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Abstract. Fully homomorphic encryption is an encryption method with
the property that any computation on the plaintext can be performed
by a party having access to the ciphertext only. Here, we formally define
and give schemes for quantum homomorphic encryption, which is the en-
cryption of quantum information such that quantum computations can
be performed given the ciphertext only. Our schemes allow for arbitrary
Clifford group gates, but become inefficient for circuits with large com-
plexity, measured in terms of the non-Clifford portion of the circuit (we
use the “π/8” non-Clifford group gate, also known as the T-gate).
More specifically, two schemes are proposed: the first scheme has a de-
cryption procedure whose complexity scales with the square of the num-
ber of T-gates (compared with a trivial scheme in which the complexity
scales with the total number of gates); the second scheme uses a quantum
evaluation key of length given by a polynomial of degree exponential in
the circuit’s T-gate depth, yielding a homomorphic scheme for quantum
circuits with constant T-depth. Both schemes build on a classical fully
homomorphic encryption scheme.
A further contribution of ours is to formally define the security of encryp-
tion schemes for quantum messages: we define quantum indistinguisha-
bility under chosen plaintext attacks in both the public- and private-key
settings. In this context, we show the equivalence of several definitions.
Our schemes are the first of their kind that are secure under modern
cryptographic definitions, and can be seen as a quantum analogue of
classical results establishing homomorphic encryption for circuits with
a limited number of multiplication gates. Historically, such results ap-
peared as precursors to the breakthrough result establishing classical
fully homomorphic encryption.

1 Introduction

An encryption scheme is homomorphic over some set of circuits S if any cir-
cuit in S can be evaluated on an encrypted input. That is, given an encryption
of the message m, it is possible to produce a ciphertext that decrypts to the
output of the circuit C on input m, for any C ∈ S . In fully homomorphic en-
cryption (FHE), S is the set of all classical circuits. FHE was introduced in
1978 [26], but the existence of such a scheme was an open problem for over 30
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years. Some early public-key encryption schemes were homomorphic over the set
of circuits consisting of only additions [18, 23] or only multiplications [12]. Sev-
eral steps were made towards FHE, with schemes that were homomorphic over
increasingly large circuit classes, such as circuits containing additions and a sin-
gle multiplication [4], or of logarithmic depth [29], until finally in 2009, Gentry
established a breakthrough result by giving the first fully homomorphic encryp-
tion scheme [15]. Follow-up work showed that FHE could be simplified [11], and
based on standard assumptions, such as learning with errors [5]. The advent
of FHE has unleashed a series of far-reaching consequences, such as delegating
computations, and functional encryption [17]. For a survey on FHE, see [32].

A number of works have studied the secure delegation of quantum computa-
tion [1,6–8,10,13,33]. None directly address the question of quantum homomor-
phic encryption, since they are interactive schemes, and the work of the client
is proportional to the size of the circuit being evaluated (and thus, they do not
satisfy the compactness requirement of FHE, even if we allow interaction). Non-
interactive approaches are given by [3], [27] and [31]. However, none of these
approaches are applicable to universal circuit families. Furthermore, in the case
of [3], security is given only in terms of cheat sensitivity, while both [27] and [31]
only bound the leakage of their encoding schemes.

Recent work [36] examines the question of perfect security and correctness
for quantum fully homomorphic encryption (QFHE), concluding that the trivial
scheme is optimal in this context. In light of this result, it is natural to consider
computational assumptions in achieving QFHE. Indeed, the question of com-
putationally secure QFHE remains an open problem; our contribution makes
progress in this direction by presenting the first schemes that are homomorphic
for a large class of quantum circuits.

1.1 Summary of Contributions and Techniques

We introduce schemes for quantum homomorphic encryption (QHE), the quan-
tum version of homomorphic encryption; we are interested in the evaluation of
quantum circuits on encrypted quantum data. In terms of definitions, we con-
tribute by giving the first definition of quantum homomorphic encryption (QHE)
in the computational setting, in the case of both public-key and symmetric-key
cryptosystems. As a consequence, we give the first formal definition (and scheme)
for the public-key encryption of quantum information, where security is given in
terms of quantum indistinguishability under chosen plaintext attacks—for which
we show the equivalence of a number of definitions, including security for mul-
tiple messages. Prior work considered the computational setting for quantum
encryption of classical plaintexts only [20,22,35].

In terms of QHE schemes, we start by using straightforward techniques to
construct a scheme that is homomorphic for Clifford circuits. This can be seen
as an analogue to a classical scheme that is homomorphic for linear circuits (cir-
cuits performing only additions). While Clifford circuits are not universal for
quantum computation, this already yields a range of applications for quantum
information processing, including encoding and decoding into stabilizer codes.



Our quantum public-key encryption scheme is a hybrid of a classical public-
key fully homomorphic encryption scheme and the quantum one-time pad [2].
Intuitively, the scheme works by encrypting the quantum register with a quan-
tum one-time pad, and then encrypting the one-time pad encryption keys with
a classical public-key FHE scheme. Since Clifford circuits conjugate Pauli op-
erators to Pauli operators, any Clifford circuit can be directly applied to the
encrypted quantum register; the homomorphic property of the classical encryp-
tion scheme is used to update the encryption key. Of course, we specify that
the classical FHE scheme should be secure against quantum adversaries. By us-
ing, e.g., the scheme from [5], we get security based on the learning with errors
(LWE) assumption [24, 25]; this has been equated with worst-case hardness of
“short vector problems” on arbitrary lattices [21], which is widely believed to be
a quantum-safe (or “post-quantum”) assumption.

For universal quantum computations, we must evaluate a non-Clifford gate,
for which we choose the “T” gate (also known as “R” or “π/8”). Applying the
above principle we run into trouble, since TXaZb = XaZa⊕bPaT. That is, con-
ditioned on the quantum one-time pad encryption key a, b ∈ {0, 1}, the output
picks up an undesirable non-Pauli error. Our main contribution is to present two
schemes, EPR and AUX, that deal with this situation in two different ways:

EPR: The main idea of EPR is to use entangled quantum registers to enable cor-
rections within the circuit at the time of decryption. This scheme is efficient
for any quantum circuit, however, it fails to meet a requirement for fully
homomorphic encryption called compactness, which requires that the com-
plexity of the decryption procedure be independent of the evaluated circuit.
More specifically, the complexity of the decryption procedure for EPR scales
with the square of the number of T-gates. This gives an advantage over the
trivial scheme whenever the number of T-gates in the evaluated circuit is less
than the squareroot of the number of gates. (The trivial scheme consists of
appending to the ciphertext a description of the circuit to be evaluated, and
specifying that it should be applied as part of the decryption procedure.)

AUX: Compared to EPR, the scheme AUX takes a more proactive approach to
performing the correction required for a T-gate: to do this, it uses a number
of auxiliary qubits that are given as part of the evaluation key. Intuitively,
these auxiliary qubits encode the required corrections. In order to ensure
universality, a large number of possible corrections must be available —
the length of the evaluation key is thus given by a polynomial of degree
exponential in the circuit’s T-gate depth, yielding a homomorphic scheme
that is efficient for quantum circuits with constant T-depth.

