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Abstract. The ring and polynomial learning with errors problems (Ring-LWE and
Poly-LWE) have been proposed as hard problems to form the basis for cryptosystems,
and various security reductions to hard lattice problems have been presented. So far
these problems have been stated for general (number) rings but have only been closely
examined for cyclotomic number rings. In this paper, we state and examine the Ring-
LWE problem for general number rings and demonstrate provably weak instances of
the Decision Ring-LWE problem. We construct an explicit family of number fields
for which we have an efficient attack. We demonstrate the attack in both theory and
practice, providing code and running times for the attack. The attack runs in time
linear in q, where q is the modulus.

Our attack is based on the attack on Poly-LWE which was presented in [EHL]. We
extend the EHL-attack to apply to a larger class of number fields, and show how
it applies to attack Ring-LWE for a heuristically large class of fields. Certain Ring-
LWE instances can be transformed into Poly-LWE instances without distorting the
error too much, and thus provide the first weak instances of the Ring-LWE problem.
We also provide additional examples of fields which are vulnerable to our attacks
on Poly-LWE, including power-of-2 cyclotomic fields, presented using the minimal
polynomial of ζ2n ± 1.

1 Introduction

Lattice-based cryptography has become a very hot research topic recently with the emer-
gence of new applications to homomorphic encryption. The hardness of the Ring-LWE prob-
lem was related to various well-known hard lattice problems [R,MR09,MR04], [LPR,BL+],
and the hardness of the Poly-LWE problem was reduced to Ring-LWE in [LPR,DD]. The
hardness of the Poly-LWE problem is used as the basis of security for numerous cryptosys-
tems, including [BV,BGV]. The hardness of Ring-LWE was also shown [SS] to form a basis
for the proof of security of a variant of NTRU [HPS,IEEE].

In [EHL], the first weaknesses in the Poly-LWE problem were discovered for classes of
number fields satisfying certain properties. In addition, a list of properties of number fields
were identified which are sufficient to guarantee a reduction between the Ring-LWE and
the Poly-LWE problems, and a search-to-decision reduction for Ring-LWE. Unfortunately,
in [EHL], no number fields were found which satisfied both the conditions for the attack
and for the reductions. Thus [EHL] produced only examples of number fields which were
weak instances for Poly-LWE.

The contributions of this paper at a high level are as follows: In Section 3 we strengthen
and extend the attacks presented in [EHL] in several significant ways. In Section 4, most



importantly, we show how the attacks can be applied also to the Ring-LWE problem. In
Section 5, we construct an explicit family of number fields for which we have an efficient
attack on the Decision Ring-LWE Problem. This represents the first successful attacks on the
Decision Ring-LWE problem for number fields with special properties. For Galois number
fields, we also know that an attack on the decision problem gives an attack on the search
version of Ring-LWE ([EHL]). In addition, in Section 9, we present the first successful
implementation of the EHL attack at cryptographic sizes and attack both Ring-LWE and
Poly-LWE instances. For example for n = 1024 and q = 231 − 1, the attack runs in about
13 hours. Code for the attack is given in Appendix A. In Section 6 we give a more general
construction of number fields such that heuristically a large percentage of them will be
vulnerable to the attacks on Ring-LWE.

In more detail, we consider rings of integers in number fields K = Q[x]/(f(x)) of degree
n, modulo a large prime number q, and we give attacks on Poly-LWE which work when
f(x) has a root of small order modulo q. The possibility of such an attack was mentioned
in [EHL] but not explored further. In Sections 3.1 and 3.2, we give two algorithms for this
attack, and in Sections 7 and 7.3 we give many examples of number fields and moduli, some
of cryptographic size, which are vulnerable to this attack. The most significant consequence
of the attack is the construction of the number fields which are weak for the Ring-LWE
problem (Section 6).

To understand the vulnerability of Ring-LWE to these attacks, we state and examine
the Ring-LWE problem for general number rings and demonstrate provably weak instances
of Ring-LWE. We demonstrate the attack in both theory and practice for an explicit family
of number fields, providing code and running times for the attack. The attack runs in time
linear in q, where q is the modulus. The essential point is that Ring-LWE instances can
be mapped into Poly-LWE instances, and if the map does not distort the error too much,
then the instances may be vulnerable to attacks on Poly-LWE. The distortion is governed
by the spectral norm of the map, and we compute the spectral norm for the explicit family
we construct in Section 5 and analyze when the attack will succeed. For the provably weak
family which we construct, the feasibility of the attack depends on the ratio of

√
q/n. We

prove that the attack succeeds when
√
q/n is above a certain bound, but in practice we find

that we can attack instances where the ratio is almost 100 times smaller than that bound.
Even for Ring-LWE examples which are not taken from the provably weak family, we were
able to attack in practice relatively generic instances of number fields where the spectral
norm was small enough (see Section 9).

We investigate cyclotomic fields (even 2-power cyclotomic fields) given by an alternate
minimal polynomial, which are weak instances of Poly-LWE for that choice of polynomial
basis. Section 7.3 contains numerous examples of 2-power cyclotomic fields which are vul-
nerable to attack when instantiated using an alternative polynomial basis, thus showing the
heavy dependence in the hardness of these lattice-based problems on the choice of polyno-
mial basis. In addition, we analyze the case of cyclotomic fields to understand their potential
vulnerability to these lines of attack and we explain why cyclotomic fields are immune to
attacks based on roots of small order (Section 8). Finally, we provide code in the form of
simple routines in SAGE to implement the attacks and algorithms given in this paper and
demonstrate successful attacks with running times (Section 9).

As a consequence of our results, one can conclude that the hardness of Ring-LWE is both
dependent on special properties of the number field and sensitive to the particular choice of
q, and some choices may be significantly weaker than others. In addition, for applications
to cryptography, since our attacks on Poly-LWE run in time roughly O(q) and may be
applicable to a wide range of fields, including even 2-power cyclotomic fields with a bad
choice of polynomial basis, these attacks should be taken into consideration when selecting
parameters for Poly-LWE-based systems such as [BV,BGV] and other variants. For many



important applications to homomorphic encryption (see for example [GLN,BLN]), these
attacks will not be relevant, since the modulus q is chosen large enough to allow for significant
error growth in computation, and would typically be of size 128 bits up to 512 bits. For that
range, the attacks presented in this paper would not run. However, in other applications of
Ring-LWE to key exchange for the TLS protocol [BCNS], parameters for achieving 128-bit
security are suggested where n = 210 and q = 232 − 1, with σ ≈ 3, and these parameters
would certainly be vulnerable to our attacks for weak choices of fields and q.

Acknowledgements. The authors are indebted to the organizers of the research con-
ference Women in Numbers 3 (Rachel Pries, Ling Long and the fourth author), as well as
to the Banff International Research Station, for bringing together this collaboration. The
authors would also like to thank Martin Albrecht for help with Sage.

2 Background on Poly-LWE

Let f(x) be a monic irreducible polynomial in Z[x] of degree n, and let q be a prime such that
f(x) factors completely modulo q. Let P = Z[x]/f(x) and let Pq = P/qP = Fq[x]/f(x). Let
σ ∈ R>0. The uniform distribution on P ' Zn will be denoted U . By Gaussian distribution
of parameter σ we refer to a discrete Gaussian distribution of mean 0 and variance σ2 on
P , spherical with respect to the power basis. This will be denoted Gσ. It is important to our
analysis that we assume that in practice, elements are sampled from Gaussians of parameter
σ truncated at width 2σ.

There are two standard Poly-LWE problems. Our attack solves the decision variant, but
it also provides information about the secret.

Problem 1 (Decision Poly-LWE Problem). Let s(x) ∈ P be a secret. The decision Poly-
LWE problem is to distinguish, with non-negligible advantage, between the same number of
independent samples in two distributions on P ×P . The first consists of samples of the form
(a(x), b(x) := a(x)s(x) + e(x)) where e(x) is drawn from a discrete Gaussian distribution of
parameter σ, and a(x) is uniformly random. The second consists of uniformly random and
independent samples from P × P .

Problem 2 (Search Poly-LWE Problem). Let s(x) ∈ P be a secret. The search Poly-LWE
problem, is to discover s given access to arbitrarily many independent samples of the form
(a(x), b(x) := a(x)s(x) + e(x)) where e(x) is drawn from a Discrete Gaussian of parameter
σ, and a(x) is uniformly random.

The polynomial s(x) is called the secret and the polynomials ei(x) are called the errors.

