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Abstract. Correlated secret randomness is an essential resource for
information-theoretic cryptography. In the context of secure two-party
computation, the high level of efficiency achieved by information-theoretic
protocols has motivated a paradigm of starting with correlated random-
ness, specifically random oblivious transfer (OT) correlations. This cor-
related randomness can be generated and stored during an offline pre-
processing phase, long before the inputs are known. But what if some
information about the correlated randomness is leaked to an adversary
or to the other party? Can we still recover “fresh” correlated randomness
after such leakage has occurred?
This question is a direct analog of the classical question of privacy am-
plification, which addresses the case of a shared random secret key, in
the setting of correlated random secrets. Remarkably, despite decades of
study of OT-based secure computation, very little is known about this
question. In particular, the question of how much leakage is tolerable
when recovering OT correlations has remained wide open. In our work,
we resolve this question.
Prior to our work, the work of Ishai, Kushilevitz, Ostrovsky, and Sahai
(FOCS 2009) obtained an initial feasibility result, tolerating only a tiny
constant leakage rate. In our work, we show that starting with n random
OT correlations, where each party holds 2n bits, up to (1 − ε)n

2
bits of

leakage are tolerable. This result is optimal, by known negative results
on OT combiners.
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We then ask the same question for other correlations: is there a cor-
relation that is more leakage-resilient than OT correlations, and also
supports secure computation? We answer in the affirmative, by showing
that there exists a correlation that can tolerate up to 1/2− ε fractional
leakage, for any ε > 0 (compared to the optimal 1/4 fractional leakage
for OT correlations).

1 Introduction

Secure two-party computation [39,17] allows two mutually distrusting parties
to perform secure computation using their private inputs without revealing any
extra information to each other. It is known that even against semi-honest ad-
versaries, i.e. adversaries who follow the prescribed protocol but are curious to
find additional information, achieving information theoretic security in the plain
model is impossible for most tasks [3,27,29,2,30]. For example, even the seem-
ingly simple task of securely computing the AND of two bits is not possible.
On the other hand, if suitable correlated randomness is provided as setup to the
parties, then general secure two-party computation becomes possible [28,8,26]. A
particularly useful type of correlated randomness is the random oblivious trans-
fer (OT) correlation, where the sender gets two random bits (s0, s1) and the
receiver gets (c, sc), where c is a random bit.

One reason for the usefulness of OT correlations is the existence of highly
efficient OT-based secure computation protocols both in theory and in practice.
Indeed, protocols such as TinyOT [35] have popularized the approach of start-
ing with random bit OT correlations for obtaining practically efficient secure
computation protocols. Random OT correlations can be distributed or securely
generated in an offline phase, long before the inputs are known, and later used
in an online phase to perform a desired secure computation. But what if some
information about the correlated randomness is leaked to an adversary? Can we
still extract “fresh” correlated randomness after such leakage has occurred?

This question is a direct analog of the classical question of privacy amplifica-
tion [5,4] that arose in the context of secure communication. Privacy amplifica-
tion asks the following question: given shared secret randomness which has been
partially leaked to an eavesdropper, can parties agree upon a common key which
remains hidden from the eavesdropper? In our setting, we ask the same question
for correlated randomness, which is useful for secure computation. Note, how-
ever, that participants in a privacy amplification protocol protect their secret
only from an outsider. Instead, in our setting, each party must protect its se-
crets against the other party. For example, a fresh oblivious transfer correlation
ensures that the bit c is hidden from the sender and the bit s1−c is hidden from
the receiver.

Quite surprisingly, very little is known about our question. This is in sharp
contrast to the problem of privacy amplification, and despite decades of study of
OT-based secure computation. In particular, the question of how much leakage
can be tolerated when recovering OT correlations has remained wide open. In
our work, we resolve this question.



Prior to our work, Ishai, Kushilevitz, Ostrovsky and Sahai [24] studied this
question, introducing the notion of correlation extractors. Concretely, they con-
sider the setting of extracting fresh OT correlations from n independent copies
of random OT correlations that have been subject to leakage. (One can either
consider a deterministic leakage, captured by an arbitrary function f with t
bits of output, or general probabilistic leakage, subject to the constraint that
the secret has expected min-entropy of t bits conditioned on the leakage.) The
main result of [24] is an interactive protocol for extracting OT correlations that
remains secure even when some constant fraction of the 2n secret bits of each
party can be leaked to the other party. Unfortunately, the concrete fractional
leakage tolerated by this protocol is extremely small, approximately 10−7. So,
at best, this result serves as a proof of concept.

Since their work in 2009, there has not been any progress on this problem.
In our work, we show that given n OT correlations as setup, one can tolerate
(1 − ε)n/2 bits of leakage, for an arbitrarily small constant ε > 0, with negli-
gible error. This leakage rate is near-optimal [25]. Moreover, in contrast to the
previous protocol of [24], our protocol uses a minimal amount of interaction,
requiring only two messages as opposed to the 4 messages that are inherently
required by the technique from [24]. Finally, our protocol is conceptually simpler,
completely avoiding the use of Algebraic-Geometric codes [19,16] needed in [24]
and replacing them with simple families of binary linear codes.

Having settled the question of leakage-resilience for OT correlations, we then
step back, and consider the question more broadly. While OT correlations are
extremely useful and have a long history of applicability, perhaps there are other
correlations that are better with respect to leakage-resilience, and still allow for
secure computation. More precisely, we ask if there are correlations (X,Y ) such
that both parties receive 2n bits but where even after greater than n/2 bits of
leakage, it is still possible to produce fresh secure OT correlations. We answer this
question in the affirmative. We show that the so-called inner product correlation,
where parties receive random binary vectors and additive shares of their inner
product, can tolerate a significantly higher fractional leakage. Concretely, we
show how to extract a fresh OT from such an inner product correlation while
tolerating up to 1/2−ε fractional leakage, for any ε > 0 (compared to the optimal
leakage rate of 1/4 for OT correlations). This opens up a new set of questions
to explore in future work (for more discussion refer to the full version of the
paper [20]).