The two main schemes are incomparable. The scheme EPR becomes less com-
pact (and therefore less interesting, since it approaches the trivial scheme), as
the number of T-gates increases, while the scheme AUX becomes inefficient (ex-
tremely rapidly) as the depth of T-gates increases.

Our results can be viewed as a quantum analogue of precursory results to clas-
sical fully homomorphic encryption, which established the homomorphic prop-
erty of encryption schemes that tolerate a limited amount of operations. One



difference is that, while these schemes started with the modest goal of just a
single multiplication (the addition operation being “easy”), we have already al-
lowed for at the very least a constant number, and, depending on the circuit, up
to a polynomial number of “hard” operations, namely of T-gates.

Our schemes use the existence of classical FHE, although at the expense of
a slightly more complicated exposition, a classical scheme that is homomorphic
only for linear circuits would actually suffice. We see the relationship between
our schemes and classical FHE as a strength of our result, via the following
interpretation: classical FHE is sufficient to enable QHE for a large family of
circuits, and perhaps by taking greater advantage of the fully homomorphic
property of the classical scheme in some as yet unknown way, our ideas might be
extended to larger classes of quantum circuits. With this in mind, and for ease
of exposition, we use a classical fully homomorphic encryption scheme for all of
our quantum homomorphic encryption schemes.

Some preliminaries and notation are given in Sec. 2. We give formal def-
initions of quantum homomorphic encryption and related concepts, including
security definitions, in Sec. 3; this allows us to formally state our results in
Sec. 4. Sec. 5 contains a basic quantum homomorphic encryption scheme, CL,
for Clifford circuits that is used as a basis for EPR (Sec. 6), and AUX (Sec. 7).
Further details, including proofs of our main theorems, can be found in the full
version [9].

2 Preliminaries and Notation

A negligible function, denoted η(·), is a function such that for every polynomial
p(·), there exists an N such that for all integers n > N it holds that η(n) < 1

p(n) .

As a convention, if a is a classical plaintext, we denote its encryption by ã.
Throughout this work we use κ to indicate the security parameter.

A quantum register is a quantum system, which we view as a physical object
that stores quantum information. The contents of a quantum register are math-
ematically modelled as the set of trace-1, positive semidefinite operators, called
density operators, on X , where X is a complex Euclidean space. We denote the
set of density operators on any space X by D(X ).

Quantum registers are denoted with calligraphic typeset. Two quantum sys-
tems, X and Y, form a composite system by the tensor product, X ⊗ Y. If
ρ ∈ D(X ⊗Y) is a state on the joint system, we write ρX to denote TrY(ρ). If X
and Y have the same dimension, we denote this by X ≡ Y. The trace distance

between two states, ρ and σ, is defined ∆(ρ, σ) := Tr
(√

(ρ− σ)†(ρ− σ)
)

.

A density matrix that is diagonal in the computational basis corresponds to
a classical random variable. For a random variable X on some set ΣX , we define
ρ(X) :=

∑
x∈ΣX Pr[X = x]|x〉〈x|, the density matrix corresponding to X. A

classical-quantum state is a state of the form ρMA =
∑
x Pr[X = x]|x〉〈x|M⊗ρAx .

One special quantum state on any system X is the completely mixed state,
1

dimX IX , which we will sometimes denote by $ (where X should be implicit
from the context). When X is interpreted as CS for some finite set S, then $
corresponds to the uniform distribution on S.



A quantum channel Φ : D(A) → D(B) refers to any physically-realizable
mapping on quantum registers. The identity channel on registerR is denoted IR.
Let Φ be a quantum channel acting on register A, and ρAE a quantum system
held in the joint registers A⊗E . Then to simplify notation, when it is clear from
the context, we write Φ(ρAE) to mean (Φ⊗ I)(ρAE).

We work with the gate set {X,Z,P,CNOT,H}. This gate set applied to ar-
bitrary wires (redundantly) generates the Clifford group, and adding any non-
Clifford gate, such as T, gives a generating set for all quantum circuits.

For a single-qubit register R, and a, b ∈ {0, 1}, we denote by QEnca,b :
R → R the quantum one-time pad encryption and by QDeca,b : R → R the
quantum one-time pad decryption [2], QEnca,b : ρ 7→ XaZbρZbXa and QDeca,b =
QEnca,b. It is easy to see that QDeca,b ◦ QEnca,b = IR. By specifying that (a, b)
be chosen uniformly at random, we get that the encryption maps any input to
the completely mixed state (from the point of view of the adversary), since for
all ρ, 1

4

∑
a,b X

aZbρZbXa = I2
2 .

3 Definitions

We now formally define QHE schemes and their properties. In Sec. 3.1, we de-
fine QHE in the public-key setting. Sec. 3.2 carefully defines the security of QHE,
giving two definitions for security under chosen plaintext attacks, shown in the
full version [9] to be equivalent. Sec. 3.3 defines correctness and compactness
for QHE, culminating in a complete definition of quantum fully homomorphic
encryption. Sec. 3.4 deals with an important subtlety that arises in the quantum
case: due to the no-cloning theorem, when a large system is encrypted with some
auxiliary quantum information needed for decryption, that auxiliary information
cannot be copied and given to every subsystem, but rather, the system must now
be decrypted as a whole, rather than subsystem-by-subsystem. We also define
compactness and quasi-compactness in this context. Finally, one of our schemes
(AUX) must be used in the symmetric-key setting, defined in Sec. 3.5. We do not
address the issue of circuit privacy [16], leaving this question for future work.

3.1 Classical and Quantum Homomorphic Encryption

Our schemes rely on a classical fully homomorphic encryption scheme. Since our
adversaries are modelled as being quantum polynomial-time, we need a further
security guarantee on the classical scheme, namely that it is secure against quan-
tum adversaries (see Def. 1). Fortunately, much of classical fully homomorphic
encryption uses lattice-based cryptography, which exploits one of the few conjec-
tured “quantum-safe” assumptions [21]. Among all known solutions, the scheme
of [5] appears to be the best for our purposes, as it bases its security on the
learning with errors (LWE) assumption [24, 25], which has been equated with
worst-case hardness of “short vector problems” on arbitrary lattices.

Definition 1 (q-IND-CPA). A classical homomorphic encryption scheme HE
is q-IND-CPA secure if for any quantum polynomial-time adversary A , there
exists a negligible function η such that for (pk, evk, sk)← HE.Keygen(1κ):

|Pr[A (pk, evk,HE.Encpk(0)) = 1]− Pr[A (pk, evk,HE.Encpk(1)) = 1]| ≤ η(κ) .



Although a classical scheme that is q-IND-CPA is also IND-CPA, the converse
may not be true. Note, however, that any proof that a scheme is IND-CPA can
potentially be turned into a proof for q-IND-CPA if all statements still hold when
“probabilistic polynomial-time adversary” is replaced by “quantum polynomial-
time adversary” (see [30]).

