
Practical Free-Start Collision Attacks
on 76-step SHA-1

Pierre Karpman1,2?, Thomas Peyrin2??, and Marc Stevens3

1 Inria, France
2 Nanyang Technological University, Singapore

3 Centrum Wiskunde & Informatica, The Netherlands

pierre.karpman@inria.fr, thomas.peyrin@ntu.edu.sg, marc.stevens@cwi.nl

Abstract. In this paper we analyze the security of the compression func-
tion of SHA-1 against collision attacks, or equivalently free-start collisions
on the hash function. While a lot of work has been dedicated to the anal-
ysis of SHA-1 in the past decade, this is the first time that free-start col-
lisions have been considered for this function. We exploit the additional
freedom provided by this model by using a new start-from-the-middle
approach in combination with improvements on the cryptanalysis tools
that have been developed for SHA-1 in the recent years. This results in
particular in better differential paths than the ones used for hash func-
tion collisions so far. Overall, our attack requires about 250 evaluations
of the compression function in order to compute a one-block free-start
collision for a 76-step reduced version, which is so far the highest num-
ber of steps reached for a collision on the SHA-1 compression function.
We have developed an efficient GPU framework for the highly branching
code typical of a cryptanalytic collision attack and used it in an opti-
mized implementation of our attack on recent GTX 970 GPUs. We report
that a single cheap US$ 350 GTX 970 is sufficient to find the collision in
less than 5 days. This showcases how recent mainstream GPUs seem to
be a good platform for expensive and even highly-branching cryptanal-
ysis computations. Finally, our work should be taken as a reminder that
cryptanalysis on SHA-1 continues to improve. This is yet another proof
that the industry should quickly move away from using this function.

Keywords: SHA-1, hash function, cryptanalysis, free-start collision, GPU
implementation.

? Partially supported by the Direction Générale de l’Armement and by the Singapore
National Research Foundation Fellowship 2012 (NRF-NRFF2012-06)

?? Supported by the Singapore National Research Foundation Fellowship 2012 (NRF-
NRFF2012-06)



1 Introduction

Cryptographic hash functions are essential components in countless security sys-
tems for very diverse applications. Informally, a hash function H is a function
that takes an arbitrarily long message M as input and outputs a fixed-length
hash value of size n bits. One of the main security requirements for a cryp-
tographic hash function is to be collision resistant: it should be hard for an
adversary to find two distinct messages M , M̂ leading to the same hash value
H(M) = H(M̂) in less than 2

n
2 calls to H. Most standardized hash functions

are based on the Merkle-Damg̊ard paradigm [27,6] which iterates a compression
function h that updates a fixed-size internal state (also called chaining value)
with fixed-size message blocks. This construction allows a simple and very useful
security reduction: if the compression function is collision-resistant, then so is
the corresponding hash function. Since the compression function has two inputs,
an attacker may use this extra freedom to mount attacks that are not possible
on the complete hash function; on the other hand, one loses the ability to chain
message blocks. We can then distinguish between two classical attack models: a
free-start collision is a pair of different message and chaining value (c,m), (ĉ, m̂)
leading to a collision after applying h: h(c,m) = h(ĉ, m̂). A semi-free-start col-
lision works similarly, with the additional restriction that the chaining values c
and ĉ must be equal. It is important to note that the Merkle-Damg̊ard security
reduction assumes that any type of collision for the compression function should
be intractable for an attacker, including free-start collisions.

The most famous and probably most used hash function as of today is
SHA-1 [29]. This function belongs to the MD-SHA family, that originated with
MD4 [34]. Soon after its publication, MD4 was believed to be insufficiently se-
cure [9] and a practical collision was later found [11]. Its improved version,
MD5 [35], was widely deployed in countless applications, even though collision
attacks on the compression function were quickly identified [10]. The function
was completely broken and collisions were found in the groundbreaking work
from Wang et al. [43]. A more powerful type of collision attack called chosen-
prefix collision attack against MD5 was later introduced by Stevens et al. [40].
Irrefutable proof that hash function collisions indeed form a realistic and signif-
icant threat to Internet security was then provided by Stevens et al. [41] with
their construction of a Rogue Certification Authority that in principle completely
undermined HTTPS security. This illustrated further that the industry should
move away from weak cryptographic hash functions and should not wait until
cryptanalytic advances actually prove to be a direct threat to security. Note that
one can use counter-cryptanalysis [38] to protect against such digital signature
forgeries during the strongly advised migration away from MD5 and SHA-1.

Before the impressive attacks on MD5, the NIST had standardized the hash
function SHA-0 [28], designed by the NSA and very similar to MD5. This function
was quickly very slightly modified and became SHA-1 [29], with no justification
provided. A plausible explanation came from the pioneering work of Chabaud
and Joux [4] who found a theoretical collision attack that applies to SHA-0 but
not to SHA-1. Many improvements of this attack were subsequently proposed [1]

2



and an explicit collision for SHA-0 was eventually computed [2]. However, even
though SHA-0 was practically broken, SHA-1 remained free of attacks until the
work of Wang et al. [42] in 2005, who gave the very first theoretical collision
attack on SHA-1 with an expected cost equivalent to 269 calls to the compression
function. This attack has later been improved several times, the most recent
improvement being due to Stevens [39], who gave an attack with estimated cost
261; yet no explicit collision has been computed so far. With the attacks on the
full SHA-1 remaining impractical, the community focused on computing collisions
for reduced versions: 64 steps [8] (with a cost of 235 SHA-1 calls), 70 steps [7]
(cost 244 SHA-1), 73 steps [13] (cost 250.7 SHA-1) and the latest advances reached
75 steps [14] (cost 257.7 SHA-1) using extensive GPU computation power. As of
today, one is advised to use e.g. SHA-2 [30] or the hash functions of the future
SHA-3 standard [31] when secure hashing is needed.

