
Programmable Hash Functions go Private:
Constructions and Applications to

(Homomorphic) Signatures
with Shorter Public Keys

Abstract. We introduce the notion of asymmetric programmable hash
functions (APHFs, for short), which adapts Programmable Hash Func-
tions, introduced by Hofheinz and Kiltz at Crypto 2008, with two main
differences. First, an APHF works over bilinear groups, and it is asym-
metric in the sense that, while only secretly computable, it admits an
isomorphic copy which is publicly computable. Second, in addition to
the usual programmability, APHFs may have an alternative property
that we call programmable pseudorandomness. In a nutshell, this prop-
erty states that it is possible to embed a pseudorandom value as part
of the function’s output, akin to a random oracle. In spite of the ap-
parent limitation of being only secretly computable, APHFs turn out
to be surprisingly powerful objects. We show that they can be used to
generically implement both regular and linearly-homomorphic signature
schemes in a simple and elegant way. More importantly, when instantiat-
ing these generic constructions with our concrete realizations of APHFs,
we obtain: (1) the first linearly-homomorphic signature (in the standard
model) whose public key is sub-linear in both the dataset size and the
dimension of the signed vectors; (2) short signatures (in the standard
model) whose public key is shorter than those by Hofheinz-Jager-Kiltz
from Asiacrypt 2011, and essentially the same as those by Yamada, Han-
noka, Kunihiro, (CT-RSA 2012).

1 Introduction

Programmable Hash Functions. Programmable Hash Functions (PHFs)
were introduced by Hofheinz and Kiltz [26] as an information theoretic tool to
“mimic” the behavior of a random oracle in finite groups. In a nutshell, a PHF
H is an efficiently computable function that maps suitable inputs (e.g., binary
strings) into a group G, and can be generated in two different, indistinguish-
able, ways. In the standard modality, H hashes inputs X into group elements
H(X) ∈ G. When generated in trapdoor mode, a trapdoor allows one to ex-
press every output in terms of two (user-specified) elements g, h ∈ G, i.e., one
can compute two integers aX , bX such that H(X) = gaXhbX . Finally, H is pro-
grammable in the sense that it is possible to program the behavior of H so
that its outputs contain (or not) g with a certain probability. More precisely, H
is said (m,n)-programmable if for all disjoint sets of inputs {X1, . . . , Xm} and
{Z1, . . . , Zn}, the joint probability that ∀i, aXi = 0 and ∀j, aZj 6= 0 is signif-
icant (e.g., 1/poly(λ)). Programmability turns out to be particularly useful in
several security proofs. For instance, consider a security proof where a signature
on H(X) can be simulated as long as aX = 0 (i.e., g does not appear) while a
forgery on H(Z) can be successfully used if aZ 6= 0 (i.e., g does appear). Then



one could rely on an (m, 1)-programmability of H to “hope” that all the queried
messages X1, . . . , Xm are simulatable, i.e., ∀i, aXi = 0, while the forgery message
Z is not, i.e., aZ 6= 0. PHFs essentially provide a nice abstraction of the so-called
partitioning technique used in many cryptographic proofs.

1.1 Our Contribution

Asymmetric Programmable Hash Functions. We introduce the notion
of asymmetric programmable hash functions (asymmetric PHFs) which modifies
the original notion of PHFs [26] in two main ways. First, an asymmetric PHF
H maps inputs into a bilinear group G and is only secretly computable. At the
same time, an isomorphic copy of H can be publicly computed in the target group
GT , i.e., anyone can compute e(H(X), g).1 Second, when generated in trapdoor
mode, for two given group elements g, h ∈ G such that h = gz, the trapdoor
allows one to write every H(X) as gcX(z) for a degree-d polynomial cX(z).

We define two main programmability properties of asymmetric PHFs. The
first one is an adaptation of the original programmability notion, and it says
that H is (m,n, d)-programmable if it is (m,n)-programmable as before except
that, instead of looking at the probability that aX = 0, one now looks at whether
cX,0 = 0, where cX,0 is the coefficient of the degree-0 term of the polynomial cX(·)
obtained using the trapdoor.2 The second programmability property is new and
is called programmable pseudo-randomness. Roughly speaking, programmable
pseudo-randomness says that one can program H so that the values gcX,0 look
random to any polynomially-bounded adversary who observes the public hash
key and the outputs of H on a set of adaptively chosen inputs. This functionality
turns out to be useful in security proofs where one needs to cancel some random
values for simulation purposes (we explain this in slightly more detail later in
the introduction). In other words, programmable pseudo-randomness provides
another random-oracle-like property for standard model hash functions, that is
to “hide” a PRF inside the hash function. This is crucial in our security proofs,
and we believe it can have further applications.

Applications. In principle, secretly computable PHFs seem less versatile than
regular PHFs. In this work, however, we show that, for applications such as
digital signatures, asymmetric PHFs turn out to be more powerful than their
publicly computable counterparts. Specifically, we show how to use asymmetric
PHFs to realize both regular and linearly-homomorphic signatures secure in the
standard model. Next, we show efficient realizations of asymmetric PHFs that,
when plugged in our generic constructions, yield new and existing schemes that
improve the state-of-the-art in the following way. First, we obtain the first lin-
early homomorphic signature scheme, secure in the standard model, achieving a
public key which is sub-linear in both the dataset size and the dimension of the
signed vectors. Second, we obtain regular signature schemes, matching the effi-
ciency of the ones in [31], thus providing the shortest signatures in the standard
model with a public key shorter than in [25].

1 Because of such asymmetric behavior we call these functions “asymmetric”.
2 For d = 1, this is basically the same programmability of [26].
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In the following we elaborate more on these solutions.

Linearly-Homomorphic Signatures with Short Public Key in the Stan-
dard Model. Imagine a user Alice stores one or more datasets D1, D2, . . . , D`

on a cloud server. Imagine also that some other user, Bob, is allowed to perform
queries over Alice’s datasets, i.e., to compute one or more functions F1, . . . , Fm
over any Di. The crucial requirement here is that Bob wants to be ensured
about the correctness of the computation’s results Fj(Di), even if the server is
not trusted. An obvious way to do this (reliably) is to ask Alice to sign all her

data Di = m
(i)
1 , . . . ,m

(i)
N . Later, Bob can check the validity of the computa-

tion by (1) downloading the full dataset locally, (2) checking all the signatures
and (3) redoing the computation from scratch. Efficiency-wise, this solution is
clearly undesirable in terms of bandwidth, storage (Bob has to download and
store potentially large amount of data) and computation (Bob has to recompute
everything on his own).