We now give our new definitions for quantum homomorphic encryption. In
our definitions, both pk, the public encryption key, and sk, the secret decryption
key, are classical, whereas the evaluation key is allowed to be a quantum state.

Definition 2 (QHE). A quantum homomorphic encryption scheme is a 4-tuple
of quantum algorithms (QHE.KeyGen,QHE.Enc,QHE.Eval,QHE.Dec):
Key Generation. QHE.KeyGen : 1κ → (pk, sk, ρevk). This algorithm takes a

unary representation of the security parameter as input and outputs a clas-
sical public encryption key pk, a classical secret decryption key sk and a
quantum evaluation key ρevk ∈ D(Revk).

Encryption. QHE.Encpk : D(M) → D(C). For every possible pk, the quan-
tum channel Encpk maps a state in the message space M to a state (the
cipherstate) in the cipherspace C.

Homomorphic Evaluation. QHE.EvalC : D(Revk ⊗ C⊗n) → D(C′⊗m). For
every quantum circuit C, with induced channel ΦC : D(M⊗n) → D(M⊗m),
we define a channel EvalC that maps an n-fold cipherstate to an m-fold ci-
pherstate, consuming the evaluation key in the process.

Decryption. QHE.Decsk : D(C′) → D(M). For every possible sk, Decsk is a
quantum channel that maps the state in D(C′) to a quantum state in D(M).

3.2 Security of Quantum Homomorphic Encryption

We now define a notion of security for QHE analogous to the classical notion of
indistinguishability under chosen plaintext attack. We note that, by taking the
evaluation key to be empty, our definitions are trivially applicable to the scenario
of quantum public-key encryption (i.e. without a homomorphic property).

The CPA indistinguishability experiment is given below and illustrated in
Fig. 1. The experiment interacts with an adversary A , which is a pair of poly-
nomial-time quantum algorithms (A1,A2) (which we also call adversaries).
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QHE : Encpk
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Fig. 1. The quantum CPA indistinguishability experiment.

The quantum CPA indistinguishability experiment PubKcpa
A ,QHE(κ)

1. KeyGen(1κ) is run to obtain keys (pk, sk, ρevk).



2. Adversary A1 is given (pk, ρevk) and outputs a quantum state on M⊗E .
3. For r ∈ {0, 1}, let Ξcpa,r

QHE : D(M)→ D(C) be: Ξcpa,0
QHE (ρ) = QHE.Encpk(|0〉〈0|)

and Ξcpa,1
QHE (ρ) = QHE.Encpk(ρ). A random bit r ∈ {0, 1} is chosen and Ξcpa,r

QHE

is applied to the state in M (the output being a state in C).
4. Adversary A2 obtains the system in C ⊗ E and outputs a bit r′.
5. The output of the experiment is defined to be 1 if r′ = r and 0 otherwise.

In case r = r′, we say that A wins the experiment.

Definition 3 (Quantum Indistinguishability under Chosen Plaintext
Attack (q-IND-CPA)). A quantum homomorphic encryption scheme QHE is
q-IND-CPA secure if for any quantum polynomial-time adversary A = (A1,A2)
there exists a negligible function η such that Pr[PubKcpa

A ,QHE(κ) = 1] ≤ 1
2 + η(κ).

In the case of classical cryptosystems, it is known that IND-CPA security,
the classical analogue of Def. 1, implies a seemingly stronger security against
an adversary who can send multiple messages to a challenger. In the quantum
case, we can analogously define an experiment similar to PubKcpa

A ,QHE, but where

the adversary prepares a state in M⊗t ⊗M⊗t and sends it to the challenger,
who traces out either the first half or the second half of the system, before
applying an encryption map to each of the remaining subspaces. The adversary
must then decide which system was traced out. In the full version [9], we give a
formal definition of this notion of security, which we call q-IND-CPA-mult, and
prove the equivalence of q-IND-CPA and q-IND-CPA-mult. This strengthens our
results since security in the most general case (q-IND-CPA-mult) follows from
security for the simplest definition (q-IND-CPA).

3.3 Correctness and Compactness of QHE

Next, we give a notion that encapsulates correctness of both encryption and
evaluation, with respect to a class S of quantum circuits. In the classical context,
it is common to restrict attention to circuits that output a single bit, since any
deterministic string can be computed bit-by-bit. We cannot do this quantumly,
as a quantum state cannot be described qubit-by-qubit. We therefore consider
correctness as a global property of the output. Furthermore, as quantum data
can be entangled, we require that a correct scheme preserve this entanglement
and thus explicitly include an auxiliary space in the definition below.

Definition 4 (S -homomorphic). Let S = {Sκ}κ∈N be a class of quantum
circuits. A quantum encryption scheme QHE is S -homomorphic (or homomor-
phic for S ) if for any sequence of circuits {Cκ ∈ Sκ}κ with induced channels
ΦCκ : M⊗n(κ) → M⊗m(κ), and input ρ ∈ D(M⊗n(κ) ⊗ E), there exists a negli-
gible function η such that for (pk, sk, ρevk )← QHE.Keygen(1κ):

∆
(
QHE.Dec

⊗m(κ)
sk

(
QHE.EvalCκ

(
ρevk,QHE.Enc

⊗n
pk (ρ)

))
, ΦCκ(ρ)

)
= η(κ) . (1)

We point out two properties of the above definition. First, we do not require
that ciphertexts be decryptable themselves, only that they become decryptable
after homomorphic evaluation, however, as long as QHE is homomorphic for
the class of identity circuits, we can effectively decrypt a ciphertext by first



homomorphically evaluating the identity. Second, we do not require that the
output of QHE.Eval be able to undergo additional homomorphic evaluations;
indeed, if the evaluation key ρevk is quantum, it will in general be “consumed” by
the QHE.Eval process, rendering any future applications of QHE.Eval impossible.

Analogously to the classical case, we define compactness, which requires that
the complexity of QHE.Dec be independent of the evaluated circuit, ruling out
schemes where applying the circuit is delayed until after decryption.

Definition 5 (S -compactness). Let S = {Sκ}κ∈N be a class of quantum
circuits. A quantum encryption scheme QHE is S -compact if there exists a
polynomial p such that for any sequence of circuits {Cκ ∈ Sκ}κ, the circuit
complexity of applying QHE.Dec to the output of QHE.EvalCκ is at most p(κ).

If QHE is S -compact for S the class of all quantum circuits over some
universal gate set, then we simply say that QHE is compact.

Although this work leaves open the question of quantum fully homomorphic
encryption, we have established all the machinery relevant for a formal definition:

Definition 6 (Quantum Fully Homomorphic Encryption). A scheme is
a quantum fully homomorphic encryption scheme if it is both compact and ho-
momorphic for the class of all quantum circuits over some universal gate set.

