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Abstract. Recently, Goyal (STOC’13) proposed a new non-black box
simulation techniques for fully concurrent zero knowledge with straight-
line simulation. Unfortunately, so far this technique is limited to the
setting of concurrent zero knowledge. The goal of this paper is to study
what can be achieved in the setting of concurrent secure computation
using non-black box simulation techniques, building upon the work of
Goyal. The main contribution of our work is a secure computation pro-
tocol in the fully concurrent setting with a straight-line simulator, that
allows us to achieve several new results:

– We give first positive results for concurrent blind signatures and
verifiable random functions in the plain model as per the ideal/real
world security definition. Our positive result is somewhat surprising
in light of the impossibility result of Lindell (STOC’03) for black-
box simulation. We circumvent this impossibility using non-black
box simulation. This gives us a quite natural example of a func-
tionality in concurrent setting which is impossible to realize using
black-box simulation but can be securely realized using non-black
box simulation.

– Moreover, we expand the class of realizable functionalities in the
concurrent setting. Our main theorem is a positive result for con-
current secure computation as long as the ideal world satisfies the
bounded pseudo-entropy condition (BPC) of Goyal (FOCS’12). The
BPC requires that in the ideal world experiment, the total amount
of information learnt by the adversary (via calls to the ideal func-
tionality) should have “bounded pseudoentropy”.
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– We also improve the round complexity of protocols in the single-
input setting of Goyal (FOCS’12) both qualitatively and quanti-
tatively. In Goyal’s work, the number of rounds depended on the
length of honest party inputs. In our protocol, the round complexity
depends only on the security parameter, and is completely indepen-
dent of the length of the honest party inputs.

Our results are based on a non-black box simulation technique using
a new language (which allows the simulator to commit to an Oracle
program that can access information with bounded pseudoentropy), and
a simulation-sound version of the concurrent zero-knowledge protocol of
Goyal (STOC’13). We assume the existence of collision resistant hash
functions and constant round semi-honest oblivious transfer.

1 Introduction

Secure computation protocols enable a set of mutually distrustful parties to se-
curely perform a task by interacting with each other. Traditional security notions
for secure computation [49, 21] were defined for the stand-alone setting where se-
curity holds only if a single protocol session is executed in isolation. In today’s
connected world (and especially over internet), many instances of these protocols
may be executing concurrently. In such a scenario, a protocol that is secure in
the classical stand-alone setting may become completely insecure [37, 5]. Ambi-
tious efforts have been made to generalize the results for the stand-alone setting,
starting with concurrently-secure zero-knowledge protocols [14, 47, 7, 34, 45].

However, in the plain model, the effort to go beyond the zero-knowledge func-
tionality were, unfortunately, less than fully satisfactory. In fact, for the plain
model far reaching unconditional impossibility results were shown in a series of
works [8, 37, 38, 5, 24, 1, 19]. Two notable exceptions giving positive results in the
plain model are the works on bounded concurrency [36, 44, 43] (where there is an
a-priori fixed bound on the total number of concurrent sessions in the system
and the protocol in turn can depend on this bound), and, the positive results
for a large class of functionalities in the so called “single input” setting [24]. In
this setting, there is a server interacting with multiple clients concurrently with
the restriction that the server (if honest) is required to use the same input in
all sessions. There is a large body of literature on getting concurrently secure
computation in weaker models such as using a super-polynomial time simulator,
or a trusted setup. A short survey of these works is given later in this section.
We emphasize that in this work, we are interested in concurrently secure com-
putation protocols with no trusted set up assumptions where the security holds
according to standard ideal/real paradigm.

An intriguing functionality that cannot be realized in the fully concurrent
setting by these results is blind signatures in the plain model. The blind signa-
ture functionality, introduced by [11], allows users to obtain unforgeable signa-
tures on messages of their choice without revealing the message being signed to
the signer (blindness property). The question of whether a concurrently-secure
protocol for this functionality can be constructed as per the ideal/real model



simulation paradigm has been open so far. Moreover, given the impossibility re-
sult for concurrent blind signatures for black box simulation by Lindell [37], it is
clear that we need to use non-black box techniques. Until recently, no non-black
box technique was known which applies to full concurrency with polynomial time
simulation. However, Goyal [25] recently proposed new non-black box simulation
techniques for (fully) concurrent zero-knowledge with straight line simulation.
Unfortunately, the result of Goyal is limited to the setting of concurrent zero-
knowledge. We ask the question: Can we construct non-box black techniques for
(fully) concurrent secure computation, building upon the work of Goyal [25]?

Our Contributions. The main contribution of our work is a secure computa-
tion protocol in the fully concurrent setting with a straight-line simulator, that
allows us to achieve several new results. In short, we expand the class of realiz-
able functionalities in the concurrent setting and give the first positive results for
concurrent blind signatures and verifiable random functions in the plain model
as per the ideal/real world security definition. Moreover, the round complexity
of our protocol depends only on the security parameter and hence, improves the
round complexity of [24] both qualitatively and quantitatively. Finally, our work
can be seen as a unifying framework, which essentially subsumes all the previous
work on positive results for concurrent secure computation achieving polynomial
time simulation based security in the plain model. For detailed description of
our results, see Section 1.1.

Other models. In order to circumvent the above mentioned impossibility re-
sults in the plain model, there has been quite some work studying various trust
assumptions such as common reference string (CRS) model and tamper proof
hardware tokens [10, 3, 32]. Another interesting line of work has studied weaker
security definitions [16, 42, 46, 39] while still remaining in the plain model, and
most notably obtains positive results in models like super polynomial time sim-
ulation [46, 6, 9, 17] and input indistinguishable security [39, 17].

Note that these trust assumptions and these relaxed notions of security are
sometimes restrictive and are not applicable to many situations. We again em-
phasize that the focus of this work is concurrent secure computation in the
plain model achieving polynomial time simulation. In the plain model, there are
point to point authenticated channels between the parties, but there is no global
trusted third party.