A much better solution comes from the notion of homomorphic signatures
[9]. These allow to overcome the first issue (bandwidth) in a very elegant way.
Using such a scheme, Alice can sign m1, . . . ,mN , thus producing signatures
σ1, . . . , σN , which can be verified exactly as ordinary signatures. In addition, the
homomorphic property provides the extra feature that, given σ1, . . . , σN and
some function F : MN → M, one can compute a signature σF,y on the value
y = F (m1, . . . ,mN ) without knowledge of the secret signing key sk. In other
words, for a set of signed messages and any function F , it is possible to provide
y = F (m1, . . . ,mN ) along with a signature σF,y vouching for the correctness of
y. The security of homomorphic signatures guarantees that creating a signature
σF,y∗ for a y∗ 6= F (m1, . . . ,mN ) is computationally hard, unless one knows sk.

To solve the second issue and allow Bob to verify efficiently such signatures
(i.e., by spending less time than that required to compute F ), one can use ho-
momorphic signatures with efficient verification, recently introduced in [15].

The notion of homomorphic signature was first introduced by Johnson et al.
[28]. Since then several schemes have been proposed. The first schemes were ho-
momorphic only for linear functions over vector spaces [8,19,1,10,13,14,17,2,12,3,30]
and have nice applications to network coding and proofs of retrievability. More
recent works proposed realizations that can support more expressive functional-
ities such as polynomials [9,15] or general circuits of bounded polynomial depth
[21,11].

Despite the significant research work in the area, it is striking that all the
existing homomorphic signature schemes that are proven secure in the standard
model [1,13,14,17,2,3,30,15,21,11] suffer from a public key that is at least linear
in the size N of the signed datasets. On one hand, the cost of storing such large
public key can be, in principle, amortized since the key can be re-used for multiple
datasets. On the other hand, this limitation still represents a challenging open
question from both a theoretical and a practical point of view. From a practical
perspective, a linear public key might be simply unaffordable by a user Bob who
has limited storage capacity. From a theoretical point of view, considered the
state-of-the-art, it seems unclear whether achieving a standard-model scheme
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with a key of length o(N) is possible at all. Technically speaking, indeed, all
these schemes in the standard model somehow rely on a public key as large as
one dataset for simulation purposes. This essentially hints that any solution for
this problem would require a novel proof strategy.

Our Contribution. We solve the above open problem by proposing the first
standard-model homomorphic signature scheme that achieves a public key whose
size is sub-linear in the maximal size N of the supported datasets. Slightly more
in detail, we show how to use asymmetric PHFs in a generic fashion to construct
a linearly-homomorphic signature scheme based on bilinear maps that can sign
datasets, each consisting of up to N vectors of dimension T . The public key of
our scheme mainly consists of the public hash keys of two asymmetric PHFs. By
instantiating these using (one of) our concrete realizations we obtain a linearly-
homomorphic signature with a public key of length O(

√
N +

√
T ). We stress

that ours is also the first linearly-homomorphic scheme where the public key is
sub-linear in the dimension T of the signed vectors. Concretely, if one considers
applications with datasets of 1 million of elements and a security parameter of
128bits, previous solutions (e.g., [14,2]) require a public key of at least 32 MB,
whereas our solution simply works with a public key below 100 KB.

On the Power of Secretly-Computable PHFs. The main technical idea
underlying this result is a new proof technique that builds on asymmetric hash
functions with programmable pseudo-randomness. We illustrate the technique
via a toy example inspired by our linearly-homomorphic signature scheme. The
scheme works over asymmetric bilinear groups G1,G2, and with an asymmetric
PHF H : [N ]→ G1 that has programmable pseudo-randomness w.r.t. d = 1. To
sign a random message M ∈ G1 w.r.t. a label τ , one creates the signature

S = (H(τ) ·M)1/z

where z is the secret key. The signature is linearly-homomorphic – S1S2 =
(H(τ1)H(τ2)M)1/z, for M = M1M2 – and it can be efficiently checked using a
pairing – e(S, gz2) =

∏
i e(H(τi), g2)e(M, g2) – and by relying on that e(H(·), g2)

is publicly computable.
The first interesting thing to note is that having H secretly computable is

necessary: if H is public the scheme could be easily broken, e.g., choose M∗ =
H(τ)−1. Let us now show how to prove its security assuming that we want to
do a reduction to the following assumption: given g1, g2, g

z
2 , the challenge is

to compute W 1/z ∈ G1 for W 6= 1 of adversarial choice. Missing gz1 seems to
make hard the simulation of signatures since M,S ∈ G1. However, we can use
the trapdoor generation of H for d = 1 (that for asymmetric pairings takes

g1, h1 = gy11 , g2, h2 = gy22 and allows to express H(X) = g
cX(y1,y2)
1 ), by plugging

h1 = 1, h2 = gz2 . This allows to write every output as H(τ) = g
cτ (z)
1 = g

cτ,0+cτ,1z
1 .

Every signing query with label τ is simulated by setting Mτ = g−cτ,0 and Sτ =
(g
cτ,1
1 ). The signature is correctly distributed since (1) Sτ = (H(τ) ·Mτ )1/z, and

(2) Mτ looks random thanks to the programmable pseudo-randomness of H. To
conclude the proof, assume that the adversary comes up with a forgery M∗, S∗
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for label τ∗ such that τ∗ was already queried, and let Ŝ, M̂ be the values in
the simulation of the signing query for τ∗. Now, Ŝ = (H(τ∗) · M̂)1/z holds by
correctness, while S∗ = (H(τ∗) · M∗)1/z holds for M∗ 6= M̂ by definition of
forgery. Then (M∗/M̂, S∗/Ŝ) is clearly a solution to the above assumption. This
essentially shows that we can sign as many M ’s as the number of τ ’s, that is N .
And by using our construction H = Hsqrt this is achievable with a key of length

O(
√
N). Let us stress that the above one is an incomplete proof sketch, that we

give only to illustrate the core ideas of using programmable pseudo-randomness.
We defer the reader to Section 4 for a precise description of our signature scheme
and its security proof.

Short Signatures from Bilinear Maps in the Standard Model. Hofheinz
and Kiltz [26] proposed efficient realizations of PHFs, and showed how to use
them to obtain black-box proofs of several cryptographic primitives. Among
these applications, they use PHFs to build generic, standard-model, signature
schemes from the Strong RSA problem and the Strong q-Diffie Hellman prob-
lem. Somewhat interestingly, these schemes (in particular the ones over bilinear
groups) can enjoy very short signatures. The remarkable contribution of the
generic construction in [26] is that signatures can be made short by reducing the
size ρ of the randomness used (and included) in the signature so that ρ can go
beyond the birthday bound. Precisely, by using an (m, 1)-programmable hash
function, m can control the size of the randomness so that the larger is m, the
smaller is the randomness. However, although this would call for (m, 1)-PHFs
with a large m, the original work [26] described PHFs realizations that are only
(2, 1)-programmable.3

Later, Hofheinz, Jager and Kiltz [25] showed constructions of (m, 1)-PHFs
for any m ≥ 1. By choosing a larger m, these new PHFs realizations yield the
shortest known signatures in the standard model. On the negative side, however,
this also induces much larger public keys. For instance, to obtain a signature of
302 bits from bilinear maps, they need a public key of more than 8MB. The rea-
son of such inefficiency is that their realizations of (deterministic) (m, 1)-PHFs
have keys of length O(m2`), where ` is the bit size of the inputs. In a subse-
quent work, Yamada et al. [31] improved on this aspect by proposing a signature
scheme with a public key of length O(m

√
`). Their solution followed a different

approach: instead of relying on (m, 1)-PHFs they obtained the signature by ap-
plying the Naor’s transformation [7] to a new identity-based key encapsulation
mechanism (IBKEM).