In general, two main points are crucial when dealing with a collision search
for a member of the MD-SHA family of hash functions (and more generally for
almost every hash function): the quality of the differential paths used in the at-
tack and the amount and utilization of the remaining freedom degrees. Regarding
SHA-0 or SHA-1, the differential paths were originally built by linearizing the step
function and by inserting small perturbations and corresponding corrections to
avoid the propagation of any difference. These so-called local collisions [4] fit
nicely with the linear message expansion of SHA-0 and SHA-1 and made it easy
to generate differential paths and evaluate their quality. However, these linear
paths have limitations since not so many different paths can be used as they
have to fulfill some constraints (for example no difference may be introduced in
the input or the output chaining value). In order to relax some of these con-
straints, Biham et al. [2] proposed to use several successive SHA-1 compression
function calls to eventually reach a collision. Then, Wang et al. [42] completely
removed these constraints by using only two blocks and by allowing some part
of the differential paths to behave non-linearly (i.e. not according to a linear
behavior of the SHA-1 step function). Since the non-linear parts have a much
lower differential probability than the linear parts, to minimize the impact on
the final complexity they may only be used where freedom degrees are avail-
able, that is during the first steps of the compression function. Finding these
non-linear parts can in itself be quite hard, and it is remarkable that the first
ones were found by hand. Thankfully, to ease the work of the cryptanalysts,
generating such non-linear parts can now be done automatically, for instance
using the guess-and-determine approach of De Cannière and Rechberger [8], or
the meet-in-the-middle approach of Stevens et al. [37,15]. In addition, joint local
collision analysis [39] for the linear part made heuristic analyzes unnecessary
and allows to generate optimal differential paths.

Once a differential path has been chosen, the remaining crucial part is the
use of the available freedom degrees when searching for the collision. Several
techniques have been introduced to do so. First, Chabaud and Joux [4] noticed
that in general the 15 first steps of the differential path can be satisfied for free
since the attacker can fix the first 16 message words independently, and thus

3



fulfill these steps one by one. Then, Biham and Chen [1] introduced the notion of
neutral bits, that allows the attacker to save conditions for a few additional steps.
The technique is simple: when a candidate following the differential path until
step x > 15 is found, one can amortize the cost for finding this valid candidate by
generating many more almost for free. Neutral bits are small modifications in the
message that are very likely not to invalidate conditions already fulfilled in the
x first steps. In opposition to neutral bits, the aim of message modifications [42]
is not to multiply valid candidates but to correct the wrong ones: the idea is
to make a very specific modification in a message word, so that a condition not
verified at a later step eventually becomes valid with very good probability, but
without interfering with previously satisfied conditions. Finally, one can cite the
tunnel technique from Kĺıma [20] and the auxiliary paths (or boomerangs) from
Joux and Peyrin [18], that basically consist in pre-set, but more powerful neutral
bits. Which technique to use, and where and how to use it are complex questions
for the attacker and the solution usually greatly depends on the specific case that
is being analyzed.

Our contributions. In this paper, we study the free-start collision security
of SHA-1. We explain why a start-from-the-middle approach can improve the
current best collision attacks on the SHA-1 compression function regarding two
keys points: the quality of the differential paths generated, but also the amount
of freedom degrees and the various ways to use them. Furthermore, we present
improvements to derive differential paths optimized for collision attacks using
an extension of joint local-collision analysis. All these improvements allow us
to derive a one-block free-start collision attack on 76-step SHA-1 for a rather
small complexity equivalent to about 250 calls to the primitive. We have fully
implemented the attack and give an example of a collision in the full version of
the paper [19].

We also describe a GPU framework for a very efficient GPU implementa-
tion of our attack. The computation complexity is quite small as a single cheap
US$ 350 GTX 970 can find a collision in less than 5 days, and our cheap US$ 3000
server with four GTX 970 GPUs can find one in slightly more than one day on
average. In comparison, the 75-step collision from [14] was computed on the most
powerful supercomputer in Russia at the time, taking 1.5 month on 455 GPUs
on average. This demonstrates how recent mainstream GPUs can easily be used
to perform big cryptanalysis computations, even for the highly branching code
used in cryptanalytic collision attacks. Notably, our approach leads to a very
efficient implementation where a single GTX 970 is equivalent to about 140 re-
cent high-clocked Haswell cores, whereas the previous work of Grechnikov and
Adinetz estimates an Nvidia Fermi GPU to be worth 39 CPU cores [14].

Moreover, we emphasize that we have found the collision that has reached
the highest number of SHA-1 compression function steps as of today. Finally,
this work serves as a reminder that cryptanalysis on SHA-1 continues to improve
and that industry should now quickly move away from using this primitive.

4



Outline. In Section 2 we first describe the SHA-1 hash function. In Section 3
we describe the start-from-the-middle approach and how it can provide an im-
provement when looking for (semi)-free-start collisions on a hash function. We
then study the case of 76-step reduced SHA-1 with high-level explanations of the
application of the start-from-the-middle approach, the differential paths, and the
GPU implementation of the attack in Section 4. The reader interested by more
low-level details can then refer to Section 5. Finally, we summarize our results
in Section 6.

2 The SHA-1 hash function

We give here a short description of the SHA-1 hash function and refer to [29]
for a more exhaustive treatment. SHA-1 is a 160-bit hash function belonging to
the MD-SHA family. Like many hash functions, SHA-1 uses the Merkle-Damg̊ard
paradigm [6,27]: after a padding process, the message is divided into k blocks of
512 bits each. At every iteration of the compression function h, a 160-bit chaining
value cvi is updated using one message block mi+1, i.e. cvi+1 = h(cvi,mi+1).
The initial value IV = cv0 is a predefined constant and cvk is the output of the
hash function.

As for most members of the MD-SHA family, the compression function h uses
a block cipher Enc in a Davies-Meyer construction: cvi+1 = Enc(mi+1, cvi) +
cvi, where Enc(x, y) denotes the encryption of plaintext y with key x. The
block cipher itself is an 80-step (4 rounds of 20 steps each) generalized Feistel
network which internal state is composed of five branches (or internal registers)
(Ai, Bi, Ci, Di, Ei) of 32-bit each. At each step, a 32-bit extended message word
Wi is used to update the five internal registers:

Ai+1 = (Ai ≪ 5) + fi(Bi, Ci, Di) + Ei +Ki +Wi,
Bi+1 = Ai,
Ci+1 = Bi ≫ 2,
Di+1 = Ci,
Ei+1 = Di.

where Ki are predetermined constants and fi are Boolean functions defined in
Table 2-1. Note that all updated registers but Ai+1 are just rotated copies of
another register, so one can only consider the register A at each iteration. Thus,
we can simplify the step function as:

Ai+1 = (Ai ≪ 5) + fi(Ai−1, Ai−2 ≫ 2, Ai−3 ≫ 2) + (Ai−4 ≫ 2) +Ki +Wi.

