = 1.
– The output of the gate is defined to be (k1c , . . . , k

n
c ) and Λc.

5. Assuming party Pi does not abort it will obtain Λw for every circuit-
output wire w. The party can then recover the actual output value
from ρw = Λw⊕λw, where λw was obtained in the preprocessing stage.
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enters more than one gate) need to be identical in all of these gates. In addi-
tion, the pseudorandom function values may not be correctly computed from the
pseudorandom function keys that are input. In order to make the computation
of the garbled circuit efficient, we will not check that the pseudorandom func-
tion values are correct. However, it is necessary to ensure that the λw values are
correct, and that they (and likewise the keys) are consistent between gates (e.g.,
as in the case where the same wire is input to multiple gates). We achieve this
by computing the entire circuit at once, via a single functionality.

The cost of this computation is actually almost the same as separately com-
puting each gate. The single functionality receives from party Pi the values
kiw,0, k

i
w,1 and the output of the pseudorandom function applied to the keys only

once, regardless of the number of gates to which w is input. Thereby consistency
is immediate throughout, and this potential attack is prevented. Moreover, the
λw values are generated once and used consistently by the circuit, making it easy
to ensure that the λ values are correct.

Another issue that arises is that the single garbled gate functionality expects
to receive a single masking value for each wire. However, since this value is secret,
it must be generated from shares that are input by the parties. In the full version
of the paper [15] we describe the full protocol for securely computing Foffline in the
FMPC-hybrid model (i.e., using any protocol that securely computes the FMPC

ideal functionality). In short, the parties input shares of λw to the functionality,
the single masking value is computed from these shares, and then input to all
the necessary gates.

In the semi-honest case, the parties could contribute a share which is random
in {0, 1} (interpreted as an element in Fp) and then compute the product of all
the shares (using the underlying MPC) to obtain a random masking value in
{0, 1}. This is however not the case in the malicious case since parties might
provide a share that is not from {0, 1} and thus the resulting masking value
wouldn’t likewise be from {0, 1}

This issue is solved in the following way. The computation is performed by
having the parties input random masking values λiw ∈ {1,−1}, instead of bits.
This enables the computation of a value µw to be the product of λ1w, . . . , λ

n
w and

to be random in {−1, 1} as long as one of them is random. The product is then
mapped to {0, 1} in Fp by computing λw = µw+1

2 .

In order to prevent corrupted parties from inputting λiw values that are not
in {−1,+1}, the protocol for computing the circuit outputs (

∏n
i=1 λ

i
w)2 − 1, for

every wire w (where λiw is the share contributed from party i for wire w), and
the parties can simply check whether it is equal to zero or not. Thus, if any party
cheats by causing some λw /∈ {−1,+1}, then this will be discovered since the
circuit outputs a non-zero value for (

∏n
i=1 λ

i
w)2−1, and so the parties detect this

and can abort. Since this occurs before any inputs are used, nothing is revealed
by this. Furthermore, if

∏n
i=1 λ

i
w ∈ {−1,+1}, then the additional value output

reveals nothing about λw itself.

In the next section we shall remove all of the complications by basing our
implementation for FMPC upon the specific SPDZ protocol. The reason why the
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SPDZ implementation is simpler – and more efficient – is that SPDZ provides
generation of such shared values effectively for free.

3 The SPDZ Based Instantiation

Functionality 4 (The SPDZ Functionality: FSPDZ)

The functionality consists of seven externally exposed commands Initialize,
InputData, RandomBit, Random, Add, Multiply, and Output and one
internal subroutine Wait.

Initialize: On input (init , p,M,B,R, I) from all parties, the functionality
activates and stores p. Pre-processing is performed to generate data needed
to respond to a maximum of M Multiply, B RandomBit, R Random
commands, and I InputData commands per party.

Wait: This waits on the adversary to return a GO/NO-GO decision. If the
adversary returns NO-GO then the functionality aborts.

InputData: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?)
from all other parties, with varid a fresh identifier, the functionality stores
(varid , x). The functionality then calls Wait.

RandomBit: On command (randombit , varid) from all parties, with varid
a fresh identifier, the functionality selects a random value r ∈ {0, 1} and
stores (varid , r). The functionality then calls Wait.

Random: On command (random, varid) from all parties, with varid a fresh
identifier, the functionality selects a random value r ∈ Fp and stores
(varid , r). The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory), the functionality retrieves
(varid1, x), (varid2, y), stores (varid3, x+ y) and then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory), the functionality retrieves
(varid1, x), (varid2, y), stores (varid3, x · y) and then calls Wait.