3.4 Indivisible Schemes
In general, a quantum system is not equal to the sum of its parts. Because of
this, for one of our schemes (as given in Sec. 6), it is convenient (if not necessary,
by the no-cloning theorem [34]) to define the output of QHE.Eval as containing,
in addition to a series of cipherstates corresponding to each qubit, some auxiliary
quantum register, possibly entangled with each cipherstate. Then the decryption
operation, QHE.Dec must operate on the entire quantum system, rather than
qubit-by-qubit. This is in contrast to a classical scheme, in which we could make
a copy of the auxiliary register for each encrypted bit, enabling the decryption
of individual bits, without decrypting the entire system.

Definition 7. An indivisible quantum homomorphic encryption scheme is a
QHE scheme with QHE.Eval and QHE.Dec re-defined as:
Homomorphic Evaluation. QHE.EvalC : D(Revk⊗C⊗n)→ D(Raux⊗C′⊗m).

Compared to QHE.Eval in a standard QHE, this algorithm outputs an ad-
ditional auxiliary quantum register Raux. This extra information is used in
the decryption phase. Since the state of Raux may be entangled with the
state of each C′, the system in Raux ⊗ C′⊗m can no longer be considered
subsystem-by-subsystem.

Decryption. QHE.Decsk : D(Raux ⊗ C′⊗m) → D(M⊗m). For every possible
value of sk, Decsk is a quantum channel that maps an auxiliary register,
together with an m-fold cipherstate, to an m-fold message in D(M⊗m).

We need to define compactness for an indivisible scheme.

Definition 8 (S -compactness for an indivisible scheme). Fix a class
of quantum circuits, S = {Sκ}κ∈N. An indivisible QHE scheme QHE is S -
compact if there exists a polynomial p such that for any sequence of circuits
{Cκ ∈ Sκ}κ with channels ΦCκ : M⊗n(κ) →M⊗m(κ), the circuit complexity of

applying QHE.Dec⊗m(κ) to the output of QHE.EvalCκ is at most p(κ,m(κ)).



The trivial quantum fully homomorphic encryption scheme, TRIV, is eas-
ily phrased as an indivisible scheme. Informally, TRIV is defined by taking
TRIV.KeyGen and TRIV.Enc from any public-key encryption scheme, letting
TRIV.EvalC append a description of C to the cipherstate, and TRIV.Dec de-
code the cipherstate, and then apply C. Clearly, TRIV is homomorphic, but it
is not compact, since TRIV.Dec must evaluate the quantum circuit C, and so its
complexity scales with G(C), the number of gates in C.

Although a decryption procedure with any dependence on G, or any other
property of C, is not compact, it is still interesting to consider schemes whose
decryption procedure has complexity that scales sublinearly in G (such schemes
are called quasi-compact schemes [14]). We give a formal definition that quantifies
this notion for indivisible quantum homomorphic encryption schemes.

Definition 9 (quasi-compactness). Let S = {Sκ}κ be the set of all quantum
circuits over some fixed universal gate set. For any f : S → R≥0, an indivisible
QHE scheme QHE is f -quasi-compact if there exists a polynomial p such that
for any sequence of circuits {Cκ ∈ Sκ}κ with induced channels ΦCκ :M⊗n(κ) →
M⊗m(κ), the circuit complexity of decrypting the output of QHE.EvalCκ is at
most f(Cκ)p(κ,m(κ)).

This definition allows us to consider schemes whose decryption complexity scales
with some property of the evaluated circuit. We consider such a scaling non-
trivial when it is smaller than G(C), the number of gates in C.

3.5 Symmetric-Key Quantum Homomorphic Encryption

We have defined quantum homomorphic encryption as a public-key encryption
scheme. For technical reasons, our final scheme, AUX is given in the symmetric-
key setting, so in this section we define symmetric-key quantum homomorphic
encryption. In the case of classical FHE, symmetric-key encryption is known
to be equivalent to public-key encryption [28]. In the quantum case, this is not
known. This section also contains the definition of a bounded QHE scheme, which
we again require for technical reasons in our symmetric-key scheme, AUX.

Definition 10. A symmetric-key QHE scheme is a quantum homomorphic en-
cryption scheme with QHE.KeyGen and QHE.Enc re-defined as:
Key Generation. QHE.KeyGen : 1κ → (sk, ρevk). This algorithm takes a unary

representation of the security parameter as input and outputs a secret en-
cryption/decryption key sk and a quantum evaluation key ρevk ∈ D(Revk).

Encryption. QHE.Encsk : D(M) → D(C). For every possible value of sk, the
quantum channel Decsk maps a state in the message spaceM to a state (the
cipherstate) in the cipherspace C.

Next, we define a quantum homomorphic encryption scheme that is bounded
by n, which forces the number of ciphertexts encrypted by sk to be at most n.
Furthermore, the scheme maintains a counter, d, of the number of previous
encryptions, which can be thought of as allowing the scheme to avoid key reuse.

Definition 11. A bounded symmetric-key QHE scheme is a symmetric-key
QHE scheme with QHE.KeyGen, QHE.Enc, and QHE.Dec re-defined as:



Key Generation. QHE.KeyGen : (1κ, 1n)→ (sk, ρevk).
Encryption. QHE.Encsk,d : D(M)→ D(C). Every time QHE.Encsk,d is called,

the register containing d is incremented: d ← d + 1. If d > n, QHE.Encsk,d
outputs ⊥, indicating an error.

Decryption. QHE.Decsk,d : D(C′)→ D(M).

We can define q-IND-CPA security for the symmetric-key setting by allowing
the adversary access to an encryption oracle Encsk(·). We give details in [9].

4 Main Contributions

We now formally state our main results. Our first theorem, Thm. 1, establishes
quantum homomorphic encryption for Clifford circuits.

Theorem 1. (Clifford scheme, CL) Let S be the class of Clifford circuits. Then
assuming the existence of a classical fully homomorphic encryption scheme that
is q-IND-CPA secure, there exists a quantum homomorphic encryption scheme
that is q-IND-CPA, compact and S -homomorphic.

Next, we consider two variants of the scheme given by Thm. 1. Each variant
deals with non-Clifford T-gates in a different way. The first scheme, described in
Thm. 2 and formally defined in Sec. 6, uses entanglement to implement T-gates,
resulting in a QHE scheme in which the complexity of decryption scales with
the number of T-gates in the homomorphically evaluated circuit.

Theorem 2. (entanglement-based scheme, EPR) Let S be the set of all quan-
tum circuits over the universal gate set {X,Z,P,H,CNOT,T}. Then assuming
the existence of a classical fully homomorphic encryption scheme that is q-IND-
CPA secure, there exists an indivisible quantum homomorphic encryption scheme
that is q-IND-CPA, S -homomorphic and R2-quasi-compact, where R(C) is the
number of T-gates in a circuit C.

The compactness of the scheme EPR is nontrival for all circuits in which
R2 � G, where G is the number of gates.

Our second scheme, formally defined in Sec. 7, is based on the use of auxiliary
qubits to implement T-gates, resulting in a QHE scheme that is homomorphic
for circuits with constant T-depth, as described in the following theorem:

Theorem 3. (auxiliary-qubit scheme, AUX) Fix a constant L. Let S be the
set of quantum circuits over the universal gate set {X,Z,P,H,CNOT,T} with
T-depth at most L. Then assuming the existence of a classical fully homo-
morphic encryption scheme that is q-IND-CPA secure, there exists a bounded
symmetric-key quantum homomorphic encryption scheme that is q-IND-CPA,
S -homomorphic and compact.