What goes wrong in concurrent setting in plain model? A well estab-
lished approach to constructing secure computation protocols is to use the GMW
compiler: take a semi-honest secure computation protocol and “compile” it with
zero-knowledge arguments. The natural starting point in the concurrent setting
is to follow the same principles: somehow compile a semi-honest secure computa-
tion protocol with a concurrent zero-knowledge protocol (actually compile with
concurrent non-malleable zero-knowledge [5]). Does such an approach (or minor



variants) already give us protocols secure according to the standard ideal/real
world definition in the plain model?

There is a fundamental problem with this approach which poses a key bot-
tleneck in a number of previous works (see [30, 28, 29, 17, 24, 26]). All known
concurrent zero-knowledge simulators in the fully concurrent setting work by
rewinding the adversarial parties. Such an approach is highly problematic for
secure computation in the concurrent setting, where the adversary controls the
scheduling of the messages of different sessions. For instance, consider the fol-
lowing scenario: Due to nesting of sessions by the adversary, a rewinding based
simulator may need to execute some sessions more than once. Since the adver-
sary can choose a different input in each execution (e.g. based on transcript so
far), the simulator would have to query the ideal functionality for than once.
However, for any session, the simulator is allowed at most one query! Indeed,
such problems are rather inherent as indicated by various impossibility results
[38, 5].

Trying to solve this bottleneck of “handling extra queries” in various ways
has inspired a number of different works which revolve around a unified theme:
first construct a protocol where the simulator requires multiple queries per ses-
sion in the ideal world, and then, somehow manage to either eliminate or answer
these extra queries by exploiting some property of the specific setting in ques-
tion. Examples of these include Resettable and Stateless computation [30, 29],
Multiple Ideal Query model [28, 27, 26], Single-Input setting [24], Leaky Ideal
Query model [26], etc3.

Indeed, as is natural to expect, there are limitations on how much one can
achieve using the above paradigm of constructing protocols. A very natural ques-
tion that arises is whether there exists a different approach which allows us to
construct concurrent secure computation protocols in the plain model without the
need of additional output queries? Moreover, if such a different approach does
exist, we know that due to impossibility results[8, 37, 38, 5, 24, 1, 19], there will
be some limitations on the scope of its applicability. This leads to some more
natural questions. What all can we achieve using this approach? In particular,
can we expand the class of realizable functionalities in the concurrent setting?
Can we improve the parameters (e.g. round complexity) of the protocols which
exist in the plain model?

1.1 Our Results

The key contribution of this work is a new way of approaching the problem of
concurrent secure computation in the plain model facilitated by recent advances
in concurrent non-black box simulation [25]. We give a protocol with non-black
box and straightline simulator. Since, very informally, our simulator does not
rely on rewinding at all, we are able to avoid the key bottleneck of additional
output queries to the ideal functionality during the rewinds.

3 For a detailed survey of these works, see our full version.



However, our simulator has to overcome a number of additional obstacles
not present in [25]. Note that unlike secure computation, an adversary in con-
current zero-knowledge does not receive any outputs. Dealing with the outputs
given to the adversary in each session is a key difficulty we have to overcome.
In particular, one might think that a straightline simulator for concurrent zero-
knowledge should give a concurrently secure computation protocol trivially for
all functionalities and in particular for concurrently secure oblivious transfer.
Note that this cannot be true given unconditional impossibility results for obliv-
ious transfer. For more on such technical hurdles, please refer to the technical
overview (Section 1.2).

Informally stated, our main theorem is a general positive result for concur-
rent secure computation as long as the ideal world satisfies our so called bounded
pseudo-entropy condition (BPC). Very informally, the bounded pseudoentropy
condition requires that in the ideal world experiment, the total amount of in-
formation learnt by the adversary (via calls to the trusted party) should have
“bounded pseudoentropy”. The origin of the bounded pseudoentropy condition
comes from a conjecture of Goyal [24]. More precisely, the bounded pseudoen-
tropy condition says the following:

Definition 1 (Bounded Pseudoentropy Condition (BPC)). An ideal world
experiment satisfies bounded pseudoentropy condition if there exists B ∈ N and
a PPT algorithm T such that for all m = m(n) concurrent sessions, for all
adversarial input vectors I (where an element of the vector represents the input
of the adversary in that session), there exists a set S of possible output vectors
such that the following conditions are satisfied

• All valid output vectors corresponding to the input vector I of the adversary
are contained in S. Observe that for a given I, for different honest party
input vectors, the output vectors may be different. We require that any such
output vector be contained in S. Furthermore, |S| ≤ 2B.

• For every O ∈ S, T (I,O) = 1, and for every O /∈ S, T (I,O) = 0. That
is, the set S is efficiently recognizable.

Intuitively, this condition says the following: The adversary might be schedul-
ing an unbounded polynomial number of sessions and gaining information from
each of the outputs obtained. However for any vector of adversarial inputs, the
number of possible output vectors is bounded (and hence so is the information
that adversary learns). Further note that this condition places a restriction only
on the ideal world experiment, which consists of the functionality being com-
puted and the honest party inputs. There is no restriction on the ideal world
adversary, which may follow any (possibly unbounded state) polynomial time
strategy.

It can be seen that in concurrent zero-knowledge, as well as, in the bounded
concurrency setting, the BPC is satisfied. Also note that the class of ideal worlds
which satisfy BPC is significantly more general compared to the single input
setting of [24]. For a formal proof of this claim, refer to Section 2. In our work,
we prove the following main theorem.



Theorem 1 Assume the existence of collision resistant hash functions and constant-
round semi-honest oblivious transfer. If the ideal world for the functionality F
satisfies the bounded pseudoentropy condition in Definition 1, then for any con-
stant ε, there exists a O(nε) round real world protocol Π which securely realizes
the ideal world for functionality F .