Output: On input (output , varid , i) from all honest parties (if varid is present
in memory), the functionality retrieves (varid , x) and outputs either
(varid , x) in the case of i 6= 0 or (varid) if i = 0 to the adversary. The
functionality then calls Wait, and only if Wait does not abort then it
outputs x to all parties if i = 0, or it outputs x only to party i if i 6= 0.

3.1 Utilizing the SPDZ Protocol

As discussed in Section 2.2, in the offline-phase we use an underlying secure
computation protocol, which, given a binary circuit and the matching inputs to
its input wires, securely and distributively computes that binary circuit. In this
section we simplify and optimize the implementation of the protocolΠoffline which
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implements the functionality Foffline by utilizing the specific SPDZ MPC protocol
as the underlying implementation of FMPC. These optimizations are possible
because the SPDZ MPC protocol provides a richer interface to the protocol
designer than the naive generic MPC interface given in functionality FMPC. In
particular, it provides the capability of directly generating shared random bits
and strings. These are used for generating the masking values and pseudorandom
function keys. Note that one of the most expensive steps in FairplayMP [2] was
coin tossing to generate the masking values; by utilizing the specific properties
of SPDZ this is achieved essentially for free.

In Section 3.2 we describe explicit operations that are to be carried out on the
inputs in order to achieve the desired output; the circuit’s complexity analysis
appears in Section 3.3 and the expected results from an implementation of the
circuit using the SPDZ protocol are in Section 3.4.

Throughout, we utilize FSPDZ (Functionality 4), which represents an ideal-
ized representation of the SPDZ protocol, akin to the functionality FMPC from
Section 2.2. Note that in the real protocol, FSPDZ is implemented itself by an of-
fline phase (essentially corresponding to our preprocessing-I) and an online phase
(corresponding to our preprocessing-II). We fold the SPDZ offline phase into the
Initialize command of FSPDZ. In the SPDZ offline phase we need to know the
maximum number of multiplications, random values and random bits required in
the online phase. In that phase the random shared bits and values are produced,
as well as the “Beaver Triples” for use in the multiplication gates performed in
the SPDZ online phase. In particular the consuming of shared random bits and
values results in no cost during the SPDZ online phase, with all consumption
costs being performed in the SPDZ offline phase. The protocol, which utilizes
Somewhat Homomorphic Encryption to produce the shared random values/bits
and the Beaver multiplication triples, is given in [7].

As before, we use the notation [varid ] to represent the result stored in the
variable varid by the functionality. In particular we use the arithmetic short-
hands [z] = [x] + [y] and [z] = [x] · [y] to represent the result of calling the Add
and Multiply commands on the functionality FSPDZ.

3.2 The Πoffline SPDZ based Protocol

As remarked earlier Foffline can be securely computed using any secure multi-
party protocol. This is advantageous since it means that future efficiency im-
provements to concretely secure multi-party computation (with dishonest ma-
jority) will automatically make our protocol faster. However, currently the best
option is SPDZ. Specifically, it utilizes the fact that SPDZ can very efficiently
generate coin tosses. This means that it is not necessary for the parties to input
the λiw values, to multiply them together to obtain λw and to output the check
values (λw)2− 1. Thus, this yields a significant efficiency improvement. We now
describe the protocol which implements Foffline in the FSPDZ-hybrid model

preprocessing-I:
1. Initialize the MPC Engine: Call Initialize on the functionality FSPDZ

with input p, a prime with p > 2k and with parameters
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M = 13 ·G, B = W, R = 2 ·W · n, I = 2 ·G · n+W,
where G is the number of gates, n is the number of parties and W is the
number of input wires per party. In practice the term W in the calculation
of I needs only be an upper bound on the total number of input wires per
party in the circuit which will eventually be evaluated.

2. Generate wire masks: For every circuit wire w we need to generate a
sharing of the (secret) masking-values λw. Thus for all wires w the parties
execute the command RandomBit on the functionality FSPDZ, the output
is denoted by [λw]. The functionality FSPDZ guarantees that λw ∈ {0, 1}.

3. Generate keys: For every wire w, each party i ∈ [1, . . . , n] and for j ∈
{0, 1}, the parties call Random on the functionality FSPDZ to obtain output
[kiw,j ]. The parties then call Output to open [kiw,j ] to party i for all j and

w. The vector of shares [kiw,j ]
n
i=1 we shall denote by [kw,j ].

preprocessing-II: (This protocol implements the computation gate table as it is
detailed in the BMR protocol. The correctness of this construction is explained
in the full version of the paper.)
1. Output input wire values: For all wires w which are attached to party Pi

we execute the command Output on the functionality FSPDZ to open [λw]
to party i.