The QHE scheme in Thm. 3 can be seen as somewhat analogous to an im-
portant building block in classical fully homomorphic encryption: a levelled fully
homomorphic scheme, which is a scheme that takes a parameter L, which is an
a-priori bound on the depth of the circuit that can be evaluated. However, we
note that in contrast to a levelled fully homomorphic scheme, in which opera-
tions are polynomial in L, the complexity of our scheme is a polynomial of degree
exponential in L, so we really require L to be constant.



As previously noted, Thm. 2 and 3 are complementary: the scheme EPR
becomes less compact as the number of T-gates increases, while the scheme AUX
becomes inefficient as the depth of T-gates increases.

5 Homomorphic Encryption for Clifford Circuits: CL

In this section, we present CL, a compact quantum homomorphic encryption
scheme for Clifford circuits. This is a building block for the schemes that follow
in Sec. 6 and 7. In the full version [9], we prove that CL is q-IND-CPA secure,
and homomorphic for Clifford circuits, hence proving Thm. 1.

By definition, Clifford circuits conjugate Pauli operators to Pauli opera-
tors [19]. In other words, for any Clifford C, and any Pauli, Q, there exists a
Pauli Q′ such that CQ = Q′C. Furthermore, applying a random Pauli opera-
tor is a perfectly secure symmetric-key quantum encryption scheme: the quan-
tum one-time pad. Thus, it is possible to perform any Clifford circuit on quan-
tum data that is encrypted using the quantum one-time pad. We can apply
the desired Clifford, C, to the encrypted state Q|ψ〉 to get Q′(C|ψ〉). Now de-
crypting the state requires applying the Pauli Q′. If Q can be described by the
encryption key (a1, . . . , an, b1, . . . , bn) — that is, Q = Xa1Zb1 ⊗ · · · ⊗ XanZbn

— then Q′ can be described by some key (a′1, . . . , a
′
n, b
′
1, . . . , b

′
n) depending

on C and (a1, . . . , an, b1, . . . , bn). We describe this dependence by a function
fC : F2n

2 → F2n
2 , which we call a key update rule. We need only consider key up-

date rules for each gate in our gate set, which consists of the one- and two-qubit
gates in {X,Z,P,CNOT,H}. For a single-qubit gate C, since the only keys that
are affected are those corresponding to the wire to which C is applied, an update
rule can be more succinctly described by a pair of functions fCa , f

C
b : F2

2 → F2

such that when C is applied to the ith wire, a′i = fCa (ai, bi) and b′i = fCb (ai, bi):

XaiZbi |ψ〉 C Xa
′
iZb
′
iC|ψ〉 ai ← a′i = fCa (ai, bi), bi ← b′i = fCb (ai, bi)

For the CNOT-gate, the update rule is described by a 4-tuple of functions, since
CNOT acts on two wires. We give the key update rules for all gates in the full
version [9, App. C]. (We also give key update rules for single-qubit measurement
and qubit preparation, so that our scheme is actually homomorphic for stabilizer
circuits.) By applying these rules after each gate, we can update the key so that
the output is correctly decrypted (since we are actually carrying out computa-
tions on encrypted quantum data—in contrast to merely simulating a quantum
computation—we note that all gates except the Pauli gates require quantum
operations). Such a technique was already used, e.g. in [6, 10,13].

This solution, however, requires that the key updates be executed by the
party holding the encryption keys: an “easy” classical computation, but nev-
ertheless a computation that is polynomial in the size of the circuit. In the
context of quantum homomorphic encryption, the challenge is therefore to allow
the execution of arbitrary Clifford circuits, while maintaining the compactness
condition. Here, we present a quantum public-key encryption scheme which is
a hybrid of the quantum one-time pad and of a classical fully homomorphic



encryption scheme. This encryption scheme is used to perform key updates on
encrypted quantum one-time pad keys, enabling the computation of arbitrary
Clifford group circuits on the encrypted quantum states, while maintaining the
compactness condition. More precisely, to homomorphically evaluate a Clifford
circuit consisting of a sequence of gates c1, . . . , cG, we apply the gates to the
quantum one-time pad encrypted message, and homomorphically evaluate the
function f c1 ◦ · · · ◦ f cG on the encrypted one-time pad keys a1, . . . , an, b1, . . . , bn,
where ◦ denotes function composition. To accomplish this, we keep track of func-
tions for each bit of the quantum one-time pad encryption key, {fa,i, fb,i}ni=1.
Since each of the key update rules (see [9]) is linear, each fa,i and fb,i is a
linear polynomial in F2[a1, . . . , an, b1, . . . , bn] (from the perspective of the eval-
uation procedure, a1, . . . , an, b1, . . . , bn are unknowns), so we refer to them as
key-polynomials. Before we begin to evaluate the circuit, the key polynomials
are the monomials fa,i = ai and fb,i = bi. As we evaluate each gate cj , we up-
date the key-polynomials corresponding to the affected wires by composing them
with the key update rules. To compute the new encrypted one-time pad keys
once the circuit is complete, we homomorphically evaluate each key-polynomial
on the old encrypted one-time pad keys. We note that since the key update
rules (see [9]) are all linear, for the scheme CL, the underlying classical fully
homomorphic scheme only needs to be additively homomorphic.

We define our scheme CL as a QHE scheme. Here and throughout, we assume
HE to be a classical FHE scheme that is q-IND-CPA secure (see Def. 1). As
noted, such a scheme could be derived from [5]. All of our schemes operate on
qubit circuits, and encrypt qubit-by-qubit. Thus we fixM = C{0,1}. Ciphertexts
consist of quantum states in C{0,1}, combined with classical strings. Specifically,
if C is the output space of HE.Enc, and C ′ is the output space of HE.Eval, then
we define C = CC×C ⊗X , where X ≡ C{0,1}, and C′ = CC′×C′ ⊗X .

Key Generation. CL.KeyGen(1κ). For key generation, execute (pk , sk , evk)←
HE.Keygen(1κ). Output the obtained secret key, sk , and public key, pk . The
evaluation key ρevk takes the value of the classical state ρ(evk).

Encryption. CL.Encpk : D(M)→ D(C). Encryption is defined as:

CL.Encpk(ρM) =
∑

a,b∈{0,1}

1

4
ρ(HE.Encpk(a),HE.Encpk(b))⊗ QEnca,b(ρ

M).

Homomorphic Evaluation. CL.EvalC : D(Revk ⊗ C⊗n)→ D(C′⊗m).
Suppose C = c1, . . . , cG is a Clifford circuit.
1. For all i ∈ [n], set fa,i ← ai, fb,i ← bi.
2. For j = 1, . . . , G such that cj is a gate or a measurement:

(a) Apply the gate cj to the state: ρ← cjρc
−1
j .