Our Results. Our results are mainly two. First, we revisit the generic signature
constructions of [26,25] in order to work with asymmetric (m, 1, d)-PHFs. Our
generic construction is very similar to that in [26,25], and, as such, it inherits
the same property: the larger is m, the shorter can be the randomness.

Second we show the construction of an asymmetric PHF, Hacfs, that is (m, 1, 2)-
programmable and has a hash key consisting of O(m

√
`) group elements. By

plugging Hacfs into our generic construction we immediately obtain standard-

3 [26] gives also a (1, poly)-programmable PHF which allows for different applications.
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model signatures that achieve the same efficiency as the scheme of Yamada et
al. [31]. Namely, they are the shortest standard model signature schemes with
a public key of length O(m

√
`), that concretely allows for signatures of 302bits

and a public key of 50KB. One of our two schemes recover the one in [31]. In
this sense we provide a different conceptual approach to construct such signa-
tures. While Yamada et al. obtained this result by going through an IBKEM,
our solution revisits the original Hofheinz-Kiltz’s idea of applying programmable
functions.

Other Related Work. Hanaoka, Matsuda and Schuldt [23] show that there
cannot be any black-box construction of a (poly, 1)-PHF. The latter result has
been overcome by the recent work of Freire et al. [18] who propose a (poly, 1)-
PHF based on multilinear maps. The latter result is obtained by slightly chang-
ing the definition of PHFs in order to work in the multilinear group setting.
Their (poly, 1)-PHF leads to several applications, notably standard-model ver-
sions (over multilinear groups) of BLS signatures, the Boneh-Franklin IBE, and
identity-based non-interactive key-exchange. While the notion of PHFs in the
multilinear setting of [18] is different from our asymmetric PHFs (with the main
difference being that ours are secretly computable), it is worth noting that the
two notions have some relation. As we discuss in the full version of our paper , our
asymmetric PHFs indeed imply PHFs in the bilinear setting (though carrying
the same degree of programmability).

The idea of using bilinear maps to reduce the size of public keys was used
previously by Haralambiev et al. [24] in the context of public-key encryption,
and by Yamada et al. [31] in the context of digital signatures. We note that our
solutions use a similar approach in the construction of APHFs, which however
also include the important novelty of programmable pseudorandomness, that
turned out to be crucial in our proofs for the linearly-homomorphic signature.

2 Preliminaries

Bilinear Groups and Complexity Assumptions. Let λ ∈ N be a security
parameter and let G(1λ) be an algorithm which takes as input the security
parameter and outputs the description of (asymmetric) bilinear groups bgp =
(p,G1,G2,GT , e, g1, g2) where G1, G2 and GT are groups of the same prime order
p > 2λ, g1 ∈ G1 and g2 ∈ G2 are two generators, and e : G1 × G2 → GT is an
efficiently computable, non-degenerate, bilinear map, and there is no efficiently
computable isomorphism between G1 and G2. We call such an algorithm G a
bilinear group generator. In the case G1 = G2, the groups are said symmetric,
else they are said asymmetric.

In our work we rely on specific complexity assumptions in such bilinear
groups: q-Strong Diffie-Hellman [6], q-Diffie-Hellman-Inversion [5], and External
DDH in G1. For lack of space, we defer the interested reader to the corresponding
references or the full version of our paper for their definition.

Finally, we introduce the following static assumption over asymmetric bi-
linear groups, that we call “Flexible Diffie-Hellman Inversion” (FDHI) for its
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similarity to Flexible Diffie-Hellman [22]. As we discuss in the full version of our
paper , FDHI is hard in the generic bilinear group model.

Definition 1 (Flexible Diffie-Hellman Inversion Assumption). Let G be
a generator of asymmetric bilinear groups, and let bgp = (p,G1,G2,GT , g1, g2, e)
$← G(1λ). We say that the Flexible Diffie-Hellman Inversion (FDHI) Assumption

is ε-hard for G if for random z, r, v
$← Zp and for every PPT adversary A:

AdvFDHIA (λ) = Pr[W ∈ G1 \ {1G1} : (W,W
1
z )←A(g1, g2, g

z
2 , g

v
2 , g

z
v
1 , g

r
1, g

r
v
1 )] ≤ ε

3 Asymmetric Programmable Hash Functions

In this section we present our new notion of asymmetric programmable hash
functions.

Let bgp = (p,G1,G2,GT , g1, g2, e) be a family of asymmetric bilinear groups
induced by a bilinear group generator G(1λ) for a security parameter λ ∈ N.4 An
asymmetric group hash function H : X → G1 consists of three PPT algorithms
(H.Gen,H.PriEval,H.PubEval) working as follows:

H.Gen(1λ, bgp)→ (sek, pek): on input the security parameter λ ∈ N and a bi-
linear group description bgp, the PPT key generation algorithm outputs a
(secret) evaluation key sek and a (public) evaluation key pek.

H.PriEval(sek, X)→ Y ∈ G1: given the secret evaluation key sek and an input
X ∈ X , the deterministic evaluation algorithm returns an output Y =
H(X) ∈ G1.

H.PubEval(pek, X)→ Ŷ ∈ GT : on input the public evaluation key pek and an
input X ∈ X , the public evaluation algorithm outputs a value Ŷ ∈ GT such
that Ŷ = e(H(X), g2).

For asymmetric hash functions satisfying the syntax described above, we
define two different properties that model their possible programmability.

The first property is a generalization of the notion of programmable hash
functions of [26,27] to our asymmetric setting (i.e., where the function is only
secretly-computatble), and to the more specific setting of bilinear groups. The
basic idea is that it is possible to generate the function in a trapdoor-mode
that allows one to express every output of H in relation to some specified group
elements. In particular, the most useful fact of programmability is that for two
arbitrary disjoint sets of inputs X̄, Z̄ ⊂ X , the joint probability that some of
these group elements appear in H(Z),∀Z ∈ Z̄ and do not appear in H(X),∀X ∈
X̄ is significant.