2. Output masks for circuit-output-wires: In order to reveal the real
values of the circuit-output-wires it is required to reveal their masking values.
That is, for every circuit-output-wire w, the parties execute the command
Output on the functionality FSPDZ for the stored value [λw].

3. Calculate garbled gates: This step is operated for each gate g in the
circuit in parallel. Specifically, let g be a gate whose input wires are a, b and
output wire is c. Do as follows:
(a) Calculate output indicators: This step calculates four indicators

[xa], [xb], [xc], [xd] whose values will be in {0, 1}. Each one of the garbled
labels Ag,Bg,Cg,Dg is a vector of n elements that hide either the vector
kc,0 = k1c,0, . . . , k

n
c,0 or kc,1 = k1c,1, . . . , k

n
c,1; which one it hides depends

on these indicators, i.e if xa = 0 then Ag hides kc,0 and if xa = 1
then Ag hides kc,1. Similarly, Bg depends on xb, Cg depends on xc
and Dc depends on xd. Each indicator is determined by some function
on [λa], [λb],[λc] and the truth table of the gate fg. Every indicator is
calculated slightly different, as follows (concrete examples are given after
the preprocessing specification):

[xa] =

(
fg([λa], [λb])

?

6= [λc]

)
= (fg([λa], [λb])− [λc])

2

[xb] =

(
fg([λa], [λb])

?

6= [λc]

)
= (fg([λa], (1− [λb]))− [λc])

2

[xc] =

(
fg([λa], [λb])

?

6= [λc]

)
= (fg((1− [λa]), [λb])− [λc])

2

[xd] =

(
fg([λa], [λb])

?

6= [λc]

)
= (fg((1− [λa]), (1− [λb]))− [λc])

2
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where the binary operator
?

6= is defined as [a]
?

6= [b] equals [0] if a = b,
and equals [1] if a 6= b. For the XOR function on a and b, for example,
the operator can be evaluated by computing [a] + [b]− 2 · [a] · [b]. Thus,
these can be computed using Add and Multiply.

(b) Assign the correct vector: As described above, we use the calculated
indicators to choose for every garbled label either kc,0 or kc,1. Calculate:

[vc,xa ] = (1− [xa]) · [kc,0] + [xa] · [kc,1]

[vc,xb ] = (1− [xb]) · [kc,0] + [xa] · [kc,1]

[vc,xc ] = (1− [xc]) · [kc,0] + [xa] · [kc,1]

[vc,xd ] = (1− [xd]) · [kc,0] + [xa] · [kc,1]

In each equation either the value kc,0 or the value kc,1 is taken, depending
on the corresponding indicator value. Once again, these can be computed
using Add and Multiply.

(c) Calculate garbled labels: Party i knows the value of kiw,b (for wire
w that enters gate g) for b ∈ {0, 1}, and so can compute the 2 · n values
Fkiw,b(0‖1‖g), . . . , Fkiw,b(0‖n‖g) and Fkiw,b(1‖1‖g), . . . , Fkiw,b(1‖n‖g).

Party i inputs them by calling InputData on the functionality FSPDZ.
The resulting input pseudorandom vectors are denoted by

[F 0
kiw,b

(g)] = [Fkiw,b(0‖1‖g), . . . , Fkiw,b(0‖n‖g)]

[F 1
kiw,b

(g)] = [Fkiw,b(1‖1‖g), . . . , Fkiw,b(1‖n‖g)].

The parties now compute [Ag], [Bg], [Cg], [Dg], using Add, via

[Ag] =
∑n

i=1

(
[F 0
kia,0

(g)] + [F 0
kib,0

(g)]
)

+ [vc,xa ]

[Bg] =
∑n

i=1

(
[F 1
kia,0

(g)] + [F 0
kib,1

(g)]
)

+ [vc,xb ]

[Cg] =
∑n

i=1

(
[F 0
kia,1

(g)] + [F 1
kib,0

(g)]
)

+ [vc,xc ]

[Dg] =
∑n

i=1

(
[F 1
kia,1

(g)] + [F 1
kib,1

(g)]
)

+ [vc,xd ]

where every + operation is performed on vectors of n elements.