(b) Compose the key update rules with the key-polynomials of the af-
fected wires: if cj is a single qubit gate or measurement acting on
the ith wire, update as (fa,i, fb,i) ← (fa,i ◦ f

cj
a , fb,i ◦ f

cj
b ). If cj is a

CNOT-gate acting on wires i and i′, update (fa,i, fa,i′ , fb,i, fb,i′).
3. Update the classical encryptions by computing

ci = (HE.Eval
fa,i
evk (ãi),HE.Eval

fb,i
evk(b̃i)).



4. Output (c1, . . . , cm, ρ).
Decryption. CL.Decsk : D(C′)→ D(M). For ã, b̃ ∈ C ′, decryption is defined:

CL.Decsk : |ã〉〈ã| ⊗ |b̃〉〈b̃| ⊗ ρX 7→ QDecHE.Decsk(ã),HE.Decsk(b̃)
(ρX ).

We prove the homomorphic and security properties of CL in [9].

6 T-gate Computation Using Entanglement: EPR

In order to achieve universality for quantum circuits, we need to add a non-
Clifford group gate, such as the T-gate. As noted in Sec. 1.1, if we apply the
same technique as in Sec. 5 (i.e. to apply the T-gate on the encrypted quantum
data) we run into a problem, since TXaZb = XaZa⊕bPaT. That is, conditioned
on a, the output picks up an undesirable P error, which cannot be corrected
by applying Pauli corrections. In [10], Childs arrives at the same conclusion,
and makes the observation that, in the case where a = 1, the evaluation algo-
rithm could be made to correct this erroneous P-gate. As long as the evaluation
algorithm does not find out if this correction is being executed or not, secu-
rity holds. The solution in [10] involves quantum interaction; this was recently
improved to a single auxiliary qubit, coupled with classical interaction [6, 13].
As a proof technique (for establishing security), [6, 13] considers an equivalent,
entanglement-based protocol. Here, we use the idea of exploiting entanglement
in order to delay the correction required for the evaluation of the T-gate on
encrypted data. The protocol is illustrated in Fig. 2. Correctness of Fig. 2 is
proven in the full version [9].

Xfa,iZfb,i |ψ〉 Xi T c

Xfa,i⊕cZfa,i⊕fb,i⊕kt⊕cfa,iT|ψ〉Xi|Φ+〉
Rt

ft ← fa,i

V ← V ∪ {kt}

fa,i ← fa,i ⊕ c

fb,i ← (1⊕ c)fa,i ⊕ fb,i ⊕ kt

Pft H kt

(Part of decryption)

Fig. 2. Evaluation protocol for the tth T-gate, on the ith wire. The key-polynomials
fa,i and fb,i are in F2[V ]. After the protocol, V gains a new variable corresponding
to the unknown measurement result kt. The dashed box shows part of the decryption,
which happens at some point in the future, after the complete evaluation is finished.

Fig. 2 shows that, using the state |Φ+〉 = 1√
2
(|00〉+ |11〉), the conditional P

correction can be delayed. The cost of this is that the value of the measurement
result, kt, on auxiliary register Rt, is undetermined until later, when it is mea-
sured as part of the decryption. Thus we view the key updates as a symbolic
computation: each time a T-gate is applied, an extra variable, kt, is introduced.

For the first T-gate evaluation (t = 1), the evaluation procedure does not
have the knowledge to evaluate f1 = fa,i, where i is the wire upon which



the gate is performed, in order to perform the correction. It is possible (us-

ing the classical scheme HE), to compute a classical ciphertext f̃1 that de-
crypts to f1(a1, b1, . . . , an, bn). Thus, for this T-gate, the output part of the

auxiliary system contains both f̃1 and the register R1. As part of the de-
cryption operation, compute f1 ← HE.Dec(f̃1), and apply Pf1 on R1 before
measuring in the Hadamard basis and obtaining k1. From the point of view
of the evaluation procedure, k1 is unknown and so it becomes an unknown
part of the encryption key (in contrast with the previous keys, which are also
“unknown”, but to a lesser degree, since we have access to the classical en-
crypted values of these keys). The algorithm Eval continues in this fashion
for values of t up to R; each time, the set of unknown variables increasing
by one. Note that, according to Fig. 2, as well as the linearity of the key update
rules, for all t, ft ∈ F2[a1, . . . , an, b1, . . . , bn, k1, . . . , kt−1] is linear (since c is a
known constant), so we can write ft = fkt + fabt for fkt ∈ F2[k1, . . . , kt−1] and
fabt ∈ F2[a1, . . . , an, b1, . . . , bn].

The cost of this construction is that each T-gate adds to the complexity of
the decryption procedure, since, in particular, for each T-gate, we must perform
a possible P-correction and a measurement on an auxiliary qubit. In addition, we
cannot evaluate the key-polynomials, nor the ft, until the variables kt have been
measured, so this evaluation must take place in the decryption phase, increasing
the dependence on R, the number of T-gates, to O(R2) (see full version [9]).

We now formally define the indivisible QHE scheme, EPR. As in CL, we have
message spaceM = C{0,1} and cipherspace C = CC×C⊗X , where C is the output
space of HE.Enc and X ≡ C{0,1}. Since EPR is indivisible, the output space of
EPR.EvalC has the formRaux⊗C′⊗m. In our case, we haveRaux = R1⊗· · ·⊗RR⊗
(C{0,1}R+1

)⊗R ⊗ (CC′)⊗R, where R is the number of T-gates, C ′ is the output
space of HE.Eval, andRt ≡ C{0,1}. The classical parts of the auxiliary space allow
us to output R linear polynomials in F2[k1, . . . , kR] corresponding to {fkt }Rt=1,
each of which can be represented with R+ 1 bits; as well as R HE.Eval outputs,
corresponding to encryptions of {fabt (a1, . . . , an, b1, . . . , bn)}Rt=1. Similarly, we

have C′ = (C{0,1}R+1

)⊗2 ⊗ CC′×C′ ⊗X .

The key generation, EPR.KeyGen, and encryption, EPR.Enc, are defined ex-
actly as CL.KeyGen and CL.Enc. We now define EPR.Eval and EPR.Dec.

Evaluation. EPR.Evalevk. As in CL, apply gates in {X,Z,P,H,CNOT} directly
on the encrypted quantum registers. For the T-gate, use the gadget defined in
Fig. 2. This gadget differs from previous gadgets in that it uses an auxiliary Bell
state, |Φ+〉. After the system of the ith wire, Xi, is measured, relabel half of the
Bell state as Xi, and the other half as Rt, which is returned as part of Raux.
The full evaluation procedure is as follows.