2.1 Parameter selection

The selection of parameters for security is not yet a well-explored topic. Generally parameter
recommendations for Poly-LWE and Ring-LWE are just based on the recommendations for
general LWE, ignoring the extra ring structure e.g. [PG,RV+,BCNS]. Sample concrete pa-
rameter choices have been suggested, where w is the width of the Gaussian error distribution
(precisely, w =

√
2πσ):

1. PLP1 = (n, q, w) = (192, 4093, 8.87), PLP2 = (256, 4093, 8.35), PLP3 = (320, 4093, 8.00)
for low, medium and high security, recommended by Lindner and Peikert in [LP];

2. PGF = (n, q, w) = (512, 12289, 12.18) for high security used in [GF+];
3. PBCNS = (n, q, w) = (1024, 231 − 1, 3.192) suggested in [BCNS] for the TLS protocol.

Here, q = 232 − 1 was actually suggested but it is not prime. Here, the authors remark
that q is taken to be large for correctness but could potentially be decreased.



3 Attacks on Poly-LWE

The attack we are concerned with is quite simple. It proceeds in four stages:

1. Transfer the problem to Fq via a ring homomorphism φ : Pq → Fq.
2. Loop through guesses for the possible images φ(s(x)) of the secret.
3. Obtain the values φ(ei(x)) under the assumption that the guess at hand is correct.
4. Examine the distribution of the φ(ei(x)) to determine if it is Gaussian or uniform.

If f is assumed to have a root α ≡ 1 mod q or α of small order modulo q, then this
attack is due to Eisentraeger-Hallgren-Lauter [EHL].

The first part is to transfer the problem to Fq. Write f(x) =
∏n
i=1(x − αi) for the

factorization of f(x) over Fq which is possible by assumption. By the Chinese remainder
theorem, if f has no double roots, then

Pq '
n∏
i=1

Fq[x]/(x− αi) ' Fnq

There are n ring homomorphisms

φ : Pq → Fq[x]/(x− αi) ' Fq, g(x) 7→ g(αi).

Fix one of these, by specifying a root α = αi of f(x) in Fq. Apply the homomorphism to
the coordinates of the ` samples (ai(x), bi(x)), obtaining (ai(α), bi(α))i=1,...,`.

Next, loop through all g ∈ Fq. Each value g is to be considered a guess for the value of
s(α). For each guess g, assuming that it is a correct guess and g = s(α), then

ei(α) = bi(α)− ai(α)g = bi(α)− ai(α)s(α).

In the case that the samples were LWE samples and the guess was correct, then this pro-
duces a collection (ei(α)) of images of errors chosen according to some distribution. If the
distributions φ(U) and φ(Gσ) are distinguishable, then we can determine whether the dis-
tribution was uniform or Gaussian. Note that φ(U) will of course be uniform on Fq. If our
guess is incorrect, or if the samples are not LWE samples, then the distribution will appear
uniform.

Therefore, after looping through all guesses, if all the distributions appeared uniform,
then conclude that the samples were not LWE samples; whereas if one of the guesses worked
for all samples and always yielded an error distribution which appeared Gaussian, assume
that particular g was a correct guess. In the latter case this also yields one piece of infor-
mation about the secret: g = s(α) mod q.

The attack will succeed whenever

1. q is small enough to allow looping through Fq,
2. φ(U) and φ(Gσ) are distinguishable.

Our analysis hinges on the difficulty of distinguishing φ(U) from φ(Gσ), as a function
of the parameters σ, n, `, q, and f . Distinguishability becomes easier when σ is smaller
(so U and Gσ are farther apart to begin with), n is smaller and q is larger (since then less
information is lost in the map φ), and ` is larger (since there are more samples to test the
distributions). The dependence on f comes primarily as a function of its roots αi modulo
q, which may have properties that make distinguishing easier.

Ideally, for higher security, one will choose parameters that make distinguishing nearly
impossible, i.e. such that φ(Gσ) appears very close to uniform modulo q.



Example. ([EHL]) We illustrate the attack in the simplest case α = 1. Assume f(1) ≡
0 mod q, and consider the distinguishability of the two distributions φ(U) and φ(Gσ). Given
(ai(x), bi(x)), make a guess g ∈ Fq for the value of s(1) and compute bi(1)− g · ai(1). If bi is
uniform, then bi(1)− g · ai(1) is uniform for all g. If bi = ais+ ei, then there is a guess g for
which bi(1)−gai(1) = ei(1) where ei(x) =

∑n
j=1 eijx

j and g = s(1). Since ei(1) =
∑n
j=1 eij ,

where eij are chosen from Gσ, it follows that ei(1) are sampled from G√nσ where nσ2 << q.
The attack can be described loosely as follows: for each sample, test each guess g in Fq to
see if bi(1) − g · ai(1) is small modulo q, and only keep those guesses which pass the test.
Repeat with the next sample and continue to keep only the guesses which pass.

3.1 Attack based on a small set of error values modulo q

In this section, we assume that there exists a root α of f such that α has small order r
modulo q, that is αr ≡ 1 mod q. Then

e(α) =
n−1∑
i=0

eiα
i = (e0+er+e2r+· · · )+α(e1+er+1+· · · )+· · ·+αr−1(er−1+e2r−1+· · · ). (1)

If r is small enough, then e(α) takes on only a small number of values modulo q. If so, then
we can efficiently distinguish whether a value modulo q belongs to that subset.

Let S be the set of possible values of e(α) modulo q. We assume for simplicity that n is
divisible by r. Then the coefficients ej + ej+r + · · ·+ en−r+j of (1) fall into a subset of Z/qZ
of size at most 4σn/r. We sum over r terms, hence, |S| = (4σn/r)r residues modulo q. For
r = 2, this becomes (2nσ)2.

The attack described below succeeds with high probability if |S| << q, that is

(4σn/r)r << q.

Algorithm 1 Small set of error values

Input: A collection of ` Poly-LWE samples.
Output: A guess g for s(α), the value of the secret polynomial at α; or else NOT PLWE; or
INSUFFICIENT SAMPLES.
The value NOT PLWE indicates that the collection of samples were definitely not Poly-LWE
samples.
The value INSUFFICIENT SAMPLES indicates that there were not enough samples to
determine a single guess s(α). In this case, the algorithm may be continued on a new set of
samples by looping the remaining surviving guesses on the new samples.

Create an ordered list of elements of S.
Let G be an empty list.
for g from 0 to q − 1 do

for (a(x), b(x)) in the collection of samples do
if b(α)− ga(α) does not equal an element of S then

break (i.e. begin next value of g)
append g to G (note: occurs only if the loop of samples completed without a break)

if G is empty then
return NOT PLWE

if G = {g} then
return g

if #G > 1 then
return INSUFFICIENT SAMPLES



Proposition 1. Assume that

(4σn/r)r < q. (2)

Algorithm 1 terminates in time at most Õ(`q + nq), where the Õ notation hides the log(q)
factors and the implied constant depends upon r. Furthermore, if the algorithm returns NOT
PLWE, then the samples were not valid Poly-LWE samples. If it outputs anything other
than NOT PLWE, then the samples are valid Poly-LWE samples with probability 1−(#S

q )`.
In particular, this probability tends to 1 as ` grows.

Proof. As discussed above, there are at most q possible values for the elements of S under
the assumption (2). To compute each one takes n additions per coefficient (of which there are
r), combined with an additional r multiplications and r additions. (Here we have assumed
the αi have been computed; this takes r multiplications.) Each addition or multiplication

takes time at most log q. Therefore, computing S takes time at most Õ(qnr). For sorting, it
is best to sort as S is computed; placing each element correctly takes log q time.

The principal double loop takes time at most Õ(`q). If b(α) and a(α) are precomputed,
then for each guess g, the computation of b(α) − ga(α) only costs one multiplication and
one subtraction modulo q (i.e. 2 log q) while it requires only log q bit comparisons to decide
whether this is in the set S.

In Step 4, for later samples, only guesses which were successful in the previous samples
(i.e. gave a value which was in the set S) are considered. For a sample chosen uniformly
at random, one expects the number of successful guesses to be roughly #S

q . Thus for the

second sample, we repeat the above test for only (#S) guesses. At the `th sample, retaining
only guesses which were successful for all previous samples, we expect to test only (#S

q )`q
guesses, which very quickly goes to zero. Hence, if we examine ` samples, our tolerance for
false positives is proportional to (#S

q )`.

3.2 Attack based on the size of the error values

In this section, we describe the most general φ : Pq → Fq attack on the Poly-LWE problem,
one which can be carried out in any situation. The rub is that the probability of success
will be vanishingly small unless we are in a very special situation. Therefore our analysis
actually bolsters the security of Poly-LWE.