Finally, the extended message words Wi are computed from the 512-bit message
block, which is split into 16 32-bit words M0, . . . ,M15. These 16 words are then
expanded linearly into the 80 32-bit words Wi as follows:

Wi =

{
Mi, for 0 ≤ i ≤ 15

(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1, for 16 ≤ i ≤ 79

5



Table 2-1. Boolean functions and constants of SHA-1

round step i fi(B,C,D) Ki

1 0 ≤ i < 20 fIF = (B ∧ C)⊕ (B ∧D) 0x5a827999

2 20 ≤ i < 40 fXOR = B ⊕ C ⊕D 0x6ed6eba1

3 40 ≤ i < 60 fMAJ = (B ∧ C)⊕ (B ∧D)⊕ (C ∧D) 0x8fabbcdc

4 60 ≤ i < 80 fXOR = B ⊕ C ⊕D 0xca62c1d6

For the sake of completeness, since our attacks compute the internal cipher
Enc both in the forward (encryption) and backward (decryption) directions, we
also give below the description of the inverse of the state update function:

Ai=(Ai+5−Wi+4−Ki+4−fi+4(Ai+3, Ai+2 ≫ 2, Ai+1 ≫ 2)−(Ai+4 ≪ 5))≪ 2

and of the message expansion: Wi = (Wi+16 ≫ 1)⊕Wi+13 ⊕Wi+8 ⊕Wi+2.

3 A start-from-the-middle approach

The first example of an attack starting from the middle of a hash function is
due to Dobbertin [11], who used it to compute a collision on MD4. Start-from-
the-middle methods are also an efficient approach to obtain distinguishers on
hash functions, such as Saarinen’s slide distinguisher on the SHA-1 compression
function [36]. Rebound attacks [25] and their improvements [24,12,21,16] can
be considered as a start-from-the-middle strategy tailored to the specific case
of AES-like primitives. Start-from-the-middle has also been used to improve the
analysis of functions based on parallel branches, such as RIPEMD-128 [22]. All
these attacks leverage the fact that in some specific scenarios, starting from the
middle may lead to a better use of the freedom degrees available.

In general, a start-from-the-middle approach for collision search leads to a
free-start or semi-free-start attack. Indeed, since one might not use the freedom
degrees in the first steps of the compression function anymore, it is harder to
ensure that the initial state (i.e. the chaining value) computed from the middle
is equal to the specific initial value of the function’s specifications. However, if
the starting point is not located too far from the beginning, one may still be
able to do so; this is for example the case of the recent attack on Grøstl [26]. In
this work, we focus on the search of free-start collisions and consider that the
IV can be chosen by the attacker. For SHA-1, this adds 160 bits of freedom that
can be set in order to fulfill conditions to follow a differential path.

Furthermore, in the case of SHA-1, one can hope to exploit a start-from-the-
middle approach even more to improve previous works in two different ways.
Firstly, the set of possible differential paths to consider increases. Secondly, the
freedom degrees now operate in two directions: forward and backward.

6



More choice for the differential paths. The linear differential paths (gen-
erated from the mask of introduced perturbations, also called disturbance vector
or DV) used in all existing collision attacks on SHA-1 can be concisely described
in two families [23]. Both types have the feature that the complexity of following
the path is unevenly distributed along the 80 steps of SHA-1 (this remains true
for attacks on reduced versions as well). Furthermore, because a typical attack
replaces a portion of the linear differential path by a non-linear part, this latter
one defines a series of steps where the complexity of the linear path is basically
irrelevant. In the case of a start-from-the-middle attack, one can choose where
to locate this non-linear part, and thereby gains more flexibility in the choice of
the linear path to use.

Two-way use of the freedom degrees. In a start-from-the-middle setting,
one freely chooses an initial state in the middle of the function instead of nec-
essarily starting from the IV in the beginning. Therefore, the differential path
conditions may be related both to forward and backward computations from the
middle state, and the same goes for the freedom available in the first 16 words
of the message. Because one now has more possibilities to exploit them, one
can hope to make a better use of these freedom degrees. For example, we can
imagine two-way neutral bits, that is applying neutral bits in both forward and
backward directions. This would potentially allow the attacker to obtain a few
free steps not only in the forward direction as in previous works, but also in the
backward direction. Of course, one must be careful about the non-independence
between the forward and backward computations. Obviously, the same reason-
ing can apply to other freedom degrees utilization techniques such as message
modifications, tunnels or boomerangs.

In the next two sections, we detail how we applied this approach to the search
of free-start collisions for SHA-1.

4 A high-level view of the SHA-1 free-start collision attack

4.1 Start-from-the-middle

There is one main choice that must be made when using a start-from-the-middle
approach for an attack on SHA-1, that is which consecutive 16 steps are used
to apply advanced message modification techniques or neutral bits; in our ter-
minology the offset corresponding to this choice is called the main block offset.
Any simple change in those 16 steps propagates to all other steps, in particular
differences propagate backwards from these 16 steps down to step 0 and thereby
affect the input chaining values. Note that for regular attacks on SHA-1, the
main block offset must be 0 to ensure that the chaining value is never altered.

For our neutral bits, we found that using a main block offset of 6 was optimal.
Therefore neutral bits are applied on the 16 message words W6...21 and a neutral
bit in Wi affects steps 5, 4, . . . , 0 backwards and steps i, i+ 1, . . . forwards.

7



Before we can apply the neutral bits, we first need to compute a partial so-
lution over 16 consecutive steps that can be extended using the neutral bits,
which we call base solution in our terminology. This base solution is also com-
puted with an offset but it is only one, meaning that it consists of state words
A−3, . . . , A17. We can find such a solution using simple message modification,
over the message words W1 to W16, in particular we choose an initial solution
for A8, . . . , A12 which we first extend backwards using words 11, . . . , 1 and then
forwards using words 12, . . . , 16.

Using neutral bits to improve the probabilistic phase. The offset of the
base solution being 1, the state may not follow the differential path anymore
starting from A18, and the attacker needs to test many different base solutions
to go as far as A76 and get a complete collision. At first sight, it may therefore
seem that we gained only little from this particular use of a start-in-the-middle
approach. However, by using a main block offset of 6, there remains freedom
that can still be exploited in the message words up to W21. Although their value
cannot be changed entirely (as they were fully determined when computing the
base solution), we can still use these words to implement neutral bits.