To understand the power of our result, a positive result for all ideal worlds
satisfying BPC allows us to get the following “concrete” results:

– Resolving the bounded pseudoentropy conjecture. Goyal [24] consid-
ered the so called “single input setting” and obtained a positive result for
many functionalities in the plain model. Goyal further left open the so called
bounded pseudoentropy conjecture which if resolved would give a more gen-
eral and cleaner result (see [24] for the exact statement).
Our BPC is inspired from this conjecture (and can be seen as one way of
formalizing it). Thus, Theorem 1 allows us to resolve the bounded pseudoen-
tropy conjecture in the positive. Our positive result for the BPC subsumes
most known positive results for concurrent secure computation in the plain
model such as for zero-knowledge [47, 34, 45], bounded concurrent computa-
tion [36, 44, 43], and the positive results in the single input setting [24].

– Improving the round complexity of protocols in the single input
setting. The round complexity of the construction of Goyal [24] in the sin-
gle input setting was a large polynomial depending not only upon the se-
curity parameter but also on the length of the input and the nature of the
functionality. For example, for concurrent private information retrieval, the
round complexity would depend multiplicatively of the number of bits in the
database and the security parameter. Our construction only has nε rounds,
where n is the security parameter. Therefore, we obtain a significant quali-
tative improvement in the round complexity for protocols in the single input
setting.

– Expanding the class of realizable functionalities, and, getting blind
signatures. The blind signature functionality is an interesting case in the
paradigm of secure computation both from theoretical as well as practical
standpoints. The question of whether concurrent blind signatures (secure as
per the ideal/real model simulation paradigm) exist is currently unresolved.
Lindell [36, 38] showed an impossibility result for concurrent blind signature
based on black-box simulation. This result has also been used as a motivation
to resort to weaker security notions (such as game based security) or setup
assumptions in various subsequent works (see e.g., [15, 41, 33, 31, 20, 18]). We
show that a positive result for BPC directly implies a construction of concur-
rent blind signatures secure in the plain model as per the standard ideal/real
world security notion. Prior to our work, the only known construction of con-
currently secure blind signatures was according to the weaker game based
security notion due to Hazay et al. [31].
This implies that concurrent blind signatures is a “natural” example of a
functionality which is impossible to realize using black-box simulation but



can be securely realized using non-black box simulation in the concurrent
setting.4 The only previous such example known [29] was for a reactive (and
arguably rather contrived) functionality. Another concrete (and related) ex-
ample of a new functionality that can be directly realized using our tech-
niques is that of a secure verifiable random function.

It would also be interesting to see what our approach yields in the plain model
for different settings and security notions where the previous rewinding based
approach has been useful (such as resettable computation, super-polynomial
simulation, etc). We leave that as future work.

1.2 Our Techniques

Our protocol and analysis for the concurrent secure computation is admittedly
quite complex and we face a number of hurdles on the way. Below, we try to
sketch the main difficulties and our ideas to circumvent them at a high level.

To construct concurrent secure computation, we roughly follow the [21]
strategy of first constructing an appropriate zero-knowledge protocol, and then
“somehow compiling” a semi honest secure computation protocol using that. In
our concurrent setting, in order to avoid the multiple output queries per session,
we need a concurrently secure protocol for zero-knowledge with a straightline
simulator. Recently, the first such protocol was given by Goyal [25] based on
non-black box techniques5.

Another property of the zero-knowledge protocol which is crucial for compi-
lation is simulation-soundness. Our first (and arguably smaller) technical hurdle
is to construct a simulation-sound version of Goyal’s protocol. This is necessary
because the simulator would rely on the soundness of the proofs given by the
adversary while simulating the proofs where it is acting as the prover. Another
issue is that in our protocol for concurrent secure computation, the adversary
is allowed to choose the statement proved till a very late stage in the proto-
col. Hence, we need simulation-soundness to hold even when the statements to
prove are being chosen adaptively by the adversary. We note that this issue is
somewhat subtle to deal with. Our construction of simulation-sound concurrent
zero-knowledge relies on the following ingredients: Goyal’s concurrent simula-
tion strategy, a robust non-malleable commitment scheme [35], and a special
language to be used in the universal arguments. The final construction along
with a description of the main ideas is given in Section 3.

4 Previous separations between the power of black-box and non-black box simulation
are known only if we place additional constraints on the design of the real world
protocol (e.g., it should be public coin, or constant rounds, etc.)

5 Before this, all the (fully) concurrent zero-knowledge protocols were based on rewind-
ing techniques, while, the construction of [2] (which had a non-rewinding simulator)
worked only in the bounded concurrent setting. The main result in [25] was the first
public-coin concurrent zero-knowledge protocol where the non-rewinding nature of
the simulation technique was not crucial. However in the current work, we would
crucially exploit the fact that the simulation strategy was straightline.



The next (and arguably bigger) difficulty is the following. In secure compu-
tation, the adversary receives an output in each session (this is unlike the case
of zero-knowledge). It turns that that it is not clear how to handle these outputs
while performing non-black box simulation. Note that some such challenge is
inherent in the light of the long list of general impossibility results known [38,
5]. Before we describe the challenge faced in detail, it would be helpful to recall
how the non-black box techniques based on [2] work at a high level.

– Non-black box technique. In each session, the simulator has to commit to
a program Π, which has to generate the adversary’s random string r in that
session. In the transcript between the commitment to Π and r, there may be
messages of other sessions, which Π has to regenerate. Even if the program
Π consists of the entire state of the simulator and the adversary at the point
of the commitment, it runs into a problem in the case of secure computation
(where the adversary is getting non-trivial output in each session).