Suppose that f(α) ≡ 0 mod q. Let Ei be the event that bi(α) − gai(α) mod q is in
the interval [−q/4, q/4) for some sample i and guess g for s(α) mod q. The main idea is to
compare P (Ei | D = U) and P (Ei | D = Gσ). If D = U , then bi(α)−gai(α) is random modulo
q for all guesses g, that is, P (Ei | D = U) = 1

2 . If D = Gσ, then bi(α) − s(α)ai(α) = ei(α)
mod q. We consider

ei(α) =

n−1∑
j=0

eijα
j ,

where eij is chosen according to the distribution Gσ (truncated at 2σ) and distinguish two
cases:

1. α = ±1
2. α 6= ±1 and α has small order r ≥ 3 modulo q

Case 1 (α = ±1).
The error ei(α) is chosen according to the distribution Gσ√n truncated at 2σ

√
n. Hence

−2σ
√
n ≤ ei(α) ≤ 2σ

√
n.



Therefore, assuming that

2σ
√
n <

q

4
,

we obtain P (Ei | D = Gσ) = 1 for g = s(α). Hence U and Gσ are distinguishable.
Case 2 (α 6= ±1 and α has small order r ≥ 3 modulo q).
The error can be written as

e(α) =

r−1∑
i=0

eiα
i = (e0 + er + · · · ) + α(e1 + er+1 + · · · ) + · · ·+ αr−1(er−1 + e2r−1 + · · · )

where we assume that n is divisible by r for simplicity. For j = 0, · · · , r − 1, we have that
ej + ej+r + · · · + ej+n−r is chosen according to the distribution G√n

r σ
. As a consequence

e(α) is sampled from Gσ̄ where

σ̄2 =

r−1∑
i=0

n

r
σ2α2i =

n

r
σ2α

2r − 1

α2 − 1
.

Hence

−2

√
n√
r
σ

√
α2r − 1√
α2 − 1

≤ e(α) ≤ 2

√
n√
r
σ

√
α2r − 1√
α2 − 1

.

Therefore, assuming that

2

√
n√
r
σ

√
α2r − 1√
α2 − 1

<
q

4
, (3)

we obtain P (Ei | D = Gσ) = 1 for g = s(α), and uniform and Gaussian are distinguishable.
Note that Hypothesis (2) implies in particular that αr > q.

Algorithm 2 Small error values

Input: A collection of ` Poly-LWE samples.
Output: A guess g for s(α); or else NOT PLWE; or INSUFFICIENT SAMPLES.
The output INSUFFICIENT SAMPLES indicates that more samples are needed to make a
determination. In this case, the algorithm can be continued by looping through remaining
surviving guesses on new samples.

Let G be an empty list.
for g from 1 to q − 1 do

for (a(x), b(x)) in the collection of samples do
if the minimal residue b(α)− ga(α) does not lie in [−q/4, q/4) then

break (i.e. begin next value of g)
append g to G (note: occurs only if the loop of samples completed without a break)

if G is empty then
return NOT PLWE

if G = {g} then
return g

if #G > 1 then
return INSUFFICIENT SAMPLES

In each of the two cases, we have given conditions on the size of σ under which U and Gσ
are distinguishable and an attack is likely to succeed. We now elaborate on the algorithm
that would be used.



We denote by ` the number of samples observed. For each guess g mod q, we compute
bi − gai for i = 1, . . . , `. If there is a guess g mod q for which the event Ei occurs for
all i = 1, . . . , `, then the algorithm returns the guess if it is unique and INSUFFICIENT
SAMPLES otherwise; the samples are likely valid Poly-LWE samples. Otherwise, it reports
that they are certainly not valid Poly-LWE samples.

Proposition 2. Assume that we are in one of the following cases:

1. α = ±1 and
8σ
√
n < q.

2. α has small order r ≥ 3 modulo q, and

8σ

√
n√
r

√
α2r − 1√
α2 − 1

< q.

Then Algorithm 2 terminates in time at most Õ(`q), where the implied constant is abso-
lute. Furthermore, if the algorithm returns NOT PLWE, then the samples were not valid
Poly-LWE samples. If it outputs anything other than NOT PLWE, then the samples are
valid Poly-LWE samples with probability at least 1− ( 1

2 )`.

Proof. The proof is as in Proposition 1, without the first few steps.

We remark that Propositions and Algorithms 1 and 2 overlap in some cases. For α = ±1,
Algorithm 2 is more applicable (i.e. more parameter choices are susceptible), while for α of
other small orders, Algorithm 1 is more applicable.

4 Moving the attack from Poly-LWE to Ring-LWE

We use the term Poly-LWE to refer to LWE problems generated by working in a polynomial
ring, and reserve the term Ring-LWE for LWE problems generated by working with the
canonical embedding of a number field as in [LPR,LPR13]. In the previous sections we have
expanded upon Eisenträger, Hallgren and Lauter’s observation that for certain distributions
on certain lattices given by Poly-LWE, the ring structure presents a weakness. We will now
consider whether it is possible to expand that analysis to LWE instances created through
Ring-LWE for number fields besides cyclotomic ones.

In particular, the necessary ingredient is that the distribution be such that under the
ring homomorphisms of Section 3, the image of the errors is a ‘small’ subset of Z/qZ, either
the error values themselves are small, or they form a small, identifiable subset of Z/qZ.
Assuming a spherical Gaussian in the canonical embedding of R or R∨, we describe a class
of number fields for which this weakness occurs. A similar analysis would apply without the
assumption that the distribution is spherical in the canonical embedding.

Here, we setup the key players (a number field and its canonical embedding, etc.) for
general number fields so that these definitions specialize to those in [LPR13]. There are
some choices inherent in our setup: it may be possible to generalize Ring-LWE to number
fields in several different ways. We consider the two most natural ways.

4.1 The canonical embedding

Let K be a number field of degree n with ring of integers R whose dual is R∨. We will embed
the field K in Rn. Note that our setup is essentially that of [DD], rather than [LPR13], but
the difference is notational.



Let σ1, . . . , σn be the n embeddings of K, ordered so that σ1 through σs1 are the s1 real
embeddings, and the remaining n− s1 = 2s2 complex embeddings are paired in such a way
that σs1+k = σs1+s2+k for k = 1, . . . , s2 (i.e. list s2 non-pairwise-conjugate embeddings and
then list their conjugates following that).

Define a map θ : K → Rn given by

θ(r) = (σ1(r), . . . , σs1(r), Re(σs1+1(r)), . . . , Re(σs1+s2(r)), Im(σs1+1(r)), . . . , Im(σs1+s2(r))).

The image of K is the Q-span of θ(ωi) for any basis ωi for K over Q. This is not the usual
Minkowski embedding, but it has the virtues that 1) the codomain is a real, not complex,
vector space; and 2) the spherical or elliptical Gaussians used as error distributions in
[LPR13] are, in our setup, spherical or elliptical with respect to the usual inner product.
We denote the usual inner product by 〈·, ·〉 and the corresponding length by |x| =

√
〈x, x〉.

It is related to the trace pairing on K, i.e. 〈θ(r), θ(s)〉 = Tr(rs).
Then R and R∨ form lattices in Rn.

4.2 Spherical Gaussians and error distributions

We define a Ring-LWE error distribution to be a spherical Gaussian distribution in Rn.
That is, for a parameter σ > 0, define the continuous Gaussian distribution function Dσ :
Rn → (0, 1] by

Dσ(x) := (
√

2πσ)−n exp
(
−|x|2/(2σ2)

)
.

This gives a distribution Ψ on K ⊗ R, via the isomorphism θ to Rn. By approximating
K ⊗ R by K to sufficient precision, this gives a distribution on K.

From this distribution we can generate the Ring-LWE error distribution on R, respec-
tively R∨, by taking a valid discretization bΨeR, respectively bΨeR∨ , in the sense of [LPR13].
Now we have at hand a lattice, R, respectively R∨, and a distribution on that lattice. The
parameters (particularly σ) are generally advised to be chosen so that this instance of LWE
is secure against general attacks on LWE (which do not depend on the extra structure
endowed by the number theory).

4.3 The Ring-LWE problems

Write Rq := R/qR and R∨q = R∨/qR∨. The standard Ring-LWE problems are as follows,
where K is taken to be a cyclotomic field [LPR,LPR13].

Definition 1 (Ring-LWE Average-Case Decision [LPR]). Let s ∈ R∨q be a secret. The
average-case decision Ring-LWE problem, is to distinguish with non-negligible advantage
between the same number of independent samples in two distributions on Rq×R∨q . The first
consists of samples of the form (a, b := as+ e) where e is drawn from χ := bΨeR∨ and a is
uniformly random, and the second consists of uniformly random and independent samples
from Rq ×R∨q .