In our attack, we use 51 neutral bits spread on words W14 to W21, which are
neutral with respect to the computation of state words up to A18...26 with good
probability. This means that up to the computation of A26, one can take advan-
tage of solutions up to A18...25 (that had to be found probabilistically) to find
more solutions up to the same step with only a negligible cost. This consider-
ably reduces the complexity of the attack, and we experimentally observed that
about 90 % of the computations were done past A24, which can thus be consid-
ered to be where the actual probabilistic phase starts. This is a very noticeable
improvement from the original A17 of the base solution. We give a complete list
of these neutral bits in the full version of the paper [19]

There is however one caveat when using neutral bits in such a start-in-the-
middle fashion, as one will pay an additional cost in complexity if they interact
badly with the base solution when they go through the backward message expan-
sion. In our attack, we chose neutral bits that do so with only a small probability,
which can even be lowered to a negligible quantity when running the attack by
filtering the base solutions from which to start.

In Figure 4-1, we summarize our application of start-from-the-middle to
SHA-1 with a graphical representation of the attack layout.

4.2 Differential path construction improvements

The full differential path for SHA-1 collision attacks are made of two parts.
The most important part is the linear part built from a combination of local
collisions as described by the disturbance vector, which almost covers the last 3
rounds of SHA-1 and directly contributes a major factor to the overall complexity.
The remaining part, the so-called non-linear-part covering mostly round 1, is

8



-4

8

12
14

17

21

26

0

5

10

15

20

25

30

Starting point

Base solution

Free message
for nb.

Message with
neutral bits

Affected by
neutral bits

SHA-1 State words (Ai) SHA-1 Message words (Wi)

Fig. 4-1. Illustration of the use of start-from-the-middle for SHA-1.

constructed to link up prescribed IV differences and the linear part into a full
differential path.

Current methods to construct the non-linear part are a guess-and-determine
approach due to De Cannière et al. [8] and a meet-in-the-middle approach due
to Stevens et al. [37]. For the latter an implementation has been made public at
Project HashClash [15] that we used for this work. For the linear part, the state-
of-the-art is Joint Local-Collision Analysis (JLCA) [39] which analyzes the entire
set of differential paths over the last 3 rounds conforming to the disturbance
vector and which exploits redundancy to make it practical. Using JLCA one can
extract a minimal set of conditions (consisting of starting differences (say for
step 20), message bit-relations and ending differences) that leads to the highest
probability. Being of the highest probability implies that the factor contribution
of the linear part to the overall complexity is minimal, while a minimal set of
conditions maximizes the amount of freedom that can be exploited to speed up
the attack.

For our attacks we extended (our own implementation of) JLCA to cover all
steps and to produce the entire set of sufficient state conditions and message
bit-relations as used by collision attacks. In particular, we improved JLCA in
the following ways:

1. Include the non-linear part. Originally JLCA considers the entire set of
differential paths that conform to the disturbance vector only over the linear
part. This is done by considering sets Qi of allowed state differences for each
Ai given the disturbance vector (including carries), see [39]. We extended
this by defining sets Qi for the non-linear part as the state difference given

9



by a previously constructed differential path of the non-linear part. Here
one actually has a few options: only consider exact state difference of the
non-linear path or also consider changes in carries and/or signs, as well as
include state differences conforming to the disturbance vector. We found that
allowing changes in carries and/or signs for the state differences given by
the non-linear path made JLCA impractical, yet including state differences
conforming to the disturbance vector was practical and had a positive effect
on the overall probability of the full differential path.

2. Do not consider auxiliary carries not used in the attack. Originally
JLCA considers local collisions with carries as this improves the overall prob-
ability, the probability of variants of paths adding up. However, collision
attacks employ sufficient conditions for, say, the first 25 steps, where such
auxiliary carries are not used. For these steps JLCA would thus optimize for
the wrong model with auxiliary carries. We propose to improve this by not
adding up the probability of paths over the first 25 steps, but only to take the
maximum probability. We propose to do this by redefining the cumulative
probabilities p(P,w) from [39, Sec 4.6] to:

p(P,w) = max
P̂[0,25]∈D[0,25]

∑
P′∈D[0,te]

P′|[0,25]=P̂[0,25]

P=Reduce(P′),w=w(P′)

Pr[P ′ − P].

In our JLCA implementation this can be simply implemented by replacing
the addition of two probabilities by taking their maximum conditional on
the current SHA-1 step.

3. Determine sufficient conditions. Originally JLCA only outputted start-
ing differences, ending differences, message bit-relations and the optimal
success probability. We propose to extend JLCA to reconstruct the set of
differential paths over steps, say, [0, 25], and to determine minimal sets of
sufficient conditions and message bit-relations. This can be made possible
by keeping the intermediate sets of reduced differential paths R[tb,te] which
were constructed backwards starting at a zero-difference intermediate state
of SHA-1. Then one can iteratively construct sets O[0,i) of optimal differen-
tial paths over steps 0, . . . , i−1, i.e., differential paths compatible with some
combination of the optimal starting differences, ending differences and mes-
sage bit-relations such that the optimal success probability can be achieved.
One starts with the set O[0,0) determined by the optimal starting differences.
Given O[0,i) one can compute O[0,i+1) by considering all possible extensions
of every differential path in O[0,i) with step i (under the predefined con-
straints, i.e. ∆Qj ∈ Qj , δWi ∈ W − i, see [39]). From all those paths, one
only stores in O[0,i+1) those that can be complemented by a reduced dif-
ferential path over steps i + 1, . . . , te from R[i+1,te] such that the optimal
success probability is achieved over steps 0, . . . , te.
Now given, say, O[0,26), we can select any path and determine its conditions
necessary and sufficient for steps 0, . . . , 25 and the optimal set of message
bit-relations that goes with it. Although we use only one path, having the

10



entire set O[0,26) opens even more avenues for future work. For instance,

one might consider an entire subclass of 2k differential paths from O[0,26)

that can be described by state conditions linear in message bits and a set of
(linear) message bit-relations. This would provide k bits more in degrees of
freedom that can be exploited by speed up techniques.

In short, we propose several extensions to JLCA that allows us to determine
sufficient state conditions and message bit-relations optimized for collision at-
tacks, i.e. minimal set of conditions attaining the highest success probability
paths (where auxiliary carries are only allowed after a certain step).