Finally, we note that while the primary focus of this work is on the information-
theoretic setting for secure computation, the problem we consider is well moti-
vated even in the setting of computational security. The reason is twofold. First,
the fresh OTs produced by our extraction procedures can be used by computa-
tionally secure OT-based protocols such as those based on garbled circuits [39].
Second, these extraction procedures can be applied even when a computationally
secure protocol is used for realizing the offline generation of correlated random-
ness. Suppose that a computationally secure two-party protocol Π is used for
this purpose. If the leakage occurs after the execution of Π terminates (and



the two parties erase everything but the output), then our protocols are guar-
anteed to produce clean OTs that can be consumed by subsequent (computa-
tional or information-theoretic) protocols. Moreover, if Π is so-called “leakage-
tolerant” [21,6,7], then the same holds even if leakage can occur during the exe-
cution of Π. Such leakage-tolerant protocols can be constructed under standard
intractability assumptions.

1.1 Our Contribution

In this section we give a more detailed overview of our main results.

Oblivious Transfer Correlation Extractor. We present our results in the
terminology of “random oblivious transfer extractors.” A random oblivious trans-
fer (ROT) is a two party primitive where client S receives random bits (s0, s1);
and the client R receives random bit c and sc. Random oblivious transfer corre-
lations can be easily converted into standard oblivious transfers, where a receiver
R selects one of two bits held by a sender S. The latter can serve as a basis for
general secure multiparty computation.

More concretely, Oblivious Transfer (OT) is a two-party functionality where
client S (sender) has inputs (s0, s1), client R (receiver) has input c, and client
R obtains output sc. A Random OT correlation, referred to as ROT, provides
(s0, s1) to one party and (c, sc) to the other party, where s0, s1, c are uniform
random bits. We work in the ROTn-hybrid model, that is, there are n copies of
ROT correlation provided to the two parties. A semi-honest client S can leak
tS bits from the correlation and a semi-honest client R can leak tR bits from
the correlation, where by default we define t bits of leakage as the output of
an adversarially chosen function with t output bits. (However, all of our results
extend to leakage measured in terms of average conditional min-entropy.) An
(n, tS , tR, ε) OT extractor is a two-party protocol between client S and client
R such that it produces a (1− ε)-secure copy of oblivious transfer despite prior
leakage obtained by the clients.

Our first result shows the following feasibility result:

Theorem 1 (OT Extractor). For any n, tS , tR ∈ N, there exists a 2-message
(n, tS , tR, ε) OT Extractor protocol which produces a secure OT, such that ε 6
2−(g/4)+1 where g := n− (tS + tR).

Note that our result shows that if there is sufficient gap between n and the
total leakage (tS + tR), then we can securely extract one oblivious transfer.
Further, the simulation error decreases exponentially in the gap. For example,
tS = tR = 0.49n leakage tolerant extractors exist by our result. Contrast this to
the result of [24] who can tolerate leakage up to cn bits of leakage where c is a
minuscule small constant. Thus, ours is the first feasibility result in the regime
of high leakage tolerance. Moreover, our leakage resilience is (near) optimal due
to the negative result of [25]. The negative result states that there does not exist
any OT combiner (let alone an extractor) which can tolerate up to n/2 − O(1)



bits of leakage. Our protocol also improves upon the round complexity of [24]
from 4 messages to 2 messages, which are clearly necessary.

We show that if the gap g = n − (tS + tR) is at least cn, for some constant
c ∈ (0, 1), then we can trade off simulation error and increase the production rate
of our extractor. That is, in the leaky ROTn hybrid, we can produce large number
of secure independent copies of oblivious transfer. Our result is summarized in
the following theorem:

Theorem 2 (High Production). For every n, tS , tR ∈ N, such that g = n −
(tS + tR) = Θ(n), and ρ = ω(log n), there exists a 2-message (n, tS , tR) OT
Extractor with production p = n/ρ and ε 6 negl(n).

Intuitively, this theorem states that if the gap is linear in n then we can obtain
slightly sub-linear number of secure oblivious transfers while incurring negligible
security error. Although our production rate is sub-constant, we show that it is
possible to extract large number of secure oblivious transfers even if parties are
permitted to perform tS = tR = 0.49n bits of leakage. Contrasting this with
the result of [24], for practical and typical n the number of oblivious transfers
produced in our scheme surpasses the number of oblivious transfers produced
in their protocol. Because their production rate, although linear, is a very small
constant; even a generous estimate of the rate of production puts it below 1.2 ·
10−7. The hidden constant in our asymptotic production rate is small, say upper
bounded by 10−1. So, in concrete terms, our production rate is∼ (g/n)/10 log2 n,
which is higher than the rate achieved by [24] for a practical range of parameters
(we use ρ = log2 n to derive this bound). An obvious open problem is to explore
whether our approach can be extended to achieve the ideal goal of producing a
linear number of secure OTs even if the gap is an arbitrarily small linear function
of n.

Overall, our construction significantly simplifies the prior construction of [24]
at a conceptual level by forgoing usage of Algebraic Geometric [19,16] codes and
instead relying on binary linear codes generated by generator matrices whose
parity check matrices are random Toeplitz matrices.

Unlike [24], we do not achieve constant (multiplicative) communication over-
head per instance of oblivious transfer produced. Our communication complexity
overhead per oblivious transfer produced is linear in n. We also do not consider
the problem of error tolerance, another important area of exploration in future
work.

Restriction to Combiners. Combiners are special types of extractors where
parties’s leakage functions are restricted. Parties are allowed to only indicate
T ⊆ [n] as their leakage function. The client S can send |T | 6 tS and client R
can send |T | 6 tR. The leakage provided is (s0, s1, c, sc) of all ROT correlations
indexed by T . Note that the actual information learned by the clients is one-bit
per index (because all bits can be reconstructed from input and one bit leakage).
We show that our construction yields slightly better simulation error than the
general analysis of Theorem 1.