Definition 2 (Ring-LWE Search [LPR]). Let s ∈ R∨q be a secret. The search Ring-LWE
problem, is to discover s given access to arbitrarily many independent samples of the form
(a, b := as+ e) where e is drawn from χ := bΨeR∨ and a is uniformly random.

In proposing general number field Ring-LWE, one of two avenues may be taken:

1. preserve these definitions exactly as they are stated, or
2. eliminate the duals, i.e. replace every instance of R∨ with R in the definitions above.



To distinguish these two possible definitions, we will refer to dual Ring-LWE and non-
dual Ring-LWE. Lyubashevsky, Peikert and Regev remark that for cyclotomic fields, dual
and non-dual Ring-LWE lead to computationally equivalent problems [LPR, Section 3.3].
They go on to say that over cyclotomics, for implementation and efficiency reasons, dual
Ring-LWE is superior.

Generalising dual Ring-LWE to general number fields is the most naive approach, but it
presents the problem that working with the dual in a general number field may be difficult.
Still, it is possible there are families of accessible number fields for which this may be the
desired avenue.

We will analyse the effect of the Poly-LWE vulnerability on both of these candidate
definitions. In fact, the analysis will highlight some potential differences in their security,
already hinted at in the discussion in [LPR, Section 3.3].

4.4 Isomorphisms from θ(R) to a polynomial ring

Suppose K is a monogenic number field, meaning that R is isomorphic to a polynomial ring
P = Z[X]/f(X) for some monic irreducible polynomial f (f is a monogenic polynomial). In
this case, we obtain R = γR∨, for some γ ∈ R (here, γ is a generator of the different ideal),
so that θ(R∨) and θ(R) are related by a linear transformation. Thus a (dual or non-dual)
Ring-LWE problem concerning the lattice θ(R) or θ(R∨) can be restated as a Poly-LWE
problem concerning P .

Let α be a root of f . Then R is isomorphic to P , via α 7→ X. An integral basis for R is
1, α, α2, . . . , αn−1. An integral basis for R∨ is γ−1, γ−1α, γ−1α2, . . . , γ−1αn−1. Let Mα be the
matrix whose columns are {θ(αi)}. Let M∨α be the matrix whose columns are {θ(γ−1αi)}. If
v is a vector of coefficients representing some β ∈ K in terms of the basis {αi} for K/Q, then
θ(β) = Mαv. In other words, Mα : P → θ(R) is an isomorphism (where P is represented as
vectors of coefficients). Similarly, M∨α : P → θ(R∨) is an isomorphism.

4.5 The spectral norm

Given an n×n matrix M , its spectral norm ρ = ||M ||2 is the `2 norm on its n2 entries. This
is equal to the largest singular value of M . This is also equal to the largest radius of the
image of a unit ball under M . This last interpretation allows one to bound the image of a
spherical Gaussian distribution of parameter σ on the domain of M by another of parameter
ρσ on the codomain of M (in the sense that the image of the ball of radius σ will map into
a ball of radius ρσ after application of M).

The normalized spectral norm of M is defined to be ρ′ = ||M ||2/det(M)1/n. The condi-
tion number of M is k(M) = ||M ||2||M−1||2.

4.6 Moving the attack from Poly-LWE to Ring-LWE

Via the isomorphism M := M−1
α (respectively M := (M∨α )−1), an instance of the non-dual

(respectively dual) Ring-LWE problem gives an instance of the Poly-LWE problem in which
the error distribution is the image of the error distribution in θ(R) (respectively θ(R∨)).
In general, this may be an elliptic Gaussian distorted by the isomorphism. If the distortion
is not too large, then it may be bounded by a spherical Gaussian which is not too large.
In that case, a solution to the Poly-LWE problem with the new spherical Gaussian error
distribution may be possible. If so, it will yield a solution to the original Ring-LWE problem.

This is essentially the same reduction described in [EHL]. However, those authors assume
that the isomorphism is an orthogonal linear map; we are loosening this condition. The es-
sential question in this loosening is how much the Gaussian distorts under the isomorphism.
Our contribution is an analysis of the particular basis change.



This distortion is governed by the spectral norm ρ of M . If the continuous Gaussian in
Rn is of parameter σ (with respect to the standard basis of Rn), then the new spherical
Gaussian bounding its image is of parameter ρσ with respect to P (in terms of the coefficient
representation). The appropriate analysis for discrete Gaussians is slightly more subtle.
Loosely speaking, we find that a Ring-LWE instance is weak if the following three things
occur:

1. K is monogenic.
2. f satisfies f(1) ≡ 0 (mod q).
3. ρ and σ are sufficiently small

The first condition guarantees the existence of appropriate isomorphisms to a polynomial
ring; the second and third are required for the Poly-LWE attack to apply. The purpose of the
third requirement is that the discrete Gaussian distribution in Rn transfers to give vectors
e(x) in the polynomial ring having the property that e(1) lies in the range [−q/4, q/4) except
with negligible probability; this allows Algorithm 2 and the conclusions of Proposition 2 to
apply.

Let us now state our main result.

Theorem 1. Let K be a number field such that K = Q(β), and the ring of integers of K
is equal to Z[β]. Let f be the minimal polynomial of β and suppose q is a prime such that f
has root 1 modulo q. Finally, suppose that the spectral norm ρ of M−1

β satisfies

ρ <
q

4
√

2πσn
.

Then the non-dual Ring-LWE decision problem for K, q, σ can be solved in time Õ(`q) with
probability 1− 2−`, using a dataset of ` samples.

Proof. Sampling a discrete Gaussian with parameter σ results in vectors of norm at most√
2πσ
√
n except with probability at most 2−2n [LPR13, Lemma 2.8]. Considering the latter

to be negligible, then we can expect error vectors to satisfy ||v||2 <
√

2πσ
√
n and their

images in the polynomial ring to satsify

|e(1)| = ||e(x)||1 <
√
n||e(x)||2 <

√
nρ
√

2πσ
√
n = ρ

√
2πσn.

Therefore, if
ρ
√

2πσn < q/4,

then we may apply the attack of Section 3.2 that assumes f(1) ≡ 0 (mod q) and that error
vectors lie in [−q/4, q/4).

In what follows, we find a family of polynomials satisfying the conditions of the theorem,
and give heuristic arguments that such families are in fact very common. The other cases
(other than α = 1) appear out-of-reach for now, simply because the bounds on ρ are much
more difficult to attain. We will not examine them closely.

4.7 Choice of σ

The parameters of Section 2.1 are used in implementations where the Gaussian is taken
over (Z/qZ)n, and security depends upon the proportion of this space included in the ‘bell,’
meaning, it depends upon the ratio q/σ. In the case of Poly-LWE, sampling is done on the
coefficients, which are effectively living in the space (Z/qZ)n, so this is appropriate. However,
in Ring-LWE, the embedding θ(R) in Rn may be very sparse (i.e. θ(R∨) may be very dense).



Still, the security will hinge upon the proportion of θ(R)/qθ(R) that is contained in the bell.
We have not seen a discussion of security parameters for Ring-LWE in the literature, and
so we propose that the appropriate meaning of the width of the Gaussian, w, in this case is

w :=
√

2πσ′ :=
√

2πσdet(Mα)
1/n

, (4)

where σ′ is defined by the above equality. The reason for this choice is that θ(R) has covolume
det(Mα); a very sparse lattice (corresponding to large determinant) needs a correspondingly
large σ so that the same proportion of its vectors lie in the bell.

If ρ represents the spectral norm of M−1
α (which has determinant det(Mα)−1), then

ρ′ := ρ det(Mα)
1/n

is the normalized spectral norm. Therefore ρ/σ = ρ′/σ′. Hence the bound of Theorem 1
becomes

ρ′ <
q

4wn
. (5)

5 Provably weak Ring-LWE number fields

Consider the family of polynomials

fn,q(x) = xn + q − 1

for q a prime. These satisfy f(1) ≡ 0 (mod q). By the Eisenstein criterion, they are irreducible
whenever q − 1 has a prime factor that appears to exponent 1. These polynomials have
discriminant [M] given by

(−1)
n2−n

2 nn(q − 1)n−1.

Proposition 3. Let n be power of a prime `. If q−1 is squarefree and `2 - ((1−q)n−(1−q))
then the polynomials fn,q are monogenic.