4. Notify parties: Output construction-done.

The functions fg in Step 3a above depend on the specific gate being evaluated.
For example, on clear values we have,

– If fg = ∧ (i.e. the AND function), λa = 1, λb = 1 and λc = 0 then xa =
((1∧1)−0)2 = (1−0)2 = 1. Similarly xb = ((1∧(1−1))−0)2 = (0−0)2 = 0,
xc = 0 and xd = 0. The parties can compute fg on shared values [x] and [y]
by computing fg([x], [y]) = [x] · [y].
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– If fg = ⊕ (i.e. the XOR function), then xa = ((1⊕ 1)− 0)2 = (0− 0)2 = 0,
xb = ((1 ⊕ (1 − 1)) − 0)2 = (1 − 0)2 = 1, xc = 1 and xd = 0. The parties
can compute fg on shared values [x] and [y] by computing fg([x], [y]) =
[x] + [y]− 2 · [x] · [y].

Below, we will show how [xa], [xb], [xc] and [xd] can be computed more efficiently.

3.3 Circuit Complexity

In this section we analyze the complexity of the above circuit in terms of the
number of multiplication gates and its depth. We are highly concerned with
multiplication gates since, given the SPDZ shares [a] and [b] of the secrets a,
and b resp., an interaction between the parties is required to achieve a secret
sharing of the secret a · b. Achieving a secret sharing of a linear combination of
a and b (i.e. α · a + β · b where α and β are constants), however, can be done
locally and is thus considered negligible. We are interested in the depth of the
circuit because it gives a lower bound on the number of rounds of interaction
that our circuit requires (note that here, as before, we are concerned with the
depth in terms of multiplication gates).

Multiplication gates: We first analyze the number of multiplication operations
that are carried out per gate (i.e. in step 3) and later analyze the entire circuit.

– Multiplications per gate. We will follow the calculation that is done per
gate chronologically as it occurs in step 3 of preprocessing-II phase:
1. In order to calculate the indicators in step 3a it suffices to compute one

multiplication and 4 squares. We can do this by altering the equations
a little. For example, for fg = AND, we calculate the indicators by
first computing [t] = [λa] · [λb] (this is the only multiplication) and then
[xa] = ([t] − [λc])

2, [xb] = ([λa] − [t] − [λc])
2, [xc] = ([λb] − [t] − [λc])

2,
and [xd] = (1− [λa]− [λb] + [t]− [λc])

2.
As another example, for fg = XOR, we first compute [t] = [λa]⊕ [λb] =
[λa] + [λb] − 2 · [λa] · [λb] (this is the only multiplication), and then
[xa] = ([t]− [λc])

2, [xb] = (1− [λa]− [λb] + 2 · [t]− [λc])
2, [xc] = [xb], and

[xd] = [xa].
Observe that in XOR gates only two squaring operations are needed.

2. To obtain the correct vector (in step 3b) which is used in each garbled
label, we carry out 8 multiplications. Note that in XOR gates only 4
multiplications are needed, because kc,xc = kc,xb and kc,xd = kc,xa .

Summing up, we have 4 squaring operations in addition to 9 multiplication
operations per AND gate and 2 squarings in addition to 5 multiplications
per XOR gate.

– Multiplications in the entire circuit. Denote the number of multipli-
cation operation per gate (i.e. 13 for AND and 7 for XOR) by c, we get G · c
multiplications for garbling all gates (where G is the number of gates in the
boolean circuit computing the functionality f). Besides garbling the gates
we have no other multiplication operations in the circuit. Thus we require
c ·G multiplications in total.
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Depth of the circuit and round complexity: Each gate can be garbled by
a circuit of depth 3 (two levels are required for step 3a and another one for step
3b). Recall that additions are local operations only and thus we measure depth in
terms of multiplication gates only. Since all gates can be garbled in parallel this
implies an overall depth of three. (Of course in practice it may be more efficient
to garble a set of gates at a time so as to maximize the use of bandwidth and
CPU resources.) Since the number of rounds of the SPDZ protocol is in the order
of the depth of the circuit, it follows that Foffline can be securely computed in a
constant number of rounds.

Other Considerations: The overall cost of the pre-processing does not just de-
pend on the number of multiplications. Rather, the parties also need to produce
the random data via calls to Random and RandomBit to the functionality
FSPDZ.4 It is clear all of these can be executed in parallel. If W is the number
of wires in the circuit then the total number of calls to RandomBit is equal to
W , whereas the total number of calls to Random is 2 · n ·W .

Arithmetic vs Boolean Circuits: Our protocol will perform favourably for
functions which are reasonably represented as boolean circuit, but the low round
complexity may be outweighed by other factors when the function can be ex-
pressed much more succinctly using an arithmetic circuit, or other programatic
representation as in [12]. In such cases, the performance would need to be tested
for the specific function.