Definition 2 (Asymmetric Programmable Hash Functions). An asym-
metric group hash function H = (H.Gen,H.PriEval,H.PubEval) is (m,n, d, γ, δ)-
programmable if there exist an efficient trapdoor generation algorithm H.TrapGen
and an efficient trapdoor evaluation algorithm H.TrapEval such that:

4 Our definition can be easily adapted to work in symmetric bilinear groups where
G1 = G2.
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Syntax: H.TrapGen(1λ, bgp, ĝ1, ĥ1, ĝ2, ĥ2) → (td, pek) takes as input the secu-

rity parameter λ, bilinear group description bgp and group elements ĝ1, ĥ1 ∈
G1, ĝ2, ĥ2 ∈ G2, and it generates a public hash key pek along with a trap-
door td. H.TrapEval(td, X) → cX takes as input the trapdoor information
td and an input X ∈ X , and outputs a vector of integer coefficients cX =
(c0, . . . , cd′) ∈ Zd′ of a 2-variate polynomial cX(y1, y2) of degree ≤ d.

Correctness: For all group elements ĝ1, ĥ1 ∈ G1, ĝ2, ĥ2 ∈ G2 such that ĥ1 =

ĝy11 and ĥ2 = ĝy22 for some y1, y2 ∈ Zp, for all trapdoor keys (td, pek)
$←

H.TrapGen(1λ, ĝ1, ĥ1, ĝ2, ĥ2), and for all inputs X ∈ X , if cX ← H.TrapEval(td,
X), then

H(X) = ĝ
cX(y1,y2)
1

Statistically-close trapdoor keys: For all generators ĝ1, ĥ1 ∈ G1, ĝ2, ĥ2 ∈
G2 and for all (sek, pek)

$← H.Gen(1λ), (td, pek′)
$← H.TrapGen(1λ, ĝ1, ĥ1,

ĝ2, ĥ2), the distribution of the public keys pek and pek′ is within statistical
distance γ.

Well distributed logarithms: For all ĝ1, ĥ1 ∈ G1, ĝ2, ĥ2 ∈ G2, all keys

(td, pek)
$← H.TrapGen(1λ, ĝ1, ĥ1, ĝ2, ĥ2), and all inputs X1, . . . , Xm ∈ X

and Z1, . . . , Zn ∈ X such that Xi 6= Zj for all i, j, we have

Pr[cX1,0 = · · · = cXm,0 = 0 ∧ cZ1,0, . . . , cZn,0 6= 0] ≥ δ

where cXi←H.TrapEval(td, Xi) and cZj←H.TrapEval(td, Zj), and cXi,0 (resp.
cZj ,0) is the coefficient of the term of degree 0.

If γ is negligible and δ is noticeable we simply say that H is (m,n, d)-programmable.
Furthermore, if m (resp. n) is an arbitrary polynomial in λ, then we say that H
is (poly, n, d)-programmable (resp. (m, poly, d)-programmable). Finally, if H ad-
mits trapdoor algorithms that satisfy only the first three properties, then H is said
simply (d, γ)-programmable. Note that any H that is (m,n, d, γ, δ)-programmable
is also (d, γ)-programmable.

Programmable Pseudo-randomness. The second main programmability
property that we define for asymmetric hash functions is quite different from
the previous one. It is called programmable pseudo-randomness, and very intu-
itively it says that, when using the hash function in trapdoor mode, it is possible
to “embed” a PRF into it. More precisely, the trapdoor algorithms satisfy pro-
grammable pseudo-randomness if they allow to generate keys such that even by
observing pek and H(X) for a bunch of inputs X, then the elements g

cX,0
1 look

random. The formal definition follows:

Definition 3 (Asymmetric Hash Functions with Programmable Pseu-
dorandomness). An asymmetric hash function H = (H.Gen,H.PriEval,H.PubEval)
has (d, γ, ε)-programmable pseudorandomness if there exist efficient trapdoor al-
gorithms H.TrapGen,H.TrapEval that satisfy the properties of syntax, correctness,
and γ-statistically-close trapdoor keys as in Definition 2, and additionally satisfy
the following property with parameter ε:
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Pseudorandomness: Let b ∈ {0, 1} and let ExpPRH-b
A,H (λ) be the following ex-

periment between an adversary A and a challenger.

1. Generate bgp
$← G(1λ), and run A(bgp), that outputs two generators

h1 ∈ G1, h2 ∈ G2.

2. Compute (td, pek)
$← H.TrapGen(1λ, g1, h1, g2, h2) and run A(pek) with

access to the following oracle:
– If b = 0, A is given O(·) that on input X ∈ X returns H(X) =

g
cX(y1,y2)
1 and g

cX,0
1 , where cX←H.TrapEval(td, X);

– If b = 1, A is given R(·) that on input X ∈ X returns H(X) =

g
cX(y1,y2)
1 and grX1 , for a randomly chosen rX

$← Zp (which is unique
for every X ∈ X ).

3. At the end the adversary outputs a bit b′, and b′ is returned as the output
of the experiment.

Then we say that H.TrapGen,H.TrapEval satisfy pseudo-randomness for ε, if
for all PPT A∣∣∣Pr[ExpPRH-0

A,H (λ) = 1]− Pr[ExpPRH-1
A,H (λ) = 1]

∣∣∣ ≤ ε
where the probabilities are taken over all the random choices of TrapGen, the
oracle R and the adversary A.

Other variants of programmability. Here we define two other variants of
the programmability notion given in Definition 2. Formal definitions appear in
the full version of our paper.

Weak Programmability. We consider a weak version of the above pro-
grammability property in which one fixes at key generation time the n inputs
Zj on which cZj ,0 6= 0.

Remark 1. We remark that for those (deterministic) functions H whose domain
X has polynomial size any weak programmability property for an arbitrary m =
poly trivially holds with δ = 1.

Degree-d Programmability. In our work we also consider a variant of
the above definition in which the property of well distributed logarithms is
stated with respect to the degree-d coefficients of the polynomials generated by
H.TrapEval. In this case, we say that H is (m,n, d, γ, δ)-degree-d-programmable.

3.1 An Asymmetric PHF based on Cover-Free Sets

In this section we present the construction of an asymmetric hash function,
Hacfs, based on cover-free sets. Our construction uses ideas similar to the ones
used by Hofheinz, Jager and Kiltz [25] to design a (regular) programmable hash
function. Our construction extends these ideas with a technique that allows us
to obtain a much shorter public key. Concretely, for binary inputs of size `, the
programmable hash function Hcfs in [25] is (m, 1)-programmable with a hash key
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of length O(`m2). In contrast, our new construction Hacfs is (m, 1)-programmable
with a hash key of length O(m

√
`). While such improvement is obtained at the

price of obtaining the function in the secret-key model, our results of Section 5
show that asymmetric programmable hash are still useful to build short bilinear-
map signatures, whose efficiency, in terms of signature’s and key’s length matches
that of state-of-the-art schemes [31].

Before proceeding with describing our function, below we recall the notion
of cover-free sets.