– Key challenge. Note that to reach from the commitment of Π to the
message r, the simulator makes use of some external information: namely
the outputs it learns by querying the ideal functionality as it proceeds in
the simulation. This information, however, is not available with the program
Π (since the simulator may query the ideal functionality after the program
Π was committed to). Also, note that the number of outputs learnt could
be any unbounded polynomial. Hence, it is not clear how to regenerate the
transcript.

The first obvious solution, which does not work, is to allow the program Π
to take inputs of unbounded length. This would allow the simulator to pass all
the outputs obtained to the program Π. But now the soundness of the protocol
seems to be completely compromised. On the other hand, if Π does not receive
all the outputs, it cannot regenerate the transcript!

To resolve this issue, we use the idea of “Oracle programs” due to Deng,
Goyal, and Sahai [13]. The program Π, while running, is allowed to make any
(polynomially unbounded) number of queries (to be answered by the simulator)
as long as the the response to each query is information theoretically fixed by
the query. The soundness is still preserved: an adversarial prover still cannot
communicate any information about the verifier’s random string r to Π. How-
ever, the program Π can still access a potentially unbounded length string using
such an “Oracle interface”.

Unfortunately, the above idea is still not sufficient for our purpose: the out-
puts given by the ideal functionality are not fixed given the adversary’s input
in the session. Here we rely on the fact that we are only considering the ideal
worlds which satisfy the bounded pseudoentropy condition. Very roughly, it is
guaranteed that the entire output vector has only bounded pseudoentropy (B),
given the input of the adversary. Moreover, given the adversary’s input vector, all
possible output vectors are efficiently testable by the PPT algorithm T . In other
words, for every vector of queries, there is only a bounded (although potentially
exponential) number of response vectors accepted by T . We allow the program



Π to make any number of queries such that the response vector is accepted
by T . More details regarding our precise language for non-black box simulation
may be found in Figure 1. This idea allows the simulator to supply the entire
output vector (learnt from the ideal functionality) to Π while still preserving
soundness. The soundness proof relies on the fact that the queries only allow
for communication of up to B-bit string to Π, which is still not sufficient for
communicating the string r.

Finally, there are additional challenges due to the requirement of straightline
extraction. Towards that end, we rely on input indistinguishable computation
introduced by Micali, Pass, and Rosen [39]. Challenges also arise with perform-
ing hybrid arguments in the setting where the code of the simulator itself is
committed (because of non-black box simulation). The full construction along
with the main ideas is given in Section 4.

Other Related Work: Though Goyal et al. [25] gave the first protocol for
concurrent zero-knowledge with a straightline simulator, recently, Chung et al.
[12] gave a constant round concurrent zero-knowledge protocol for uniform ad-
versaries based on a new assumption of P-certificates, which is also straightline
simulatable. Their protocol represents an exciting idea which opens an avenue
for getting constant round concurrently secure computation protocols (albeit for
uniform adversaries only, and, based on a new assumption). We believe that our
techniques could also be applicable in constructing concurrent secure computa-
tion protocols using the protocol of [12].

2 Concurrently Secure Computation: Our Model

In this section, we begin by giving a brief sketch of our model. For formal de-
scription (building upon the model of [38]) of our model, see full version. In
this work, we consider a malicious, static and probabilistic polynomial time
adversary that chooses whom to corrupt before the execution of the proto-
col and controls the scheduling of the concurrent executions. Additionally, the
adversary can choose the inputs of different sessions adaptively. We denote
the security parameter by n. We give a real world/ideal world based secu-
rity definition. There are k parties Q1, Q2, . . . , Qk, where each party may be
involved in multiple sessions with possibly interchangeable roles. In the ideal
world, there is a trusted party for computing the desired two-party functionality
F : {0, 1}r1 × {0, 1}r2 → {0, 1}s1 × {0, 1}s2 . Let the total number of executions
be m = m(n). Note that there is no a-priori bound on the number of sessions
m and the adversary can start any (possibly unbounded) polynomial number of
sessions. On the other hand, in the real world there is no trusted party and the
two parties involved in a session, say P1 and P2, execute a two party protocol
Π for computing F . Our security definition requires that any adversary in the
real model can be emulated by an adversary in the ideal model.



2.1 Our Result and its Applications.

As mentioned in the introduction, our main result (see Theorem 1, Section 1.1)
is a general positive result for concurrent secure computation as long as the ideal
world satisfies the bounded pseudo-entropy condition (Definition 1, Section 1.1).

Next, we show that our theorem not only subsumes the positive results of
[24] in the single input setting but also improves the round complexity.

Comparing our results with [24]. In [24], Goyal showed that if the ideal
world satisfies the “key technical property” (KTP), then there exists a real world
protocol which securely realizes this ideal world. The key technical property,
taken verbatim from [24], is as follows:

Definition 2 (Key technical Property (definition 3, [24])). The key tech-
nical property (KTP) of an ideal world experiment requires the existence of a
PPT predictor P satisfying the following conditions. For all sufficiently large n,
there exists a bound D such that for all adversaries and honest party inputs,∣∣∣{j : P({I[`]}`≤j , {O[`]}`<j) 6= O[j]

}∣∣∣ < D

For the ideal worlds which satisfy KTP, [24] gave a O(n3D2) round secure
protocol which realizes the functionality, where D is the parameter in Defini-
tion 2.

In our full version, we prove the following lemma:

Lemma 1. If an ideal world experiment satisfies the key technical property (Def-
inition 2), then it also satisfies the bounded pseudoentropy condition (Defini-
tion 1).

As mentioned before, the round complexity of Goyal [24] is O(n3D2) which
is a polynomial in security parameter n as well as D (which depends upon
length of single input as well as nature of functionality). Our Theorem 1 and
Lemma 1 imply a quantitative and qualitative improvement in round complexity.
This leads to lower round protocols for applications like private database search,
secure set intersection, computing kth ranked element etc. For details see the full
version.