3.4 Expected Runtimes

To estimate the running time of our protocol, we extrapolate from known public
data [8, 7]. The offline phase of our protocol runs both the offline and online
phases of the SPDZ protocol. The numbers below refer to the SPDZ offline
phase, as described in [7], with covert security and a 20% probability of cheating,
using finite fields of size 128-bits, to obtain the following generation times (in
milli-seconds). As described in [7], comparable times are obtainable for running
in the fully malicious mode (but more memory is needed).

No. Parties Beaver Triple RandomBit Random Input

2 0.4 0.4 0.3 0.3
3 0.6 0.5 0.4 0.4
4 0.9 1.2 0.9 0.9

Table 1. SPDZ offline generation times in milliseconds per operation

The implementation of the SPDZ online phase, described in both [7] and
[12], reports online throughputs of between 200,000 and 600,000 per second for
multiplication, depending on the system configuration. As remarked earlier the
online time of other operations is negligible and are therefore ignored.

4 These Random calls are followed immediately with an Open to a party. However,
in SPDZ Random followed by Open has roughly the same cost as Random alone.
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To see what this would imply in practice consider the AES circuit described in
[18]; which has become the standard benchmarking case for secure computation
calculations. The basic AES circuit has around 33,000 gates and a similar number
of wires, including the key expansion within the circuit.5 Assuming the parties
share a XOR sharing of the AES key, (which adds an additional 2 · n · 128 gates
and wires to the circuit), the parameters for the Initialize call to the FSPDZ

functionality in the preprocessing-I protocol will be

M ≈ 429, 000, B ≈ 33, 000, R ≈ 66, 000 · n, I ≈ 66, 000 · n+ 128.

Using the above execution times for the SPDZ protocol we can then estimate the
time needed for the two parts of our processing step for the AES circuit. The
expected execution times, in seconds, are given in the following table. These
expected times, due to the methodology of our protocol, are likely to estimate
both the latency and throughput amortized over many executions.

No. Parties preprocessing-I preprocessing-II
2 264 0.7–2.0
3 432 0.7–2.0
4 901 0.7–2.0

The execution of the online phase of our protocol, when the parties are given
their inputs and actually want to compute the function, is very efficient: all
that is needed is the evaluation of a garbled circuit based on the data obtained
in the offline stage. Specifically, for each gate each party needs to process two
input wires, and for each wire it needs to expand n seeds to a length which is
n times their original length (where n denotes the number of parties). Namely,
for each gate each party needs to compute a pseudorandom function 2n2 times
(more specifically, it needs to run 2n key schedulings, and use each key for n
encryptions). We examined the cost of implementing these operations for an
AES circuit of 33,000 gates when the pseudorandom function is computed using
the AES-NI instruction set. The run times for n = 2, 3, 4 parties were 6.35msec,
9.88msec and 15msec, respectively, for C code compiled using the gcc compiler on
a 2.9GHZ Xeon machine. The actual run time, including all non-cryptographic
operations, should be higher, but of the same order.

Our run-times estimates compare favourably to several other results on im-
plementing secure computation of AES in a multiparty setting:

– In [6] an actively secure computation of AES using SPDZ took an offline
time of over five minutes per AES block, with an online time of around a
quarter of a second; that computation used a security parameter of 64 as
opposed to our estimates using a security parameter of 128.

– In [12] another experiment was shown which can achieve a latency of 50
milliseconds in the online phase for AES (but no offline times are given).

5 Note that unlike [18] and other Yao based techniques we cannot process XOR gates
for free. On the other hand we are not restricted to only two parties.
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– In [17] the authors report on a two-party MPC evaluation of the AES circuit
using the Tiny-OT protocol; they obtain for 80 bits of security an amortized
offline time of nearly three seconds per AES block, and an amortized online
time of 30 milliseconds; but the reported non-amortized latency is much
worse. Furthermore, this implementation is limited to the case of two parties,
whereas we obtain security for multiple parties.

Most importantly, all of the above experiments were carried out in a LAN setting
where communication latency is very small. However, in other settings where
parties are not connect by very fast connections, the effect of the number of
rounds on the protocol will be extremely significant. For example, in [6], an
arithmetic circuit for AES is constructed of depth 120, and this is then reduced
to depth 50 using a bit decomposition technique. Note that if parties are in
separate geographical locations, then this number of rounds will very quickly
dominate the running time. For example, the latency on Amazon EC2 between
Virginia and Ireland is 75ms. For a circuit depth of 50, and even assuming just
a single round per level, the running-time cannot be less than 3750 milliseconds
(even if computation takes zero time). In contrast, our online phase has just 2
rounds of communication and so will take in the range of 150 milliseconds. We
stress that even on a much faster network with latency of just 10ms, protocols
with 50 rounds of communication will still be slow.
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