1. Set V ← {ai, bi}i∈[n], and ∀ i ∈ [n], fa,i ← ai, fb,i ← bi.
2. Let g1, . . . , gG be a topological ordering of the gates in C. For j = 1, . . . , G,

evaluate gj using the appropriate gadget.
3. Let S be the set of output wires. Let L be the set of labels L = {(a, i), (b, i) :
i ∈ S} ∪ {1, . . . , R}. For each α ∈ L, we want to homomorphically evaluate
fα to obtain the actual (encrypted) key, but we can only actually evaluate



the part of fα that is in the variables {ai, bi}i — the {kt}t are still unknown.
Recall that we can write fα = fkα + fabα for fkα ∈ F[k1, . . . , kR] and fabα ∈
F2[a1, . . . , an, b1, . . . , bn]. Compute f̃abα ← HE.Eval

fabα
evk(ã1, . . . , ãn, b̃1, . . . , b̃n).

4. Output: the m = |S| qubit registers {Xi : i ∈ S} corresponding to the en-
crypted output of the circuit; the R qubit registers R1, . . . ,RR correspond-
ing to auxiliary states created by T-gadgets; the polynomials {fkα}α∈L ⊂
F2[k1, . . . , kR] and the homomorphically evaluated polynomials {f̃abα }α∈L.

Decryption. EPR.Decsk. In order to decrypt, measure the Rt in order from 1
to R, computing ft(k1, . . . , kt−1) as required. Formally:

1. For t = 1, . . . , R:

(a) Decrypt fabt ← HE.Decsk(f̃abt ).
(b) Compute a← fkt (k1, . . . , kt−1)⊕ fabt and apply HPa to Rt.
(c) Measure Rt to get kt.

2. Let S be the set of indices of the output qubit registers. For i ∈ S:

(a) Decrypt faba,i ← HE.Decsk(f̃aba,i) and fabb,i ← HE.Decsk(f̃abb,i).

(b) Compute ai ← fka,i(k1, . . . , kt)⊕ faba,i and bi ← fkb,i(k1, . . . , kt)⊕ fabb,i.
3. To each register Xi, apply the map QDecai,bi . Output registers X1, . . . ,Xm.

We prove that EPR is homomorphic for all quantum circuits in the universal
gate set {X,Z,P,CNOT,H,T}, R2-quasi-compact, and q-IND-CPA, in [9].

7 T-gate Computation Using Auxiliary States: AUX

In the previous QHE scheme, we solved the problem of performing the P correc-
tion by delaying the correction via entanglement. In this section, we present a
quantum homomorphic encryption scheme, AUX, that takes a more proactive ap-
proach to dealing with the P correction. At a high level, AUX can be understood
as the following: as part of the evaluation key, AUX.Keygen outputs a number of
auxiliary states. These states “encode” parts of the original encryption key, and
are used to correct for the errors induced by the straightforward application of
the T-gate on the cipherstates. In more details, the auxiliary states encode hid-
den versions of P corrections, such as |+a,k〉 := ZkPa|+〉 (where k is a random bit
and a is an encryption key) that are useful for the evaluation of the T-gate (see
Fig. 3). In general (after having applied prior gates), the exact auxiliary state
will not be available; instead, the Eval procedure combines a number of auxiliary
states in order to create a single copy of a state that is useful for performing the
correction. This combination operation, however, is expensive as it introduces
new unknowns (in terms of new variables as well as “cross-terms”), that need
to be corrected in any future T-gate. Thus the size of the evaluation key grows
rapidly, as a polynomial whose degree is exponential in the T-depth. We can
thus tolerate only a constant T-gate depth for this scheme to be efficient.

We further specify that AUX is a symmetric-key encryption scheme. This is
because AUX.KeyGen generates auxiliary qubits that depend on the quantum
one-time pad encryption keys. Also, KeyGen takes an extra parameter 1n, where
n is an upper bound on the total number of qubits that can be encrypted (AUX



Xi
Xfa,iZfb,i T c

|+fa,i,k〉 Xi
Xfa,i⊕cZfa,i⊕fb,i⊕k⊕cfa,iT

fa,i ← fa,i ⊕ c

fb,i ← fa,i ⊕ fb,i ⊕ k ⊕ cfa,i
V ← V ∪ var(k)

Fig. 3. A T-gadget for the scheme AUX consists of the above circuit and key-update
rules. We use var(k) to denote the set of variables in the polynomial k, which depends
on the construction of the auxiliary state |+fa,i,k〉, described below.

acts much like a classical one-time pad scheme that picks a fixed-length encryp-
tion key ahead of time). After this bound on the number of encryptions has been
attained, no further qubits can be encrypted. We will suppose without loss of
generality that a circuit being homomorphically evaluated is on n wires. Further-
more, the number and type of auxiliary qubits will depend on the T-depth of
the circuit to be evaluated, L. The scheme will not be able to homomorphically
evaluate circuits with T-depth greater than L. Fix a constant L. We will now
define a scheme AUX = AUXL that is homomorphic for all circuits with T-depth
at most L.

Providing the necessary auxiliary states for each T-gate would require ad-
vance knowledge of the key fa,i at the time a T-gate is applied to the ith wire.
Since this depends on both the circuit being applied and prior measurement
results, we appear to be at an impasse. The key observation that allows us to
continue with this approach is that, given auxiliary states |+f1,k1〉 and |+f2,k2〉,
we can combine them to get |+f1⊕f2,k〉, for some k, using the following circuit:

|+f1,k1〉
|+f2,k2〉

|+f1⊕f2,k1⊕k2⊕(f1⊕c)f2〉
c

By iterating this procedure, given auxiliary states |+f1,k1〉, . . . , |+fr,kr 〉, we can

construct |+f1⊕···⊕fr,k〉, where k =
⊕m

i=1 ki ⊕
⊕r

i=2 cifi ⊕
⊕r

i=1

⊕i−1
j=1 fifj for

known values ci. Thus, if we give many initial auxiliary states of the form
{|+ai,ka,i〉, |+bi,kb,i〉}i (with different keys for different copies), we can construct
|+f,k〉 for f a linear function of {ai, bi}i∈[n]. However, using an auxiliary state

|+fa,i,k〉 to facilitate a T-gate on the ith wire introduces the unknown k into
fb,i. In particular, suppose fa,i =

⊕r
j=1 tj for some monomial terms tj ∈ F2[V ].

Then we will need to construct it from auxiliary states |+t1,k1〉, . . . , |+tr,kr 〉, to

get |+fa,i,k〉 for k =
⊕m

i=1 ki ⊕
⊕r

i=2 citi ⊕
⊕r

i=1

⊕i−1
j=1 titj . Thus, after the T-

gadget, the new keys f ′a,i, f
′
b,i are in unknowns V ∪ {k1, . . . , kr}. Furthermore,

because of the cross terms titj , the degree of the key-polynomials increases, so
we can no longer assume they are linear. Since we can’t produce |+f1f2,k〉 from
|+f1,k1〉 and |+f2,k2〉, we need to provide additional auxiliary states for every
possible term. We discuss this more formally below and in the full version [9].