Moreover, [24] only gave a positive result for functionalities with hardness
free ideal world, i.e. in the ideal world the trusted party is not required to per-
form any cryptographic operations. There is no such restriction in our setting.
In fact, we show that blind signatures and verifiable random functions satisfy
the bounded pseudoentropy condition. More interestingly, they do not satisfy
the key technical property. We next describe our results for these functionalities.

Blind Signatures. Blind signatures, introduced by [11], allow users to obtain
signatures on messages of their choice without revealing the message being signed
to the signer (blindness property). In addition, they also need to satisfy the
unforgeability property of the digital signature schemes. In this work, we give
the following positive result for concurrent blind signatures.



Theorem 2 Assume the existence of collision resistant hash functions and constant-
round semi-honest oblivious transfer. Then for any constant ε, there exists a
O(nε) round secure protocol which realizes the ideal world for concurrent blind
signature functionality.

We prove this theorem by using unique signatures [22] as the underlying signa-
ture scheme and showing that blind signatures satisfy the bounded pseudoen-
tropy condition when the underlying signature scheme is unique. (Note that
Lindell’s black box impossibility result also holds in this setting.) A signature
scheme is said to be unique if for each public key and each message, there exists
at most one valid signature which verifies.

We can model blind signature as a two party computation between the signer
and the user for the circuit for generating signatures. Note that the circuit will
have the verification key vk hardcoded. At the end of the protocol, the user
outputs a valid signature σ if obtained, and signer always outputs ⊥. Now we
show that this functionality satisfies BPC for B = 0 and T algorithm which
is same as the signature verification algorithm. Note that if the adversary is
playing the role of the user, its output is unique and is completely determined
by its input message since vk is fixed by the function being computed. If the
adversary is playing the role of the signer, its output is always ⊥. Hence, set S
will contain only one output vector, which is information theoretically fixed by
the adversary inputs and the ideal world experiment (which fixes the verification
keys for all the sessions). The algorithm T simply verifies the user’s signatures
w.r.t. corresponding vk and ensures that signer’s outputs are ⊥.

Finally note that blind signatures will not satisfy the key technical property.
Consider the case when the adversary is acting as the user in all the sessions.
By the unforgeability property of the scheme, any PPT predictor which receives
k valid input/output (message/signature) pairs cannot predict the signature on
the next message with non-negligible probability. Also, note that blind signa-
tures will not satisfy the generalized key technical property discussed in the full
version [23] for the same reason.

Verifiable Random Functions. Verifiable random functions (VRFs) were in-
troduced by Micali, Rabin, and Vadhan [40]. They combine the properties of
pseudo-random functions with the verifiability property. Intuitively, they are
pseudo-random functions with a public key and proofs for verification. Along
with pseudo-randomness, they are required to satisfy uniqueness, i.e., given the
public key, for any input x, there is a unique y which can verify. In this work,
we show the following:

Theorem 3 Assume the existence of collision resistant hash functions and constant-
round semi-honest oblivious transfer. Then for any constant ε, there exists a
O(nε) round concurrent real world protocol which realizes the ideal world exper-
iment for verifiable random functions.

We again prove this theorem by showing that VRFs satisfy BPC for B = 0
and T algorithm which is same as verification algorithm. Here, we again rely



on the uniqueness property. Finally, note that VRFs too will not satisfy the key
technical property due to pseudo-randomness guarantee. For details see the full
version.

3 Our Simulation-Sound Non-Black Box Zero-knowledge
Protocol

Constructing a family of polynomially many zero-knowledge protocols which are
simulation-sound with respect to each other under (unbounded polynomially
many) concurrent executions is one of the difficulties in constructing protocols
for fully concurrent multi-party computation (MPC). Simulation-soundness, in-
troduced by Sahai [48], means that the soundness of each of the proofs given
by the adversary should hold even when the adversary is getting unbounded
polynomial number of simulated proofs. To avoid the problem of providing mul-
tiple outputs due to a rewinding based simulator for concurrent MPC, we need
to construct simulation-sound zero-knowledge protocols which are straight-line
simulatable. Note that Pass [43] also gave a construction of polynomially many
protocols which are concurrent zero-knowledge and simulation-sound w.r.t. each
other in the restricted setting of bounded concurrency. In this work, we construct
such simulation-sound zero-knowledge protocols building upon the non-black box
public coin concurrent zero-knowledge protocol of Goyal [25].

First, we give a brief overview of [25]. Some of the text has been taken ver-
batim from [25]. One of the main technical ideas in [25] is to have N = nε

non-black box slots, for any constant ε (each consisting of a commitment to
a machine and a verifier challenge string). Each slot is followed by a univer-
sal argument (UA) execution. Any of the UA’s in a session may be picked for
simulation. If a UA is picked for simulation, to make the analysis go through,
the simulator could choose of any of the previously completed slots and pre-
fer the slots which are computationally lighter. In a UA execution, the prover
proves that in one of the completed slots, the machine committed successfully
outputs the verifier challenge string. Other main idea was to have encrypted
executions of the UAs (using its public coin property) to hide the location of
the convincing UA executions in the transcript. Finally there is an execution of
a witness-indistinguishable argument of knowledge (WIAOK), where the prover
proves that either the statement x ∈ L or there exists a decryption of one of the
UAs which is accepting. In the subsequent discussion, we will refer to the part of
the protocol with non black box slots and encrypted UAs as the preamble phase
and last phase as the wiaok phase.