Theorem 3 (OT Combiner). For any n, tS , tR ∈ N, there exists a 2-message
(n, tS , tR, ε) OT-Combiner which produces one secure OT using O(n) bits of
communication, where ε 6 2−g/2 and g := n− (tS + tR).

Note that the construction presented in [25] achieves similar bounds but the
communication complexity in their construction is quadratic in n; while ours is
linear in n. We emphasize that the higher production result of Theorem 2 also
applies to the setting of combiners.

Large Correlations. We show that, in fact, there are correlations that can
tolerate a fractional leakage close to 1/2.

Theorem 4 (High Tolerance). For any s, t ∈ N, there exists a correlation
(X,Y ) over a pair of (s + 1)-bit strings such that, even after any party leaks
t bits on the correlation (X,Y ), they can securely realize OT using 2-message
communication with simulation error ε 6 2−(g/2+1), where g := s/2− t.

The correlation (X,Y ) used to prove the above theorem is the so-called inner-
product correlation, where each party receives a random s-bit vector and the
mod-2 inner product of the two vectors is secret-shared between the parties.
Moreover, it is not hard to show that our protocol cannot tolerate leakage rate
bigger than 1/2. We leave open the question whether the 1/2 leakage rate is
optimal for arbitrary correlations.

1.2 Prior Related Works

Most relevant work to our work is the work of Ishai, Kushilevitz, Ostrovsky,
and Sahai [24], where the notion of correlation extractors was proposed. They
showed that if the parties are allowed to leak a small linear amount of leakage,
then a small linear number of correlations can be extracted. Both the leakage and
production rates are a minuscule fraction of the initial number of correlations.

A closely related concept is the notion of OT combiners, which are a restricted
variant of OT extractors in which leakage is limited to local information about
individual OT correlations and there is no global leakage. The study of OT
combiners was initiated by Harnik et al. [23]. Since then, there has been work
on several variants and extensions of OT combiners [22,26,32,33,37].

Recently, [25] constructed OT combiners with nearly optimal leakage param-
eters. Our protocols were inspired by the OT combiners from [25], but the results
we achieve are stronger in several imporant ways. First, whereas [25] only con-
siders t physical bits of leakage, we tolerate a arbitrary bits of leakage (similarly
to [24], though with a much better leakage rate). Second, even in the case of
physical leakage, our solutions improve over [25] by reducing the communica-
tion and randomness complexity from quadratic to linear. Finally, our protocols
can be used to produce a near-linear number of OTs without significantly com-
promising the leakage rate, whereas [25] only considers the case of producing a
single OT.



Another related work is that of Dziembowski and Faust [14] which (similarly
to our Theorem 4) obtains some form of leakage-resilient secure computation
from the inner product correlation. However, the construction from [14] requires
multiple independent instances of an inner product correlation even for produc-
ing just a single OT, and moreover the model considered in [14] assumes that
the leakage applies individually to each instance. Even if the analysis of [14]
could somehow be strengthened to tolerate some amount of global leakage, the
tolerable leakage rate must inevitably be small (since even with a leakage rate
of 1/4, one can entirely compromise one of the inner product instances in [14]).
Thus, the approach of [14] does not seem relevant to our goal of maximizing the
leakage rate.

1.3 Technical Overview

We provide a short overview of our construction which proves Theorem 1. Our
construction is inspired by the Massey secret sharing scheme [31]. Our construc-
tion is closely related to the constructions of [24,25]. The central novelty in our
construction approach is that we choose a different class of matrices (thus, re-
ducing communication complexity of our algorithm), but the primary technical
contribution of our work is our new analysis in the context of leakage. We con-
sider general leakage (unlike the setting of [25] which considers physical bits
of leakage) and, hence, lose a small quadratic factor in simulation error. But
the same construction when used in the setting of combiners yields identical
simulation error as [25].

For i ∈ [n], suppose the client S receives random pair of bits (ai, bi) and client
R receives (xi, zi), such that xi is a random bit and zi = aixi⊕bi, from the setup.
Client S picks a random codeword (u0, u1, . . . , un) in a binary linear code C of
length (n+ 1). Client R picks a random codeword (r0, r1, . . . , rn) in the binary
linear code C⊥ of length (n+1). Note that the set of all component-wise product
of such codewords has non-trivial distance. Hence, they can correct one erasure.
In particular, u0r0 =

∑
i∈[n] uiri. Hence, the clients need not explicitly compute

u0r0; but, instead, it suffices to compute uiri for all i ∈ [n] and recovering one
erasure thereafter.

For this section, we shall only consider privacy of client R against a semi-
honest client S. Consider the following protocol: For each i ∈ [n],

1. Client R sends mi = xi ⊕ ri.
2. Client S sends αi = ai ⊕ ui. Client S sends βi = aimi ⊕ bi.

Note that client R can compute βi⊕αiri⊕zi = uiri. To argue the privacy of
client R, we need to show that r0 remains hidden from the view of client S. Let
H be the generator matrix of C⊥ and H is interpreted as [H0|H ′], where H0 is
the first column of H and H ′ is the remaining n columns. Note that the ability
of client S to predict r0 can be abstracted out as follows: For λ uniform random
vector, given (λH ′ ⊕ x[n], H), client S needs to predict λH0.



Note that since client S is permitted to perform tS bits of leakage on x[n], we
have the guarantee that x[n] has high min-entropy on average. Now, the exper-
iment is reminiscent of min-entropy extraction from high min-entropy sources
via masking with small bias distributions. But, the uniform distribution over
codes of a fixed binary linear codespace C⊥ is not a small-bias source (projection
on every dual codewords has full bias). So, we consider a set of codes (CI , C⊥I ),
where I is the index, such that on average these codewords have small bias. Such
a distribution suffices in our setting, because leakage is performed in an offline
phase and the random linear code or CI is chosen only in the online phase. The
class of matrices chosen are binary matrices in systematic form whose parity
check matrices are uniformly chosen Toeplitz matrices. This, intuitively, is the
basic argument which all our proofs reduce to.