4.3 Implementation of the attack on GPUs

We now present a high-level view of the implementation of our attack, focusing on
the features that make it efficient on GPUs. Their architecture being noticeably
different from the one of CPUs, we first recall a few important points that will
help understanding the design decisions4.

Number of cores and scheduling. A modern GPU can feature more than
a thousand of small cores, that are packed together in a small number of larger
“multiprocessor” execution units. Taking the example of the Nvidia GTX 970 for
concreteness, there are 13 multiprocessors of 128 cores each, making 1664 cores
in total [33]. The fastest instructions (such as for instance 32-bit bitwise logical
operations or modular addition) have a throughput of 1 per core, which means
that in ideal conditions 1664 instructions may be simultaneously processed by
such a GPU in one clock cycle [32].

Yet, so many instructions cannot be emitted independently, or to put it in
another way, one cannot run an independent thread of computation for every
core. In fact, threads are grouped together by 32 forming a warp, and only
warps may be scheduled independently. Threads within a warp may have a
diverging control flow, for instance by taking a different path upon encountering
a conditional statement, but their execution in this case is serialized. At an even
higher level, warps executing the same code can be grouped together as blocks.

Furthermore, on each multiprocessor one can run up to 2048 threads simul-
taneously, which are dynamically scheduled every cycle onto the 128 cores at a
warp granularity. Thus while a warp is waiting for the results of a computation
or for a (high latency) memory operation to return, another warp can be sched-
uled. Although having more threads does not increase the computational power
of the multiprocessor, such overbooking of cores can be used to hide latencies
and thus increase efficiency of a GPU program.

In short, to achieve an optimal performance, one must bundle computations
by groups of 32 threads executing the same instructions most of the time and
diverging as little as possible and use as many threads as possible.

4 We specifically discuss these points for Nvidia GPUs of the most recent Maxwell
generation such as the GTX 970 being used in our attacks.

11



Memory architecture and thread synchronization. In the same way as
they feature many execution units, GPUs also provide memory of a generous
size, which must however be shared among the threads. The amount of memory
available to a single thread is therefore much less than what is typically available
on a CPU (it of course highly depends on the number of running threads, but can
be lower than 1 MB). This, together with the facts that threads of a same warp
do not actually execute independently of each other and that threads of a same
block run the same code makes it enticing to organize the memory structure of
a program at the block level. Fortunately, this is made rather easy by the fact
that many efficient synchronization functions are available for the threads, both
at the warp and at the block level.

Balancing the work between the GPU and the CPU. The implemen-
tation of our attack can be broadly decomposed in two phases. The first step
consists in computing a certain number of base solutions as in Section 4.1 and
in storing them on disk. Because the total number of base solutions necessary to
find a collision in our attack is rather small (about 225) and because they can be
computed quickly, this can be done efficiently in an offline fashion using CPUs.

The second phase then consists in trying to extend probabilistically the base
solutions (and their variants through the use of neutral bits) to find a collision.
This is an intensely parallel task that is well suited to run on GPUs. However, as
it was emphasized above, GPUs are most efficient when there is a high coherency
between the execution of many threads. For that reason, we must avoid having
idle threads that are waiting because their candidate solutions failed to follow
the differential paths, while others keep on verifying a more successful one. Our
approach to this is to fragment the verification into many small pieces (or snip-
pets) that are chosen in a way which ensures that coherency is maintained for
every thread of a warp when executing a single snippet, except in only a few
small points. This is achieved through a series of intermediary buffers that store
inputs and outputs for the snippets; a warp then only executes a given snippet if
enough inputs are available for every of its threads. One should note that there
is no need to entirely decompose the second step of the attack into snippets, and
that a final part can again be run in a more serial fashion. Indeed, if inputs to
such a part are scarce, there is no real advantage in verifying them in a highly
parallel way.

The sort of decomposition used for the GPU phase of our attack as described
above is in no way constrained by the specifics of our attack. In fact, it is quite
general, and we believe that it can be successfully applied to many an implemen-
tation of cryptographic attacks. We conclude this section by giving more details
of the application of this approach to the case of SHA-1.

Choice of the snippets. As it was mentioned in Section 4.1, our attack uses
neutral bits acting on the state words of step 18 to 26. The choice we made for the
decomposition into snippets reflects this use of neutral bits: we use intermediary

12



buffers to store partial solutions up to step 17, 18, etc. Then for each step
the corresponding snippet consists in loading one partial solution per thread
of a warp and applying every combination of neutral bits for this step. Each
combination is tried by every thread at the same time on its own partial solution,
thereby maintaining coherency. Then, each thread writes every resulting partial
solution extended by one step to the output buffer of the snippet (which is the
input buffer of the next snippet) at the condition that it is indeed valid, this being
the only part of the code where threads may briefly diverge. For the later steps
when no neutral bits can be used anymore, the snippets regroup the computation
of several steps together, and eventually the verification that partial solutions
up to step 56 make valid collisions is done on a CPU. This is partly because
the amount of available memory makes it hard to use step-by-step snippets until
the end, but also because such partial solutions are only produced very slowly
(a single GTX 970 produces solutions up to step 56 at a speed of about 0.017
solution per second, that is about 1 per minute).

Complete process of the attack. When running the attack, every warp tries
to work with partial solutions that are up to the latest step possible. If no
work is available there, it tries to work with partial solutions up to the second-
latest step, etc. Eventually warps resort to using base solutions in the worst
case that no work is available anywhere else. As was already said in Section 4.1,
we experimentally observed that most of the work is done on partial solutions
that are at least up to step 24, and work on solutions up to lower steps (and
in particular base solutions) is thus done only intermittently. We conclude this
description by giving a simplified flow chart (made slightly incorrect for the sake
of clarity) of the GPU part of the SHA-1 attack in Figure 4-2.

E
n

o
u

g
h

so
lu

ti
o
n

s
u

p
to

2
5
?

E
n

o
u

g
h

so
lu

ti
o
n

s
u

p
to

2
4
?

E
n

o
u

g
h

so
lu

ti
o
n

s
u

p
to

1
8
?