Two main ideas are required to transform the above described protocol into
simulation-sound zero-knowledge protocols, which can then be used to construct
protocols for concurrent MPC. Firstly, observe that unless the parties have iden-
tities it is impossible to construct a simulation-sound protocol because a man-in-
the-middle attack cannot be prevented. Hence, we focus on a setting where each
party has a unique identity of n bits. Let NMCom be a k-robust identity-based
non-malleable commitment scheme. Now, after the preamble phase of the proto-



col, the prover with identity id gives a non-malleable commitment to the witness
under its identity id. More precisely, the prover, having witness w to x ∈ L,
gives a commitment c = NMCom(w) under his identity id. In the final wiaok
phase, the prover proves that either there exists a w such that c = NMCom(w)
and w ∈ RL(x) or one of the UA executions was convincing. We will be able
to prove the simulation-soundness of our protocol using the non-malleability
and k-robustness of NMCom. Note that (as described later) our protocol will
be simulation-sound even when the adversary is allowed to choose the state-
ments to be proven adaptively till the point when he gives this non-malleable
commitment.

Secondly, in our UA executions we will use a special generalized language
Λ (see Figure 1) for the UA executions. Here, along with [13] kind of queries
decommit(·) whose response is information theoretically fixed given the query it-
self, we will also have a second kind of queries, which we will denote by output(·).
Note that though the responses of these queries is not information theoretically
fixed, they have a bounded pseudoentropy. Next, we give some intuition about
the use of these oracle queries.

The language Λ is defined w.r.t. an algorithm T and bound B with the following
property: For any vector x (of possibly unbounded polynomial length) there exists a
set S containing vectors y such that |S| ≤ 2B and for all y′ /∈ S, T (x,y′) = 0. Now
the language Λ is defined as follows:
We say that (h, z, r) ∈ Λ if there exists an oracle program Π s.t. z = com(h(Π)) and

there exist strings y1 ∈ {0, 1}≤|r|−B−n, y2 ∈ {0, 1}≤n
loglogn

and y3 ∈ {0, 1}≤n
loglogn

with the following properties. The oracle program Π takes y1 as input and outputs r
within nloglogn steps. Program Π can make two kinds of calls to the oracle

1. Produce a query of the form decommit(str) and expecting (r) with str = com(r)
in return such that the tuple (str, r) is guaranteed to be found in the string y2 (as
per a suitable encoding of y2). Thus, such oracle calls by Π can be answered using
y2.

2. Produce a query of the form output(x) and expecting y in return, such that the
tuple (x, y) is guaranteed to be found in the string y3 (as per a suitable encoding
of y3). Thus, such oracle calls by Π can be answered using y3.

If the program Π makes a query that cannot be answered by strings y2 or y3, Π aborts
and we have that (h, z, r) /∈ Λ. Also, let x denote the vector containing all the output(·)
queries made by Π (throughout its execution) and y be the corresponding responses,
then Π aborts if T (x,y) = 0 and we have that (h, z, r) /∈ Λ.

Fig. 1: Our language for zero-knowledge with non-black-box simulation

Intuition behind the oracle queries output(·) in language Λ. The algo-
rithm T and the bound B are introduced to capture the information learnt
by the adversary. When only concurrent sessions of zero-knowledge are running,
there is no information passed to the adversary, hence we can have T to reject all
outputs and still be able to simulate the view of the adversary. This notion will



be important for the concurrent executions of multiparty computation because
the adversary learns non-trivial information from calls to the trusted party. In
particular, it learns the output of the function in each session. We will use the
oracle queries output(·) to communicate the information learnt from the trusted
party to the adversary in the ideal world. But still to get our positive result,
we will need to bound the amount of information learnt by the adversary. The
bound B will be the number of bits of information passed on to the adversary.
This is intuitively captured by the condition that there are only 2B vectors of
oracle responses which might be accepted by T . Looking ahead, the description
of T will depend on the functionality being computed.

Formal Protocol Description. Let com(·) denote a non-interactive perfectly
binding commitment scheme. Whenever we need to be explicit about the ran-
domness, we denote by com(s; r) a commitment to a string s computed with
randomness r. Unless stated otherwise, all commitments in the protocol are exe-
cuted using this commitment scheme. Let NMCom be the k-robust non-malleable
commitment scheme, where k is a parameter computed later. Let len = n2+B+η,
where B and η are parameters computed later.

The common input to P and V is the security parameter n. The input to
P is x in the language L ∈ NP , and a witness w to x ∈ L. Let id be the n bit
identity of the prover. Our protocol 〈P, V 〉 or cZKid, where id is the identity of
the prover, proceeds as follows: Parts of the protocol have been taken verbatim
from [25].

1. The verifier V chooses a random collision resistant hash function h from a
function family H and sends it to P .

2. For i ∈ [n6], the protocol proceeds as follows:6

• The prover P computes zi = com(h(0)) and sends it to V .

• The verifier V selects a challenge string ri
$← {0, 1}len and sends it to the

prover P . The above two messages (consisting of the prover commitment
and the verifier challenge) are referred to as a “slot”.

• The prover P and the verifier V will now start a three-round public coin
universal argument (of knowledge) [4] where P proves to V that there
exists j ≤ i, s.t., τj(= (h, zj , rj)) is in the language Λ (see figure 1).

The three messages of this UA protocol are called as the first UA mes-
sage, verifier UA challenge, and, the last UA message.

Observe that the UA does not just refer to the slot immediately preceding
it but rather has a choice of using any of the slots that have completed
in the protocol so far.

• The prover computes the first UA message and sends a commitment to
this message to the verifier. The honest prover will simply commit to a
random string of appropriate size.

6 Note that the round complexity of our protocol can be made nε using standard
techniques involving “scaling down” the security parameter.



• The verifier now sends the UA challenge message.

• The prover computes the last UA message and again sends only a com-
mitment to this message to the verifier. The honest prover will simply
commit to a random string of appropriate size.

3. The prover declares the statement x ∈ L and commits to the witness w using
the non-malleable commitment scheme NMCom under prover’s identity id.

Note that a cheating prover can adaptively choose the statement x here.