Cover-Free Families. If S, V are sets, we say that S does not cover V if
S 6⊇ V . Let T,m, s be positive integers, and let F = {Fi}i∈[s] be a family of
subsets of [T ]. A family F is said to be m-cover-free over [T ], if for any subset
I ⊆ [s] of cardinality at most m, then the union ∪i∈IFi does not cover Fj for
all j /∈ I. More formally, for any I ⊆ [s] such that |I| ≤ m, and any j /∈ I,
∪i∈IFi 6⊇ Fj . Furthermore, we say that F is w-uniform if every subset Fi in the
family have size w. In our construction, we use the following fact from [16,29]:

Lemma 1 ([16,29]). There is a deterministic polynomial time algorithm that,
on input integers s = 2` and m, returns w, T, F where F = {Fi}i∈[s] is a w-
uniform, m-cover-free family over [T ], for w = T/4m and T ≤ 16m2`.

The Construction of Hacfs. Let G(1λ) be a bilinear group generator, let
bgp = (p,G1,G2,GT , g1, g2, e) be an instance of bilinear group parameters gen-
erated by G. Let ` = `(λ) and m = m(λ) be two polynomials in the security
parameter. We set s = 2`, T = 16m2`, and w = T/4m as for Lemma 1, and
define t = d

√
T e. Note that every integer k ∈ [T ] can be written as a pair of

integers (i, j) ∈ [t]× [t] using some canonical mapping. For the sake of simplicity,
sometimes we abuse notation and write (i, j) ∈ [T ] where i, j ∈ [t].

In the following we describe the asymmetric hash function Hacfs = (H.Gen,
H.PriEval,H.PubEval) that maps Hacfs : X → G1 where X = {0, 1}`. In particular,
every input X ∈ {0, 1}` is associated to a set Fi, i ∈ [2`], by interpreting X as
an integer in {0, . . . , 2` − 1} and by setting i = X + 1. We call FX such subset
associated to X.

H.Gen(1λ, bgp): for i = 1 to t, sample αi, βi
$← Zp and compute Ai = gαi1 , Bi =

gβi2 . Finally, set sek = {αi, βi}ti=1, pek = {Ai, Bi}ti=1, and return (sek, pek).
H.PriEval(sek, X): first, compute the subset FX ⊆ [T ] associated to X ∈ {0, 1}`,

and then return

Y = g

∑
(i,j)∈FX

αiβj

1 ∈ G1

H.PubEval(pek, X): let FX ⊆ [T ] be the subset associated to X, and compute

Ŷ =
∏

(i,j)∈FX

e(Ai, Bj) = e(H(X), g2)

Theorem 1. Let G be a bilinear group generator. The hash function Hacfs de-
scribed above is an asymmetric (m,n, d, γ, δ)-programmable hash function with
n = 1, d = 2, γ = 0 and δ = 1/T .
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We show a proof sketch by giving the description of the trapdoor algorithms.
A full proof showing that these algorithms satisfy the desired programmability
property appears in the full version.

H.TrapGen(1λ, bgp, ĝ1, ĥ1, ĝ2, ĥ2): first, sample ai, bi
$← Zp for all i ∈ [t], and

pick a random index τ
$← [T ]. Parse τ = (i∗, j∗) ∈ [t] × [t]. Next, set Ai∗ =

ĝ1ĥ
ai∗
1 , Bj∗ = ĝ2ĥ

bj∗
2 , Ai = ĥai1 , ∀i 6= i∗, and Bj = ĥ

bj
2 , ∀j 6= j∗. Finally, set

td = (τ, {ai, bi}ti=1), pek = {Ai, Bi}ti=1, and output (td, pek).
H.TrapEval(td, X): first, compute the subset FX ⊆ [T ] associated to X ∈ {0, 1}`,

and then return the coefficients of the degree-2 polynomial cX(y1, y2) =∑
(i,j)∈FX αi(y1) · βj(y2), where every αi(y1) (resp. βj(y2)) is the discrete

logarithm of Ai (resp. Bj) in base ĝ1 (resp. ĝ2), viewed as a degree-1 poly-
nomial in the unknown y1 (resp. y2).

3.2 An Asymmetric PHF with Small Domain

In this section, we present the construction of an asymmetric hash function, Hsqrt,

whose domain is of polynomial size T . Hsqrt has a public key of length O(
√
T ),

and it turns out to be very important for obtaining our linearly-homomorphic
signature scheme with short public key presented in Section 4. Somewhat inter-
estingly, we show that this new function Hsqrt satisfies several programmability
properties, that make it useful in the context of various security proofs.

Let G(1λ) be a bilinear group generator, let T = poly(λ) and t = d
√
T e. The

hash function Hsqrt = (H.Gen,H.PriEval,H.PubEval) that maps Hsqrt : X → G1

with X = [T ] is defined as follows.

H.Gen(1λ, bgp): for i = 1 to t, sample αi, βi
$← Zp and compute Ai = gαi1 , Bi =

gβi2 . Finally, set sek = {αi, βi}ti=1, pek = {Ai, Bi}ti=1, and return(sek, pek).
H.PriEval(sek, X): first, write X ∈ [T ] as a pair of integer (i, j) ∈ [t] × [t], and

then return
Y = g

αiβj
1 ∈ G1

H.PubEval(pek, X): let X = (i, j). The public evaluation algorithm returns

Ŷ = e(Ai, Bj) = e(H(X), g2)

Here we show that Hsqrt satisfies the programmable pseudo-randomness prop-
erty of Definition 3.

Theorem 2 (Programmable Pseudorandomness of Hsqrt). Let G1 be a
bilinear group of order p over which the XDDH assumption is ε′-hard. Then the
asymmetric hash function Hsqrt described above satisfies (2, 0, ε)-programmable
pseudo-randomness with ε = T · ε′. Furthermore, in the case when h1 = 1 ∈ G1

or h1 = g1, Hsqrt has (1, 0, ε)-programmable pseudo-randomness.

Proof. First, we describe the trapdoor algorithms:
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H.TrapGen(1λ, g1, h1, g2, h2): first, sample ai, ri, si, bi
$← Zp for all i ∈ [t] and

then set Ai = hri1 g
ai
1 , Bi = hsi2 g

bi
2 . Finally, set td = ({ai, ri, si, bi}ti=1), pek =

{Ai, Bi}ti=1, and output (td, pek).
H.TrapEval(td, X): let X = (i, j), and then return the coefficients of the degree-2

polynomial
cX(y1, y2) = (y1ri + ai)(y2sj + bj)

First, it is easy to see that the two algorithms satisfy the syntax and correctness
properties. Also, in the case h1 = 1 (i.e., y1 = 0) or h1 = g1 (i.e., y1 = 1), we
obtain a degree-1 polynomial cX(y2). Second, observe that each element Ai (resp.
Bi) in pek is a uniformly distributed group element in G1 (resp. G2), as in H.Gen,
hence γ = 0. Third, we show that the function satisfies the pseudo-randomness
property under the assumption that XDDH holds in G1. The main observation
is that for every X = (i, j), we have cX,0 = aibj where all the values bi are
uniformly distributed and information-theoretically hidden to an adversary who
only sees pek. In particular, this holds even if h1 = 1.