E
x
te

n
d

to
2
6

E
x
te

n
d

to
2
5

E
x
te

n
d

to
1
9

E
x
te

n
d

to
1
8

S
o
lu

ti
o
n

s
u

p
to

2
6

S
o
lu

ti
o
n

s
u

p
to

2
5

S
o
lu

ti
o
n

s
u

p
to

1
8

B
a
se

so
lu

ti
o
n

s

F
ro

m
C

P
U

T
o

C
P

U

y
es

n
o

y
es

y
es

n
o

re
a
d

s

w
ri

te
s

w
ri

te
s

re
a
d

s

w
ri

te
s

re
a
d

s

re
a
d

s

w
ri

te
s

Fig. 4-2. Simplified flow chart for the GPU part of the attack. The start of this infinite
loop is in the top left corner. Rectangles “ ” represent snippets, ellipses “ ” represent
shared buffers, plain lines “ ” represent control flow, and dotted lines “ ” represent
data flow.

13



5 Details of the attack and its implementation

5.1 The case of SHA-1

For our 76-step free-start collision attack, we selected disturbance vector II(55,0)
(following Manuel’s classification [23]), and this for two reasons. Firstly, JLCA
showed it to be one of the best for 76-steps. Secondly, the required IV difference
is very sparse and localized on the two lowest bit positions, thus having low
potential for interference of the neutral bits with state conditions on the first
few steps.

As explained in Section 4.2, we have extended JLCA to determine optimal
sets of state conditions and message bit-relations given a non-linear path. For
our attack we tried both non-linear differential path construction methods, i.e.
the guess-and-determine method using our own implementation, and the meet-
in-the-middle method using the public HashClash implementation [15]. We have
found that the meet-in-the-middle approach generally resulted in fewer condi-
tions and that furthermore we could better position the conditions. Our initial
non-linear path was thus generated using the meet-in-the-middle approach, al-
though when considering the full differential path one can encounter contradic-
tions in the message bit-relations and/or an unsolvable highest density part of
the differential path. These are expected situations which are easily solvable by
considering variations of the non-linear part, which we did using the guess-and-
determine approach.

The sufficient conditions over steps 0–35 and the message bit-relations can
be found in the full version [19].

5.2 GPU implementation

We complete the description of our approach towards GPU programming from
Section 4.3 with a few lower-level details about our implementation on GTX 970.

Block layout. A GTX 970 features 13 multiprocessors of 128 cores. Each mul-
tiprocessor can host a maximum of 2048 threads regrouped in at least 2 and
at most 32 blocks [32]. If every multiprocessor of the GPU hosts 2048 threads,
we say that we have reached full occupancy. While a multiprocessor can only
physically run one thread per core (i.e. 128) at a given time, a higher number of
resident threads is beneficial to hide computation and memory latencies. These
can have a significant impact on the performance as a single waiting thread
causes its entire warp of 32 to wait with him; it is thus important in this case
for the multiprocessor to be able to schedule another warp in the meantime.

Achieving full occupancy is not however an absolute objective as it may
or may not result in optimal performance depending on the resources needed
by every thread. Important factors in that respect are the average amount of
memory and the number of registers needed by a single thread, both being
resources shared among the threads. In our implementation, the threads need
to run rather heavy functions and full occupancy is typically not desirable. One

14



reason why it is so is that we need to allocate 64 registers per thread in order to
prevent register spilling in some of the most expensive functions; a multiprocessor
having “only” 216 registers, this limits the number of threads to 1024. As a result,
we use a layout of 26 blocks of 512 threads each, every multiprocessor being then
able to host 2 such blocks.

Buffer framework. As it was already said in Section 4.3, we use a number
of shared buffers in our implementation in order to maximize coherency among
threads of a single warp. With the exception of the buffers holding the base solu-
tions and the collision candidates, there is one instance of every buffer per block.
This allows to use block-wise instead of global synchronization mechanisms when
updating the buffers’ content, thence reducing the overhead inherent to the use
of such shared data structures.

All of the buffers are cyclic and hold 220 elements of a few different type and
size (with the exception of the ones holding solutions after step A36 which are
of size only 210, given their limited number). The different types of buffers are
the following:

– The base solution buffer contains the value of 6 words of the solution’s state
A12 to A17, and the 16 message words W6 to W21, making 22 words in
total. Although only 5 state words are necessary to fully determine the base
solution, the value of A12 is additionally needed for the computation of some
of the neutral bits.

– An extended base solution buffer is used after the step A21; it holds the
value of state words A17 to A21, message words W14 to W18 and W20, and
the index of the base solution that it extends, using 11 words in total.

– For all the remaining steps with neutral bits, a compact representation is
used that only refers to the (extended) base solution from which it is derived
and the value of its active neutral bits; all of this can be stored in only two
words.

– A candidate solution buffer of 5 state words and 16 message words is used
for partial solutions up to step A36 and step A56.

The decomposition into base and extended base solutions was carefully chosen
from the position of the neutral bits. From their description [19], one can see
that neutral bits on the message words up to W18 are only used up to step
A21; similarly, neutral bits on the words W19 to W21 are only used after step
A21. It is then only natural to define extended base solutions as up to A21.
Of course one could have dispensed with such a decomposition altogether, but
this would mean that extending a base solution to the later steps (say A24)
would systematically need to start recomputing many of the earlier steps from
A17 before being able to do any useful work and this would be an unnecessary
burden on these critical steps. We describe our packing of the neutral bits and of
the index to the (extended) base solution in the full version [19]. As a side-note,
let us also mention that the use of A36 and A56 as boundaries for the candidate
solutions simply comes from the fact that each is the last of a series of 5 state
words with no differences.

15



On the pure implementation side, we also carefully took into account the
presence of a limited amount of very fast multiprocessor-specific shared memory.
While the 96 KB available per multiprocessor is hardly enough to store the whole
buffers themselves, we take advantage of it by dissociating the storage of the
buffers and of the meta-data used for their control logic, the latter being held
in shared memory. This improves the overall latency of buffer manipulations,
especially in case of heavy contention between different warps. This local shared
memory is also very useful to buffer the writes to the buffers themselves. Indeed,
only a fraction (often as low as 1

8 ) of the threads of a warp have a valid solution to
write after having tested a single candidate, and the more unsuccessful threads
need to wait while the former write their solution to global memory. It is therefore
beneficial to first write the solutions to a small local warp-specific buffer and to
flush it to the main block-wise buffer as soon as it holds 32 solutions or more,
thence significantly reducing the number of accesses to the slower global memory.