4. Finally, the prover proves the following statement to V using WIAOK

1. The value committed to in Step 3 is a value w such that it is a valid
witness to x ∈ L, (i.e. w ∈ RL(x)), or

2. There exists i such that the i-th UA execution was “convincing”. That
is, there exists an i ∈ [n6] such that there exists an opening to the
prover first and last UA messages such that an honest verifier would
have accepted the transcript of the UA execution.

An honest prover simply commits to the witness for x ∈ L in Step 3 and
uses the first part of the statement to complete the witness-indistinguishable
argument of knowledge protocol.

Observe that a witness to the second part of the above statement would be
the opening of the commitments to the UA first and last messages. Hence,
the size of the witness is fixed and depends only upon the communication
complexity of the 3-round UA system being used.

Remark 1. We call the Steps 1 and 2 of the protocol as non-black box preamble,
step 3 as the nmcom phase and step 4 as the wiaok phase.

Parameter k. We set k to be the round complexity of WIAOK. Hence, we set
k = 3.

Parameter B. Note that the parameter B in len is same as the one in Figure 1,
i.e. the parameter specified for algorithm T in the description of language Λ.

Setting the parameter η. Let η be the sum of the following: prover’s maximum
communication complexity in different primitives used in the protocol described
above, and communication complexity of NMCom. More precisely, we set

η = max(cz, cua1, cua2, cwiaok, cNMCom,S) + cNMCom,R,

where cz is the length of the the slot begin message z, cua1 is the length of
the UA first message, cua2 is the length of the UA last message, cwiaok is the
prover’s communication complexity in the final WIAOK execution, cNMCom,S is
the sender’s communication complexity in NMCom and cNMCom,R is the receiver’s
communication complexity in NMCom.

Looking ahead, (very informally) while proving the simulation-soundness of
the above protocol, different parts of the protocol will be taken externally and
NMCom given by the adversary will be exposed to an external receiver, etc.
Hence, different parts of the protocol will be given externally to the machine
committed by the simulator as part of the string y1 in Λ.



Note that the entire 〈P, V 〉 protocol is run w.r.t. to language Λ having a
specific algorithm T and bound B. We will prove that the security properties
hold for any such T and bound B when η is chosen as above. Next, we prove
the soundness of the protocol for any fixed value of B. Then we will prove the
simulation-soundness of the protocol. Our ZK simulator will not use the oracle
queries of the type output(·). Later on our MPC simulator will make a non-trivial
use of these oracle queries.

The proof of security of simulation-sound non-black box zero-knowledge pro-
tocol proceeds along the lines discussed in the introduction (see Section 1.2). We
give a detailed formal proof of security in the full version.

4 Concurrently Secure Computation: Our Protocol

In this section, we will describe our protocol Σ for concurrently secure com-
putation for ideal world experiments which satisfy the bounded pseudoentropy
condition (Definition 1) for some parameter B ∈ N and algorithm T .

Our Construction. In order to describe our construction, we first recall the
notation associated with the primitives that we use in our protocol. Let com(·)
denote the commitment function of a non-interactive perfectly binding commit-
ment scheme. Let 〈P, V 〉 denote the simulation-sound non-black box concurrent
zero-knowledge protocol as described in Section 3 with length of challenge strings
modified to be len = n2 + B + θ, where θ is a parameter computed later. Let
〈P iic

1 , P
iic
2 〉 be the constant round protocol for input indistinguishable computa-

tion [39, 17]. Let NMCom be the k-robust non-malleable commitment scheme,
where k is a parameter computed later. Further, let 〈Pwi, Vwi〉 denote a witness
indistinguishable argument and let 〈P sh

1 , P
sh
2 〉 denote a constant round semi-

honest two party computation protocol 〈P sh
1 , P

sh
2 〉 that securely computes F in

the stand-alone setting as per the standard definition of secure computation.
Let P1 and P2 be two parties with inputs x1 and x2. Let n be the security

parameter. Protocol Σ = 〈P1, P2〉 proceeds as follows:

I. Non-Black Box Simulation Phase.

1. P1 ⇒ P2 : P1 and P2 engage in the preamble phase of 〈P, V 〉 where P1 is the
prover. Next, in the nmcom phase, P1 creates a non-malleable commitment
com1 to bit 0, i.e. com1 = NMCom(0) and sends com1 to P2. P1 and P2

now engage in the wiaok phase where P1 proves that either (1) com1 is a
commitment to 0 , or (2) there exists i such that the i-th UA execution in
the preamble phase was “convincing”.

2. P2 ⇒ P1 : P2 now acts symmetrically. P1 and P2 engage in the preamble
phase of 〈P, V 〉 where P2 is the prover. Next, P2 creates a non-malleable
commitment com2 to bit 0, i.e. com2 = NMCom(0) to bit 0 and sends com2

to P1. P1 and P2 now engage in the wiaok phase where P2 proves that either
(1) com2 is a commitment to 0 , or (2) there exists i such that the i-th UA
execution in the preamble phase was “convincing”.



Informally speaking, the purpose of this phase is to aid the simulator in
obtaining a “trapdoor” to be used during the simulation of the other two phases
of the protocol.

Common input: Let com(·) be a non-interactive perfectly binding commitment
scheme. The functionality fcom1,com2 is parameterized by two commitments com1 and
com2 under com(·), which are the common inputs to the functionality and the parties
P iic
1 and P iic

2 .
Inputs: Let (z1, td1) and (z2, td2) be the inputs of P iic

1 and P iic
2 respectively.

Computation: Party P iic
1 sends its input (z1, td1) and party P iic

2 sends its input
(z2, td2) to the trusted functionality fcom1,com2 .
If td1 is a valid opening of com1 to bit 1, fcom1,com2 sends z2 to P iic

1 , otherwise it sends ⊥.
Similarly, if td2 is a valid opening of com2 to bit 1, fcom1,com2 sends z1 to P iic

2 , otherwise
it sends ⊥.