To prove the pseudo-randomness we make use of Lemma 2 below, which

shows that for a uniformly random choice of a, b
$← Ztp, c

$← Zt×tp the dis-

tributions (ga1 , g
a·b>
1 ) ∈ Gt×(t+1)

1 and (ga1 , g
c
1) ∈ Gt×(t+1)

1 are computationally
indistinguishable.

Lemma 2. Let a, b
$← Ztp, c

$← Zt×tp be chosen uniformly at random. If the

XDDH assumption is ε′-hard in G1, then for any PPT B it holds |Pr[B(ga1 , g
a·b>
1 )

= 1]− Pr[B(ga1 , g
c
1) = 1]| ≤ T · ε′.

We first show how to use Lemma 2 to prove that Hsqrt has programmable
pseudo-randomness. The proof of Lemma 2 appears in the full version.

Let A be an adversary that breaks the ε-programmable pseudo-randomness
of Hsqrt. We construct a simulator B that can distinguish the two distributions

(ga1 , g
a·b>
1 ) and (ga1 , g

c
1) described above with advantage greater than ε.

B’s input is a tuple (A′, C) ∈ Gt1 ×Gt×t1 and its goal is to decide about the
distribution of C. First, B runs A(bgp) which outputs the generators h1, h2. B
then samples two random vectors r,β

$← Ztp, computes B = gβ2 ∈ Gt2, A =
hr1 ·A′ ∈ Gt1, sets pek = (A,B), and runs A(pek) Next, for every oracle query

(i, j) made by A, B simulates the answer by returning to A: H(i, j) = A
βj
i and

Ci,j . It is easy to see that if C = ga·b
>

1 then B is perfectly simulating ExpPRH-0
A,Hsqrt

,

otherwise, if C is random and independent, then B is simulating ExpPRH-1
A,Hsqrt

. As
a final note, we observe that the above proof works even in the case h1 = 1. ut

In the following theorems (whose proofs appear in the full version of our
paper) we show that Hsqrt satisfies programmability with various parameters.

Theorem 3 ((poly, 0, 2)-programmability of Hsqrt). The asymmetric hash
function Hsqrt described above is (poly, 0, d, γ, δ)-programmable with d = 2, γ = 0

and δ = 1. Furthermore, in the case when either ĥ1 = ĝ1 or ĥ2 = ĝ2, Hsqrt is
(poly, 0, d, γ, δ)-programmable with d = 1, γ = 0 and δ = 1.
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Theorem 4 (Weak (poly, 1, 2)-programmability of Hsqrt). The asymmetric
hash function Hsqrt described above is weakly (poly, 1, d, γ, δ)-programmable with
d = 2, γ = 0 and δ = 1.

Theorem 5 (Weak (poly, 1, 2)-degree-2-programmability of Hsqrt). The
asymmetric hash function Hsqrt described above is weakly (poly, 1, d, γ, δ)-degree-2
programmable with d = 2, γ = 0 and δ = 1.

4 Linearly-Homomorphic Signatures with Short Public
Keys

In this section, we show a new linearly-homomorphic signature scheme that
uses asymmetric PHFs in a generic way. By instantiating the asymmetric PHFs
with our construction Hsqrt given in Section 3, we obtain the first linearly-
homomorphic signature scheme that is secure in the standard model, and whose
public key has a size that is sub-linear in both the dataset size and the dimen-
sion of the signed vectors. Precisely, if the signature scheme supports datasets
of maximal size N and can sign vectors of dimension T , then the public key of
our scheme is of size O(

√
N +

√
T ). All previously existing constructions in the

standard model achieved only public keys of length O(N +T ). Furthermore, our
scheme is adaptive secure and achieves the interesting property of efficient ver-
ification that allows to use the scheme for verifiable delegation of computation
in the preprocessing model [15].

4.1 Homomorphic Signatures for Multi-Labeled Programs

First we recall the definition of homomorphic signatures as presented in [15].
This definition extends the one by Freeman in [17] in order to work with the
general notion of multi-labeled programs [20,4].

Multi-Labeled Programs. A labeled program P is a tuple (f, τ1, ..., τn) such
that f :Mn →M is a function of n variables (e.g., a circuit) and τi ∈ {0, 1}∗ is
a label of the i-th input of f . Given P1, . . . ,Pt and a function g :Mt →M, the
composed program is P∗ = g(P1, . . . ,Pt). The labeled inputs of P∗ are all the
distinct labeled inputs of P1, . . . ,Pt. Let fid :M→M be the identity function
and τ ∈ {0, 1}∗ be any label. We refer to Iτ = (fid, τ) as the identity program
with label τ . Note that a program P = (f, τ1, · · · , τn) can be expressed as the
composition of n identity programs P = f(Iτ1 , · · · , Iτ1).

A multi-labeled program P∆ is a pair (P, ∆) in which P = (f, τ1, · · · , τn) is
a labeled program while ∆ ∈ {0, 1}∗ is a data set identifier. Given (P1, ∆), . . . ,
(Pt, ∆) which have the same data set identifier ∆, and given a function g :
Mt → M, the composed multi-labeled program P∗∆ is the pair (P∗, ∆) where
P∗ = g(P1, · · · ,Pt), and ∆ is the common data set identifier for all the Pi.
As for labeled programs, one can define the notion of a multi-labeled identity
program as I(∆,τ) = ((fid, τ), ∆) .
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Definition 4 (Homomorphic Signatures). A homomorphic signature scheme
HSig consists of a tuple of PPT algorithms (KeyGen,Sign,Ver,Eval) satisfying
the following four properties: authentication correctness, evaluation correctness,
succinctness and security.

KeyGen(1λ,L) the key generation algorithm takes as input a security parameter
λ, the description of the label space L (which fixes the maximum data set
size N), and outputs a public key vk and a secret key sk. The public key vk
defines implicitly a message space M and a set F of admissible functions.

Sign(sk, ∆, τ,m) the signing algorithm takes as input a secret key sk, a data set
identifier ∆, a label τ ∈ L a message m ∈M, and it outputs a signature σ.

Ver(vk,P∆,m, σ) the verification algorithm takes as input a public key vk, a
multi-labeled program P∆ = ((f, τ1, . . . , τn), ∆) with f ∈ F , a message m ∈
M, and a signature σ. It outputs either 0 (reject) or 1 (accept).

Eval(vk, f,σ) the evaluation algorithm takes as input a public vk, a function
f ∈ F and a tuple of signatures {σi}ni=1 (assuming that f takes n inputs).
It outputs a new signature σ.