Proof. This is a result of Gassert in [Gassert, Theorem 5.1.4]. As stated, Theorem 5.1.4
of [Gassert] requires ` to be an odd prime. However, for the monogenicity portion of the
conclusion, the proof goes through for p = 2.

Proposition 4. Suppose that fn,q is irreducible, and the associated number field has r2 com-
plex embeddings. Then r2 = n/2 or (n− 1)/2 (whichever is an integer), and the normalized
spectral norm of M−1

α is exactly

2−r2/n
√

(q − 1)1− 1
n .

Proof. Let a be a positive real n-th root of q − 1. Then the roots of the polynomial are
exactly aζj2n for j odd such that 1 ≤ j < 2n. The embeddings take aζ2n to each of the other
roots. There is r1 = 1 real embedding if n is odd (otherwise r1 = 0), and the rest are r2

complex conjugate pairs, so that n = r1 + 2r2. Suppose that n is not square-free. Then the
dot product of the r-th and s-th columns of M−1

α is

Re

(
n−1∑
k=0

ar+sζ
(r+s)(2k+1)
2n

)
= 0



Therefore, the columns of the matrix are orthogonal to one another. Hence, the matrix is
diagonalizeable, and its eigenvalues are the lengths of its column vectors, which is for the
r-th column, (

n−1∑
k=0

||arζ2k+1
2n ||2

)1/2

=
√
nar

Therefore the smallest singular value of Mα is
√
n and the largest is

√
nan−1. Correspond-

ingly, the largest singular values of M−1
α is 1/

√
n.

A standard result of number theory relates the determinant of Mα to the discriminant
of K via

det(Mα) = 2−r2
√

disc(fn,q),

where r2 ≤ n
2 is the number of complex embeddings of K. Combining the smallest singular

value with this determinant (the discriminant is given explicitly at the beginning of this
section) gives the result.

Theorem 2. Suppose q is prime, n is an integer and f = fn,q satisfies

1. n is a power of the prime `,
2. q − 1 is squarefree,
3. `2 - ((1− q)n − (1− q)),
4. we have τ > 1, where

τ :=
q

2
√

2wn(q − 1)
1
2−

1
2n

.

Then the non-dual Ring-LWE decision problem for f and w (defined by (4)) can be solved

in time Õ(`q) with probability 1− 2−`, using a dataset of ` samples.

Proof. Under the stated conditions, f has a root 1 modulo q, and therefore Poly-LWE
is vulnerable to the attack specified in Algorithm 2. The other properties guarantee the
applicability of Theorem 1 via Proposition 3 and 4.

Under the assumption that q − 1 is infinitely often squarefree, this provides a family of
examples which are susceptible to attack (taking, for example, n as an appropriate power
of 2; note that in this case item (3) is automatic).

Interestingly, their susceptibility increases as q increases relative to n. It is the ratio√
q/n, rather than their overall size, which controls the vulnerability (at least as long as q

is small enough to run a loop through the residues modulo q).
The quantity τ can be considered a measure of security against this attack ; it should

be small to indicate higher security. For the various parameters indicated in Section 2.1, the
value of τ is:

parameters PLP1 PLP2 PLP3 PGF PBCNS

τ 0.0136 0.0108 0.0090 0.0063 5.0654

The bound on τ in Theorem 1 is stronger than what is required in practice for the attack
to succeed. In particular, the spectral norm of the transformation M−1

α does not accurately
reflect the average behaviour; it is worst case. As n increases, it is increasingly unlikely
that error samples happen to lie in just the right direction from the origin to be inflated
by the full spectral norm. Furthermore, we assumed in the analysis of Theorem 1 an overly
generous bound on the error vectors.

The proof is in the pudding: in Section 9 we have successfully attacked parameters for
which τ < 0.02, including PLP1.



6 Heuristics on the prevalence of weak Ring-LWE number fields

In this section, we argue that many examples satisfying Theorem 1 are very likely to exist. In
fact, each of the individual conditions is fairly easy to attain. We will see in what follows that
given a random monogenic number field, there is with significant probability at least one
prime q for which Ring-LWE is vulnerable (i.e. the bound (5) is attained) for parameters
comparable to those of PBNCS . Note that in this parameter range, the spectral norm is
expensive to compute directly.

6.1 Monogenicity

Monogenic fields are expected to be quite common in the following sense. If f of degree
n ≥ 4 is taken to be a random polynomial (i.e. its coefficients are chosen randomly), then
it is conjecturally expected that with probability & 0.307, P will be the ring of integers
of a number field [K]. In particular, if f has squarefree discriminant, this will certainly
happen. Furthermore, cyclotomic fields are monogenic, as are the families described in the
last section.

However, at degrees n ∼ 210, the discriminant of f is too large to test for squarefree-
ness, so testing for monogenicity may not be feasible. Kedlaya has developed a method for
constructing examples of arbitrary degree [K].

6.2 Examples, n = 210, q ∼ 232

Consider the following examples:

f(x) = x1024 + (231 + 14)x+ 231, q = 4294967311,

f(x) = x1024 + (231 + 230 + 22)x+ (231 + 230), q = 6442450967,

f(x) = x1024 + (231 + 230 + 29)x+ (231 + 230 + 5), q = 6442450979.

These examples are discussed at greater length in Section 7.2, where the method for
constructing them is explained. In each case, f(1) ≡ 0 (mod q).

In this size range, we were not able to compute the spectral norm of K directly in
a reasonable amount of time. In the next few sections we will make persuasive heuristic
arguments that it can be expected to have ρ′ well within the required bound (5), i.e. ρ′ < 217.
That is, we expect these examples and others like them to be vulnerable.

6.3 Heuristics for the spectral norm

To find large q requires taking more complex polynomials f , which in turn may inflate the
spectral norm, so the complexity of f must be balanced.

One approach is to consider polynomials of the form f(x) = xn + ax + b. Let us recall
a standard result of number theory. For a number field K with r1 real embeddings and
r2 conjugate pairs of complex embeddings, the determinant of the canonical embedding is√
∆K2−r2 . Therefore, if ∆K > 22r2 (call this Assumption A), we obtain det(Mf ) > 1. Then
||Mf ||2 > 1. We are interested in the spectral norm of the inverse:

||M−1
f ||2 ≤ k(Mf )/||Mf ||2 ≤ k(Mf ),

where k(Mf ) represents the condition number of Mf . Now,

ρ′ = ||M−1
f ||2 det(Mf )1/n.



As mentioned above, det(Mf ) is given in terms of∆K . Under the assumption that Z[X]/f(X)
is indeed a ring of integers, ∆K = Disc(f) (call this Assumption B). By [M],

Disc(f) = (n− 1)n−1an + (−1)n−1nn(b+ 1)n−1.

It is evident that by judicious choice of a and b, it is possible to obtain a range of discriminant
sizes. We can expect there to be plenty of examples in the range n2 < ∆K < n3 (in this
range, Assumption A is satisfied). Then we obtain

ρ′ ≤ 2k(Mf ).

The condition number of Mf is hard to access theoretically, but heuristically, for random
perturbations of any fixed matrix, most perturbations are well-conditioned (having small
condition number) [TV]. The matrix Mf is a perturbation of Mp for p = xn+1. The extent of
this perturbation can be bounded in terms of the coefficients a and b, since the perturbation
is controlled by the perturbation in the roots of the polynomial. It is a now-standard result
in numerical analysis, due to Wilkinson, that roots may be ill-conditioned in this sense, but
the condition number can be bounded in terms of the coefficients a and b. This implies that,
heuristically, k(Mf ) is likely to be small quite frequently.

In conclusion, we expect to find that many f(x) will have ρ′ quite small.

6.4 Experimental evidence for the spectral norm

We only ran experiments in a small range due to limitations of our Sage implementation
([S]). The polynomials x32 + ax + b, −60 ≤ a, b ≤ 60 were plotted on a max{a, b}-by-ρ′

plane. The result is as follows:

There are some examples with quite high ρ′, but the majority cluster low. The grey line
is y =

√
x. Therefore, we may conjecture based on this experiment, that we may expect to

find plenty of f satisfying ρ′ <
√

max{a, b}.
Experimentally, we may guess that the examples of Section 6.2, for which n = 210 and

max{a, b} ≤ 230, will frequently satisfy ρ′ < 215, which is the range required by Theorem
1. (Note that the coefficients cannot be taken smaller if f is to have root 1 modulo a prime
q ∼ 231.)



7 Weak Poly-LWE number fields

7.1 Finding f and q with roots of small order

It is relatively easy to generate polynomials f and primes q for which f has a root of given
order modulo q. There are two approaches: given f , find suitable q; and given q, find suitable
f . Since there are other conditions one may require for other reasons (particularly on f),
we focus on the first of these.