Theorem 2 is obtained by sampling {S1, . . . , Sm} such that they are all dis-
joint and each Si indexes a set of servers. One OT is extracted by applying
Theorem 1 on each index set Si.

2 Preliminaries

Notations. We represent random variables by capital letters, for example X,
and the values they take by small letters, for example Pr[X = x]. The set
{1, . . . , n} is represented by [n], for n ∈ N. Given a vector v = (v1, . . . , vn) and
T = {i1, . . . , i|T |} ⊆ [n], we represent

(
vi1 , . . . , vi|T |

)
by vT . Similarly, given a

k × n matrix G, we represent by GT the sub-matrix of G formed by columns
indexed by T . For brevity, we use Gi instead of G{i}, where i ∈ [n].

Probability Basics. The support of a probability distribution X, represented
as Supp(X) is the set of elements in the sample space which are assigned non-
zero probability by X. A uniform distribution over a set S is represented by
US . A probability distribution X over a universe U is a flat source if there
exists a constant c ∈ (0, 1] such that Pr[X = x] is either 0 or c, for all x ∈ U .
Further, we say that X is a flat-source of size 1/c. Given a joint distribution
(X,Y ) over sample space U × V , the conditional distribution (X|y) represents
the distribution over sample space U such that the probability of x ∈ U is
Pr[X = x|Y = y].

The statistical distance between two distributions X and Y over a finite sam-
ple space U is defined to be: 1

2

∑
u∈U |Pr[X = u]− Pr[Y = u]|.

Entropy definitions. For a probability distribution X over a sample space U ,
we define entropy of x as HX(x) := −lg Pr[X = x], for every x ∈ U . The entropy
of X, represented by H(X), is defined to be E[HX(x)]. The min-entropy of X,
represented by H∞(X), is defined to be minx∈Supp(X)HX(x). If H∞(X) > n,
then X can be written as convex linear combination of distributions, each of
which are flat sources of size > 2n. The average min-entropy [10], represented by

H̃∞(X|Y ), is defined to be − lgEy∼Y
[
2−H∞(X|y)]. Following lemma is useful for

lower bounding average min-entropy after leakage on a high min-entropy source.



Lemma 1 (Chain Rule [10]). If H∞(X) > n and L be arbitrary `-bit leakage

on X, then H̃∞(X|L) > n− `.

2.1 Elementary Fourier Analysis

We define character χS(x) = (−1)
∑

i∈S xi , where S ⊆ [n] and x ∈ {0, 1}n. The
inner product of two functions f : {0, 1}n → R and g : {0, 1}n → R is defined by

E
x

$←{0,1}n
[f(x)g(x)]. Given a probability distribution M over the sample space

{0, 1}n, the function f = M represents the function f(x) = Pr[M = x].

Definition 1 (Bias of a Distribution). Let f : {0, 1}n → R be a probability
function. The bias of f with respect to subset S ⊆ [n] is defined to be:

BiasS(f) :=

∣∣∣∣ Pr
x∼f

[χS(x) = 1]− Pr
x∼f

[χS(x) = −1]

∣∣∣∣
Definition 2 (Small-bias Distribution Family [11]). Let F = {F1, . . . , Fk}
be a family of distributions over sample space {0, 1}n such that for every ∅ 6=
S ⊆ [n], we have:

E
i

$←[k]

[
BiasS(Fi)

2
]
6 δ2

Then the distribution family F is called an δ2-biased family.

Lemma 2 (Min-entropy Extraction [34,1,18,11]). Let F = {F1, . . . , Fµ}
be δ2-biased family of distributions over the sample space {0, 1}n. Let (M,L) be
a joint distribution such that the marginal distribution M is over {0, 1}n and

H̃∞(M |L) > m. Then, the following holds:

SD
(
(FI ⊕M,L, I),

(
U{0,1}n , L, I

))
6
δ

2

(
2n

2m

)1/2

,

where I is a uniform distribution over [µ].

2.2 Functionalities

We introduce some useful functionalities in this section.

Oblivious Transfer. A 2-choose-1 bit Oblivious Transfer (referred to as OT)

is a two party functionality which takes input (s0, s1) ∈ {0, 1}2 from the sender
and input c ∈ {0, 1} from the receiver and outputs sc to the receiver.

Random Oblivious Transfer. A random 2-choose-1 bit Oblivious Transfer
(referred to as ROT) is an input-less two party functionality which samples
uniformly random bits s0, s1, c and outputs (s0, s1) to the sender and (c, sc) to



the receiver. The joint distribution of sender-receiver outputs is called an ROT-
correlation.

Oblivious Linear-function Evaluation. Let (F,+, ·) be an arbitrary field. An
Oblivious Linear-function Evaluation over F is a two party functionality which
takes inputs (u, v) ∈ F2 from the sender and x ∈ F from the receiver and outputs
u · x+ v to the receiver. This functionality is referred to as OLE(F). A random
oblivious linear-function evaluation (ROLE) can be defined analogous to ROT.

The special case when F = GF(2), is simply referred to as OLE and is equiv-
alent to OT.

Random Inner Product Correlation This is an input-less two party func-

tionality which samples x[n], y[n]
$←{0, 1}n, a

$←{0, 1} and b = a+
〈
x[n], y[n]

〉
. It

outputs (x[n], a) to party A and (y[n], b) to party B. Note that for n = 1, this is
equivalent to random oblivious transfer correlation and oblivious linear function
evaluation.

2.3 Combiners and Extractors

In this section, we define oblivious transfer combiners and extractors.