Authentication Correctness. The scheme HSig satisfies the authentica-
tion correctness property if for a given label space L, all key pairs (sk, vk) ←
KeyGen(1λ,L), any label τ ∈ L, data identifier ∆ ∈ {0, 1}∗, and any signa-
ture σ ← Sign(sk, ∆, τ,m), Ver(vk, I∆,τ ,m, σ) outputs 1 with all but negligible
probability.

Evaluation Correctness. Fix a key pair (vk, sk)
$← KeyGen(1λ,L), a func-

tion g : Mt →M, and any set of program/message/signature triples {(Pi,mi,
σi)}ti=1 such that Ver(vk,Pi,mi, σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,
Pt), and σ∗ = Eval(vk, g, (σ1, . . . , σt)), then Ver(vk,P∗,m∗, σ∗) = 1 holds with
all but negligible probability.

Succintness. A homomorphic signature scheme is said to be succint if, for a
fixed security parameter λ, the size of signatures depends at most logarithmically
on the data set size N .

Security. To define the security notion of homomorphic signatures we define
the following experiment HomUF-CMAA,HomSign(λ) between an adversary A and
a challenger C:

Key Generation C runs (vk, sk)
$← KeyGen(1λ,L) and gives vk to A.

Signing Queries A can adaptively submit queries of the form (∆, τ,m), where
∆ is a data set identifier, τ ∈ L, and m ∈ M. The challenger C proceeds
as follows: if (∆, τ,m) is the first query with the data set identifier ∆, the
challenger initializes an empty list T∆ = ∅ for ∆. If T∆ does not already

contain a tuple (τ, ·) the challenger C computes σ
$← Sign(sk, ∆, τ,m), returns

σ to A and updates the list T∆ ← T∆ ∪ (τ,m). If (τ,m) ∈ T∆ then C replies
with the same signature generated before. If T∆ contains a tuple (τ,m′) for
some message m′ 6= m, then the challenger ignores the query.

Forgery At the end A outputs a tuple (P∗∆∗ ,m∗, σ∗).
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The experiment HomUF-CMAA,HomSign(λ) outputs 1 if the tuple returned by
A is a forgery, and 0 otherwise. To define what is a forgery in such a game we
recall the notion of well defined program with respect to a list T∆ [15].

Definition 5. A labeled program P∗ = (f∗, τ∗1 , . . . , τ
∗
n) is well defined with re-

spect to T∆∗ if ∃ m1, . . . ,mn s.t. (τ∗i ,mi) ∈ T∆∗ ∀i = 1, . . . , n, or if ∃ i ∈
{1, · · · , n} s.t. (τi, ·) /∈ T∆∗ and f∗({mj}(τj ,mj)∈T∆∗ ∪ {m̃(τj ,·)/∈T∆∗}) does not
change for all possible choices of m̃j ∈M.

Using this notion, it is then possible to define the three different types of
forgeries that can occur in the experiment HomUF-CMA:

Type 1: Ver(vk,P∗∆∗ ,m∗, σ∗) = 1 and T∆∗ was not initialized in the game
Type 2: Ver(vk,P∗∆∗ ,m∗, σ∗) = 1, P∗ is well defined w.r.t. T∆∗ and m∗ 6=

f∗({mj}(τj ,mj)∈T∆∗ )
Type 3: Ver(vk,P∗∆∗ ,m∗, σ∗) = 1 and P∗ is not well defined w.r.t. T∆∗ .

Then we say that HSig is a secure homomorphic signature if for any PPT
adversary A, we have that Pr[HomUF-CMAA,HomSign(λ) = 1] ≤ ε(λ) where ε(λ)
is a negligible function.

Finally, we recall that, as proved by Freeman in [17], in a linearly-homomorphic
signature scheme any adversary who outputs a Type 3 forgery can be converted
into one that outputs a Type 2 forgery.

Homomorphic Signatures with Efficient Verification. We recall the no-
tion of homomorphic signatures with efficient verification introduced and for-
mally defined in [15]. Informally, the property states that the verification algo-
rithm can be split in two phases: an offline phase where, given the verification key
vk and a labeled program P, one precomputes a concise key vkP ; an online phase
in which vkP can be used to verify signatures w.r.t. P and any dataset ∆. To
achieve (amortized) efficiency, the idea is that vkP can be reused an unbounded
number of times, and online verification is cheaper than running P.

4.2 Our Construction

Let Σ′ = (KeyGen′,Sign′,Ver′) be a regular signature scheme, and F : K ×
{0, 1}∗ → Zp be a pseudorandom function with key space K. Our linearly-
homomorphic signature scheme signs T -dimensional vectors of messages in Zp,
and supports datasets of size N , with both N = poly(λ) and T = poly(λ). Let
H = (H.Gen,H.PriEval,H.PubEval) and H′ = (H.Gen′,H.PriEval′,H.PubEval′) be
two asymmetric programmable hash functions such that H : [N ] → G1 and
H′ : [T ] → G1. We construct a homomorphic signature HSig = (KeyGen,Sign,
Ver,Eval) as follows:

KeyGen(1λ,L, T ). Let λ be the security parameter, L be a set of admissible labels
where L = {1, . . . , N}, and T be an integer representing the dimension of
the vectors to be signed. The key generation algorithm works as follows.

– Generate a key pair (vk′, sk′)
$← KeyGen′(1λ) for the regular scheme.
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– Run bgp
$← G(1λ) to generate the bilinear groups parameters bgp =

(p,G1,G2,GT , g1, g2, e).
– Choose a random seed K

$← K for the PRF FK : {0, 1}∗ → Zp.
– Run (sek, pek)

$← H.Gen(1λ, bgp) and (sek′, pek′)
$← H.Gen′(1λ, bgp) to

generate the keys of the asymmetric hash functions.
– Return vk = (vk′, bgp, pek, pek′) and sk = (sk′,K, sek, sek′).

Sign(sk, ∆, τ,m). The signing algorithm takes as input the secret key sk, a data
set identifier ∆ ∈ {0, 1}∗, a label τ ∈ [N ] and a message vector m ∈ ZTp ,
and proceeds as follows:
1. Derive the integer z ← FK(∆) using the PRF, and compute Z = gz2 .
2. Compute σ∆ ← Sign′(sk′, ∆|Z) to bind Z to the dataset identifier ∆.

3. Choose a random R
$← G1 and compute

S =

H.PriEval(sek, τ) ·R ·
T∏
j=1

H.PriEval′(sek′, j)mj

1/z

4. Return a signature σ = (σ∆, Z,R, S).
Essentially, the algorithm consists of two main steps. First, it uses the PRF
FK to derive a common parameter z which is related to the data set ∆,
and it signs the public part, Z = gz2 , of this parameter using the signature
scheme Σ′. Second, it uses z to create the homomorphic component R,S of
the signature, such that S is now related to all (∆, τ,m).