GPU tuning. After our initial implementation, we did some fine tuning of the
GPU BIOS settings in order to try having an optimal performance. One first ob-
jective was to ensure that the GPU fans work at 100% during the attack, as this
was strangely not the case initially, and was obviously not ideal for cooling. We
also experimented with various temperature limits (that define when the GPU
will start to throttle) and both over-clocking and under-volting. Taken together,
these variations can have a significant impact on the overall performance of the
program, as can be seen with our 76-step attack below.

6 Results and perspectives

In this last section, we give the statistics for the performance of our imple-
mentation of the 76-step attack and estimate the cost of a collision on the full
compression function of SHA-1 using similar methods.

6.1 The 76-step collisions

The first collision was found when running the attack on a single GPU. Based
on the production rate of partial solutions up to step 56, the estimated time to
find a collision was slightly less than 5 days, at 4.94 days. This rate was also
observed in practice, although we also witnessed significant outliers; as a matter
of fact, the first collision was found in less than two days.

We subsequently ran the attack for a longer time on a server with four GPUs,
and found 17 additional collisions. By improving the implementation and the
GPU settings, we managed to significantly decrease the average time needed to
find a collision. For the best configuration we found, the best-performing GPU
computed collisions at an expected rate of 1 every 4.16 days, with an average
of 4.42 for the 4 GPUs (producing solutions up to step 56 at a rate of 0.0171
per second). The whole server could then be expected to produce one collision
every 1.1 day. Our GPU implementation of SHA-1 can compute about 231.8 SHA-1

16



compression functions per second. This means that on the best-performing GPU
our attack has a complexity equivalent to 250.25 calls to the compression function.
If one takes the average over the 4 GPUs, this increases slightly to 250.34.

We also implemented our attack to run on a standard CPU, which provides
an interesting comparison of the relative performance of the attack versus the
speed of raw SHA-1 computations. On an Haswell Core-i5 running at 3.2 GHz,
the OpenSSL implementation of SHA-1 can compute 223.47 compression func-
tions per second, while our attack program generates solutions up to step 56 at
a rate of 0.000124 per second. The total complexity of the attack thus requires
about 606.12 core-days and has a complexity of 249.1 compression function calls.
This means that a single GTX 970 is worth 322 such CPU cores when com-
puting the SHA-1 compression function, and 138 cores when running our attack
program (this increases to 146 for our best-performing GPU). While this drop in
relative efficiency was to be expected, it is somehow surprisingly small given the
complexity of our implementation and e.g. the intensive use of large shared data
structures. Our careful implementation thus gives a much better value for the
GPUs when compared to previous attempts at running cryptographic attacks
on such a platform; in their attack, Grechnikov and Adinetz estimated a GPU
to be worth 39 CPU cores [14].

6.2 Collisions on the full compression function

We are currently working to apply our methods to a free-start collision attack
for the full SHA-1. Precisely estimating the cost of such an attack is always
difficult before it is actually implemented as several factors may influence the
complexity; none the least is the number and the quality of the neutral bits
(or of accelerating techniques in general), which is typically hard to determine
without a full implementation. We can however provide rather reliable estimates
for different disturbance vectors by comparing the cost of the linear parts, as
well as the number of conditions over the non-linear parts, and by making an
educated guess of where should be the last step with a significant number of
neutral bits. This guess is in particular made easier by the fact that we can
compare a candidate disturbance vector to the one used for the 76-step attack,
for which we have very precise results. As a consequence, we get the estimates
in Table 6-1 for the complexity of an attack starting at A25 for two disturbance
vectors. These figures need to be modulated by the fact that different DVs may
yield neutral bits of different quality. Both II(55,0) and I(51,0) result in IVs
with two differences, though the ones of II(55,0) may be at better positions.
As a consequence, one may need to include step A24 and its one condition in
the critical computations for I(51,0), thus doubling the complexity. Things are
even worse for II(51,0) which yields an IV with five differences. Consequently,
one would expect neutral bits to be markedly less efficient, and should probably
add the cost of both A24 and A23, resulting in a 6-bit increase of complexity.
Thus, based on these two DVs, we can expect to find a free-start collision for
80 steps for an approximate cost of 7218 GPU-days based on I(51,0), and 8234
GPU-days using II(51,0). With a cluster of 64 GPUs, this represents 4 months

17



Table 6-1. Complexity comparison and estimates for an 80-step attack. #C denotes
the number of conditions for a given step and Gd is short for GPU-day (the cost as a
number of compression function computation is also given as an alternative measure).
The use of † denotes an estimated cost.

DV Steps Prob. (A25) Cost (A25) #C (A24) #C (A23)

II(55,0) 76 2−52.59 4.4 Gd (250.3) 1 3

I(51,0) 80 2−62.27 3609† Gd (260 †) 1 2

II(51,0) 80 2−57.46 129† Gd (255.2 †) 3 3

of computation or thereabouts. While this gives us a reasonable upper-bound, it
is still rather high and hence not entirely satisfactory. We plan to significantly
improve the complexity of such an attack by:

1. investigating better disturbance vectors such as II(56,0), II(58,0) or II(59,0);
unfortunately computing their exact probability with JLCA is much harder
than for e.g. II(51,0);

2. using better accelerating techniques than the rather simple neutral bits used
so far for the 76-step attack.

Both options should result in quite better attacks than the estimates from above.
This is a promising and exciting future work, and we hope to achieve significant
results in the near future.