Definition 3 ((n, p, tS , tR, ε) (Single Use) OT-Combiner). An (n, p, tS , tR, ε)
(single use) OT-Combiner is an interactive protocol in the clients-servers set-
ting. There are two clients S and R; and n servers. Each server implements
one instance of oblivious transfer on inputs from S and R. We consider a semi-
honest adversary who can either corrupt the client S and tS servers or client R
and tR servers. The protocol implements p independent copies of secure oblivious
transfer instances with correctness and simulation error at most ε.

The correctness conditions for the protocol says that the receiver’s output is
correct in all p-instances of OT with probability at least (1− ε).

The privacy requirement says that the adversary should not learn more than

it should. Let (s
(i)
0 , s

(i)
1 ) and c(i) be the inputs of the sender and the receiver,

respectively, in ith copy of OT produced. Then a corrupt sender (resp., corrupt

receiver) cannot output c(i) (resp., s
(i)
1−c) with probability more than 1

2 + ε for
any instance of OT produced.

Leakage model and correlation extractors. Here we begin by describing our
leakage model for ROLE correlations formally followed by defining correlation
extractors for OLE. Recall that OT and OLE are just local renaming of each
other. Our leakage model is as follows:

1. n-Random OLE Correlation Generation phase: For i ∈ [n], the sender

S gets random (ai, bi) ∈ {0, 1}2 and receiver R gets (xi, zi), where xi ∈ {0, 1}
is chosen uniformly at random and zi = aixi + bi.



2. Corruption and leakage phase. A semi-honest adversary corrupts either
the sender and sends a leakage function L : {0, 1}n → {0, 1}tS . It receives
L({xi}i∈[n]). Or, it corrupts the receiver and send a leakage function L :

{0, 1}n → {0, 1}tR . It receives L({ai}i∈[n]).
Note that without loss of generality any leakage on sender (resp., receiver)
can be seen as a leakage on {ai} (resp., {xi}).

Let (X,Y ) be the random OT correlation. We denote (tS , tR)-leaky version
of (X,Y )n described above as ((X,Y )n)[tS ,tR].

Definition 4 ((n, p, tS , tR, ε) OT-Extractor). An (n, p, tS , tR, ε) OT-Extractor
is an interactive protocol between two parties S and R in the ((X,Y )n)[tS ,tR] hy-
brid described above. The protocol implements p independent copies of secure
oblivious transfer instances with simulation error ε.

The correctness and privacy requirements are same as those defined above
for (n, p, tS , tR, ε) (Single Use) OT-Combiner.

Note that in our setting, in (X,Y )n hybrid, parties only get one sample from
this correlation; unlike the typical setting where parties can invoke the trusted
functionality of the hybrid multiple times. The maximum fractional leakage re-
silience is defined by the ordered tuple (tS/n, tR/n); and the production rate is
defined by p/n.

Remark: An (n, p, tS , tR, ε) OT extractor is also an (n, p, tS , tR, ε) OT combiner.

Noisy leakage model. The leakage model described above is referred to as
the “bounded leakage” model since we restrict the number of bits output by
the leakage function. But this model is sometimes too restrictive and does not
capture many side channel attacks, which are the main cause of leakage in real
world applications. A more realistic assumption one can make is to assume that
leakages are sufficiently noisy. It is observed via experiments that the real-world
physical leakages are inherently noisy. There have been many works trying to
model noisy leakage and present solutions in this setting [9,36,12,13,15]. At a
high level the noisy feature of a leakage function f is captured by assuming that
an observation of f(x) only implies a bounded bias in the probability distribution
of x. More formally, f is said to be δ-noisy if

δ = SD ((X), (X|f(X))) .

Note that if H∞(X) > n then for any k < n, we can choose appropriate δ,

such that H̃∞(X|f(X)) > k, where f is a δ-noisy channel.

We emphasize that all our protocols only rely on the fact that the initial
correlation given to any party has high average min-entropy (H̃∞) after the
leakage. Hence, all our protocols directly work even in the general setting of
noisy leakage.



2.4 Distribution over Matrices

An k × n matrix M with {0, 1} entries is in systematic form if M = [Ik×k‖P ],
where Ik×k is the identity matrix of dimension k and P is the parity check matrix
of dimension k × (n− k). The matrix P is a Toeplitz matrix if Pi,j = Pi−1,j−1,
for all i ∈ (1, k] and j ∈ (1, n− k]. So, a Toeplitz matrix is uniquely defined by
its first row and first column. We shall consider uniform distribution over k × n
binary matrices in systematic form such that their parity check matrices are
uniformly chosen Toeplitz matrices. A salient feature of family of such matrices
is proved in Lemma 3.

Let T(k,n) is a uniform distribution over matrices M of the following form.

Let M ≡
[
Ik×k

∣∣Pk×(n−k)], where P is a binary Toeplitz matrix of dimension
k × (n− k).

Define T⊥,(k,n) is a uniform distribution over matrices M of the following

form. Let M ≡
[
Pk×(n−k)

∣∣Ik×k], where P is a binary Toeplitz matrix of dimen-
sion k × (n− k).

Note that there exists an bijection between the matrices in T(k,n) and T⊥,(n−k,n)
established by the function which maps dual matrices to each other.

For a given G ∈ T(k,n), the distribution FG corresponds to a uniform distri-
bution over the codewords generated by G. We have the following lemma, which
will be used to prove the main unpredictability lemma in the next section.

Lemma 3. For the distribution of matrices T(k,n), the following holds. For any
∅ 6= T ⊆ [n],

E
G

$←T(k,n)

[
BiasT (FG)2

]
6 2−k

Proof. Since FG is a uniform distribution of codewords over a linear code, for
any G, either BiasT (FG)2 is either 0 or 1. Moreover, BiasT (FG)2 = 1 if and only
if
∑
i∈T Gi = 0k. Hence, it suffices to show the following: For any fixed column

c ∈ {0, 1}k and non-empty set T ⊆ [n], Pr[
∑
i∈T Gi = c] 6 2−k. We prove this

using a sequence of observations.
Note that: Gi = c, for i > k, happens with probability 2−k.
Next, we claim that: Gi + Gj = c, for i > j > k, happens with probability

2−k. This is so because the probability that the Gi,k +Gj,k = ck happens with
probability 1/2. Fixing the values of Gi,k and Gj,k, the probability that we have
Gi,k−1 +Gj,k−1 = ck−1 is 1/2; because the random variable Gj,k−1 is not fixed
(columns {k + 1, . . . , n} form a Toeplitz matrix). Extending this argument, we
get for any T ′ ⊆ {k + 1, . . . , n}, Pr[

∑
i∈T ′ Gi = c] 6 2−k

To prove full claim, note that Pr[
∑
i∈T Gi = c] = Pr[

∑
i∈T :i>kGi = c +∑

i∈T ′:i6kGi] 6 2−k using the above conclusion.