Eval(vk, f,σ). The public evaluation algorithm takes as input the public key
vk, a linear function f : Z`p → Zp described by its vector of coefficients
f = (f1, . . . , f`), and a vector σ of ` signatures σ1, . . . , σ` where σi =
(σ∆,i, Zi, Ri, Si) for i = 1, . . . , `. Eval returns a signature σ = (σ∆, , Z,R, S)
that is obtained by setting Z = Z1, σ∆ = σ∆,1, and by computing

R =
∏̀
i=1

Rfii , S =
∏̀
i=1

Sfii

Ver(vk,P∆,m, σ). Let P∆ = ((f, τ1, . . . , τ`), ∆) be a multi-labeled program such
that f : Z`p → Zp is a linear function described by coefficients f = (f1, . . . , f`).

Let m ∈ ZTp be a message-vector and σ = (σ∆, Z,R, S) be a signature.

First, run Ver′(vk′, ∆|Z, σ∆) to check that σ∆ is a valid signature for Z and
the dataset identifier ∆ taken as input by the verification algorithm. If σ∆
is not valid, stop and return 0 (reject).
Otherwise, output 1 if and only if the following equation is satisfied

e(S,Z) =

(∏̀
i=1

H.PubEval(pek, τi)
fi

)
·e(R, g2) ·

 T∏
j=1

H.PubEval′(pek′, j)mj


Finally, we describe the algorithms for efficient verification:
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VerPrep(vk,P). Let P = (f, τ1, . . . , τ`) be a labeled program for a linear function

f : Z`p → Zp. The algorithm computes H =
∏`
i=1 H.PubEval(pek, τi)

fi , and

returns the concise verification key vkP = (vk′, bgp, H, pek′).
EffVer(vkP , ∆,m, σ). The online verification is the same as Ver except that in

the verification equation the value H has been already computed in the
off-line phase (and is included in vkP).

Clearly, running the combination of VerPrep and EffVer gives the same result as
running Ver, and EffVer’s running time is independent of f ’s complexity `.

The following theorem states the security of the scheme. Formal proofs of
correctness and security appear in the full version of our paper.

Theorem 6. Assume that Σ′ is an unforgeable signature scheme, F is a pseu-
dorandom function, and G is a bilinear group generator such that: H has (1, γ, ε)-
programmable pseudorandomness; H′ is weakly (poly, 1, 2, γ′, δ′)-degree-2-
programmable, weakly (poly, 1, 2, γ′, δ′)-programmable and (poly, 0, 1, γ′, δ′)-
programmable; the 2-DHI and the FDHI assumptions hold. Then HSig is a secure
linearly-homomorphic signature scheme.

We note that our scheme HSig can be instantiated by instantiating both H
and H′ with two different instances of our programmable hash Hsqrt described
in Section 3.2. As one can check in Section 3.2, Hsqrt allows for the multiple
programmability modes required in our Theorem 6. Let us stress that requiring
the same function to have multiple programmability modes is not contradictory,
as such modes do not have to hold simultaneously. It simply means that for the
same function there exist different pairs of trapdoor algorithms each satisfying
programmability with different parameters.5

5 Short Signatures with Shorter Public Keys from
Bilinear Maps

In this section we describe how to use asymmetric PHFs to construct in a generic
fashion standard-model signature schemes over bilinear groups. We propose two
constructions that are provably-secure under the q-Strong Diffie-Hellman [6] and
the q-Diffie-Hellman [5] assumptions. These constructions are the analogues of
the schemes in [26] and [25] respectively. The basic idea behind the constructions
is to replace a standard (m, 1)-PHF with an asymmetric (m, 1, d)-PHF. In fact,
in this context, having a secretly-computable H does not raise any issue when
using H in the signing procedure as the signer already uses a secret key. At the
same time, for verification purposes, computing the (public) isomorphic copy of
H in the target group is also sufficient. Our proof confirms that the (m, 1, d)-
programmability can still be used to control the size of the randomness in the
same way as in [26,25]. One difference in the security proof is that the schemes in

5 We also stress that, by definition, the outputs of these trapdoor algorithms are
statistically indistinguishable.
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[26,25] are based on the q-(S)DH assumption, where q is the number of signing
queries made by the adversary, whereas ours have to rely on the (q+d−1)-(S)DH
problem. Since our instantiations use d = 2, the difference (when considering
concrete security) is very minor.

When plugging into these generic constructions our new asymmetric PHF,
Hacfs, described in Section 3.1, which is (m, 1, 2)-programmable, we obtain schemes
that, for signing `-bits messages, allow for public keys of length O(m

√
`) as in

[31].

Below we describe the scheme based on q-SDH. For lack of space, the one
based on q-DH (which uses similar ideas) appears in the full version. As discussed
in [25], the advantage of the scheme from q-DH compared to the one from q-SDH
is to be based on a weaker assumption.

A q-Strong Diffie-Hellman Based Solution. Here we revisit the q-SDH
based solution of [26]. The signature ΣqSDH = (KeyGen,Sign,Ver) is as follows:

KeyGen(1λ). Let λ be the security parameter, and let ` = `(λ) and ρ = ρ(λ)
be arbitrary polynomials. Our scheme can sign messages in {0, 1}` using
randomness in {0, 1}ρ. The key generation algorithm works as follows:

– Run bgp
$← G(1λ) to generate the bilinear groups parameters bgp =

(p,G1,G2,GT , g1, g2, e).
– Run (sek, pek)

$← H.Gen(1λ, bgp) to generate the keys of the asymmetric
hash function.

– Choose a random x
$← Z∗p and set X ← gx2 . Return vk = (bgp, pek, X)

and sk = (sek, x).

Sign(sk,M). The signing algorithm takes as input the secret key sk, and a mes-

sage M ∈ {0, 1}`. It starts by generating a random r
$← {0, 1}ρ. Next, it

computes σ = H.PriEval(sek,M)
1
x+r and outputs (σ, r).

Ver(vk,M, (σ, r)). To check that (σ, r) is a valid signature, check that r is of
length ρ and that e(σ,X · gr2) = H.PubEval(pek,M).

We state the security of the scheme in the following theorem (whose proof ap-
pears in the full version). We note that for simplicity our proof assumes an
asymmetric (m, 1, d)-PHF for d = 2, which matches our realization. A general-
ization of the theorem for a generic d can be immediately obtained, in which
case one would rely on the (q + d− 1)-SDH assumption.

Theorem 7. Assume that G is a bilinear group generator such that the (q+ 1)-
SDH assumption holds in G1 and H is (m, 1, 2, γ, δ)-programmable, then ΣqSDH

is a secure signature scheme. More precisely, let B be an efficient (probabilistic)
algorithm that runs in time t, asks (up to) q signing queries and produces a valid
forgery with probability ε, then there exists an equally efficient algorithm A that

confutes the (q+1)-SDH assumption with probability ε′ ≥ δ
q

(
ε− γ − q

p −
qm+1

2ρm

)
.
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