Fig. 2: The Functionality fcom1,com2

II. Input Indistinguishable Computation Phase. Intuitively speaking, in
this phase, the parties “commit” to their inputs and random coins (to be used
in the final secure computation phase) by engaging in a execution of 〈P iic

1 , P
iic
2 〉

for the functionality fcom1,com2
described in Figure 2. More precisely, P1 and P2

engage in an execution of 〈P iic
1 , P

iic
2 〉 for the functionality fcom1,com2

where P1

plays the role of P iic
1 , while P2 plays the role of P iic

2 as follows:

1. P1 first samples a random string r1 (of appropriate length, to be used as
P1’s randomness in the execution of 〈P sh

1 , P
sh
2 〉 in Phase III) and uses input

z1 = x1‖r1 and td1 = ⊥ in execution of 〈P iic
1 , P

iic
2 〉 for fcom1,com2 .

2. P2 ⇒ P1 : P2 now acts symmetrically. P2 first samples a random string r2
(of appropriate length, to be used as P2’s randomness in the execution of
〈P sh

1 , P
sh
2 〉 in Phase III) and uses input z2 = x2‖r2 and td2 = ⊥ in execution

of 〈P iic
1 , P

iic
2 〉 for fcom1,com2 .

Informally speaking, the purpose of this phase is to aid the simulator in ex-
tracting the adversary’s input and randomness with the help of the trapdoor
obtained in the previous phase. As we will show later, an adversary will never
be able to input a valid trapdoor.

III. Final Secure Computation Phase.7 In this phase, P1 and P2 engage in
an execution of 〈P sh

1 , P
sh
2 〉 where P1 plays the role of P sh

1 , while P2 plays the role
of P sh

2 . Since 〈P sh
1 , P

sh
2 〉 is secure only against semi-honest adversaries, parties

first run a coin-flipping protocol to enforce that the coins of each party are truly
random. We then compile the semi-honest 〈P sh

1 , P
sh
2 〉 with 〈Pwi, Vwi〉 to ensure

correct behavior on part of each party. More precisely, after sending each protocol
message, a party also gives a proof using 〈Pwi, Vwi〉 that the message generated

7 Part of the text in this phase has been taken verbarim from [17]



is consistent with the transcript so far and the input used in the previous phase.
More precisely, this phase proceeds as follows:

1. P1 ↔ P2 : P1 samples a random string r′2 (of same length as r2) and sends it
to P2. Similarly, P2 samples a random string r′1 (of same length as r1) and
sends it to P1. Let r′′1 = r1 ⊕ r′1 and r′′2 = r2 ⊕ r′2. Now, r′′1 and r′′2 are the
random coins that P1 and P2 will use during the execution of 〈P sh

1 , P
sh
2 〉.

2. Let q be the number of rounds in 〈P sh
1 , P

sh
2 〉, where one round consists of a

message from P sh
1 followed by a reply from P sh

2 . Let transcript T1,j (resp.,
T2,j) be defined to contain all the messages exchanged between P sh

1 and P sh
2

before the point P sh
1 (resp., P sh

2 ) is supposed to send a message in round j.
For j = 1, . . . , q:
(a) P1 ⇒ P2 : Compute β1,j = P sh

1 (T1,j , x1, r
′′
1 ) and send it to P2. P1 and P2

now engage in an execution of 〈Pwi, Vwi〉, where P1 proves the following
statement:

i. either there exist values x̂1, r̂1 and t̂d1 such that (a) the fcom1,com2

is valid with respect to the value ẑ1 = x̂1‖r̂1 and t̂d1 and (b) β1,j =
P sh
1 (T1,j , x̂1, r̂1 ⊕ r′1)

ii. or, the non-malleable commitment com1 is a commitment to bit 1.
(b) P2 ⇒ P1 : P2 now acts symmetrically.

This completes the description of the protocolΣ = 〈P1, P2〉. Note thatΠ consists
of several instances of WI, such that the proof statement for each WI instance
consists of two parts. Specifically, the second part of the statement states that
prover committed to bit 1 in the non-black box simulation phase. In the sequel,
we will refer to the second part of the proof statement as the trapdoor condition.
Further, we will call the witness corresponding to the first part of the statement
as real witness and that corresponding to the second part of the statement as
the trapdoor witness.

Setting the parameters k and θ. We will set k to be the maximum round
complexity among UA, WIAOK, 〈P iic

1 , P
iic
2 〉 and 〈P sh

1 , P
sh
2 〉. We will set θ to be the

sum of the following: a party’s maximum communication complexity in different
primitives used in the protocol described above (excluding when it acts as a
verifier in 〈P, V 〉), and communication complexity of NMCom. More precisely,

θ = max(cz, cua1, cua2, cwiaok, cwi, ciic, ctpc, cNMCom,S) + cNMCom,R,

where cz is the length of the message z (the slot begin message), cua1 is the length
of the UA first message, cua2 is the length of the UA last message, cwiaok is the
prover’s communication complexity in the final WIAOK execution, cwi is the
prover’s communication complexity in WI, ciic is the communication complexity
of any party in 〈P iic

1 , P
iic
2 〉, ctpc is the total communication complexity of the semi-

honest two party computation 〈P sh
1 , P

sh
2 〉 for the functionality F , cNMCom,S is the

sender’s communication complexity in NMCom and cNMCom,R is the receiver’s
communication complexity in NMCom. Looking ahead, while proving the security
of the above protocol, different parts of the protocol will be taken externally and



NMCom given by the adversary will be exposed to external receiver, etc. Hence,
all of these will be given externally to the machine committed by the simulator
as part of the string y1 in Λ.

The proof of Theorem 1 proceeds along the lines discussed in the introduction
(see Section 1.2). For a complete proof refer to the full version of the paper.
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