3 Unpredictability Lemma

In this section we present the main unpredictability lemma.



Lemma 4 (Unpredictability Lemma). Let G ∈
{
T(k,n+1),T⊥,(k,n+1)

}
. Con-

sider the following game between a honest challenger H and an adversary A:

1. H samples m[n] ∼ U{0,1}n .

2. A sends a leakage function L : {0, 1}n → {0, 1}t.
3. H sends L(m[n]) to A. H samples x[k] ∼ U{0,1}k , G ∼ G; and computes

y{0}∪[n] = x ·G⊕ (0,m[n]). H sends (y[n], G) to A.
4. A outputs a bit ỹ.

The adversary A wins the game if y0 = ỹ. For any A, the advantage of the

adversary, i.e. Adv(A) = Pr(y0 = ỹ)− 1/2 6 1
2

√
2

2k−t .

Proof. Let G be the distribution T(k,n+1). The proof for the other case will work
similarly.

Given a G ∈ G, the distribution FG corresponds to a uniform distribution
over the codewords generated by G. Note that over choice of G, they form a
δ2 = 2−k biased family of distributions (by Lemma 3).

By Lemma 1, H̃∞(M[n]|L(M[n])) > n − t. Let M = (0,M[n]), then putting
these in Lemma 2, we get

SD
(

(FG ⊕M,L,G),
(
U{0,1}n+1 , L,G

))
6

1

2

√
2n+1

2k+n−t

The lemma follows by noting that Adv(A) 6 SD
(

(FG ⊕M,L,G),
(
U{0,1}n+1 , L,G

))
.

All our security proofs will directly reduce to this unpredictability lemma,
i.e. Lemma 4.

4 Oblivious Transfer Extractor

4.1 Extracting One Oblivious Transfer

In this section, we shall prove Theorem 1 by presenting our (n, tS , tR, ε) OT
extractor which extracts one copy of secure OT. For ease of presentation, we
provide our construction in the random oblivious linear evaluation (ROLE) cor-
relation hybrid; and also produce one secure copy of oblivious linear evalua-

tion. Recall that a ROLE correlation provides (a, b)
$←{0, 1}2 to the sender and

(x, z = ax ⊕ b), where x
$← {0, 1}, to the receiver. The security requirement in-

sists that the sender cannot predict x and the receiver cannot predict a. Note
that (s0 ⊕ s1)c⊕ s0 is identical to oblivious transfer. So, oblivious transfer and
OLE are equivalent to each other; consequently, it suffices to construct a OLE
extractor in ROLEn hybrid.

The construction provided here is similar to the construction provided in [25].
But we deal with general leakage, instead of restricted leakage of physical bits
in the combiner setting, using more sophisticated analysis tools. We also achieve
lower communication complexity. In particular, we improve the communication



Extract-One (n, tS , tR):
Define g := n− (tS + tR).
Private Inputs: The clients S and R have private inputs (s0, s1) ∈ {0, 1}2 and c ∈
{0, 1}, respectively.
Hybrid (Random Correlations): For i ∈ [n], client S gets random (ai, bi) ∈ {0, 1}2
and client R gets (xi, zi), such that xi ∈ {0, 1} is chosen uniformly at random and
zi = aixi ⊕ bi.

1. Random Code Generation. Client R picks a binary matrixG = [Ik×k‖Pk×(n+1−k)]
of dimension k × (n + 1), where k = dtR + g/2e and Pk×(n+1−k) is a uniformly
random Toeplitz matrix. Let C be the code generated by the generator matrix
G; and H be a generator matrix for the dual code C⊥. If the first column of H
is all-zero column then abort; otherwise continue.

2. Random OLE Extraction.
(a) Client S picks a random (u0, . . . , un) ∈ C. Let Cparity ⊆ {0, 1}n+1 be the

(linear) code consisting of every length (n + 1) string of even parity. Client
S picks a random (v0, . . . , vn) ∈ Cparity.

(b) Client R picks a random (r0, . . . , rn) ∈ C⊥.
(c) For each i ∈ [n], client R sets mi = xi ⊕ ri. Client R also sets m = r0 ⊕ c.

Client R sends ({mi}i∈[n],m) to client S.
(d) For each i ∈ [n], client S sets αi = ai⊕ui and βi = aimi⊕bi⊕vi. Client S also

sets α = u0⊕ s0 and β = u0m⊕ v0⊕ s1. Client S sends ({(αi, βi)}i∈[n], α, β)
to client R.

(e) Client R computes ti = βi ⊕ αiri ⊕ zi and z = ⊕i∈[n] ti. Finally, client R
outputs y = β ⊕ αc⊕ z.

Fig. 1: Round optimal correlation extractor protocol which extracts one copy of
Oblivious Linear Function Evaluation from n copies of Random Oblivious Linear
Functions Evaluations.

complexity from Θ(n2) in [25] to Θ(n) in the current work. When analyzed
appropriately for the combiner setting, our current protocol achieves identical
simulation error as in that paper (but reduces the communication complexity to
linear from quadratic).

Note that after the correlation generation step, the protocol is only two
rounds, i.e. client R sends one message (by combining steps 1 and 2.c) and
client S replies with one message (step 2.d).