Given f , in order to find q such that f has a root of small order (this includes the cases
α = ±1), the following algorithm can be applied.

Algorithm 3 Finding primes q such that f(x) has a root of small order modulo q

Input: A non-cyclotomic irreducible polynomial f(X) ∈ Z[X]; and an integer m ≥ 1.
Output: A prime q such that f(X) has a root of order m modulo q.

1. Let Φm(X) be the cyclotomic polynomial of degree m. Apply the extended Euclidean
algorithm to f(X) and Φm(X) over the ring Q[X] to obtain a(X), b(X) such that

a(X)f(X) + b(X)Φm(X) = 1.

(Note that 1 is the GCD of f(X) and Φm(X) by assumption.)
2. Let d be the least common multiple of all the denominators of the coefficients of a and b.
3. Factor d.
4. Return the largest prime factor of d.

It is also possible to generate examples by first choosing q and searching for appropriate
f . For example, taking f(x) = Φm(x)g(x) + q where g(x) is monic of degree m− n suffices.
Both methods can be adapted to find f having any specified root modulo q.

7.2 Examples, n ∼ 210, q ∼ 232

For the range n ∼ 210, we hope to find q ∼ 232. Examples were found by applying Algorithm
3 to polynomials f(x) of the form xn + ax+ b for a, b chosen from a likely range. Examples
are copious and not difficult to find (see Appendix A.2 for code).

Case α = 1. A few typical examples of irreducible f with 1 as a root modulo q are:

f(x) = x1024 + (231 + 14)x+ 231, q = 4294967311,

f(x) = x1024 + (231 + 230 + 22)x+ (231 + 230), q = 6442450967,

f(x) = x1024 + (231 + 230 + 29)x+ (231 + 230 + 5), q = 6442450979.

These examples satisfy condition 1 of Proposition 2 with σ = 3, hence are vulnerable.
Case α = −1. Here is an irreducible f with root −1:

f(x) = x1024 + (231 + 9)x− (231 + 7), q = 4294967311 ∼ 232.

This example similarly satisfies condition 1 of Proposition 2 and so is vulnerable.
Case α small order. Here is an irreducible f with a root of order 3:

f(x) = x1024 + (216 + 2)x− 216, q = 1099514773507 ∼ 240.

This example has q ∼ 240; taking this larger q allows us to satisfy (2) of Proposition 1 and
hence it is vulnerable to Algorithm 1.



7.3 Examples of weak Poly-LWE number fields with additional properties

In this section we will give examples of number fields K = Q[x]/(f(x)) which are vulnerable
to our attack on Poly-LWE. They will be vulnerable by satisfying one of the following two
possible conditions:

R f(1) ≡ 0 (mod q).
R′ f has a root of small order modulo q.

We must also require:

Q The prime q can be chosen suitably large.

The examples we consider are cyclotomic fields and therefore Galois and monogenic.
One should note that guaranteeing these two conditions together is nontrivial in general.
In addition to these, there are additional conditions for the attack explained in [EHL]. The
desirable conditions are:

G K is Galois.
M K is monogenic.
S The ideal (q) splits completely in the ring of integers R of K, and q - [R : Z[β]].
O The transformation between the canonical embedding of K and the power basis

representation of K is given by a scaled orthogonal matrix.

Conditions G and S are needed for the Search-to-Decision reduction and Conditions M
and O are needed for the Ring-LWE to Poly-LWE reduction in [EHL].

Note that checking the splitting condition for fields of cryptographic size is not compu-
tationally feasible in general. However, we are able to give a sufficient condition for certain
splittings which is quite fast to check.

Proposition 5. Using the notation as above, if f(2) ≡ 0 mod q then q splits in R.

Proof. Since 22k−1 ≡ −1 (mod q), it follows that (2α)2k−1 ≡ (−1)α ≡ −1 (mod q) for all
odd α in Z. We’ll show that 2, 23, 25, . . . , 2m where m = 2k − 1 are all distinct mod q,
hence showing that f(x) has 2k−1 distinct roots mod q i.e. f(x) splits mod q. Assume that
2i ≡ 2j (mod q) for some 1 ≤ i < j ≤ 2k − 1. Then 2j−i ≡ 1 (mod q), which means that
the order of 2 modulo q divides j − i. However, by the fact below (Lemma 1), the order of
2 mod q is 2k, which is a contradiction since j − i < 2k.

Lemma 1. Let q be a prime such that 22k−1 ≡ −1 (mod q) for some integer k. Then the
order of 2 modulo q is 2k.

Proof. Let a be the order of 2 modulo q. By assumption (22k−1

)2 ≡ 22k ≡ 1 (mod q). Then

a|2k i.e. a = 2α for some α ≤ k. Say α ≤ k−1. Then 1 = (22α)2k−1−α
= 22k−1 ≡ −1 (mod q),

a contradiction.

The converse of Proposition 5 does not hold. For instance, let K be the splitting field of
the polynomial x8 + 1 and q = 401. Then q splits in R. However f(2) = 257 6≡ 0 (mod q).

We now present a family of examples for which α = −1 is a root of f of order two.
Conditions G, M, S, R′ (order 2) and Q are all satisfied. The field K is the cyclotomic
number field of degree φ(2k) = 2k−1, but instead of the cyclotomic polynomial we take the

minimal polynomial of ζ2k + 1. In each case, q is obtained by factoring 22k−1

+ 1 for various
values of k and splitting is verified using Proposition 5.

k 2 3 4 5 6 7 7 8 8

q 5 17 257 65537∼ 216 6700417 ∼ 222 274177 ∼ 218 q5 ∼ 245 q6 ∼ 255 q1 ∼ 272

k 9 9 10 10 10 11 11 11

q q7 ∼ 250 q2 ∼ 2205 2424833∼ 221 q3 ∼ 2162 q4 ∼ 2328 q8 ∼ 225 q9 ∼ 232 q10 ∼ 2131



The examples in the last few rows are of cryptographic size5, i.e. the field has degree 210

and the prime is of size ∼ 232 or greater. These provide examples which are weak against
our Poly-LWE attack, by Proposition 2.

8 Cyclotomic (in)vulnerability

One of our principal observations is that the cyclotomic fields, used for Ring-LWE, are
uniquely protected against the attacks presented in this paper. The next proposition states
that the polynomial ring of the m-th cyclotomic polynomial Φm will never be vulnerable to
the attack based on a root of small order.

Proposition 6. The roots of Φm have order m modulo every prime q.

Proof. Consider the field Fq, q prime. Since Fq is perfect, the cyclotomic polynomial Φm(x)
has φ(m) roots in an extension of Fq. This polynomial has no common factor with xk − 1
for k < m. However, it divides xm − 1. Therefore its roots have order dividing m, but not
less than m. That is, its roots are all of order exactly m in the field in which they live. Now,
if we further assume that Φm(x) splits modulo q, then its φ(m) roots are all elements of
order m modulo q, so in particular, m | q − 1. The roots of Φm(x) are all elements of Z/qZ
of order exactly m.

The question remains whether there is another polynomial representation for the ring
of cyclotomic integers for which f does have a root of small order. This may in fact be the
case, but the error distribution is transformed under the isomorphism to this new basis, so
this does not guarantee a weakness in Poly-LWE for Φm.

However, it is not necessary to search for all such representations to rule out the possibil-
ity that this provides an attack. The ring Rq ∼= Fnq has exactly n = φ(m) homomorphisms to
Z/qZ. If Rq can be represented as (Z/qZ)[X]/f(X) with f(α) = 0, then the map Rq → Z/qZ
is given by p 7→ p(α) is one of these n maps. It suffices to write down these n maps (in terms
of any representation!) and verify that the errors map to all of Z/qZ instead of a small
subset. It is a special property of the cyclotomics that these n homomorphisms coincide.
Thus we are reduced to the case above.