References

1. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M.K. (ed.) CRYPTO.
Lecture Notes in Computer Science, vol. 3152, pp. 290–305. Springer (2004)

2. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and Reduced SHA-1. In: Cramer [5], pp. 36–57

3. Brassard, G. (ed.): CRYPTO, Lecture Notes in Computer Science, vol. 435.
Springer (1990)

4. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 1462, pp. 56–71. Springer
(1998)

5. Cramer, R. (ed.): EUROCRYPT, Lecture Notes in Computer Science, vol. 3494.
Springer (2005)

6. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [3], pp. 416–427
7. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the

Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) SAC.
Lecture Notes in Computer Science, vol. 4876, pp. 56–73. Springer (2007)

8. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT. Lecture Notes in
Computer Science, vol. 4284, pp. 1–20. Springer (2006)

18



9. den Boer, B., Bosselaers, A.: An Attack on the Last Two Rounds of MD4. In:
Feigenbaum, J. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 576, pp.
194–203. Springer (1991)

10. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 765,
pp. 293–304. Springer (1993)

11. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE. Lecture Notes
in Computer Science, vol. 1039, pp. 53–69. Springer (1996)

12. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations. In: Hong, S., Iwata, T. (eds.) FSE. Lecture Notes in Computer
Science, vol. 6147, pp. 365–383. Springer (2010), http://dx.doi.org/10.1007/

978-3-642-13858-4

13. Grechnikov, E.A.: Collisions for 72-step and 73-step SHA-1: Improvements in the
Method of Characteristics. IACR Cryptology ePrint Archive 2010, 413 (2010)

14. Grechnikov, E.A., Adinetz, A.V.: Collision for 75-step SHA-1: Intensive Paralleliza-
tion with GPU. IACR Cryptology ePrint Archive 2011, 641 (2011)

15. Hashclash project webpage, https://marc-stevens.nl/p/hashclash/
16. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved Rebound Attack on the Finalist

Grøstl. In: Canteaut, A. (ed.) FSE. Lecture Notes in Computer Science, vol. 7549,
pp. 110–126. Springer (2012), http://dx.doi.org/10.1007/978-3-642-34047-5

17. Johansson, T., Nguyen, P.Q. (eds.): EUROCRYPT, Lecture Notes in Com-
puter Science, vol. 7881. Springer (2013), http://dx.doi.org/10.1007/

978-3-642-38348-9

18. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 4622, pp.
244–263. Springer (2007)

19. Karpman, P., Peyrin, T., Stevens, M.: Practical Free-Start Collision Attacks on
76-step SHA-1. IACR Cryptology ePrint Archive 2015, 530 (2015)

20. Kĺıma, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. IACR
Cryptology ePrint Archive 2006, 105 (2006)

21. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 5912, pp. 126–143.
Springer (2009), http://dx.doi.org/10.1007/978-3-642-10366-7

22. Landelle, F., Peyrin, T.: Cryptanalysis of Full RIPEMD-128. In: Johansson and
Nguyen [17], pp. 228–244, http://dx.doi.org/10.1007/978-3-642-38348-9

23. Manuel, S.: Classification and generation of disturbance vectors for collision attacks
against SHA-1. Des. Codes Cryptography 59(1-3), 247–263 (2011)

24. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of
the Reduced Grøstl Compression Function, ECHO Permutation and AES Block
Cipher. In: Jr., M.J.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC. Lecture Notes in
Computer Science, vol. 5867, pp. 16–35. Springer (2009), http://dx.doi.org/10.
1007/978-3-642-05445-7

25. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE.
Lecture Notes in Computer Science, vol. 5665, pp. 260–276. Springer (2009), http:
//dx.doi.org/10.1007/978-3-642-03317-9

26. Mendel, F., Rijmen, V., Schläffer, M.: Collision Attack on 5 Rounds of Grøstl. In:
Cid, C., Rechberger, C. (eds.) FSE. Lecture Notes in Computer Science, vol. 8540,
pp. 509–521. Springer (2014), http://dx.doi.org/10.1007/978-3-662-46706-0

19

http://dx.doi.org/10.1007/978-3-642-13858-4
http://dx.doi.org/10.1007/978-3-642-13858-4
https://marc-stevens.nl/p/hashclash/
http://dx.doi.org/10.1007/978-3-642-34047-5
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-642-10366-7
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-642-05445-7
http://dx.doi.org/10.1007/978-3-642-05445-7
http://dx.doi.org/10.1007/978-3-642-03317-9
http://dx.doi.org/10.1007/978-3-642-03317-9
http://dx.doi.org/10.1007/978-3-662-46706-0


27. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [3], pp. 428–446
28. National Institute of Standards and Technology: FIPS 180: Secure Hash Standard

(May 1993)
29. National Institute of Standards and Technology: FIPS 180-1: Secure Hash Standard

(April 1995)
30. National Institute of Standards and Technology: FIPS 180-2: Secure Hash Standard

(August 2002)
31. National Institute of Standards and Technology: Draft FIPS 202: SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions (May 2014)
32. Nvidia Corporation: Cuda C Programming Guide. https://docs.nvidia.com/

cuda/cuda-c-programming-guide

33. Nvidia Corporation: Nvidia Geforce GTX 970 Specifications. http://www.

geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications

34. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone,
S.A. (eds.) CRYPTO. Lecture Notes in Computer Science, vol. 537, pp. 303–311.
Springer (1990)

35. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992)
36. Saarinen, M.O.: Cryptanalysis of Block Ciphers Based on SHA-1 and MD5. In:

Johansson, T. (ed.) FSE. Lecture Notes in Computer Science, vol. 2887, pp. 36–
44. Springer (2003)

37. Stevens, M.: Attacks on Hash Functions and Applications. Ph.D. thesis, Leiden
University (June 2012)

38. Stevens, M.: Counter-Cryptanalysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO.
Lecture Notes in Computer Science, vol. 8042, pp. 129–146. Springer (2013), http:
//dx.doi.org/10.1007/978-3-642-40041-4

39. Stevens, M.: New Collision Attacks on SHA-1 Based on Optimal Joint Local-
Collision Analysis. In: Johansson and Nguyen [17], pp. 245–261, http://dx.doi.
org/10.1007/978-3-642-38348-9

40. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EURO-
CRYPT. Lecture Notes in Computer Science, vol. 4515, pp. 1–22. Springer (2007),
http://dx.doi.org/10.1007/978-3-540-72540-4_1

41. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A.,
de Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a
Rogue CA Certificate. In: Halevi, S. (ed.) CRYPTO. Lecture Notes in Com-
puter Science, vol. 5677, pp. 55–69. Springer (2009), http://dx.doi.org/10.1007/
978-3-642-03356-8

42. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3621, pp. 17–36. Springer
(2005)

43. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer [5],
pp. 19–35

20

https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications
http://dx.doi.org/10.1007/978-3-642-40041-4
http://dx.doi.org/10.1007/978-3-642-40041-4
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-540-72540-4_1
http://dx.doi.org/10.1007/978-3-642-03356-8
http://dx.doi.org/10.1007/978-3-642-03356-8

	Practical Free-Start Collision Attackson 76-step SHA-1