No Corruption Case. We will first prove the correctness of the protocol pre-
sented in Fig. 1 for the case when all clients and servers are honest and there is
no leakage.

The construction does not output abort with probability 1− 2−(n+1−k), be-
cause the algorithm aborts if and only if the first row of the parity check matrix
of G is all 0s. Conditioned on not aborting, we show that the protocol is perfectly
correct. Following lemma proves correctness.



Lemma 5. In the protocol in Fig. 1 the client R outputs y = s0c⊕ s1.

Proof. We first show that ti = uiri ⊕ vi.

ti = βi ⊕ αiri ⊕ zi = (aimi ⊕ bi ⊕ vi)⊕ (airi ⊕ uiri)⊕ zi
= aixi ⊕ airi ⊕ bi ⊕ vi ⊕ airi ⊕ uiri ⊕ aixi ⊕ bi = uiri ⊕ vi

This shows that z = ⊕i∈[n]ti = u0r0 ⊕ v0. This follows from ⊕ni=0 ui · ri = 0 and
⊕ni=0vi = 0. Now for y we have the following:

y = β ⊕ αc+ z = (u0m⊕ v0 ⊕ s1)⊕ (u0c⊕ s0c)⊕ z
= u0r0 ⊕ u0c⊕ v0 ⊕ s1 ⊕ u0c⊕ s0c⊕ u0r0 ⊕ v0 = s0c⊕ s1.

Sender Privacy and Receiver Privacy. In order to give a modular analysis,
we consider a simpler protocol of 4-rounds which is equivalent to the protocol
presented in Fig. 1. In the simpler protocol, the first two rounds correspond to
ROLE extraction, where the receiver sends the messages {mi}i∈[n] and receives
{(αi, βi)}i∈[n] and computes ROLE z = u0r0⊕ v0. In the following, we will refer
to this as ROLE extraction phase. In the next two rounds, it uses this ROLE to
compute the OLE on inputs s0, s1, c as follows: Receiver sends message m and
gets back α, β and computes y. Note that since we only consider semi-honest
adversaries and leakage only occurs before the start of the protocol, these two
protocols are equivalent in correctness and security guarantees.

Below, in order to prove the sender and receiver privacy we analyze this pro-
tocol. For security of both sides, it is sufficient to prove that extracted ROLE is
secure in first phase.

Receiver privacy. In order to prove receiver privacy, we need to show that the
choice bit c is hidden from the semi-honest sender who can obtain tS bits of
leakage. We note that it suffices to show that at the end of the ROLE extraction
phase (described above), the choice bit r0 is hidden.

Let L denote the random variable for leakage obtained by the semi-honest
sender. We will denote the random variable for the choice bit vector x[n] for the
receiver in the correlation generation phase by X[n]. Note that X[n] is identical
to uniform distribution over {0, 1}n. Note that L has at most tS bits of leakage
on X[n].

The view of client S at the end of the random correlation extraction phase
is:

ϑ = (a[n], b[n], G, (u0, . . . , un), (v0, . . . , vn),m[n], L = `)

Below we show that for any semi-honest client S, we have Pr(S(ϑ) = r0) is
at most 1/2 + 2−g/4−1.

Note that Pr(S(ϑ) = r0) = Pr(S(H,m[n], L) = r0), where H is the generator

matrix for C⊥. Recall that H ∈ T⊥,(n+1−k,n+1), where k = tR + g/2. In Fig. 1,

the client R picks a random codeword (r0, . . . , rn) ∈ C⊥. Alternatively, this can

be done by picking w
$← {0, 1}n+1−k

and (r0, . . . , rn) = w · H, where H is the
generator matrix for C⊥. Note that m[n] = (w ·H)[n] ⊕ x[n] and r0 = 〈H0, w〉.



Since, the sender can leak tS bits on x[n], we have: H̃∞(X[n]|L) > m =

(n− tS). By Lemma 4, the advantage of predicting 〈H0, w〉 is at most: 2−g/4−1.

Sender privacy. In order to prove sender privacy for Fig. 1, we need to show
that the bit s0 is hidden from the receiver after the protocol. Note that it suffices
to show that at the end of the ROLE extraction phase (for the simpler protocol
described above) bit u0 is hidden.

Let L denote the random variable for leakage on vector a[n] obtained by the
semi-honest adversary who corrupts the receiver after the random correlation
generation phase. We will denote the random variable for the bit vector a[n] for
the sender in the correlation generation phase by A[n]. Note that A[n] is identical
to uniform distribution over {0, 1}n and L has at most tR bits of leakage on A[n].

So, we get H̃∞(A[n]|L) > m = n− tR.
The view of client R at the end of the random correlation extraction phase

is:

ϑ = (x[n], z[n], G, (r0, . . . , rn),m[n], α{0,1},[n], L = `)

H A′
A

Pick a[n]
$←{0, 1}n

Let x[n] ∈ {0, 1}n

Pick z[n]
$←{0, 1}n(
x[n], z[n]

)
L(·)

` = L(a[n])

Pick [G0|G′] ≡ G ∼ G
G

m[n]

Pick λ
$←{0, 1}1×k

Compute α[n] = λG′ ⊕ a[n]

α[n]

Pick β[n]
$←{0, 1}n
β[n]

b̃

Fig. 2: Simulator for Sender Privacy. The distribution G is uniform distribution
over k× (n+ 1) binary matrices in systematic form whose parity check matrices
are uniform Toeplitz matrices.

Let U0 denote the random variable for u0. We are interested in the condi-
tional distribution (U0|ϑ). Below we will show that for any semi-honest client R,
Pr(R(ϑ) = u0) is at most 1/2 + 2−(g/4).



We show this via a reduction to Lemma 4 in Fig. 2. Given any adversary
A who can predict u0, we convert it into an adversary A′ against the honest
challenger H of Lemma 4 with identical advantage. It is easy to see that this
reduction is perfect. Note that the only difference in the simulator from the actual
protocol is that the generator matrix G is being generated by the honest party
H instead of being obtained from A. This does not cause any issues, because we
are only dealing with semi-honest adversaries. At the end of random correlation
extraction phase, the advantage in predicting U0 is at most: 2−(g/4).