9 Successfully coded attacks

The following table documents Ring-LWE and Poly-LWE parameters that were successfully
attacked on a Thinkpad X220 laptop with Sage Mathematics Software [S], together with
approximate timings. For code, see Appendix A. The first row indicates that cryptographic
size is attackable in Poly-LWE. The second row indicates that a generic example attackable
by Poly-LWE is also susceptible to Ring-LWE (see Section 6). We were unable to test the
Ring-LWE attack for n > 256 only because Sage’s built-in Discrete Gaussian Sampler was
not capable of initializing (thus we were unable to produce samples to test). The last two
rows illustrate the τ of Theorem 1 that is required for security in practice (approximately
τ < 0.013 instead of τ < 1 in theory). In the Ring-LWE rows, parameters were chosen to
illustrate the boundary of feasibility for a fixed n. Since the feasibility of the attack depends
on the ratio

√
q/n, there is no reason to think larger n are invulnerable (provided q also

5 q1 = 5704689200685129054721, q2 = 93461639715357977769163558199606896584051237541638188580280321,
q3 = 7455602825647884208337395736200454918783366342657, q5 = 67280421310721, q6 = 59649589127497217
q4 = 741640062627530801524787141901937474059940781097519023905821316144415759504705008092818711693940737
q7 = 1238926361552897, q8 = 45592577, q9 = 6487031809, q10 = 4659775785220018543264560743076778192897



grows), but we were unable to produce samples to test against. The Poly-LWE example
illustrates that runtime for large q is feasible (runtimes for Poly-LWE and Ring-LWE are
the same; it is only the samples which differ).

case f q w τ samples
per run

successful
runs

time
per run

Poly-LWE x1024 + 231 − 2 231 − 1 3.192 N/A 40 1 of 1 13.5 hrs

Ring-LWE x128+524288x
+524285 524287 8.00 N/A 20 8 of 10 24 sec

Ring-LWE x192 + 4092 4093 8.87 0.0136 20 1 of 10 25 sec

Ring-LWE x256 + 8189 8190 8.35 0.0152 20 2 of 10 44 sec
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A Appendix: Code

A.1 Proof of concept for Ring-LWE and Poly-LWE attacks

The following Sage Mathematical Software [S] code verifies that Algorithm 2 succeeds on
the Poly-LWE and Ring-LWE examples of Section 9. Note that Algorithm 1 is a minor
modification of Algorithm 2.

This code relies on DiscreteGaussianDistributionLatticeSampler, an inbuilt pack-
age in Sage. The sampler is incapable of initializing in sufficiently large dimension to fully
test the attacks in this paper. See the related trac ticket http://trac.sagemath.org/

ticket/17764.

Built into the code are several error checks that will be triggered if insufficient precision
is not used.

This code is available in electronic form at http://math.colorado.edu/~kstange/

scripts.html.

http://trac.sagemath.org/ticket/17764
http://trac.sagemath.org/ticket/17764
http://math.colorado.edu/~kstange/scripts.html
http://math.colorado.edu/~kstange/scripts.html


##################################################
# RING-LWE ATTACK #
##################################################

# General preparation of Sage: Create a polynomial ring and import GaussianSampler, Timer
P.<y> = PolynomialRing(RationalField(), ’y’)
from sage.stats.distributions.discrete_gaussian_lattice import DiscreteGaussianDistributionLatticeSampler
RP = RealField(300) # this sets the precision; if it is insufficient, the implementation won’t be valid
from sage.doctest.util import Timer

# Give the Minkowski lattice for a given ring determined by a polynomial.
# Also gives a key to which are real embeddings.
def cmatrix(): # returns a matrix, columns basis 1, x, x^2, x^3, ... given in the canonical embedding

global N, a
N.<a> = NumberField(f)
fdeg = f.degree()
key = [0 for i in range(fdeg)] # 0 = real, 1 = real part of complex emb, 2 = imaginary part
embs = N.embeddings(CC)
M = matrix(RP,fdeg,fdeg)
print "Preparing an embedding matrix: computing powers of the root."
apows = [ a^j for j in range(n) ]
print "Finished computing the powers of the root."
i = 0
while i < n:

em = embs[i]
if Mod(i,20)==Mod(0,20) or Mod(i,20)==Mod(1,20):

print "Embedding matrix: ", i, " rows out of ", n, " complete."
if em(a).imag() == 0:

key[i] = 0
for j in range(n):

M[i,j] = em(apows[j]).real()
i = i + 1

else:
key[i] = 1
key[i+1] = 2
for j in range(n):

M[i,j] = em(apows[j]).real()
M[i+1,j] = (em(apows[j])*I).real()

i = i + 2
return M, key

# Produce a random vector from (Z/qZ)^n
def random_vec(q, dim):

return vector([ZZ.random_element(0,q) for i in range(dim)])

# Useful function for real numbers modulo q
def modq(r,q):

s = r/q
t = r/q - floor(r/q)
return t*q

# Call sampler
def call_sampler():

e = sampler().change_ring(RP)
return e

# Create samples using a lattice (given by latmat and its inverse),
# a Gaussian sampler on that lattice, secret, prime
def get_sample(latmat, latmatinv, sec, qval, keyval):

e = call_sampler() # create error, in R^n
dim = latmat.dimensions()[0] # detect dimension of lattice
pre_a = random_vec(qval, dim) # create a uniformly randomly in terms of basis in cm
a = latmat*pre_a # create a, in R^n
b = vecmul_poly(a,sec,latmat,latmatinv) + e # create b, in R^n
pre_b = latmatinv*b # move to basis in cm in order to reduce mod q
pre_b_red = vector([modq(c,qval) for c in pre_b])
b = latmat*pre_b_red
return [a, b]

# Global choices: setup a field and prime, sampler.
# Set to dummy values that will be altered when an attack is run
q = 1
n = 1
sig = 1/sqrt(2*pi)
Zq = IntegerModRing(q)
R.<x> = PolynomialRing(Zq)



f = y + 1
N.<a> = NumberField(f)
S.<z> = R.quotient(f) # This is P_q
cm,key = cmatrix()
cmi = cm.inverse()
cm
cm53 = cm.change_ring(RealField(10))
cmqq = cm53.change_ring(QQ)
sampler = DiscreteGaussianDistributionLatticeSampler(cmqq.transpose(), sig)

# Set the parameters for the attack
def setup_params(fval,qval,sval):

global q,n,sig,f,S,x,z,Zq
f = fval
n = f.degree()
q = qval
Zq = IntegerModRing(q)
R.<x> = PolynomialRing(Zq)
sig = sval/sqrt(2*pi)
S.<z> = R.quotient(f)
print "Setting up parameters, polynomial = ", f, " and prime = ", q, " and sigma = ", sig
print "Verifying properties: "
print "Prime?", q.is_prime()
print "Irreducible? ", f.is_irreducible()
print "Value at 1 modulo q?", Mod(f.subs(y=1),q)
return True

# Compute the lattices in Minkowski space
def prepare_matrices():

global cm, key, cmi, cmqq
print "Preparing matrices."
cm,key = cmatrix()
print "Embedding matrix prepared."
cmi = cm.inverse()
print "Inverse matrix found."
cm53 = cm.change_ring(RealField(10))
cmqq = cm53.change_ring(QQ)
print "All matrices prepared."
return True

# Make a vector in R^n into a polynomial, given change of basis matrix and variable to use
def make_poly(a,matchange,var):

coeffs = matchange*a #coefficients of the polynomial are given by the change of basis matrix
pol = 0
for i in range(n):

pol = pol + ZZ(round(coeffs[i]))*var^i # var controls where it will live (what poly ring)
return pol

# Make a polynomial into a vector in Minkowski space
def make_vec(fval,matchange):

if fval == 0:
coeffs = [0 for i in range(n)]

else:
coeffs = [0 for i in range(n)]
colist = lift(fval).coefficients()
for i in range(len(colist)):

coeffs[i] = ZZ(colist[i])
return matchange*vector(coeffs)

# Multiplication in the Minkowski space via moving to polynomial ring
def vecmul_poly(u,v,mat,matinv):

poly_u = make_poly(u,matinv,z)
poly_v = make_poly(v,matinv,z)
poly_prod = poly_u*poly_v
return make_vec(poly_prod,mat)

# Create the sampler on the lattice embedded in R^n
def initiate_sampler():

global sampler
print "Initiating Sampler."
sampler = DiscreteGaussianDistributionLatticeSampler(cmqq.transpose(), sig)
print "Sampler initiated with sigma", RDF(sig)
return True

# Produce error vectors, just a test to see how they look
def error_test(num):



print "Testing the error vector production by producing ", num, " errors."
errorlist = [sampler().norm().n() for _ in range(num)]
meannorm = mean(errorlist) # average norm
maxnorm = max(errorlist) # maximum norm
print "The average error norm is ", RDF(meannorm/( sqrt(n)*sampler.sigma*sqrt(2*pi) )), " times sqrt(n)*s."
maxratio = RDF(maxnorm/( sqrt(n)*sampler.sigma*sqrt(2*pi) ))
print "The maximum error norm is ", maxratio, " times sqrt(n)*s."
if maxratio > 1:

print "~~~~~~~~~~~~~~~~~~~~~~~ ERROR ~~~~~~~~~~~~~~~~~~~~~~~~~"
print "The errors do not satisfy a proven upper bound in norm."