As in CL and EPR, we work with qubits: M ≡ C{0,1}. In contrast to our
previous schemes, the classical encryptions of quantum one-time pad keys is part
of the evaluation key (for convenience only), so we have C ≡ C{0,1}. However,
after evaluation, the classical encryption of the new one-time pad keys is needed
for decryption, so as in CL, we have C′ ≡ CC′×C′ ⊗ X , where C ′ is the output
space of HE.Eval, and X ≡ C{0,1}.
Key Generation. AUX.Keygen(1κ, 1n). The evaluation key contains auxiliary
states that allow each of L layers of T-gates to be implemented. Thus, for each
layer, since every wire must have the possibility to implement a T-gate, for each
wire, we need to be able to construct an auxiliary state |+fa,i,k〉 for some k. Since
we can add auxiliary states, we can construct this auxiliary state if we have an
auxiliary state for each term in fa,i. Since fa,i depends on the circuit, which we
do not know in advance, we need to provide an auxiliary state for every term
that could possibly be in fa,i at the `th layer of T-gates, for ` = 1, . . . , L.

We now define sets of monomials T1, . . . , TL such that the keys in the `th layer
consist of sums of terms from T`. Let V1 := {ai, bi}i∈[n], and define T1 ⊂ F2[V1] by
T1 := {ai, bi}i∈[n]. The monomials in T1 represent the possible terms in the key-
polynomials before the first layer of T-gates. Each of the up to n T-gates in the
first layer requires a copy of each of {|+

t,k
(1)
t
〉}t∈T1

, with independent random

keys for each, for a total of n|T1| auxiliary states. More generally, for the `th

layer of T-gates, we let T` be the set of possible terms in the key-polynomials
before applying the `th layer of T-gates. We can see from the T-gadget, as well
as the construction for adding auxiliary states that the keys from the previous

layer’s auxiliary states, {k(`−1)1,i , . . . , k
(`−1)
|T`−1|,i}

n
i=1, may now be variables in the

key-polynomials, and that products of terms from the previous layer may now
be terms in the key-polynomials of the current layer. (This is caused by auxiliary
state addition. See [9] for details). Thus, for ` > 1, we can define T` ⊂ F2[V`],

where V` := V`−1 ∪ {k(`−1)1,i , . . . , k
(`−1)
|T`−1|,i}

n
i=1, by

T` := T`−1 ∪ {tt′ : t, t′ ∈ T`−1, t 6= t′} ∪
{
k
(`−1)
1,i , . . . , k

(`−1)
|T`−1|,i

}n
i=1

.

We then provide each of the n wires with an auxiliary state for each term in T`,
for ` = 1, . . . , L. We now make this more precise.

To each T`, we associate a family of strings {s(`)(x)}x∈{0,1}V` in {0, 1}T` ,
defined so that for every f ∈ T`, the f -entry of s(`)(x) is s

(`)
f (x) = f(x). That is,

s(`)(x) represents evaluating every monomial in T` at x. For instance, we have,
for any strings a, b ∈ {0, 1}n, s(1)(a, b) = (a1, . . . , an, b1, . . . , bn).

For any strings s, k ∈ {0, 1}n, define σ(s, k) :=
⊗n

i=1 |+si,ki〉〈+si,ki |.
For any string s, let s∗n denote the concatenation of n copies of s. For any

a, b ∈ {0, 1}n and k = (k(1), . . . , k(L)) ∈ {0, 1}n|T1| × · · · × {0, 1}n|TL|, define

σa,b,kaux := σ(s(1)(a, b)∗n, k(1))⊗ · · · ⊗ σ(s(L)(a, b, k(1), . . . , k(L−1))∗n, k(L)).

We can now define the procedure AUX.KeyGen(1κ, 1n):
1. Execute (pk, sk, evk)← HE.KeyGen(1κ+n).



2. Choose uniform random a, b ∈ {0, 1}n and k = (k(1), . . . , k(L)) ∈ {0, 1}n|T1|×
· · · × {0, 1}n|TL|.

3. Output secret key (sk, a, b, k).
4. Output evaluation key: pk, evk, ã1 = HE.Encpk(a1), . . . , ãn = HE.Encpk(an),

b̃1 = HE.Encpk(b1), . . . , b̃n = HE.Encpk(bn),
(
k̃
(`)
i = HE.Encpk

(
k
(`)
j,i

))
`∈[L]
i∈[n]
j∈[|T`|]

,

and σa,b,kaux .

Encryption. AUX.Enc(sk,a,b,k),d : D(M) → D(C). The encryption procedure
takes an extra parameter d that keeps track of the number of qubits already
encrypted (we assume d is initially 1 and not modified outside of AUX.Enc). If
d ≤ n, it applies the quantum one-time pad channel QEncad,bd : D(M)→ D(C).
The output is the cipherstate in register C; the parameter d is updated as d ←
d+ 1. If d > n, then output ⊥ to indicate an error.

Decryption. AUX.Dec(sk,a,b,k),d : D(C′) → D(M). The decryption is defined
the same as CL.Decsk.

Homomorphic Evaluation. AUX.EvalC : D(Revk ⊗ C⊗n) → D(C′⊗m). For
Clifford group gates, we apply the gadgets as in CL.Eval. For T-gates, we apply
the gadget in Fig. 3. The full evaluation procedure is as follows:

1. Set V ← {ai, bi}i∈[n], and ∀ i ∈ [n], fa,i ← ai, fb,i ← bi.
2. Let g1, . . . , gG be a topological ordering of the gates in C. For i = 1, . . . , G,

evaluate gi using the appropriate gadget.
3. Let S be the set of output wire labels. For each i ∈ S:

(a) Homomorphically evaluate fa,i and fb,i to obtain updated (encrypted)

keys: ãi ← HE.Eval
fa,i
evk (ṽ : v ∈ V ) and b̃i ← HE.Eval

fb,i
evk(ṽ : v ∈ V ).

4. Output in C′i the classical-quantum system given by:
– The encrypted keys {ãi, b̃i}i∈S .
– The output corresponding to the encrypted output qubit i of the circuit.

The correctness of this scheme depends on two facts, which we prove in [9]. First,
for every unknown v ∈ V , we have an encrypted copy of ṽ, encrypted using
HE.Enc. We need these to compute the final keys {ãi, b̃i} using fa,i, fb,i ∈ F2[V ].
Finally, for each level `, for each wire label i, we need an auxiliary state |+t,k〉 for
every term that may appear in the key fa,i going into the `th level. This allows
us to construct the auxiliary qubit required to execute each T-gadget. In the full

version [9], we prove that AUX requires O(n2
L−1+1) auxiliary qubits, from which

it follows that AUX is homomorphic for quantum circuits with T-depth L. We
further show that AUX is q-IND-CPA and compact.

We remark that if we only had a classical encryption scheme that was ho-
momorphic over linear circuits, and not fully homomorphic, then we could get
the same functionality from a slightly modified version of this scheme, in which
we include with every auxiliary qubit |+s,k〉〈+s,k|, HE.Encpk(s) — at the mo-
ment we only include some of these, but not those auxiliary states arising from
products of terms, since we can compute products homomorphically. Since we
have classical fully homomorphic encryption, we use this to slightly simplify the
scheme, however the observation that the fully homomorphic property is not



fully taken advantage of strengthens the idea that Clifford circuits are analogous
to classical linear circuits in the context of QHE.
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