Note that our simulation works even for arbitrary choice of x[n] and m[n]. In
particular, it works when these vectors are chosen uniformly at random.

4.2 Trading off Simulation Error with Production Rate

In this section we use sub-sampling techniques to trade-off simulation-error to
get improved production rate. The main idea is to sample small subsets of dis-
joint correlations and, subsequently, run the protocol in Fig. 1 on those subsets
independently. This increases the simulation error (due to smaller number of
OTs used to output each fresh OT i.e. smaller value of n), but yields higher
production rates.

In our case, we use the trivial sub-sampling technique of picking indices at
random with suitable probability; in case of a sample repeating itself, we discard
it and re-sample. This technique yields distinct samples and has identical proper-
ties as the näıve subsampling technique (see [38]). The sophisticated techniques
of [38] are also relevant to our setting; but they do not yield any reduction in
“simulation error increase.” They are useful only to reduce the communication
complexity of the protocols.

We only work in the setting where g = n− (tS + tR) is at least cn, for some
constant c 6 1. In general c could have been a function of n, but we forgo those
cases. The main technical lemma is the following:

Lemma 6 (Sub-sampling [38]). Let (A[n], L) be a joint distribution such that,

there exists a constant µ ∈ (0, 1) such that, H̃∞(A[n]|L) > µn. For every constant
ε ∈ (0, µ) and ρ = ω(log n), there exists an efficient algorithm which outputs
(S1, . . . , Sm) ∈

(
2[n]
)m

such that m = n/ρ and with probability 1 − negl(n), the
following holds:

1. Large and Distinct: There exists a constant λ ∈ (0, 1) such that |Si| = λρ.
We have Si ∩ Sj = ∅, for all i, j ∈ [m] and i 6= j.

2. High Entropy: H̃∞(Si+1|S[i], L) > (µ− ε) |Si+1|.

Obtaining the result of Theorem 2. We obtain this theorem as a direct
application of Lemma 6. Recall that we will be working in the setting when
g = n− (tS + tR) > cn for some constant c ∈ (0, 1]. Now we apply Lemma 6 to
obtain the disjoint sets S1, . . . , Sm for m = n/ρ where ρ = ω(log n). Next, we
apply the protocol in Fig. 1 to each of the sets independently for the following
choice of parameters: n′ = |Si|, t′S = ( tSn + ε) |Si|, and t′R = ( tRn + ε) |Si|. Note



that new gap g′ = ( gn − 2ε) |Si|. The simulation error obtained for any OT

produced will be bounded by 2−Θ(g′) = negl(n).
We observe that the approach of subsampling to obtain “disjoint subsets”

while preserving min-entropy is unlikely to yield constant production rate ex-
tractors.

5 Inner Product Correlation

In this section we prove Theorem 4. Our protocol is provided in Fig. 3.

Extract-IP (n):
Hybrid (Random Correlations): Client A gets random (x[n], a) ∈ {0, 1}n+1 and client

B gets random (y[n], b) ∈ {0, 1}n+1, such that a+ b =
〈
x[n], y[n]

〉
.

1. Random Code Generation. Client R picks a binary matrixG = [Ik×k‖Pk×(n+1−k)]
of dimension k × (n + 1), where k = n/2 and Pk×(n+1−k) is a uniformly chosen
random Toeplitz matrix. Let C be the code generate by the generator matrix G;
and H be a generator matrix for the dual code C⊥. If the first column of H is
all-zero column then abort; otherwise continue.

2. Random ROLE Extraction.
(a) Client A picks a random (u0, . . . , un) ∈ C and a random v0 ∈ {0, 1}.
(b) Client B picks a random (r0, . . . , rn) ∈ C⊥.
(c) Client B sends m[n] = y[n] ⊕ r[n] to client A.
(d) Client A sends α[n] = x[n] ⊕ u[n] and β =

〈
x[n],m[n]

〉
⊕ a⊕ v0 to client B.

(e) Client B computes z = β ⊕ b⊕
〈
α[n], r[n]

〉
.

(f) Client A outputs (u0, v0) and client B outputs (r0, z).
Note that z = u0r0 ⊕ v0, because

〈
u[n], r[n]

〉
= u0r0.

Fig. 3: Random Oblivious Function Evaluation extractor from one Inner Product
Correlation over n-bits.

When both parties are honest, we need to prove the correctness of the pro-
tocol which trivially follows.

Sender Corrupt. Suppose a semi-honest client A can leak t bits on informa-
tion from (y[n], b). In this case, we have H̃∞(Y[n]|L) > m = n − t. For security,
we need to prove the hiding of the bit r0 given r[n] ⊕ y[n], where r[n] is a uni-
formly chosen codeword from the image of “H with its first column punctured.”
Now, we can directly invoke Lemma 4 and get that the distribution (R0|ϑ) is
= 2−(g/2+1) close to the uniform distribution over {0, 1}, where ϑis the view of
client A at the end of the protocol and g = n/2− t.

Receiver Corrupt. For this case, we construct a reduction similar to the re-
duction provided in Fig. 2. Again, in this case we assume that client A sends



the matrix G instead of client B (which is acceptable because the adversaries
are semi-honest). Suppose there exists an adversary A which can distinguish U0

from a uniformly random bit with certain advantage. We shall construct an ad-
versary A′ which uses A to break the unpredictability experiment of Lemma 4
with identical advantage using a simulation similar to Fig. 2.

Note that as before this will be a perfect simulation of the view of A because
the bit v0 is uniformly random in the actual protocol. Thus, if A can predict
u0 = λG0 then the adversary A′ can also predict λG0 with identical advantage.
By Lemma 4, the distribution (U0|ϑ) is at most 2−(g/2+1) far from the uniform
distribution over {0, 1}.
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