return True

# Create the secret
secret = 0
def create_secret():

global secret
secret = cm*random_vec(q,n)
return True

# Produce samples
samps = []
numsamps = 1
def create_samples(numsampsval):

global samps, numsamps
samps = []
print "Creating samples"
for i in range(numsampsval):

print "Creating sample number ", i
samp = get_sample(cm, cmi, secret, q, key)
samps.append(samp)

numsamps = len(samps)
print "Done creating ", numsamps, "samples."
return True

# Function for going down to q
def go_to_q(a,matchange):

pol = make_poly(a,matchange,x)
#print "debug got pol:", pol
pol_eval = pol.subs(x=1)
#print "debug eval’d to:", pol_eval, " and then ", Zq((pol_eval))
return Zq(pol_eval)

# Check to make sure moving to q preserves product -- the last two lines should be equal
def sanity_check():

print "Initiating sanity check"
mat = cmi
pvec1 = random_vec(q,n)
vec1 = cm*pvec1
pvec2 = random_vec(q,n)
vec2 = cm*pvec2
vprod2 = vecmul_poly(vec1,vec2,cm,cmi)
first_thing = go_to_q(vprod2,mat)
second_thing = go_to_q(vec1,mat)*go_to_q(vec2,mat)
if first_thing == second_thing:

print "Sanity confirmed."
else:

print "~~~~~~~~~~~~~~~~~~~~~~~ ERROR ~~~~~~~~~~~~~~~~~~~~~~~~~"
print "Sanity problem:", first_thing, " is not equal to ", second_thing, "."
print "Are you sure your ring has root 1 mod q?"

return True

# Given a list of elements of Z/qZ, make a histogram and zero count
def histoq(data):

hist = [0 for i in range(10)] # empty histogram
zeroct=0 # count of zeroes mod q
for datum in data:

e = datum
if e == 0:

zeroct = zeroct+1
histbit = floor(ZZ(e)*10/q)
hist[histbit]=hist[histbit]+1

return [hist, zeroct]

# Given a list of vectors in R^n, create a histogram of their
# values in Z/qZ under make_poly, together with a zero count
def histo(data,cmi):



return histoq([go_to_q(datum,cmi) for datum in data])

# Create a histogram of error vectors, transported to polynomial ring
def histogram_of_errors():

print "Creating a histogram of errors mod q."
errs = []
for i in range(80):

errs.append(sampler())
hist = histo(errs,cmi)
print "The number of error vectors that are zero:", hist[1]
bar_chart(hist[0], width=1).show(figsize=2)
return True

# Create a histogram of the a’s in the samples, transported to polynomial ring
def histogram_of_as():

print "Creating a histogram of sample a’s mod q."
a_vals = [samp[0] for samp in samps]
hist = histo(a_vals,cmi)
print "The number of a’s that are zero:", hist[1]
bar_chart(hist[0], width=1).show(figsize=2)
return True

# Create a histogram of errors by correct guess
def histogram_of_errors_2():

print "Creating a histogram of supposed errors if sample is guessed, mod q."
hist = histoq([ lift(Zq(go_to_q(sample[1],cmi) - go_to_q(sample[0],cmi)*go_to_q(secret,cmi))) for sample in samps])
print "The number of such that are zero:", hist[1]
bar_chart(hist[0], width=1).show(figsize=2)
return True

# Create the secret mod q
lift_s = 0
def secret_mod_q():

global lift_s
lift_s = go_to_q(secret,cmi)
print "Storing the secret mod q. The secret is ", secret, " which becomes ", lift_s
return True

# Algorithm 2
# reportrate controls how often it updates the status of the loop; larger = less frequently
# quickflag = True will run only the secret and a few other values to give a quick idea if it works
def alg2(reportrate, quickflag = False):

print "Beginning algorithm 2."
numsamps = len(samps)
a = [ 0 for i in range(numsamps)]
b = [ 0 for i in range(numsamps)]
print "Moving samples to F_q."
for i in range(numsamps):

sample = samps[i]
a[i] = go_to_q(sample[0],cmi)
b[i] = go_to_q(sample[1],cmi)

possibles = []
winner = [[],0]
print "Samples have been moved to F_q."
for i in range(2):

if i == 0:
print "!!!!! ROUND 1: !!!!! First, checking how many samples the secret survives (peeking ahead)."
iterat = [lift_s]

if i == 1:
print "!!!!! ROUND 2: !!!!! Now, running the attack naively."
possibles = []
if quickflag:

print "We are doing it quickly (not a full test)."
iterat = xrange(1000)

else:
iterat = xrange(q)

for g in iterat:
if Mod(g,reportrate) == Mod(0,reportrate):

print "Currently checking residue ", g
g = Zq(g)
potential = True
ctr = 0
while ctr < numsamps and potential:

e = abs(lift(Zq(b[ctr]-g*a[ctr])))
if e > q/4 and e < 3*q/4:

potential = False



if ctr == winner[1]:
winner[0].append(g)
print "We have a new tie for longest chain:", g, " has survived ", ctr, " rounds."

if ctr > winner[1]:
winner = [[g],ctr]
print "We have a new longest chain of samples survived:", g, " has survived ", ctr, " rounds."

ctr = ctr + 1
if potential == True:

print "We found a potential secret: ", g
possibles.append(g)

if g == lift_s:
if i == 0:

print "The real secret survived ", ctr, "samples."
#break

print "Full list of survivors of the ", numsamps, " samples:", possibles
print "The real secret mod q was: ", lift_s
if len(possibles) == 1 and possibles[0] == lift_s:

print "Success!"
return True

else:
print "Failure!"
return False

# Run a simulation.
def shebang(fval,qval,sval,numsampsval,numtrials,quickflag=False):

global sig
print "Welcome to the Ring-LWE Attack."
n = fval.degree()
print "The attack should theoretically work if the following quantity is greater than 1."
print "Quantity: ", RDF( qval/( 2*sqrt(2)*sval*n*(qval-1)^( (n-1)/2/n) ) )
timer = Timer()
timer2 = Timer()
timer.start()
print "********** PHASE 1: SETTING UP SYSTEM "
setup_params(fval,qval,sval)
prepare_matrices()
print "Computing the adjustment factor for s."
cembs = (n - len(N.embeddings(RR)))/2
detscale = RP( ( 2^(-cembs)*sqrt(abs(f.discriminant())) )^(1/n) ) # adjust the sigma,s
sval = sval*detscale
sig = sig*detscale
print "Adjusted s for use with this embedding, result is ", sval
initiate_sampler()
print "The sampler has been created with sigma = ", sampler.sigma
print "Sampled vectors will have expected norm ", RDF(sqrt(n)*sampler.sigma)
error_test(5)
print "Time for Phase 1: ", timer.stop()
timer.start()
count_successes = 0
timer2.start()
for trialnum in range(numtrials):

print "*~*~*~*~*~*~*~*~*~*~*~*~* TRIAL NUMBER ", trialnum, "*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~"
print "********** PHASE 2: CREATE SECRET AND SAMPLES"
create_secret()
create_samples(numsampsval)
sanity_check()
print "Time for Phase 2: ", timer.stop()
timer.start()
print "********** PHASE 3: HISTOGRAMS"
histogram_of_errors()
print "The histogram of errors (above) should be clustered at edges for success."
histogram_of_as()
print "The histogram of a’s (above) should be fairly uniform."
histogram_of_errors_2()
print "The histogram of sample errors (above) should be clustered at edges for success."
print "Time for Phase 3: ", timer.stop()
timer.start()
print "********** PHASE 4: ATTACK ALGORITHM"
secret_mod_q()
result = alg2(10000,quickflag)
print "Result of Algorithm 2:", result
print "Time for Phase 4: ", timer.stop()
if result == True:

count_successes = count_successes + 1
print "*~*~*~*~*~*~*~*~*~*~*~*~* ", count_successes, " out of ", trialnum+1, " successes so far. *~*~*~*~*~*"

totaltime = timer2.stop()



print "Total time for ", trialnum+1, "trials was ", totaltime
return count_successes

A.2 Sage code for Algorithm 3

The following Sage Mathematics Software [S] algorithm returns the largest prime q for which
a polynomial f has a root of order m modulo q.

x = PolynomialRing(RationalField(), ’x’).gen()
def findq(f,m):

g = x^m-1
xg = f.xgcd(g)
cofs = xg[2].coefficients()
dens = [ a.denominator() for a in cofs ]
facs = lcm(dens).factor()
return max([fac[0] for fac in facs ])
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